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Abstract

Cluster-wise statistical inference is the most widely used technique for functional

magnetic resonance imaging (fMRI) data analyses. Cluster-wise statistical inference

consists of two steps: i) primary thresholding that excludes less significant voxels by

a pre-specified cut-off (e.g., p < 0.001 ); and ii) cluster-wise thresholding that controls

the family-wise error rate (FWER) caused by clusters consisting of false positive supra-

threshold voxels. It has been well known that the selection of the primary threshold is

critical because it determines both statistical power and false discovery rate. However,

in most existing statistical packages, the primary threshold is selected based on prior

knowledge (e.g., p < 0.001) without taking into account the information in the data. In

this manuscript, we propose a data-driven approach to objectively select the optimal

primary threshold based on an empirical Bayes framework. We evaluate the proposed

model using extensive simulation studies and an fMRI data example. The results show
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that our method can effectively increase statistical power while effectively controlling

the false discovery rate.

Keywords: empirical Bayes, true positive proportion, true discovery proportion,

optimal threshold

1 Introduction

Functional magnetic resonance imaging (fMRI) technique has become a popular tool for non-

invasively studying circuit-level brain activity for more than two decades. Statistical analyses

of neuroimaging data remain challenging due to their high-dimensionality and spatiotemporal

dependence structure (Derado et al., 2010; M. Lindquist, 2020; M. A. Lindquist & Mejia,

2015; Smith & Nichols, 2018). Advanced statistical methods have been developed to solve the

multiple comparison problem and successfully applied to many fMRI studies (Alberton et al.,

2020; Chen et al., 2019; T. E. Nichols, 2012; Smith & Nichols, 2009). Among these statistical

methods, the cluster-wise inference remains the most commonly used tool for neuroimaging

data analysis due to its relatively high sensitivity and low computational cost comparing

to voxel-extent based thresholding methods (Friston et al., 1994; Woo et al., 2014). The

performance and parameters of this procedure have been well discussed and studied (Eklund

et al., 2018; Eklund et al., 2016; Flandin & Friston, 2019; Hong et al., 2019).

A spatial point process perspective of cluster-wise inference. Cluster-wise inference con-

sists of two steps: a primary thresholding step that applies a cut-off to all voxels and only

keeps those supra-threshold voxels; and a cluster-extent- based thresholding step to avoid

selecting false positive clusters under the null hypothesis (e.g., no activation). In this cur-

rent study, we focus on the nonparametric inference method, due to its robustness although

parametric methods (e.g., random field theory) may be more efficient when the assumptions

are well met (Bennett, Wolford, et al., 2009; Eklund et al., 2015; Hayasaka & Nichols, 2003;
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T. E. Nichols, 2012; Schwartzman & Telschow, 2019). The high sensitivity of cluster-wise

inference comparing to other multiple-testing correction methods (e.g., false discovery rate

- FDR control) is built on the appropriate modeling of the stochastic spatial process for

informative voxels. Specifically, the primary thresholding in step one binarizes all voxels

to ones and zeros, and then the statistical inferences for the whole brain become a spatial

point process in a 3D brain space where only supra-threshold voxels present as points (Kang

et al., 2011). Under the null hypothesis, no brain area is associated with the external covari-

ates, and the false positive points (voxels false-positively surviving the primary threshold)

are assumed to follow a homogeneous spatial process. Under the alternative hypothesis,

the identification of true events (voxels true-positively surviving the primary threshold) is

a non-homogeneous/clustered process. Asymptotically, the combinatorial probability that

true events connect (spatially adjacent) to each other and form a large cluster is much greater

than the combinatorial probability of false positive voxels connecting to each other and form-

ing a cluster with an equal or greater size. In that, we assume the noise is not related to

any brain function or brain structure. However, the calculation of the asymptotic combina-

torial probability is difficult because the relationship of the covariance between voxels and

their geometric distance can be non-stationary and non-linear (Cressie, 2015). Fortunately,

nonparametric test methods (e.g., permutation tests) can provide a good approximation of

the asymptotic combinatorial probability of false positive voxels forming a cluster with a

certain size since the empirical covariance between voxels is preserved in each permutation

(Eklund et al., 2016; T. E. Nichols, 2012; T. Nichols & Hayasaka, 2003). Nonparamet-

ric tests are also widely and successfully applied in other spatial point models, for example,

SaTscan (Kulldorff, 2006) is used to monitor/detect a clustered spatial point incidences (dis-

ease outbreaks). Therefore, cluster-wise inference gains additional sensitivity by capitalizing

on the patterns of positive voxels in a non-homogeneous process. However, the price for the

additional power is the loss of local power (i.e., without voxel-level inference).
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A key limitation for cluster-wise inference is its venerability to the poor selection of the

voxel-level primary threshold. An overly-conservative threshold may lead to trivial clusters

of connected true positive voxels and cause low statistical power. On the other hand, a liberal

primary threshold (e.g., p < 0.01) can generate massive false positive points in a smoothed

brain space and thus can be connected and form false positive clusters (Woo et al., 2014).

Both false positive clusters and low statistical power become major potential causes of the

low reproducibility and replicability of fMRI findings (M. Lindquist, 2020).

Setting the primary threshold at p < 0.001 is now standard for most studies, because it

can generally effectively control false positive findings based on empirical studies (Bennett,

Miller, et al., 2009; Woo et al., 2014). However, a pre-specified voxel-wise threshold may be

sub-optimal because it does not account for several important factors of the data, including

sample size, effect size, noise level, and the selection of statistical models, among many others.

