1	Application of EGCG modified EDC/NHS cross-linked extracellular
2	matrix to promote macrophage adhesion
3	Chenyu Chu ^{a,b,#} , Shengan Rung ^{a,b,#} , Renli Yang ^{a,b} , Yi Man ^{a,b*} , Yili Qu ^{a,b*}
4	^a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University,
5	Chengdu, Sichuan 610041, China
6	^b Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University,
7	Chengdu, Sichuan 610041, China
8	[#] theses author contributed equally to this work
9	Corresponding author:
10	Yi Man, DDS, Ph.D
11	Professor and Chair
12	Department of Oral Implantology
13	State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University,
14	14#, 3rd section, Renmin South Road
15	Chengdu 610041, China
16	Tel: 0086-28-85503571
17	Fax: 0086-28-85483678
18	Email: manyi780203@126.com
19	Yili Qu, DDS, Ph.D
20	Associate Professor
21	State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University,
22	14#, 3rd section, Renmin South Road
23	Chengdu 610041, China
24	Tel: 0086-28-85503571
25	E-mail: qqyili@126.com

27	Abstract: Though chemically cross-linked by EDC/NHS endows collagen membrane
28	with promising mechanical properties, it is not conducive to modulation of foreign
29	body reaction (FBR) after implantation or guidance of osteogenesis. In our previous
30	research, we have found that macrophages have a strong regulatory effect on tissue
31	and bone regeneration during FBR, and EGCG modified membranes could adjust the
32	recruitment and phenotypes of macrophages. Accordingly, we develop the
33	EGCG-EDC/NHS membranes, prepared with physically immersion, while the surface
34	morphology of the membrane was observed by SEM, the biological activity of
35	collagen was determined by FTIR, the activity and adhesion of cell culture in vitro,
36	angiogenesis and monocyte/macrophage recruitment after subcutaneous implantation,
37	etc. are characterized. It could be concluded that EGCG-EDC/NHS collagen
38	membrane is hopeful to be used in implant dentistry for it not only retains the
39	advantages of the collagen membrane itself, but also improves cell viability, adhesion
40	and vascularization tendency. However, the mechanism that lies in the regenerative
41	advantages of such membrane needs further exploration, but it is certain that the
42	differences in surface morphology can have a significant impact on the reaction
43	between the host and the implant, not to mention macrophage in bone regeneration.
44	Keywords: collagen membrane; EGCG; adhesion; macrophage; implant dentistry

46 **1. Introduction**

47	Guided bone regeneration (GBR) technology takes advantage of barrier membrane to
48	compartmentalize soft and hard tissue. It protects the hard tissue from an invasion of
49	the relatively fast-growing soft tissue, thus creates sufficient space and provides
50	stability for osteogenic cell migration in the meanwhile (Melcher, 1976). Currently,
51	collagen, the main organic component of extracellular matrix (ECM) and bone, is the
52	most common resorbable source for membrane fabrication. A meta-analysis revealed
53	that the survival rate of implant with the application of collagen membrane were close
54	to 100% both in simultaneous and subsequent implant placement (Wessing, Lettner, &
55	Zechner, 2018). However, its high biocompatibility also becomes its fatal flaw, which
56	limits the mechanical properties of the collagen membrane. Without the addition of
57	crosslinking agents, the integrity of the membrane may not be able to maintain
58	throughout the entire process of bone regeneration to provide sufficient support
59	(Meyer, 2019). Although-the exposure of membrane is slightly related to the addition
60	of crosslinker, it is not statistically significant (30%) (Wessing et al., 2018). This
61	observed degradation time is markedly longer than that of collagen membrane, which
62	is reported to be completely resorbed 1 to 2 weeks after exposure [18, 34]. The
63	prolonged degradation time of matrix barrier seems to provide prolonged protecting
64	of the underlying graft supporting the bone regeneration process. During this healing

65	process, all exposures did resolve within 6-7 weeks and no membrane had to be
66	extracted. The ridge width gain in both groups was sufficient to allow for the
67	successful placement of dental implants in all 14 subjects without any complication
68	(Eskan, Girouard, Morton, & Greenwell, 2017). Therefore, to enhance mechanical
69	properties with low cytotoxicity and low antigenicity,
70	1-ethyl-3-(3-dimethylaminopropylcarbodiimide hydrochloride (EDC) in the presence
71	of N-hydroxy-succinimide (NHS) collagen membrane was selected as our target
72	(Akhshabi, Biazar, Singh, Keshel, & Geetha, 2018; Bax et al., 2017). Apart from the
73	degradation rate of membranes, immune environment of the implant site is another
74	factor that determines the success or failure of the surgery (El-Jawhari, Jones, &
75	Giannoudis, 2016). Especially in periodontitis, a chronic and degenerative
76	inflammatory disease which affects approximately 10% of the world's population, the
77	inflammatory environment makes it harder to conduct tissue engineering with
78	biomaterials, thus elevates the importance of immune modulation to rebuild balance
79	(Kurashima & Kiyono, 2017). Epigallocatechin-3-gallate (EGCG) as one of the main
80	polyphenols in tea could serve as a crosslinker for scaffolds (Honda et al., 2018),
81	showing bioactive effects in various aspects, especially in dental restoration (Liao et
82	al., 2020). Compared with pure collagen membrane, its anti-inflammatory (Lagha &
83	Grenier, 2019; Wu, Choi, Kang, Kim, & Shin, 2017), anti-fibrosis (Wang, Yang, Yuan,

