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Summary 

Online, real-time artifact removal via PARRM will enable unbiased exploration of neural 

biomarkers previously obscured by stimulation artifact. 

Abstract 

Advances in device development have enabled concurrent stimulation and recording at adjacent 

locations in the central nervous system. However, stimulation artifacts obscure the sensed 

underlying neural activity. Here, we developed a novel method, termed Period-based Artifact 

Reconstruction and Removal Method (PARRM), to remove stimulation artifacts from neural 

recordings by leveraging the exact period of stimulation to construct and subtract a high-fidelity 

template of the artifact. Benchtop saline experiments, computational simulations, five unique in 

vivo paradigms across animal and human studies, and an obscured movement biomarker were used 

for validation. Performance was found to exceed that of state-of-the-art filters in recovering 

complex signals without introducing contamination. PARRM has several advantages: it is 1) 

superior in signal recovery; 2) easily adaptable to several neurostimulation paradigms; and 3) low-

complexity for future on-device implementation. Real-time artifact removal via PARRM will 

enable unbiased exploration and detection of neural biomarkers to enhance efficacy of closed-loop 

therapies.  

 

Introduction 

The development of closed-loop electrical neuromodulation therapies, for example adaptive Deep 

Brain Stimulation (aDBS) and adaptive Spinal Cord Stimulation (aSCS) would revolutionize the 

efficacy of neurostimulation therapies for treatment of many disorders, including Parkinson's 

Disease (PD) (1–3), Epilepsy (4, 5), Essential Tremor (6), Obsessive Compulsive Disorder (OCD) 
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(7), Treatment Resistant Depression (TRD) (7, 8), and chronic pain (9). While significant advances 

have been made in biomarker identification in PD and Epilepsy (5, 10), there is no definitive 

biomarker for a single mental disorder, including OCD and TRD, or chronic pain (7–9). Biomarker 

identification and development of an adaptive neurostimulation system requires a hardware 

platform that is capable of simultaneous sensing and stimulation. This is particularly challenging 

when the neural signal of interest originates in or nearby the stimulation target as the amplitude of 

stimulation therapy is typically several orders of magnitude greater than the amplitude of signals 

of interest in the brain and spinal cord. Therefore, recordings for adaptive control are heavily 

contaminated by high amplitude, high frequency stimulation artifact (11). In order to extract the 

underlying neural signatures of disease state, it is necessary to remove the stimulation artifact. 

 

Typically, high frequency artifacts are removed using a lowpass filter, however, limited sampling 

rates of existing implantable DBS and SCS devices and aliasing of stimulation pulses into low 

frequencies render lowpass filters ineffective. Existing stimulation artifact removal methods robust 

to aliasing typically fall into one of three categories: signal reconstruction via deletion and 

interpolation, decomposing and subtracting components of the signal related to the artifact, and 

subtracting a template of the artifact at each stimulation pulse. Deletion and interpolation is not 

effective when artifact duration is long, and is not ideal due to signal loss over the duration of each 

artifact (11). Signal decomposition methods have shown some success, but require a large set of 

recording channels to be effective (12). Template subtraction methods have proven to be 

successful, however they rely on accurate detection of each stimulation pulse (13, 14). Existing 

methods for identifying individual stimulation pulses in recorded data (e.g. thresholding) are not 

robust to low sampling rates, the presence of other spurious high amplitude artifacts, or stimulation 
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artifacts with broad peaks(15). To our knowledge, there are currently no methods effective at 

removing stimulation artifacts from LFP recordings sampled at less than twice the frequency of 

stimulation without contaminating the underlying neural signal, thus greatly hindering control 

signal identification. 

 

To overcome the challenges in removing periodic stimulation from neural recordings, we have 

developed a novel artifact removal method, Period-based Artifact Reconstruction and Removal 

Method (PARRM), to remove high frequency stimulation artifact in low and high-resolution LFP 

recordings. We demonstrate that PARRM has superior performance to existing, state-of-the-art 

filters in saline experiments, computer simulations, and five unique in vivo recording paradigms. 

Finally, we demonstrate that PARMM enabled the recovery of a previously obscured biomarker 

in Parkinson’s Disease participants and could be implemented online to perform real-time 

biomarker detection (Figure 1).  
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Figure 1: PARRM will enable biomarker detection during ongoing neurostimulation to enhance 
efficacy of closed-loop neuromodulation. (a) DBS applied at 150 Hz via the Activa PC+S for treatment 
of refractory OCD (top), DBS applied at 120 Hz in an Epilepsy Monitoring Unit-like (EMU-like) scenario 
for treatment of TRD, and SCS applied at 50 Hz for treatment of chronic pain. Blue trace shows theoretical 
injected DBS waveform and black trace shows DBS waveform sampled in vivo at 200 Hz, 2 kHz, and 30 
kHz, via the Activa PC+S, Blackrock Cerebus, and Ripple Nomad, respectively. (b) Control policy for 
closed-loop DBS. Electrodes in the brain sense neural signal and artifact. Real-time artifact removal via 
PARRM removes neural artifact without contaminating the underlying neural signal, enabling feature 
estimation for the closed-loop control of stimulation amplitude to relieve symptoms.  
 