We illustrate the concept of data-driven optimal threshold selection by a toy example (Figure

1). We consider a simple scenario that all voxels in a brain image can be divided into two sets:

those are truly associated with the covariate of interest and the rest. The test statistics of the

two sets follow a non-null distribution and a null distribution, respectively. We argue that

the optimal primary threshold should be selected based on the non-null and null distributions

rather than a pre-specified threshold. For example, if the two distributions are well separated

(large sample sizes or significantly strong signals), a more rigorous primary threshold (e.g.,

more stringent than 0.001) should be used, to suppress the false positive findings. In contrast,

if the two distributions are less separable (but still separable, exhibiting small/moderate

sample sizes and moderate/large effect sizes), a less conservative primary threshold (e.g.,

less conservative than 0.001) should be used to keep the false discovery rate at a low level

while maintaining a maximal statistical power. Therefore, empirical distributions of null and

non-null distribution can reflect the sample size, effect size, and noise level from the data

and provide important guidance for primary threshold selection.
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(a) Two distributions well separated (b) Two distributions less separated

Figure 1: Non-null (in purple) and null (in black) distribution of test statistics from the
(non-)event spatial points. The red vertical line marks down the corresponding z-score when
the p-value is 0.001 on each graph. Yellow triangles on the x-axis indicate threshold z-values
for local fdr f̂dr(z) = 0.2 if such cases exist. The null sub-density π0f0 is marked in a blue
dashed line, and the mixture density is marked in a solid green line.

In the above example, we show that a data-driven primary threshold can maximize the

statistical power to detect true positive clusters while effectively controlling the false discov-

ery rate. However, the data-driven primary threshold selection procedure has not been fully

developed. To fill this gap, we propose a new empirical Bayes Adaptive Threshold Selection

(eBass) method to objectively select the optimal primary threshold selection based on the

information from data. The eBass objective function aims to achieve a maximal statisti-

cal power while avoiding false positive voxels connected to be a false positive cluster. We

develop new algorithms to implement the objective function and provide the corresponding

theoretical properties. In this paper, we focus on the two-step cluster-wise fMRI inference

with nonparametric statistical tests by providing a new primary threshold selection strat-

egy. We note that alternative advanced statistical methods, including both nonparametric

inference methods (e.g., threshold-free methods cluster enhancement - TFCE and pTFCE

(Smith & Nichols, 2009; Spisák et al., 2019)) and parametric inference (e.g., frequentist and
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Bayesian models (Benjamini & Heller, 2007; Chen et al., 2019; Schwartzman & Telschow,

2019)), can produce reliable and biologically meaningful results. Thus, eBass can become

a complement to these commonly-used statistical approaches and enhance the widely used

two-step cluster-wise inference.

The rest of this paper is organized as follows: 1) we introduce eBass method and algorithm

in section 2; 2) we perform extensive simulation analysis to fully assess the properties of

eBass, in Section 3; 3) we apply eBass to an fMRI data analysis for schizophrenia research

and conclude with discussions and future works.

2 Method

We consider the multiple comparison problem for all brain voxels in a spatially smooth 3D

space. For example, the voxel-level brain activation to an external stimulus (task-induced

fMRI) and seed voxel based brain connectivity map (resting-state fMRI). Let v be an index

for brain voxel and v = 1, · · · , V . We perform statistical inference on each voxel marginally

(e.g., by a general linear model GLM), and conditionally (Bowman, 2005; Derado et al.,

2010; Risk et al., 2016). Therefore, there are simultaneously V hypothesis tests with their

test statistics Z and corresponding p values P:

Null Hypothesis : H1, H2, H3, · · ·HV

Test Statistics : z1, z2, z3, · · · zV , p-values : p1, p2, p3, · · · pV

The commonly-used multiple testing correction methods ( Benjamini-Hochberg false dis-

covery rate, or BH-FDR, correction) correct the multiplicity at the voxel level. The two-step

cluster-wise inference aim to extract cluster-level findings and gain additional power (T.

Nichols & Hayasaka, 2003). Specifically,
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1. We consider the primary thresholding as a screening step. We first apply a pre-

determined threshold θ to binarize all voxels based on their p-values. Denote the

indicator variable δv = I(pv < θp) (e.g.,θp < 0.001) and ∆ = {δv > 0}, where I is an

indicator function. The binarization naturally leads to voxel-level false positive rate

and sensitivity.

2. Perform permutation tests using the cluster extent as a test statistic to select a set of

spatially adjacent supra-threshold voxels ∆ as the resulting cluster while controlling

the family-wise error rate (FWER). This step bears a resemblance to the commonly

used spatial statistical models (e.g., SaTScan) that can competently handle an in-

homogeneous spatial point process with clustered patterns (Waller & Gotway, 2004).

Thus, the final output is cluster-level findings (adjusting FWER) without voxel-level

inference.

We refer voxel-level false discovery rate as vFDR=
∑V
v I(Hv=0)∑V
v I(Ĥv=1)

, and cluster-level family-

wise error as cFWER=Pr(at least one detected cluster is false positive). The two-step cluster-

wise inference directly controls cluster-level FWER, while the voxel-level FDR is with respect

to the binarization of step one and not explicitly controlled in the cluster-wise inference.

It has been well-known that the choice of primary threshold is critical because i) an over

conservative primary threshold can achieve a low voxel-level false discovery rate at the cost

of low sensitivity (the cluster-level sensitivity is also low because true positive voxels are

few to form clusters); ii) a liberal primary threshold can lead to detecting both true and

false positive clusters (i.e., high FWER). Either low sensitivity or high cFWER can lead to

less replicable results because i) the probability is low to observe overlapped true findings

across data sets with low sensitivity, and ii) the chance for false positive voxels reappearing

in different data sets is small. Currently, the primary threshold of p < 0.001 is well accepted

by the research community, while p < 0.01 is considered overly-liberal (Eklund et al., 2018).
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Here, we argue that a data-driven primary threshold may better balance the above trade-off

than the pre-determined primary threshold.

We aim to select an optimal primary threshold to achieve maximal sensitivity (power)

with a low false discovery rate at the voxel-level. In practice, however, neither voxel-level

sensitivity nor FDR is known because the ground-truth is unavailable. We resort to an

empirical Bayes framework for calculating the estimated voxel-level sensitivity and FDR.