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.03.325068; this version posted October 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

84	Yang, & Zhao, 2018), pro-osteogenic (Lin et al., 2018), macrophage phenotypes
85	regulatory (Chu et al., 2019) effects are all prompt to rescue the pro-long
86	inflammation and help the establishment of ideal microenvironment to provide
87	promising signal in regeneration (Chu et al., 2020). Considering its promising traits,
88	EGCG was cross-linked to attach the commercial EDC/NHS collagen, and the
89	modification of EGCG was adjusted at 0.064% w/v, where it is reported to possess
90	appropriate mechanical properties, anti-inflammatory effects, and cell viability
91	promotion in previous report (Chu et al., 2016). To ensure that the developed EGCG
92	modified EDC/NHS collagen membrane meets the need of GBR, its physical,
93	chemical and biological properties was characterized by means of investigation on
94	surface morphology, FTIR spectra, DSC statistics, in vitro cell viability and integrin
95	expression, and in vivo vascularization and monocyte/ macrophage recruitment. The
96	aim of this study is to fabricate 0.064% EGCG EDC/NHS collagen membranes (Fig.
97	1) with the improvement of cell viability and adhesion, as well as revascularization.

Fig. 1. Schematic graph of loading 0.064% EGCG to EDC/NHS collagen membrane

100 2. Materials and Methods

101 2.1 Materials

102	Commercially available EDC/NHS collagen membranes (Dentium) in size of
103	10mm×20mm were purchased. EGCG was purchased from Jiang Xi Lv Kang Natural
104	Products (Jiang Xi, China). All solvents and chemicals employed in the process were
105	analytical grade and were used without further purification. The EGCG modified
106	EDC/NHS collagen membrane was fabricated as follow: each EDC/NHS collagen
107	membrane was immersed in 0.064% (w/v) EGCG solution at room temperature for 1
108	hr. After that, the EGCG-EDC/NHS collagen membranes were rinsed three times in
109	deionized water and freeze dried overnight. The pure EDC/NHS collagen membranes
110	were also processed under the same protocol except for immersion.

111 **2.2 Surface morphology**

The morphologies of EDC/NHS collagen membranes and EGCG modified collagen
membranes were characterized by Scanning electron microscope (SEM, S-800,
HITACHI, Tokyo, Japan) with an accelerating voltage of 25 kV. The discs were
coated with an ultrathin layer (300 Å) of Au/Pt in an ion sputter (E1010, HITACHI,
Tokyo, Japan) to achieve enough electrical conductivity.

117 2.3 Mechanical and chemical properties

118 a. Mechanical properties measurement

119	To investigate the ultimate stress (US), ultimate elongation (UE) and Young's
120	modulus (YM) of the membranes, each sample (10mm×20mm) was attached to an
121	electronic universal testing machine (SHIMADZU, AG-IC 50 KN, Japan). Five
122	samples were measured for each kind of membranes. Each sample was strained at a
123	rate of 15mm/min at room temperature. When operating differential scanning
124	calorimeter (DSC) measurement, samples in size of 10mm×20mm (~6.71 mg) were
125	encapsulated in aluminum pan, then heated from 25 to 500 $^\circ C$ at a rate of 10 $^\circ C/min$
126	under nitrogen atmosphere. Thermo-grams were obtained by the Netzsch Proteus
127	analysis software, and thermal denaturation was recorded as the typical peak.
128	b. Chemical properties measurement
129	A Fourier transform infrared spectroscopy (FTIR) spectrophotometer (Spectrum One,
129 130	A Fourier transform infrared spectroscopy (FTIR) spectrophotometer (Spectrum One, PerkinElmer, Inc., Waltham) was employed to measure the FTIR spectra of the
129 130 131	A Fourier transform infrared spectroscopy (FTIR) spectrophotometer (Spectrum One, PerkinElmer, Inc., Waltham) was employed to measure the FTIR spectra of the samples, the spectra of which were obtained at room temperature at the average of 32
129 130 131 132	A Fourier transform infrared spectroscopy (FTIR) spectrophotometer (Spectrum One, PerkinElmer, Inc., Waltham) was employed to measure the FTIR spectra of the samples, the spectra of which were obtained at room temperature at the average of 32 scans in the range of $400 - 4000$ cm -1 .
129 130 131 132 133	A Fourier transform infrared spectroscopy (FTIR) spectrophotometer (Spectrum One, PerkinElmer, Inc., Waltham) was employed to measure the FTIR spectra of the samples, the spectra of which were obtained at room temperature at the average of 32 scans in the range of 400 – 4000 cm–1. 2.4 Cell viability
129 130 131 132 133 134	A Fourier transform infrared spectroscopy (FTIR) spectrophotometer (Spectrum One, PerkinElmer, Inc., Waltham) was employed to measure the FTIR spectra of the samples, the spectra of which were obtained at room temperature at the average of 32 scans in the range of 400 – 4000 cm–1. 2.4 Cell viability The cell viability was examined using the mouse macrophage cell line Raw 264.7
129 130 131 132 133 134 135	A Fourier transform infrared spectroscopy (FTIR) spectrophotometer (Spectrum One, PerkinElmer, Inc., Waltham) was employed to measure the FTIR spectra of the samples, the spectra of which were obtained at room temperature at the average of 32 scans in the range of 400 – 4000 cm–1. 2.4 Cell viability The cell viability was examined using the mouse macrophage cell line Raw 264.7 obtained from the American Type Culture Collection (Rockville, MD, USA). Staining
129 130 131 132 133 134 135 136	A Fourier transform infrared spectroscopy (FTIR) spectrophotometer (Spectrum One, PerkinElmer, Inc., Waltham) was employed to measure the FTIR spectra of the samples, the spectra of which were obtained at room temperature at the average of 32 scans in the range of 400 – 4000 cm–1. 2.4 Cell viability The cell viability was examined using the mouse macrophage cell line Raw 264.7 obtained from the American Type Culture Collection (Rockville, MD, USA). Staining of Cell Counting Kit-8 (CCK-8, Dojindo Laboratories, Kumamoto, Japan) and

