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Abstract

Dimensionality reduction (DR) is often integral when analyzing high-dimensional data
across scientific, economic, and social networking applications. For data with a high
order of complexity, nonlinear approaches are often needed to identify and represent the
most important components. We propose a novel DR approach that can incorporate a
known underlying hierarchy. Specifically, we extend the widely used t-Distributed
Stochastic Neighbor Embedding technique (t-SNE) to include hierarchical information
and demonstrate its use with known or unknown class labels. We term this approach
“H-tSNE.” Such a strategy can aid in discovering and understanding underlying patterns
of a dataset that is heavily influenced by parent-child relationships. Without integrating
information that is known a priori, we suggest that DR cannot function as effectively.
In this regard, we argue for a DR approach that enables the user to incorporate known,
relevant relationships even if their representation is weakly expressed in the dataset.

Availability: github.com/Cobanoglu-Lab/h-tSNE

Introduction

Dimensionality reduction involves the elimination of features or random variables for a
given dataset. DR is a crucial component in modern analysis techniques as the
magnitude of data available to businesses, scientists, and public administration
continues to grows rapidly [1]. This data can include text-based or multimedia content
crucial to entertainment, research, and business sectors. The role of DR for feature
selection and extraction and data preprocessing is especially pertinent when analyzing
immense volumes of data with methods such as machine learning [2].

We focus on the use of dimensionality reduction for visualization. When
high-dimensional data is difficult to visualize, DR can be effective for transforming the
data to 2D or 3D for more interpretable results. This can be achieved through linear
and nonlinear approaches. Nonlinear dimensionality reduction (NLDR) is preferable
when capturing the local and global structure of the data, where linear DR tends to be
faster and more effective for global patterns [2].

One of the most widely adopted and effective general-purpose NLDR approaches is
t-SNE, a variation on Stochastic Neighbor Embedding [3]. We chose this as the
foundation of our approach because of its ability to effectively represent real-world
high-dimensional data. Our modification introduces a novel, general-purpose NLDR
approach that incorporates an input hierarchy. Because our approach is
visualization-centric, it can be manually weighted with a strength factor to better
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represent patterns in the data. Finally, we implement this technique for both known
and predicted class-based hierarchies with the option to influence the strength of a
predicted class’ structural effect based on its likelihood.

Related Work

Our solution aims to build upon t-SNE by including an input hierarchy and distancing
factor. Formulated by Maaten and Hinton, t-SNE is currently the premier
dimensionality reduction method used for high-dimensional data visualization [3]. This
technique is a variation of Stochastic Neighbor Embedding, or SNE, which converts the
Euclidian distance between high-dimensional data points into conditional probabilities
that represent similarities. This variation adds a Student’s t-distribution to SNE which
solves the crowding problem that standard SNE suffers from.

Many techniques exist for dimensionality reduction but mainly act as a “black box.”
Examples of such methods include Sammon mapping, Curvilinear Components Analysis
(CCA), Stochastic Neighbor Embedding (SNE), Isomap, Maximum Variance Unfolding
(MVU), Locally Linear Embedding (LLE), and Laplacian Eigenmaps [7]. These are
often effective with artificial data but struggle to maintain both local and global
structure on real-world data.

To our knowledge, no modification has been introduced to enable a general-purpose
NLDR technique to be influenced by a variable input hierarchy. Supervised and
semi-supervised DR approaches exist but are not readily applicable to general-purpose
visualization [5, 6]. Similarly, techniques that integrate hierarchical information such as
Hierarchical Manifold Learning are less concerned with visual analysis in lower
dimensions [8]. Our work thus aims to remedy this black box effect that is often present
when applying stochastic embedding approaches. We argue that if a known hierarchy
exists for a dataset, it can provide benefit when integrated into the analysis. For
example, such an approach can help to alleviate the case where important and explicit
relationships in the data are ignored due to low expression.