2.1 Empirical Bayes estimated voxel-level sensitivity and FDR

The empirical Bayes framework has been developed to estimate the marginal distribution

of the null and non-null test statistics for the multiple testing problem (Efron, 2012; Fan

et al., 2012). In these models, the test statistics of the whole brain voxels follow a mixture

distribution, f(z) = π0f0(z) + π1f1(z), where π0, π1 (π1 = 1− π0) are the prior probabilities

for a voxel belonging to the null and non-null components.

π0 = Pr{zv ∈ null}, null density f0(zv)

π1 = Pr{zv ∈ non-null}, non-null density f1(zv)

The posterior probability of a voxel is from the null set given z is Pr{zv ∈ null|z} =

π0f0(z)/f(z). A critical step of the empirical Bayes method is to estimate the mixture density

f̂ . Fortunately, numerous efficient and robust numerical algorithms (e.g., MLE based and

Poisson regression estimates) have been developed (Efron, 2014). The null density f̂0 can

be estimated by maximum likelihood estimation and central matching method. The prior

probability π0 is estimated based no the estimated null distribution, and accordingly, π̂1 is

1 − π̂0. Generally, the empirical Bayes estimation method provides consistent and robust

estimates for π̂0, π̂1, f̂0, f̂1|Z based on data Z (Efron, 2012; Petrone et al., 2014).

Given estimated Pr{zv ∈ null} at each voxel, we can calculate the posterior sensitivity
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and FDR across all voxels at a cut-off zθ by:

Posterior Sensitivity: T̂PR(zθ) =

∫ +∞

zθ

f̂1(t)dt/

∫ +∞

−∞
f̂1(t)dt,

Posterior FDR: F̂DR(zθ) =π̂0

∫ +∞

zθ

f̂0(t)dt/

∫ +∞

zθ

f̂(t)dt,

and accordingly the true discovery rate (TDR) is

Posterior TDR T̂DR(zθ) = π̂1

∫ +∞

zθ

f̂1(t)dt/

∫ +∞

zθ

f̂(t)dt.

The T̂PR(zθ) and T̂DR(zθ) inherit the consistency property from empirical Bayes esti-

mators (see Theorem 2 with detailed proofs in Appendix). Therefore, the empirical Bayes

estimated T̂PR(zθ) and T̂DR(zθ) provide satisfactory surrogates for the true, yet unknown,

sensitivity and FDR, which are required to determine the optimal threshold.

2.2 Objective function for the optimal threshold

Built on the EB posterior voxel-level sensitivity and FDR (T̂PR(zθ) and F̂DR(zθ)), we

propose an objective function for optimal threshold selection. Specifically

arg max
zθ

π̂1

∫ +∞
zθ

f̂1(t)dt

π̂1

∫ +∞
−∞ f̂1(t)dt+ π̂1

∫ +∞
zθ

f̂1(t)dt+ (1− π̂1)
∫ +∞
zθ

f̂0(t)dt
(1)

subject to F̂WERcluster(zθ) ≤ α,

where the optimal cut-off zθ is the estimand. The objective function (1) is the harmonic mean

of empirical Bayes sensitivity and true discovery rate, and provides the optimal selection of

ẑθ that maximizes the power with the family-wise error rate rate controlled under the level

of α (see details of Theorem 1 in Appendix). The objective function is expressed by the

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.03.324962doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.03.324962
http://creativecommons.org/licenses/by-nc/4.0/


empirical Bayes posterior parameters and functions π̂0, π̂1, f̂0, f̂1.

The cluster level family-wise error rate F̂WERcluster(zθ) is determined by the number of

estimated false positive voxels
∫ +∞
zθ

f̂0(t)dt and the cluster size cut-off. Specifically, we denote

the estimated number of false positive voxels using a cut-off zθ by mfp(zθ) = V π̂0

∫ +∞
zθ

f̂0(t)dt.

Next, we implement the permutation procedure by relabelling to determine the cluster-

size cut-off with the FWER level α and primary threshold zθ. Let Kα(zθ) be the per-

mutation determined cluster-size cut-off. When zθ is liberal, mfp(zθ) tends to be a large

number and thus is more likely to form large clusters composed by false positive voxels

surpassing the cut-off Kα(zθ). In contrast, a stringent zθ leads to a small mfp(zθ) prohibit-

ing false positive voxels connecting into clusters greater than Kα(zθ). F̂WERcluster(zθ) =

Pr(Sup{µ(mfp(zθ))} ≥ Kα), where µ is the cardinality measure of any set of contiguous

voxels formed by mfp(zθ) in the brain space. Then, we define the search domain for ẑθ by

Ωα = {zθ : Pr(Sup{µ(mfp(zθ))} ≥ Kα) < α}. We provide the computational details to cal-

culate Sup{µ(mfp(zθ))} estimate Ω in the Appendix. Next, we optimize ẑθ on the support

Ω.

We summarize the computational procedure of eBass in three steps:

Step 1: Calculate T̂PR(zθ), F̂DR(zθ) with the empirical Bayes estimated π̂0, π̂1, f̂0, f̂1, and

the objective function as

h(zθ, π̂0, π̂1, f̂0, f̂1) =
π̂1

∫+∞
zθ

f̂1(t)dt

π̂1
∫+∞
−∞ f̂1(t)dt+π̂1

∫+∞
zθ

f̂1(t)dt+(1−π̂1)
∫+∞
zθ

f̂0(t)dt
;

Step 2: Identify the support Ωα which guarantees F̂WERcluster ≤ α (see Appendix).

Step 3: Optimize the zθ by arg max
zθ∈Ωα

h(π̂0, π̂1, f̂0, f̂1) subject to constraint in Step 2, under the

regularity condition for Cost-Sensitive Classification algorithm (Eban et al., 2017).

According to the algorithm, the objective function h(·) reduces to a weighted clas-

sification problem, where the errors are approximated by cost-sensitive binary clas-

sification algorithms (e.g., logistic regression) with asymmetric costs.
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The optimization of (1) yields the optimal primary threshold ẑθ, which maximizes the

sensitivity with F̂WERcluster ≤ α. Note that ẑθ is objectively selected by fully leveraging the

information from the empirical data. In practice, the sample size, effect size, noise level, spa-

tial dependence across all voxels of the empirical data set can influence the separability of the

null and non-null distribution, and thus the optimal primary threshold should be updated to

accommodate these factors. The empirical Bayes estimated FDR and sensitivity determines

our objective function (1), and bridges the data information and parameter optimization.