138	membranes were processed into 10mm×10mm in the clean bench, then placed in
139	48-well plates and seeded with Raw 264.7 cell at a density of 10^4 /well. 10% CCK-8
140	solution would be added to each well. Cells were then co-cultured for 10, 20, 40, 60,
141	120, 240, 360 min and 1 day, respectively, with RPMI (Gibco, Thermo, USA)
142	supplemented with 10% FBS (Gibco, Thermo, USA). Then plates would be incubated
143	at 37 °C for another 3.5 hr. After incubation, the OD value at 450 nm was measured to
144	determine the cell viability through a micro-plate reader (Multiskan, Thermo, USA).
145	As for staining of Calcein AM/Hoechst, cells were cultured for 5 days on the dishes
146	then incubated with 1 μ M Calcein AM (diluted from a 1mM stock solution of CAM in
147	dimethyl sulfoxide, Dojindo Laboratories, Kumamoto, Japan) and 100 μL RPMI for
148	30 mins in the incubator. The dishes were then washed three times by $1 \times PBS$ and
149	stained with 100 μ L Hoechst 33258 working fluid (diluted from a 1mL stock solution
150	in distilled water, KeyGen, China) for 10 mins in the incubator. At last, washed the
151	dish for three times by $1 \times PBS$ and analyzed with an Inverted Ti-E microscope
152	(Nikon).

153 **2.5 Cell adhesion**

SEM images were taken to preliminary estimate cell adhesion after culturing on
EDC/NHS-Col and 0.064% EGCG-EDC/NHS-Col for 10, 20, 40 and 480 min, with
processed as mentioned in 2.2. The expressions of integrin beta 1, 2, 3 in Raw 264.7

157	cells after culturing on blank wells, EDC/NHS-Col and 0.064%
158	EGCG-EDC/NHS-Col for 10 mins were further evaluated by RNA isolation, cDNA
159	synthesis, and RT-qPCR. Cells cultured on different surfaces were collected after
160	incubating with 0.05% trypsin-EDTA (Gibco, Thermo, USA) for 5 mins and
161	homogenized in 1-ml Trizol Reagent (Tianjian, Beijing, China). Total RNA was
162	reverse-transcribed using mRNA Selective PCR kit (TaKaRa Bio-Clontech). Mouse
163	integrin beta 1, 2 and 3 cDNA were amplified by real-time PCR using the SYBR
164	Green PCR kit (Thermo Scientific, Braunschweig, Germany). The primer sequences
165	used for the real-time PCR were listed in Table 1.
166	2.6 Surgical Procedures
167	The protocol of the present experiment was approved by Institution Review Board of
168	West China Hospital of Stomatology (No.WCHSIRB-D-2017-097). Male C57BL/6,
169	6~7 weeks of age, were adaptively fed for 3 days after purchasing. After
170	anaesthetization by chloral hydrate, the surgical area on the back was shaved and
171	aseptically prepared. Three parallel sagittal incisions were made in the dorsal skin and
172	subcutaneous pockets were prepared for membrane implantation. The two kinds of

173 membranes were prepared beforehand into 3mm×3mm size in the clean bench.

174 EDC/NHS collagen membranes and EGCG-EDC/NHS collagen membranes were

175 implanted into the pockets respectively. The control group underwent a sham

176	procedure. Afterwards, all the incisions were sutured. These mice were kept in a
177	professional experimental animal room and fed with a standard laboratory diet. After
178	recovering for 0 (12hr), 1, and 3 days, they were sacrificed by cervical dislocation.
179	The membranes and the skins covering the materials were harvested together (equal
180	areas around the suture were harvested in the control groups) and immediately fixed
181	with 4% paraformaldehyde (Solarbio, Beijing, China) for at least 24hr.
182	2.7 H & E staining
183	The fixed samples were sliced into $3-\mu m$ thick sections after embedding in paraffin
184	for the following H&E staining and immunofluorescence assay. For H&E staining,
185	the sections were incubated at $65\square$ for 4hr for deparaffinization and processed as
186	follow:
187	a. Dhydration with ethanol;
188	b. Stain with hematoxylin for 5 mins and differentiate in 1% hydrochloric acid
189	alcohol for 2 s;
190	c. Incubate in 0.2% ammonia water for 2 mins and stain with eosin for 1 min;
191	d. Gradual dehydration through 95% ethanol, then clear and mount the sections with
192	neutral resin. The sections were observed with light microscopy (Olympus, Tokyo,
193	Japan) and scanned with Digital Slide Scanning System (PRECICE, Beijing,
194	China).