Methods

Following the formulation of t-SNE, we assume a given high dimensional input
X = {x1, x2, ..., xN}. Prior to learning an s-dimensional embedding, the pairwise
similarity between xi, xj is defined by joint probabilities pij . t-SNE implements two
symmetric conditional probabilities affected by a variable distance function d(xi, xj).

pj |i =
exp(−d(xi, xj)

2/2σ2
i )∑

k 6=i exp(−d(xi, xk)2/2σ2
i )
, pi|i = 0 (1)

pij =
pj |i + pi|j

2N
. (2)

Our algorithm introduces an additional pairwise distance calculation θji based on
the input hierarchy and a following normalization. With a mean normalization, this
results in the below modification to Equation 1:

pj |i =
exp((µ− θji · d(xi, xj)

2)/2σ3
i )∑

k 6=i exp((µ− θji · d(xi, xk)2)/2σ3
i )

(3)

We found a min-max normalization to be more visually effective, tightening the
graph by preventing outliers from drastically altering the scale of the lower-dimensional
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embedding (usually in 2D). With this alteration and the Euclidean distance function
d(xi, xj) = ||xi − xj ||, we have the finalized equation for pj |i:

exp((min+ θji · ||xi − xj ||2)/2(max ·min)σ2
i )∑

k 6=i exp((min+ θji · ||xi − xk||2)/2(max ·min)σ2
i )

(4)

We calculate an additional pairwise distance matrix using the hierarchy-informed
function θ. Given an undirected (not necessarily connected) graph G with labels
assigned to each node, we process input points i, j in high-dimensional space with labels

i′, j′ respectively. We then find the shortest path distance of two undirected nodes
−→
j′i′.

If two nodes are in different connected components, then we return zero as the path
length. Define maxdist as the maximum length shortest path in G, i.e. max(S) where S
is the set of possible shortest paths in G. Finally, let str denote the strength of this
function on the conditional probability pj |i. Given that str ∈ [0, 1] the function is then
bounded by [str, 1]. In our implementation, the upper bound of this variable is
unchecked and can be increased for a more dramatic effect. The resulting function is as
follows:

θj |i = (1− str) +
str(
−→
j′i′ − 1)

maxdist− 1
(5)

Using this formulation, a user can choose to input the adjacency matrix of the input
graph G and the strength of the hierarchical distancing factor. Graphs can be specified
for either dimension of the input dataset. In the case that there is a known hierarchy for
the dataset but labels are unknown, we additionally specify a feature-based method that
additionally weights the strength of a predicted class’ structural impact based on its
likelihood. Given the probabilities pi and pj of labels i′ and j′ we define
m = min(pi, pj). We then weight the distancing factor θ with m as follows:

θj |i = (1−m · str) +
m · str(

−→
j′i′ − 1)

maxdist− 1
(6)

Results

We analyzed the performance of our technique on the single-cell RNA-sequencing
dataset specified in Zheng et al. [10]. We chose to target this high-dimensional dataset
due to the ambiguity between T cell subclasses in the raw t-SNE plot. CD4+ and CD8+
T cells in [10] are highly interspersed making it difficult to discern detailed relationships
between the subclasses. Additionally, there is a known hierarchy for the given classes,
which motivated different approaches for a hierarchy-based model. In particular, our
visualizations are produced from a subset of the filtered ”Fresh 68k PBMCs (Donor A)”
provided by 10x Genomics [11]. Prior to analysis, we normalize UMIs (unique molecular
identifiers) by dividing by the total UMI counts in each cell. Following the UMI
normalization process detailed in [10], we then multiply by the median across the sum
of UMI counts for each cell, we finally perform a mean normalization on the resulting
matrix. UMIs under a target variance are removed (we chose σ2 = 0.1). Our
implementation is based on Scikit-learn’s ’TSNE’ function [13] and Maklin’s
implementation [12].

The provided labels, bolded in Fig. 1, are derived from a gene-based hierarchy.
Through a purely lineage-based method, CD34+ should be in a different connected
component, but we chose to keep it as the head node of the tree due to its early role in
hematopoiesis and sparsity in the dataset. Otherwise, parent-child relationships are
upheld in the graph, with a dense set of nodes to distinguish between T cell types.
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Figure 1. Class hierarchy for gene-based common lineages for the PBMC samples. Our
hierarchical distance factor is based on the shortest path between two nodes in the graph.
This clusters siblings and classes with a common lineage. If there is no path between
nodes, the original pairwise distance is used.

Figure 2. Visualization of h-tSNE for a filtered single-cell RNA-sequencing dataset
for a cell-based hierarchy where labels are known. We display the progression of our
approach at different distancing ”strength” factors values. Compared to raw t-SNE (A),
h-TSNE (B) is able to reveal sub-clusters and better express the relationship between
datapoints.