The data-driven primary threshold selection method eBass automatically maximizes the

empirical Bayes sensitivity while controlling voxel-level FDR and then cluster-level FWER.

Therefore, eBass primary threshold can outperform the pre-specified primary thresholds in

many scenarios (see simulation and data example results).

In summary, we provide a data-driven optimal primary threshold selection step via an

empirical Bayes framework. The selection of the primary threshold is more flexible because

eBass optimizes the primary threshold by maximizing the sensitivity while rigorously con-

trolling the cluster-wise false positive error rate. We provide theoretical proof details for

the optimality (Theorem 1 in Appendix) and consistency (Theorem 2 in Appendix). In the

following simulation analysis and real data example, we demonstrate that eBass can improve

the statistical power without losing the rigor of FWER.

3 Simulation

3.1 Data Description

In the simulation study, we evaluate the performance of eBass and compare it to the existing

methods. We first simulate 2D image data for multiple subjects. The number of voxels

in each image is V = 100 × 100 = 10, 000, and thus the number of simultaneous tests

is 10,000. We assume that most voxels are from the null set, whereas two squared areas
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(N0 = 21 × 21 + 6 × 6 = 477 voxels) are from the non-null, see Fig 2b. We apply a

commonly-used two-group (i.e., cases vs. controls) scenario, which can be easily extended to

the regression setting. First, let voxels from the null set follow a normal distribution N(0, 1)

for both cases and controls. Within the two squared areas, the non-null voxels of the cases

follow a normal distribution N(µk, 1) (k = 1, 2 for the two areas), whereas the voxels of the

controls follow a N(0, 1) distribution. The signal-to-noise ratio (SNR) as the reciprocal of

the coefficient of variation, SNR = µk/σ, the σ = 1 allows the difference of group means

to be the true positive effect size (ES) which is equivalent to Cohen’s d. A higher SNR can

lead to higher sensitivity and a lower FDR, and vice versa. We further smooth each image

with a Gaussian filter, using a full width at half maximum (FWHM) equivalent to 8mm.

The voxels in the smoothed image are correlated like the real fMRI data. We further let the

number of subjects per group be 30, 60, and 100. For each setting, we simulate 100 data

sets.

(a) Underlying truth (b) Original graph (c) Smoothed graph with
FWHM=8mm

Figure 2: (a) is the graph of the underlying truth. Red squares represent the activated
regions. (b) shows one original graph with sample size 30 per arm, an effect size set to 0.8.
Non-activated voxels in blue region of (a) generated that follow N(0, 1) and activated voxels
in red regions of (a) follow N(0.8, 1). (c) was the original graph in (b) smoothed with a
Gaussian kernel of FWHM=8mm.
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3.2 Data analysis

For each data set, we perform the two-step cluster-wise inference. We determine the primary

threshold using eBass as well as a variety of popular methods, including BH-FDR correction,

p < 0.001, and p < 0.01. We evaluate the performance of these methods in terms of voxel-

wise sensitivity (Sensitivity) and FDR (vFDR), together with cluster-wise FWER (cFWER)

by comparing the resulting clusters selected by the cluster-wise inference to the two true

squares. Note that ultimately, the voxel-wise sensitivity and FDR are not applicable in

cluster-wise inference, we yet provide them in order to evaluate the quality of the voxel-level

primary thresholding step.

3.3 Results

We summarize simulation results in Table 1. We first compare the results when the effect

size is medium (ES=0.6). For the sample size of 30 cases vs. 30 controls, the study is

underpowered and the test statistics from the true positive voxels are mixed with false

positive voxels (Cremers et al., 2017; M. Lindquist et al., 2008). Therefore, only a few voxels

can survive the corrected primary threshold and form a cluster with a size greater than

the step two cluster-level threshold. The vFDRs for all methods are well controlled. The

sensitivity of eBass is 50% higher that p < 0.001 threshold and 160% higher than BH-FDR

correction. Although the well-controlled vFDR prohibits false positive findings, the overall

low sensitivity can also lead to a low replicability because true positive findings are rarely

overlapped across data sets.

When the sample size is increased to 60 subjects per arm, the statistical power increases

to above 80% at each voxel. The vFDRs of eBass, BH-FDR correction, and p < 0.001

primary threshold are around 0.005, while vFDR of threshold p < 0.01 is close to 0.013.

Note that our eBass primary threshold varies across repeatedly simulated data sets, and
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automatically adapt to the characteristics of the data. In that, our average vFDR is about

the same as p < 0.001 and BH-FDR, but has a significantly increased sensitivity. Since

the sample size of 60 vs. 60 and ES=0.6 is common in fMRI studies, these results provide

practical guidance for optimal primary threshold selection for cluster-wise inference.

Last, for sample size of 100 vs. 100, the test statistics of voxels from the null set are

clearly apart from those from the non-null set, which leads to generally increased sensitivity

in all methods. The eBass method has slightly higher sensitivity than that of p < 0.001 with

better controlled vFDR because of its adaptive optimal threshold selection. The cFWER for

all methods are well-controlled.

The results of larger effect sizes (ES=0.8 and 1) follow a similar pattern as above (see

Table 1). When the sample size is small (i.e., 30 cases vs. 30 controls), eBass significantly

improves sensitivity while keeping the vFDR at a very low level. At effect size 0.8 and the

sample size is medium to large (i.e., 60, 100 subjects per arm), adaptive threshold selection

methods eBass and BH-FDR correction performed slightly superior to the fixed primary

threshold p < 0.001. When the effect size reaches to 1.0, there is not much difference in

sensitivity among all methods especially when sample size is very large (100 subjects per

arm). All methods control the vFDR well when effect sizes increase. Since we focus on

cluster-wise inference and cluster-level FWER, we only compare eBass with existing cluster-

wise inference methods. In the appendix, we show the comparison results of cluster-wise

inference methods including eBass and TFCE by assuming all voxels in significant clusters

as positive.