195 **2.8 Promotion of revascularization**

196	3 days after implantation, tissue was harvested and prepared as sections. Then,
197	sections would be fixed with 2% paraformaldehyde PBS for 24 hours (pH=7.4) and
198	later washed by PBS for 3 times, which followed by soaking in 1% bovine serum
199	albumin (BSA) PBS that contained 1% Triton X-100 for 1 hour. Eventually, incubated
200	the sections in 1% Tween 20 for 10 mins, and washed twice in PBS for 5 mins. The
201	sections were then stained with nucleus marker Hoechst, endothelial cell marker
202	CD31 and adventitial fibroblast marker α -SMA to visualized specific components in
203	the fluorescent images.
204	2.9 Statistical Analysis
205	Data are presented as mean + standard deviation. Statistical computation was

performed in GraphPad Prism 5.0 (GraphPad Software, San Diego, CA, USA) and statistical significance was analyzed using analysis of variance followed by Tukey's multiple comparison tests. Semi-quantitative data of immunofluorescence staining and HE staining that did not follow a normal distribution were further analyzed with Mann-Whitney *U* test. Unless otherwise noted, p<0.05 was considered statistically significant.

212 **3. Results**

213 **3.1 Surface morphology**

214	As shown in representative SEM images (Fig. 2), the surface morphology of
215	EDC/NHS collagen membranes exhibited a rough, disordered outlook, with fibers
216	randomly distributed. After treating with 0.064% EGCG, there were no notable
217	changes on the outlooks, while the arrangement of fibers appeared more ordered and
218	intact. In addition, we also found that smaller fiber branches extend from the
219	backbone when compared with those without EGCG treatment. These might be due to
220	the loading of EGCG hydrogen bonds formation between EGCG molecules and
221	collagen fibers.

Fig. 2. SEM images of EDC/NHS collagen membrane and 0.064% EGCG loadedEDC/NHS collagen membrane.

225 **3.2 Mechanical and chemical properties**

226 To examine the strength, stiffness and elasticity of the membranes, measurement of

227 US, UE and YM were carried out and the corresponding volumes were written in

Table 2. As US seemed relatively constant between the control and EGCG group,

229	both UE and YM showed different trends. The modification of 0.064% EGCG
230	strengthened the UE volume of collagen membranes, whereas weakened the YM
231	volume (Fig. 3a). Also, there were no statistical difference between membranes with
232	or without EGCG modification in result of DSC measurement (Fig. 3b). From results
233	of FTIR spectra and DSC measurement, it could be concluded that chemical
234	properties remain consistent before and after the treatment of 0.064% EGCG. The
235	FTIR spectra indicated that no structure changes had happened to collagen fibers
236	since the absorption peaked at 1235 cm^{-1} (tertiary structure) and 1450 cm^{-1}
237	(pyrrolidine ring vibrations) of EDC/NHS collagen membrane, and 0.064%
238	EGCG-EDC/NHS collagen membrane remained constant. Also, the ratio of 1235
239	$cm^{-1}/1450 cm^{-1}$ (Table 3) came out to be around 1.00, illustrating that the secondary
240	structure of collagen triple helix remained its integrity in both membranes, which
241	assured the great biological performance of collagen membranes (Figueiró, Góes,
242	Moreira, & Sombra, 2004). Therefore, it could be inferred that EGCG did not affect
243	the physicochemical property of collagen.

244

Fig. 3. Young's Modulus (a) and DSC statistics (b) of EDC/NHS collagen membrane
and 0.064% EGCG-EDC/NHS collagen membrane. NS= no significance.

248 The results of CCK-8 staining showed the cell viability of raw 264.7 cells under pure 249 medium, 0.064% EGCG supplemented medium, EDC/NHS collagen membrane and 250 0.064% EGCG-EDC/NHS collagen membrane (Fig. 4a) from the first few minutes to 251 1 day. In the first hour, there was no significance between the groups. The 252 improvement of cell viability by EGCG was raised after culturing for 2 hr and the following time points. In order to understand the effect of EGCG on cell viability 253 254 after culturing for longer time period, Calcein AM/Hoechst staining was conducted on 255 day 5 (Fig. 4b). The test results also showed the same trend with more live cells on 256 EGCG-EDC/NHS-Col comparing with EDC/NHS-Col, indicating that the addition of 257 EGCG was conducive to the performance of cell activities.

Fig. 4. CCK-8 results (a) and Calcein AM/Hoechst staining (b) of Raw 264.7 cultured

on different condition. Ctrl, standard medium; EGCG, 0.064% EGCG supplemented

261 medium; EDC/NHS-Col, EDC/NHS collagen membrane; EGCG-EDC/NHS-Col,

262 0.064% EGCG-EDC/NHS collagen membrane. Green, live cells; blue, nucleus. NS=

no significance, *P<0.05, **P<0.01, ***P<0.001, one-way ANOVA with Tukey's no significance to the the table of t

264 multiple comparison test, n = 3 in each group.