We visualize our results in Fig. 2 using the aforementioned hierarchy. Here, the
impact of the hierarchical distancing factor at different strengths is readily apparent in
the progression of randomized embeddings. For this dataset, we favor a lower strength
factor (0.25) to “push” clusters away from distant nodes in the hierarchy while
maintaining the nuances of the raw t-SNE. In this regard, the variables not present in
the hierarchy are still expressed in the higher dimensional manifold and visible within
the embedding. Thus, the input graph and strength factor encourage a user-centric
approach that allows the input of prior knowledge.
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Figure 3. H-tSNE applied to an epithelial cell single-cell RNA-sequencing dataset [14].
Compared to raw t-SNE (A), h-TSNE (B) enables the identification of sub-clusters. At
a strength factor of 0.6, Cycling TA separates into two distinct clusters (the same effect
is seen with TA 1). At higher strength factors less than one (D), this separation is more
apparent.

We additionally note a desirable divide between CD8+ and CD4+ T cells in Fig.
2(B). This separation still includes patterns that mirror the raw t-SNE plot (A) through
the intermingling of NK and CD8+ Naive Cytotoxic classes. Original clusters of
Monocyte, B, and CD34+ cells maintain relative distance and shape. In this manner,
one can manually adjust the strength factor to set the degree of separation when
targeting specific relationships in the graph.

This approach can similarly be performed on the same dataset for a gene-based
hierarchy where sample classes are inferred with a given likelihood. H-tSNE implements
a probability-dependent approach that weights poor classifications less heavily.
Hierarchy nodes in this case can be derived from representative proteins of the provided
classes. Using the filtered matrix normalized from [0, 1], we can replace the
ground-truth label of a sample k with an inferred label `′k based on its total expression
for a given node. Relevant UMI counts are first summed for each node v ∈ V of the
gene-based graph. We can then label the given sample based on the node with the
highest normalized expression.

`′k = max(
∑
v∈V

∑
g∈v

Mgk) (7)

Scores for each inferred class are then normalized from [0, 1] and influence the
likelihood-based pairwise distance matrix described in Section 3. Because the graph is
also weighted with a strength factor, we can exaggerate this effect by increasing str.
Inferred labels with low UMI counts contribute less to the hierarchical pairwise distance
matrix, ensuring that the original embedding is upheld. Thus, the original structure can
be preserved when the confidence of a given prediction is low. This prevents faulty
clustering from the hierarchical pairwise distance matrix. With 100% confidence and
100% accuracy for inferred labels results of the gene-based method would mirror those
of the cell-based hierarchy (Fig. 2).

To demonstrate the efficacy of our approach, we performed a similar cell-based
process on a single-cell RNA-sequencing dataset comprised of epithelial cells [14]. We
normalized UMI counts as before and filtered genes by a variance of 0.05. In Fig. 3, we
indicate the effect of applying h-tSNE with the hierarchy (C) specified in [14]. Without
our method, the raw t-SNE graph is too heterogeneous to discern any particular
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patterns in the data. Thus we integrate the known hierarchy to create a more readable
embedding. For this dataset, we favor higher strength values due to the amount of UMI
counts and higher number of classes. In Fig. 3(B), maintaining centralization of Cycling
TA, TA 2, and Secretory TA cells within the graph. Most notably, by applying the
hierarchy, we are able to observe sub-clusters that are not identifiable in the t-SNE
graph.

Discussion

H-tSNE formulates a direct relationship between the distance between two graph nodes
in the hierarchy and the resulting distance in the embedding. We chose this approach to
ensure that sibling nodes result a noticeable amount of spreading. The effect of the
hierarchy can easily be modified for a desired effect on the embedding. To more
strongly express a hierarchical effect, one could introduce a diminishing factor such that
nodes deeper into the graph have a reduced influence as opposed to the base classes. An
application of such a strategy is relevant with the presence of distinct classes containing
many nuanced subclasses as children.

We chose to modify the pairwise distance function prior to embedding mostly due to
the following random initialization, after which label ordering is unknown. However,
with further modification of the base t-SNE algorithm, one could instead modify the
distance function, influence the initial random embedding, or extend the KL-divergence
objective function with a hierarchical factor. We also chose not to integrate directed
graphs with this approach to support more complicated inter-class relations, but one
could extend the approach to punish a pairwise-comparison when moving against the
directed graph. This would result in more inter-class separation and less intra-class
separation which could be valuable for some datasets.

We proposed a novel general-purpose approach for nonlinear dimensionality
reduction that incorporates an input hierarchy. We modify the premier
visualization-centric technique in this field, t-SNE, and demonstrate our results on a
real-world single-cell dataset. Furthermore, we introduce a feature-based modification
that enables users to integrate our method with weighted class labels.
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