In summary, eBass shows advantageous performance in improving the sensitivity while

controlling the voxel-wise FDR, specially when the sample size and effect size is small to

medium. With increased sample size and effect size, most of the widely used thresholding

methods tend to have a good performance with similar primary thresholds.
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eBass BH-FDR p <0.001 p <0.01

Effect Size = 0.6

Sample size
30 per arm

Threshold 0.0027(Q1)/0.0051(Q2)/0.0147(Q3) 0.0002(Q1)/0.0009(Q2)/0.0017(Q3) 0.001 0.01
Sensitivity 0.1932±0.0934 0.0396±0.0325 0.0816±0.0344 0.2263±0.081

vFDR 0.024±0.0653 0 0.0117±0.0469 0
cFWER 5.6% 0 6.3% 0

Sample size
60 per arm

Threshold 0.0012(Q1)/0.0027(Q2)/0.0056(Q3) 0.0008(Q1)/0.0009(Q2)/0.0013(Q3) 0.001 0.01
Sensitivity 0.5039±0.1237 0.3731±0.1481 0.3777±0.1075 0.6763±0.1164

vFDR 0.0067±0.0155 0.0050±0.0154 0.0046±0.0144 0.0127±0.0256
cFWER 5% 10% 10% 10%

Sample size
100 per arm

Threshold 0.0009(Q1)/0.0020(Q2)/0.0032(Q3) 0.0020(Q1)/0.0021(Q2)/0.0022(Q3) 0.001 0.01
Sensitivity 0.8292±0.0749 0.8460±0.0767 0.7850±0.081 0.9378±0.0422

vFDR 0 0.0019±0.0049 0.0001±0.0006 0
cFWER 0 0 0 0

Effect Size = 0.8

Sample size
30 per arm

Threshold 0.0073(Q1)/0.0097(Q2)/0.0106(Q3) 0.0006(Q1)/0.0007(Q2)/0.0009(Q3) 0.001 0.01
Sensitivity 0.6012±0.0886 0.2881±0.1141 0.3146±0.0848 0.6109±0.0914

vFDR 0.004±0.01 0.0045±0.0201 0 0.0039±0.0096
cFWER 0 5% 0 0

Sample size
60 per arm

Threshold 0.0034(Q1)/0.0050(Q2)/0.0055(Q3) 0.0021(Q1)/0.0023(Q2)/0.0023(Q3) 0.001 0.01
Sensitivity 0.9438±0.0396 0.9072±0.0552 0.8559±0.0605 0.9624±0.0376

vFDR 0.0109±0.0252 0.0052±0.0156 0.0049±0.0129 0.0119± 0.0263
cFWER 15% 10% 15% 10%

Sample size
100 per arm

Threshold 0.0011(Q1)/0.0016(Q2)/0.0020(Q3) 0.0024(Q1)/0.0024(Q2)/0.0025(Q3) 0.001 0.01
Sensitivity 0.9945±0.0095 0.9955±0.0087 0.9897±0.0145 0.9988±0.0030

vFDR 0.0036±0.0095 0.0023±0.0073 0.0025±0.0078 0.0064±0.0147
cFWER 10% 5% 10% 5%

Effect Size = 1.0

Sample size
30 per arm

Threshold 0.0093(Q1)/0.0119(Q2)/0.0154(Q3) 0.0014(Q1)/0.0016(Q2)/0.0018(Q3) 0.001 0.01
Sensitivity 0.8539±0.0522 0.6306±0.1122 0.5781±0.0982 0.8432±0.0526

vFDR 0.0093±0.0189 0.0045±0.0138 0.0026±0.0115 0.0057±0.0168
cFWER 5% 10% 5% 5%

Sample size
60 per arm

Threshold 0.0015(Q1)/0.0022(Q2)/0.0031(Q3) 0.0023(Q1)/0.0024(Q2)/0.0025(Q3) 0.001 0.01
Sensitivity 0.9851±0.0154 0.9842±0.0191 0.9727±0.0281 0.9951±0.0087

vFDR 0.0003±0.0014 0.0002±0.0006 0.0027±0.0085 0.0097±0.0177
cFWER 0 0 10% 5%

Sample size
100 per arm

Threshold 0.0004(Q1)/0.0006(Q2)/0.0008(Q3) 0.0024(Q1)/0.0024(Q2)/0.0025(Q3) 0.001 0.01
Sensitivity 1 1 1 1

vFDR 0 0.0015±0.0034 0 0.0067±0.0105
cFWER 0 0 0 0

Table 1. Simulation result for original images of ES=0.6, 0.8 and 1.0, sample size 30, 60
and 100 per arm smoothed with FWHM=8mm

15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.03.324962doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.03.324962
http://creativecommons.org/licenses/by-nc/4.0/


4 Data Example

4.1 Data Acquisition

Resting-state fMRI (Rs-fMRI) data were collected from 96 schizophrenia patients (SZs)

and 107 healthy controls (HCs) at the University of Maryland Center for Brain Imaging

Research using a Siemens 3T TRIO MRI (Erlangen, Germany) system equipped with a 32-

channel phase array head coil. The following parameters were used to obtain the resting-state

T2∗-weighted images: TR=2s, TE=30ms, flip angle=90◦, FOV=248mm, 128× 128 matrix,

1.94 × 1.94 in-plane resolution, 4mm slice thickness, 37 axial slices, 444 volumes). During

the scan, participants were asked to keep their eyes closed and relax.

The average age of the SZ cohort is 35.9±13.2, and 37.1±13.1 for HCs (t-score=0.67,

df=201, p-value=0.51). There are 28 females in SZs, and 35 females in HCs (t-score=1.16,

df=61, p-value=0.25).