265 **3.4 Cell adhesion**

266 To observe cell adhesion towards the membrane, SEM was used to generate the

267 morphology of Raw 264.7 cells cultured on membranes in 8 hr (Fig. 5a&b). It

elucidated that with the modification of EGCG, not only more cells adhered to the

269	surface but also a better spreading condition of cells was detected. Also, more
270	protrusions could be seen to seize the fibers even at very early incubation, compared
271	to that without EGCG. Considering integrins, the transmembrane molecules, with
272	large extracellular domains that are known to play a key role in adhesion between
273	cells and ECM (Changede & Sheetz, 2017; Tseng et al., 2018), expression levels of
274	integrin beta 1, 2 and 3 in Raw 264.7 cells were measured. The result showed that
275	there existed a boost of integrin beta 2 in the EGCG- EDC/NHS group, whereas no
276	differences appeared in the expression of integrin beta 1 and 3 with the treatment of
277	0.064% EGCG (Fig. 5c). These results suggested that 0.064% EGCG could enhance
278	the adhesion properties of EDC/NHS collagen membrane at early phases.

Fig. 5. SEM images of Raw 264.7 cells cultured on EDC/NHS and EGCG treated

- EDC/NHS collagen membranes under low (a) and high (b) magnification, and the
- expression levels of integrin beta 1, 2 and 3, after culturing on tissue culture plate
- 283 (TCP), EDC/NHS-Col and EGCG-EDC/NHS-Col for 10 mins (c), respectively. NS=
- 284 no significance.

285 **3.5 Promotion of revascularization**

286	We identified the ability of 0.064% EGCG EDC/NHS-Col to promote
287	revascularization by immunofluorescence staining of nuclei, vascular endothelial cell
288	marker CD31 and adventitial fibroblast marker α -SMA (Manetti et al., 2017). As
289	shown in Fig. 6a, more blood vessels were generated in EGCG-EDC/NHS-Col
290	compared to EDC/NHS-Col, meanwhile, as shown in Fig. 6d, the results of
291	semi-quantitative analysis of total blood vessel area showed that it was larger in 0.064%
292	EGCG EDC/NHS-Col than that in the EDC/NHS-Col (p<0.01).
293	3.6 Recruitment of monocyte/macrophage
294	12 hours after the implantation, there were no visible cells recruited at surgical sites,
295	but with another 12 hours, we could see that around the membrane, a certain number
296	of immune cells were gathered , which was similar on 3-days post implantation (Fig.
297	6c&d). In addition, semi-quantitative cell counting revealed that in 1- and 3-days post
298	surgeries, 0.064% EGCG-EDC/NHS-Col recruited more monocytes/macrophages,
299	while EDC/NHS-Col was about one-third of the number of the experimental group
300	(Fig. 6e).

302 Fig. 6. Results of subcutaneous implantation. Immunofluorescence staining of α SMA 303 (green), CD31 (red) and Hoechst (blue) in subcutaneous implantation samples of 304 EDC/NHS-Col and EGCG-EDC/NHS-Col, control group refers to normal skin (a); 305 semi-quantitative analysis of total blood vessel area was calculated in each group (d). 306 Recruitment of monocyte/macrophage after subcutaneous implantation of EDC/NHS collagen membrane and EGCG-EDC/NHS collagen membrane, control group 307 308 underwent a sham procedure. HE staining of subcutaneous tissue (b&c) and cell 309 counting of monocyte/macrophage (e) in NHS/EDC-Col and EGCG-EDC/NHS-Col 310 were conducted on day 0, 1, and 3 post implantations. Arrows indicate material (b) 311 and monocyte/macrophage (c). Statistical significance was analyzed using analysis of 312 variance followed by Tukey's multiple comparison tests and Mann-Whitney U test (n = 5). Data are presented as mean + standard deviation. *P<0.05, ***P<0.001. 313

314 **4. Discussion**

315	To reconstruct alveolar bone deficiency, the application of biomaterials and certain
316	surgery are on account of its morphology and the severity of horizontal/ vertical bone
317	loss. When performing GBR, bone defect less than 6 mm is a prerequisite for
318	desirable outcome, whereas the complex case that is combined with vertical and
319	horizontal bone defect \leq 4mm, it is recommended to use crosslinked absorbable
320	membrane or non-absorbable membrane with bone filler to create appropriate repair
321	conditions (Tolstunov, Hamrick, Broumand, Shilo, & Rachmiel, 2019). In addition,
322	crosslinked membranes are more osteoinductive, with more bone marrow-multipotent
323	stromal cells attachment to the crosslinked membranes, better ALP activity, and
324	calcium deposition were observed compared with the non-crosslinked one (El-Jawhari,
325	Moisley, Jones, & Giannoudis, 2019). According to previous studies, the use of EDC
326	as crosslinker could not only prolong the integrity of the membrane, but also avoid