4.2 Data Preprocessing

Pre-processing of the rs-fMRI data was performed using the Data Processing & Analysis for

(resting-state) Brain Imaging (DPABI) toolbox (Yan et al., 2016). The first ten-time frames

were removed to allow for signal stabilization. Raw data underwent motion correction to the

first image, slice-timing correction to the middle slice, and normalization to MNI space. To

ensure that spurious motion and physiological artifacts did not drive observed effects in our

statistical analyses, resting data also underwent regression of 6-motion parameters and their

derivatives (12 total motion estimates) and physiological (white matter and cerebrospinal

fluid) signals prior to spatial smoothing with an 8mm FWHM Gaussian kernel. Framewise

displacement was calculated for each image; this measure differentiates head realignment

parameters across frames and generates a 6-dimensional times series that represents instan-

taneous head motion (Power et al., 2012). All individuals in the current analysis had mean

16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.03.324962doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.03.324962
http://creativecommons.org/licenses/by-nc/4.0/


framewise displacement ≤ 0.25 to better control for potential confounding effects of motion

and motion artifacts on the rs-fMRI signal.

4.3 Data Analysis

We use an example to cover the commonly-used regression analysis in fMRI. Here we examine

the association of functional connectivity of the default mode network with smoking status.

The seed voxel method was used by placing a 10mm spherical seed centered on the posterior

cingulate centered (PCC). The correlations were calculated between the rest of voxels and

the seed, and then normalized by the Fisher’s Z transformation. The two-step cluster-wise

inference was conducted to identify smoking-related voxel-clusters.

In step one, regression was performed on 215,348 nonzero voxels. We applied the eBass

approach and selected the optimal primary threshold by balancing the empirical Bayes T̂PR

F̂WER in the objective function (1). The eBass optimal threshold was 0.00095, which was

slightly more stringent than p < 0.001 (see Figure 3 (e),(f)). Next, step two permutation

tests were performed based on the primary threshold to identify the significant clusters by

controlling FWER < 0.05.

We also applied the other primary thresholds using p < 0.001, p < 0.01, and BH-FDR

correction for comparison. However, the true smoking-status related voxel clusters were

unknown. For the purpose of comparison, we chose a subset of 80 samples from the original

sample, whose smoking-status contingency table was best matched to the the original data.

Similarly, a sub-sample of 120 subjects was selected. The BH-FDR failed in providing a

primary thresholds at all sample sizes. In contrast, eBass and p < 0.001 primary thresholds

identified significant clusters for the original data set and all sub- samples. For the sub-sample

80 subjects, the primary threshold p < 0.001 was able to detect significant clusters, however,

had no overlap with the results from sample size 120 or full sample. The eBass primary

threshold identified significant clusters that were consistent with those in the original data
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set and the sub-samples (see Figure 3(a)-(f)). Therefore, the data-driven eBass primary

threshold is more flexible and provides a better balance between the sensitivity and false

discovery rate, which should lead to greater replicability. We provide the results given by

primary threshold p < 0.01 and the Jaccard index between full sample and sub-samples from

all methods in Appendix.

(a) Sample size 80, eBass (b) Sample size 80, p<0.001

(c) Sample size 120, eBass (d) Sample size 120, p<0.001

(e) Full sample, eBass (f) Full sample, p<0.001

Figure 3: Comparison of p < 0.001 and eBass Thresholding Results: Axial, sagittal and
coronal view. Significant regions are marked in red.

5 Discussion

We have developed a data-driven primary threshold selection method for the two-step cluster-

wise fMRI inference. The multiple comparison problem has been at the heart of neuroimaging

data analysis, because it can determine the validity of findings. In practice, true signals in
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neuroimaging data are often mixed with various sources of noise, and the statistical infer-

ence models are sensitive to the noise. Therefore, a small erroneous shift from the optimal

decision-making threshold can cause a significant loss of statistical power or uncontrolled

false positive findings. However, the primary threshold has been conventionally selected

based on empirical analysis and experience, which may not provide the optimal threshold

for the target neuroimaging data. To address this need, we propose an empirical Bayes

method to calculate estimated sensitivity and false discovery rate and thus facilitate the

optimization of selecting the primary threshold for cluster-wise inference.

Built on the successful development of the empirical Bayes approach in the field of high-

dimensional statistics, eBass enjoys several advantageous theoretical properties, regarding

the estimation robustness and consistency (Efron, 2014; Schwartzman et al., 2009). The

eBass threshold provides a reliable cut-off to binarize voxels in the 3D brain space into

a point process (Kang et al., 2011). The step two inference (i.e., permutation tests) is

also sensitive to the noise level of the point process. When the sensitivity level is low (a

stringent threshold), true positive points are unlikely to be spatially adjacent and form a

non-trivial cluster resulting in a reduced ability to detect no significant clusters. When a

large proportion of false positive points are present in the point process, the false positive

points tend to be spatially connected due to the spatial smoothness of the neuroimaging data,

leading to cluster-wise false positive findings. For these reasons, we often find it challenging

to produce replicable findings in neuroimaging studies (M. Lindquist, 2020).

Our simulation and data example results concur with the previous findings that the

empirical primary threshold (p < 0.001) is a good option, especially when no information

from the data is available. In general, the primary threshold (p < 0.001) can adequately

control the false positive findings, which is analogous to the traditional cut of p < 0.05 in

univariate statistical inference (Eklund et al., 2018). In practice, we find that the data-driven

eBass threshold often varies around the primary threshold p < 0.001, in many applications.
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Nevertheless, the eBass primary threshold is objectively selected based on the data, and can

thus improve sensitivity in many scenarios (e.g., data sets with smaller sample sizes and

small-medium effect sizes). Therefore, we consider the eBass primary threshold to be a good

complement to the existing methods for cluster-wise inference. We also note that the eBass

is built on the estimation of the two-component mixture model. When the empirical Bayes

approach cannot estimate the two components well, we resort to the p < 0.001 primary

threshold for cluster-wise inference or TFCE as potential solutions.

The eBass method is compatible with all voxel-level statistical inference because the

marginal distribution of test statistics is often robust (Chen et al., 2019). The more accurate

voxel-level statistical inference can lead to more separable null and non-null distributions

and thus more accurate cluster-wise inference results via the eBass primary threshold.

In summary, the eBass provides a data-driven and automatically optimized primary

threshold for the two-step cluster-wise fMRI inference. Since the computation is efficient,

eBass can be conveniently implemented and compatible with most existing software plat-

forms.
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Appendix

Theoretical properties of eBass primary threshold

We further provide theoretical results to show the optimality and consistency of the eBass

primary threshold estimation.

We first show the eBass solution ẑθ is optimal with respect to the objective function (1).

Specifically, we transform the optimization problem in objective function (1) into a saddle

point problem (Eban et al., 2017), and solve it by the cost sensitive methods (Parambath

et al., 2014).

Theorem 1. For zθ ∈ Ωα, the eBass estimated primary threshold ẑθ is optimal with respect

to the objective function (1).

Proof. Following the notation in the method section, we define the decision rule fzθ : f(zv) ≥

f(zθ), where zθ is the primary threshold and f is the mixture density.Let Y+ be the set of

voxels from the non-null component, and Y− be the voxels for the null component. Then,
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let yv ∈ {−1, 1} be the indicator function where yv = 1 if zv ∈ Y+ and yv = −1 if zv ∈ Y−.

We consider the 0-1 loss function of true positive and false positives w.r.t. the empirical

Bayes estimated f̂0, f̂1. Inherit the notation from Section 2.1, we have

TP (fzθ) =

∫ +∞

zθ

f̂1(t)dt =
∑
zv∈Y+

1[f(zv)≥f(zθ)] =
∑
zv∈Y+

1− l(fzθ , zv, yv)

FP (fzθ) =

∫ +∞

zθ

f̂0(t)dt =
∑
zv∈Y−

1[f(zv)≥f(zθ)] =
∑
zv∈Y−

l(fzθ , zv, yv)

To bound the above two quantities, replacing the 0-1 loss function by the hinge loss

function lh(fzθ , zv, yv) := max(0, 1 − yv(f(zv) − f(zθ)) leads to the lower bound of true

positives TPL and upper bound of false positives FPU at zθ that satisfies TPL ≤ TP (fzθ)

and FPU ≥ FP (fzθ) correspondingly.

Once we have the upper bound and lower bound, our objective function 1 can be replaced

by a surrogate function F ∗eB = TPL
|Y+|+TPL+FPU

≤ FeB. Our goal is to maximize the function

F ∗eB at some given precision. The problem can be written as:

max
TPL(f)

|Y + |+ TPL(f) + FPU(f)

s.t.TPL(f) ≥ α(TPL(f) + FPU(f))

We also replace the notation of the hinge loss function as a shorthand

`+(f) =
∑
z∈Y+

lh(fzθ , z, y); `−(f) =
∑
z∈Y−

lh(fzθ , z, y);

Alternatively, as maximizing F ∗eB is equivalent to minimizing (F ∗eB)−1, we rewrite the
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objective function with `+, `−:

min
2|Y + | − `+(f) + `−(f)

|Y + | − `+(f)

s.t.(1− α)(|Y + | − `+(f)) ≥ α`−(f),

where α is given from the F̂WERcluster constraint.

Straightforwardly, we can write φ = |Y + | − `+(f), and thus the above minimization is

equivalent to

min
f,φ

max
λ
φ−1(1 + `−(f))− λφ+ λ

α

1− α
`−(f), (2)

where λ is the Lagrange multiplier. This is similar to optimizing Fβ with weighted loss

function established by (Eban et al., 2017) where the Cost-Sensitive Classification algorithm

was well explained in (Parambath et al., 2014). Since we restrict the search region to the

locally convex neighborhood, the solution of this optimization problem is unique. There-

fore, our grid search algorithm guarantees the detection of the unique zθ and achieves the

optimality.

Next, we prove the consistency of the eBass estimated primary threshold zθ. Our proof

is mainly built on the fact that the empirical Bayes estimation yields consistent estimators

f̂0, f̂1, f̂ (Petrone et al., 2014; Robbins, 1980).

Theorem 2. Let ẑθ be the eBass estimated primary threshold, and we have ẑθ
p→ zθ.

Proof. We let the test statistics of all voxels follow a marginal distribution zv∼f(zv|θv).

Let θ = (θ1, θ2, · · · , θV ) be a finite parameter space. Given θv ∈ θ, assume it is indepen-

dently drawn from a known prior density π(θ) corresponds to zv.

Since z = (z1, · · · , zV ) is considered a random sample from f(·), and the marginal distri-

bution of f(z) =
∫
θ
π(θ)f(z|θ)dθ is proportional to the posterior probability, we can calculate
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the posterior probability g(θ|z).

As the sequence of estimators in θ̂ can be estimated by observed zv with MLE, the

empirical Bayes posterior probability is consistent at θ0 in probability, under the common

MLE regularity conditions.

By continuous mapping theorem, our T̂PR and T̂DR are functions of consistent empirical

Bayes estimators. Then we have T̂PR
p→ TPR, T̂DR

p→ TDR. From Theorem 1, zθ exists

and uniquely decided by TPR and TDR. Therefore, we have ẑθ
p→ zθ.

Estimating Ωα for the step 2 of eBass

In order to control the cluster level FWER below α, we should search ẑθ on the set Ωα. Here,

we describe the procedure to identify the set Ωα based on the empirical Bayes estimated

sensitivity and FDR.

As stated in section 2.2, The cluster level family-wise error rate F̂WERcluster is calculated

based on
∫ +∞
ẑθ

f̂0(t)dt. If the total number of false positive voxels V
∫ +∞
ẑθ

f̂0(t)dt is large at

the cutoff of ẑθ , the cluster size of these false positive voxels is likely to be greater than the

permutation tests determined cluster-size threshold Kα. In results, false positive clusters

appear in the final results. In order to avoid the false positive cluster, the cut-off ẑθ is

required to prohibit forming large clusters.