severe FBR, lack of vascularization in the early stage of healing and poor integration, 327 328 which are the fatal flaws of traditional cross-linking agents (Park et al., 2015). The 329 addition of NHS would improve EDC-mediated crosslinking, stabilize active 330 intermediates, and reduce side products for subsequent reactions (Grabarek & Gergely, 331 1990). However, the present EDC/NHS crosslinked collagen membrane lacks the 332 ability to regulate immune responses and induce osteoblast-related cell behavior. 333 Regarding cell behavior, EGCG has shown the ability to complement these two 334 aspects in our previous research as mentioned in the introduction. Thus, we attempted 335 to modify to EDC/NHS crosslinked collagen membrane with 0.064% EGCG. After 336 characterizing the material, results show that the backbone of collagen remains intact 337 and the strength of membranes is barely altered, whereas the stiffness is moderately 338 enhanced, though elasticity is slightly weakened. These not only ensure that the 339 membrane will not be too supple to tightly cover the substitutes, supporting bone 340 formation, but also verify that the chemical structure related to the biological activity 341 of collagen has not been destroyed, though the definite clinical effect needs 342 verification. Over the past decade, the ability of biomaterials to promote tissue 343 regeneration by regulating immune cells in advance has been confirmed, the 344 composition, physical and chemical properties, and surface morphology of which are 345 the critical factors that affect the foreign body reaction (FBR) after implantation. As

346	one of the dominant immune cells in the FBR, macrophages can acutely polarize into
347	different phenotypes according to the microenvironment created by the implant and
348	direct the accumulated cells' behaviors that strongly involve in tissue reconstruction
349	(Chu, Deng, Sun, Qu, & Man, 2017; Xie et al., 2020). The arrangement and diameter
350	of the fibers can significantly affect the behavior of macrophages. Anisotropic
351	membranes with thicker fibers have an increased tendency to oxidative degradation,
352	compared with the thinner and isotropic one (Wissing et al., 2019), more macrophages
353	adherence on the align compared with the random and the smaller fibers also have
354	been proved with better biocompatibility as thinner fibrous capsule and abundant
355	volume of blood vessel formation (Saino et al., 2011). In this article, we found that the
356	surface morphology of EGCG-EDC/NHS-Col has been altered with smaller fiber
357	branches extended from the backbone and the arrangement became more coherent,
358	which may account for the cell viability and adherence. Under the electron
359	microscope, the viability of RAW 264.7 on EGCG-EDC/NHS-Col is significantly
360	higher than any other groups at all detection points during 2-24 hours after
361	implantation. Not only did more macrophages adhere to membrane with the treatment
362	of EGCG, but the adhered macrophages were activated at an early stage (20min) with
363	many protrusions, and which is also confirmed by PCR detection. Also, more
364	monocyte/macrophage recruitment could be seen on EGCG-EDC/NHS-Col in the in

365	vivo subcutaneous implantation. As researchers have found that the onset of
366	neovascularization greatly depends on macrophage and its coherent phenotypic switch
367	(Spiller et al., 2014; Spiller, Freytes, & Vunjak-Novakovic, 2015), we hypothesize the
368	promising angiogenesis is result from the recruitment of macrophages which cannot
369	be excluded considering the microstructure of EGCG-EDC/NHS-Col. Of note, in our
370	previous study, the modification of EGCG was highly competent at promoting
371	vascularization that involved the secretion of M2-related chemokines (Chu et al.,
372	2018). The formation of blood vessel could offer nutrient, stem cells and oxygen
373	supply and waste discharge, vastly improving the regenerative response. Therefore,
374	our efforts are directed at macrophages and the outcome of vascularization as primary
375	study towards the developed EGCG modified EDC/NHS collagen membrane. And
376	our results showed that the modification of EGCG is beneficial for cell viability,
377	adhesion and vessel formation in both in vitro RAW 264.7 culture experiment and in
378	vivo subcutaneous implantation. The great biocompatibility of EGCG modified
379	EDC/NHS collagen guided bone regeneration membrane is stated without
380	compromising the advantages of collagen itself. Furthermore, our results
381	demonstrated the modified membranes could significantly affect the attachment of
382	macrophages and enhance its viability both in vivo and in vitro, which might be
383	related to the formation of vessels. However, the phenotypes of macrophages and

384	mechanisms of angiogenesis need further investigation. In short, we develop a
385	biomaterial that can promote the early recruitment of macrophages and the formation
386	of blood vessels, possessing great potential for bone regeneration in the field of
387	implant dentistry.

388 5. Conclusion

389	In conclusion, with the modification of EGCG, EDC/NHS collagen guided bone
390	regeneration membrane can better promote cell adhesion and improve cell viability,
391	which is confirmed in our experiments that living cells attach to it and the expression
392	of adhesion-related integrin is indeed increased. In addition, there was a statistically
393	significant difference in angiogenesis after membrane implantation. The benefits
394	mentioned above do not exclude the presence of smaller collagen fibers, but this
395	different microstructure does not damage the chemical structure of the collagen itself,
396	though the specific effect needs further exploration.
397	Funding information
398	This work was supported by Research and Develop Program, West China Hospital of
399	Stomatology Sichuan University (No.LCYJ2019-19); the Fundamental Research
400	Funds for the Central Universities (No. 2082604401239)

401 Statement of conflict of interest

402 There are no conflicts of interest related to this manuscript.

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.03.325068; this version posted October 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Table 1. Nucleotide primers used for quantitative polymerase chain reaction.

Genes	Oligonucleotide sequence
Integrin b1	Forward: CCAAGTGGGACACGGGTGA
	Reverse: CTGCTGCTGTGAGCTTGGTG
Integrin b2	Forward: GCAGCAGAAGGACGGAAACG
	Reverse: AGGGGGTTGTCGTTGTTCCA
Integrin b3	Forward: AGACAGCGCCCAGATCACTC
	Reverse: GCCAATCCGAAGGTTGCTGG

405

407 Table 2. Mecha	unical properties	s of membranes.
--------------------	-------------------	-----------------

Groups	Ultimate Stress	Ultimate	Young's
	(MPa)	elongation (%)	modulus
EDC/NHS-Col	18.32±3.12	22.44±3.12	0.77±0.16
EGCG-EDC/NHS-Col	18.18±2.97	29.29±2.78	0.57±0.09

410 Table 3. FTIR ratio at the bands of 1235 cm⁻¹ and 1450 cm⁻¹

Groups	1235/1450
NHS/EDC-Col	1.001±0.002
EGCG-NHS/EDC-Col	0.989±0.003

412 **Reference**

449

413 Akhshabi, S., Biazar, E., Singh, V., Keshel, S. H., & Geetha, N. (2018). The effect of the carbodiimide 414 cross-linker on the structural and biocompatibility properties of collagen-chondroitin sulfate 415 electrospun mat. International journal of nanomedicine, 13, 4405-4416. 416 Bax, D. V., Davidenko, N., Gullberg, D., Hamaia, S. W., Farndale, R. W., Best, S. M., & Cameron, R. E. 417 (2017). Fundamental insight into the effect of carbodiimide crosslinking on cellular 418 recognition of collagen-based scaffolds. Acta biomaterialia, 49, 218-234. 419 Changede, R., & Sheetz, M. (2017). Integrin and cadherin clusters: A robust way to organize adhesions 420 for cell mechanics. BioEssays : news and reviews in molecular, cellular and developmental 421 biology, 39(1), 1-12. 422 Chu, C., Deng, J., Sun, X., Qu, Y., & Man, Y. (2017). Collagen Membrane and Immune Response in 423 Guided Bone Regeneration: Recent Progress and Perspectives. Tissue engineering. Part B, 424 Reviews, 23(5), 421-435. 425 Chu, C., Deng, J., Xiang, L., Wu, Y., Wei, X., Qu, Y., & Man, Y. (2016). Evaluation of 426 epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on 427 osteoblasts. Materials science & engineering. C, Materials for biological applications, 67, 428 386-394. 429 Chu, C., Liu, L., Rung, S., Wang, Y., Ma, Y., Hu, C., . . . Qu, Y. (2020). Modulation of foreign body 430 reaction and macrophage phenotypes concerning microenvironment. Journal of biomedical 431 materials research. Part A, 108(1), 127-135. 432 Chu, C., Liu, L., Wang, Y., Wei, S., Wang, Y., Man, Y., & Qu, Y. (2018). Macrophage phenotype in the 433 epigallocatechin-3-gallate (EGCG)-modified collagen determines foreign body reaction. Journal of Tissue Engineering and Regenerative Medicine, 12(6), 1499-1507. 434 Chu, C., Wang, Y., Wang, Y., Yang, R., Liu, L., Rung, S., . . . Qu, Y. (2019). Evaluation of 435 436 epigallocatechin-3-gallate (EGCG) modified collagen in guided bone regeneration (GBR) 437 surgery and modulation of macrophage phenotype. Materials science & engineering. C, 438 Materials for biological applications, 99, 73-82. 439 El-Jawhari, J. J., Jones, E., & Giannoudis, P. V. (2016). The roles of immune cells in bone healing; 440 what we know, do not know and future perspectives. Injury-international Journal of the Care 441 of the Injured, 47(11), 2399-2406. 442 El-Jawhari, J. J., Moisley, K., Jones, E., & Giannoudis, P. V. (2019). A crosslinked collagen membrane 443 versus a non-crosslinked bilayer collagen membrane for supporting osteogenic functions of 444 human bone marrow-multipotent stromal cells. European cells & materials, 37, 292-309. 445 Eskan, M. A., Girouard, M. E., Morton, D., & Greenwell, H. (2017). The effect of membrane exposure 446 on lateral ridge augmentation: a case-controlled study. International journal of implant 447 dentistry, 3(1), 26. 448 Figueiró, S. D., Góes, J. C., Moreira, R. A., & Sombra, A. S. B. (2004). On the physico-chemical and

dielectric properties of glutaraldehyde crosslinked galactomannan-collagen films.