Specifically, we denote the estimated number of false positive voxels using a cut-off ẑθ

by mfp(ẑθ) = V π̂0

∫ +∞
ẑθ

f̂0(t)dt. We next compute the upper bound of the cluster size based

on the combinatorial probability that these mfp(ẑθ) false positive supra-threshold voxels can

form a contiguous non-trivial cluster in the three-dimensional brain space. We define the

search domain for ẑθ by Ωα = {zθ : Sup{µ(mfp(zθ))} < Kα}, where µ is the cardinality

measure of any set of contiguous voxels formed by mfp(zθ) in the brain space. In practice,

the direct calculation of Sup{µ(mfp(zθ))} is intractable. We resort to permutation based

techniques to approximate Sup{µ(mfp(zθ))}.
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In each permutation, the random shuffling of subject labels hypothetically produces a

f̂ ∗0 distribution and an αp level is chosen to control the permutation test FWER. Since we

are able to theoretically calculate the mfp(ẑθ) based on empirical Bayes estimated f̂0, f̂1, we

consider 1) an α1 for permutation bound that controls the FWER among all supra-threshold

voxels, 2) an α2 for false positive cluster bound controls the FWER for estiamted false

positive voxels. Commonly, the widely used 5% αp level is unadjusted and that αp = α1.

The adjustment according based on the definition of α1 and α2 is (1−α1)(1−α2) = 1−αp.

For α2, it is calculated by the top mfp(ẑθ) voxels on both tail-end of f̂ ∗0 and randomly choose

mfp(ẑθ) from those extreme observations to form false discovery clusters. The adjustment

indicates that when α2 → 0, 1 − α1 ≈ 1 − αp. In other words, we need to take the cluster

size corresponds to max{α2} (or other levels based on the adjustment) to estimate Cα,z∗θ ,

and then we can estimate the support Ωα.

We summarize the procedure as follows:

Step 1: For a cut-off z∗θ , we calculate mfp(z
∗
θ), the number of false discoveries based on the

empirical Bayes estimated parameters.

Step 2: Compute Kα by shuffling subject labels at the cut-off z∗θ .

Step 3: Shuffle the subject labels for J times. At each iteration j we select mfp(z
∗
θ) voxels

with the largest test statistics and a similar dependence structure.

Step 4: Let Cα,z∗θdenote the maximum (or other adjusted α level) cluster size across the J

permutations in step 3.

Step 5: z∗θ ∈ Ωα if Cα,z∗θ < Kα.

In practice, we find both Cα,z∗θ , Kαare monotonously decreasing with z∗θ while the decreasing

speed of Cα,z∗θ is faster. Therefore, Ωα is often a continuous domain.
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Comparison between Cluster-extent Methods and Voxel-wise In-

ference

Although we focus on the two-step cluster-wise inference in the simulation study, we further

compare the cluster-extent methods with TFCE - one of the most popular voxel-extent

inference. The TFCE generates voxel-level corrected p values instead of considering clusters

as a whole, thus the cluster-wise FWER is not applicable to this method. Similarly, as in

cluster-wise inference we assume all supra-threshold voxel-formed clusters are significant, we

compare the voxel-wise sensitivity and FDR of primary thresholding step specificity with

TFCE.

The 2D image has the same dimension with V = 100× 100 = 10, 000 voxels. The truth

consists of four identical squared areas that are placed in the center of the image with equal

distance (roughly same as the side of the square). Different from the images in the simulation

section, we apply the smoothing step after adding the true signals to the original image. In

this way, the underlying truth have an irregular shape on the margin, and the strength of

signal decreases steady from center to margin. The total number of true significant voxels

is 900. We perform the simulation study on the set of images have ES=0.6, smoothed with

FWHM=8mm, 30 subjects per group.

We perform the two-step cluster-wise inference with eBass, BH-FDR correction, p <

0.001, and p < 0.01. We also apply TFCE voxel-wise inference on the images under this

setting. Similarly, we evaluate the performance of methods by their voxel-wise sensitivity,

FDR, and cluster-wise FWER. We exhibit the simulation results in Table 2.

From the example above, we find out that when the significant clusters have blurred

edges and close to each other, the voxel-extent methods would have a significant increase

(up to 50%) in vFDR comparing to cluster-extent methods. When the ES and sample size

are low to medium, the voxel-extent method (e.g., TFCE) tends to outperform cluster-extent
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methods on sensitivity by 5-30% in this type of images who have clear edges, while the vFDR

remains about the same.

eBass BH-FDR <0.001 <0.01 TFCE
Primary Threshold 0.003±0.0029 0.0063±0.0001 0.001 0.01 NA

Sensitivity 0.9996±0.0007 0.9998±0.0004 0.9991±0.001 0.9998±0.0004 1
vFDR 0.2469±0.025 0.2644±0.0129 0.2200±0.0096 0.2767±0.0116 0.3602±0.0142

cFWER 0 0 0 0 NA

Table 2. Performance comparison between cluster-extent methods and voxel-wise thresh-
olding method

Primary Thresholds for Real Data

eBass Hard Threshold p<0.001 BH-FDR correction p<0.01
Sample size 80 0.0029(≈302) 0.001(128) NA 0.01(1003)
Sample size 120 0.0019(≈242) 0.001(146) NA 0.01(1106)

Full Sample 0.00095(≈147) 0.001(153) NA 0.01(1199)

Table 3. Primary threshold and cluster-extent threshold based on different sample sizes
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Real Data Result

(a) Sample size 80

(b) Sample size 120

(c) Full sample

Figure 4: Primary threshold p < 0.01 results: axial, sagittal and coronal view. Significant
regions are marked in red.

Jaccard Index For eBass, the Jaccard index between full sample and sample size 120 is

JeBass(full, 120) = 0.269, and sub-sample 120 to 80 is JeBass(120, 80) = 0.1252. For p<0.001,

the Jaccard index between full sample and sample size 120 is J0.001(full, 120) = 0.3436, and

sub-sample 120 to 80 is J0.001(120, 80) = 0. For p<0.01, the Jaccard index is 0 due to the

discontinuity of observing significant regions in sub-sample 120.
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