450	C 1 1 1 4 D 1
450	Carbonyarate Polymers, 50(3), 515-520.
451	Grabarek, Z., & Gergery, J. (1990). Zero-length crosslinking procedure with the use of active esters.
452	Analytical biochemistry, 185(1), 131-135.
453	Honda, Y., Takeda, Y., Li, P., Huang, A., Sasayama, S., Hara, E., Tanaka, T. (2018).
454	Epigallocatechin Gallate-Modified Gelatin Sponges Treated by Vacuum Heating as a Novel
455	Scatfold for Bone Tissue Engineering. <i>Molecules</i> , 23(4), 876.
456	Kurashima, Y., & Kiyono, H. (2017). Mucosal Ecological Network of Epithelium and Immune Cells
457	for Gut Homeostasis and Tissue Healing. Annual review of immunology, 35, 119-147.
458	Lagha, A. B., & Grenier, D. (2019). Tea polyphenols protect gingival keratinocytes against
459	TNF- α -induced tight junction barrier dysfunction and attenuate the inflammatory response of
460	monocytes/macrophages. Cytokine, 115, 64-75.
461	Liao, S., Tang, Y., Chu, C., Lu, W., Baligen, B., Man, Y., & Qu, Y. (2020). Application of green tea
462	extracts epigallocatechin-3-gallate in dental materials: Recent progress and perspectives.
463	Journal of biomedical materials research. Part A.
464	Lin, S. Y., Kang, L., Wang, C. Z., Huang, H. H., Cheng, T. L., Huang, H. T., Chen, C. H. (2018).
465	(-)-Epigallocatechin-3-Gallate (EGCG) Enhances Osteogenic Differentiation of Human Bone
466	Marrow Mesenchymal Stem Cells. Molecules, 23(12), 3221.
467	Manetti, M., Romano, E., Rosa, I., Guiducci, S., Bellando-Randone, S., De Paulis, A.,
468	Matucci-Cerinic, M. (2017). Endothelial-to-mesenchymal transition contributes to endothelial
469	dysfunction and dermal fibrosis in systemic sclerosis. Annals of the rheumatic diseases, 76(5),
470	924-934.
471	Melcher, A. H. (1976). On the repair potential of periodontal tissues. Journal of periodontology, 47(5),
472	256-260.
473	Meyer, M. (2019). Processing of collagen based biomaterials and the resulting materials properties.
474	Biomedical engineering online, 18(1), 24.
475	Park, J. Y., Jung, I. H., Kim, Y. K., Lim, H. C., Lee, J. S., Jung, U. W., & Choi, S. H. (2015). Guided
476	bone regeneration using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-cross-linked
477	type-I collagen membrane with biphasic calcium phosphate at rabbit calvarial defects.
478	Biomaterials research, 19, 15.
479	Saino, E., Focarete, M. L., Gualandi, C., Emanuele, E., Cornaglia, A. I., Imbriani, M., & Visai, L.
480	(2011). Effect of electrospun fiber diameter and alignment on macrophage activation and
481	secretion of proinflammatory cytokines and chemokines. Biomacromolecules, 12(5),
482	1900-1911.
483	Spiller, K. L., Anfang, R. R., Spiller, K. J., Ng, J., Nakazawa, K. R., Daulton, J. W., &
484	Vunjak-Novakovic, G. (2014). The role of macrophage phenotype in vascularization of tissue
485	engineering scaffolds. Biomaterials, 35(15), 4477-4488.
486	Spiller, K. L., Freytes, D. O., & Vunjak-Novakovic, G. (2015). Macrophages modulate engineered
487	human tissues for enhanced vascularization and healing. Annals of biomedical engineering,

488	43(3), 616-627.
489	Tolstunov, L., Hamrick, J. F. E., Broumand, V., Shilo, D., & Rachmiel, A. (2019). Bone Augmentation
490	Techniques for Horizontal and Vertical Alveolar Ridge Deficiency in Oral Implantology. Oral
491	and maxillofacial surgery clinics of North America, 31(2), 163-191.
492	Tseng, H. Y., Samarelli, A. V., Kammerer, P., Scholze, S., Ziegler, T., Immler, R., Böttcher, R. T.
493	(2018). LCP1 preferentially binds clasped $\alpha M\beta 2$ integrin and attenuates leukocyte adhesion
494	under flow. Journal of cell science, 131(22), jcs218214.
495	Wang, L., Yang, G., Yuan, L., Yang, Y., & Zhao, H. (2018). Green Tea Catechins Effectively Altered
496	Hepatic Fibrogenesis in Rats by Inhibiting ERK and Smad1/2 Phosphorylation. Journal of
497	agricultural and food chemistry, 67(19), 5437-5445
498	Wessing, B., Lettner, S., & Zechner, W. (2018). Guided Bone Regeneration with Collagen Membranes
499	and Particulate Graft Materials: A Systematic Review and Meta-Analysis. The International
500	journal of oral & maxillofacial implants, 33(1), 87–100.
501	Wissing, T. B., Bonito, V., van Haaften, E. E., van Doeselaar, M., Brugmans, M., Janssen, H. M.,
502	Smits, A. (2019). Macrophage-Driven Biomaterial Degradation Depends on Scaffold
503	Microarchitecture. Frontiers in bioengineering and biotechnology, 7, 87.
504	Wu, Y. R., Choi, H. J., Kang, Y. G., Kim, J. K., & Shin, J. W. (2017). In vitro study on
505	anti-inflammatory effects of epigallocatechin-3-gallate-loaded nano- and microscale particles.
506	International journal of nanomedicine, 12, 7007-7013.
507	Xie, Y., Hu, C., Feng, Y., Li, D., Ai, T., Huang, Y., Tan, J. (2020). Osteoimmunomodulatory effects
508	of biomaterial modification strategies on macrophage polarization and bone regeneration.
509	Regenerative biomaterials, 7(3), 233-245.