Results 

Design of PARRM 

PARRM subtracts an estimate of the stimulation artifact at each time bin from the recorded signal 

at that time bin. The artifact estimate is formed by averaging the recorded signal at other time bins 

that are close to the current time bin in both time and stimulation phase. The artifact is presumed 

to be roughly identical for all of these time bins. Averaging reduces the influence of brain signals 
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and additional sources of noise, so that the estimate is primarily artifact. This process can be 

implemented as a linear filter (i.e., a weighted average using a sliding window). PARRM needs a 

precise estimate of the stimulation period relative to the sampling rate. Slight inaccuracies in 

device system clocks can necessitate using a data-driven method to determine this period, which 

is done by finding the period that, when the data are divided into epochs the length of one period 

and overlapped, the samples will consolidate around the shape of the high-resolution artifact 

waveform. The complete process of data-driven period finding, artifact estimation, and signal 

reconstruction is illustrated in Figure 2.   
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Figure 2: Illustration of stimulation period determination, template reconstruction, and template 
subtraction via PARRM. (a) Entire LFP recording sampled at 200 Hz (black) is used to identify the true 
period. (b) An illustration of a 5-sample snippet of the LFP recording divided into epochs using the true 
period and overlaid with the high-resolution waveform (light blue). Black points indicate individual raw 
LFP samples. (c) The epochs for all 5 samples are overlaid on the timescale of the true period. (d) When 
all epochs in the recording are overlaid using this procedure, all samples consolidate around the shape of 
the high-resolution artifact waveform on the timescale of the true period. (e) The period suggested by the 
device sampling and stimulation rates is inexact and does not result in a consolidated waveform. Using a 
grid search centered around the stated period, a series of periods are evaluated to find the true period that 
produces the most consolidated samples. (f) A sliding window is applied to the entire recording to estimate 
the contribution of the stimulation artifact at each sample. (g) For each window, a rectangular kernel (length 
𝑁bins), ignoring the center (length 𝑁skips) is used to estimate the value of the artifact at each sample of 
interest 𝑖  (asterisk). (h) Samples within a distance, 𝐷period , on the timescale of the artifact period are 
averaged together to produce the estimate of the amplitude of the artifact (orange point) at sample 𝑖. (I) The 
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estimated value of the artifact is then subtracted at each sample over the entire recording to recover the 
signal of interest (dark blue). 
 

PARRM recovers simple sinusoidal signals in saline 

PARRM was used to remove the DBS artifact and recover the underlying injected signal and noise 

in saline. In artifact free (DBS off) recordings, both the 10 and 50 Hz injected signals are clearly 

visible both in the frequency and time domains prior to signal offset (Figure 3a, 3b). When 

stimulation is turned on, high amplitude artifacts are visible in the frequency domain at 0 and 50 

Hz, obscuring the 50 Hz injected signal but not the 10 Hz signal. In the time domain, both the 10 

Hz and 50 Hz signals are obscured (Figure 3c, 3d). Following filtering using PARRM, the effects 

of stimulation are removed in both the frequency and time domains (Figure 3E, 3F). In the case of 

the 50 Hz signal, this is achieved despite the artifact being aliased to the same frequency as the 

injected signal.    

 

The similarity between the artifact free and filtered signals is visually apparent in 0.2 seconds of 

data for both the 10 and 50 Hz injected signals (Figures 3g, 3h). We then quantified filter 

performance by comparing the distribution of absolute errors between artifact free signals and 

unfiltered, MAS filtered, notch filtered, and PARRM filtered signals to a baseline noise recording 

(no stimulation, no injected signal) (Figure 3i, 3j). Filtering using MAS did not reduce the error to 

the level of baseline for either injected signal (p<0.0005). While effective at 10 Hz (p>0.05), Notch 

filtering removed the injected signal along with the artifact leading to a large reduction in error yet 

still significantly different from baseline (p<0.0005). For both the 10 and 50 Hz injected signals, 

PARRM outperformed the other methods with no significant difference (p>0.05) from baseline, 

indicating that the remaining errors were expected due to noise in saline.  
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Figure 3: PARRM effectively recovers sinusoidal signals at frequencies separate from and coincident 
with the aliased artifact. (a, b) Spectrogram and time-voltage series of 10 Hz and 50 Hz sinusoidal signals 
injected into saline sampled at 200 Hz with stimulation off. (c, d) Spectrogram and time-voltage series of 
10 Hz and 50 Hz sinusoidal signals injected into saline sampled at 200 Hz during concurrent 150 Hz 
stimulation. (e, f) PARRM filtered spectrogram and time-voltage series of 10 Hz and 50 Hz sinusoidal 
signals injected into saline sampled at 200 Hz during concurrent 150 Hz stimulation. (g, h) A 0.2 second 
snippet of PARRM filtered and artifact free time-voltage series of 10 Hz and 50 Hz sinusoidal signals 
injected into saline sampled at 200 Hz during concurrent 150 Hz stimulation. (i, j) Evaluation of filter 
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performance based on time domain absolute error between artifact free and filtered 10 Hz and 50 Hz 
injected signals sampled at 200 Hz during concurrent 150 Hz stimulation. Asterisks indicate significant 
differences from absolute errors on the order of baseline noise (Wilcoxon ranksum, ***: p<0.0005). 
 
PARRM recovers complex, multi-frequency signals in computer simulations 

Having shown that PARRM is effective for recovering simple sinusoidal signals recorded in saline, 

next we sought to compare the method’s performance to a series of state-of-the art filters in 

recovering more complex, injected, chirp signals for simulated data (S. Fig. 4). When all chirps 

were averaged, PARRM recovered a signal with minimal distortion and noise in the time domain 

at both low and high sampling rates, unlike MAS and matched filters (Figure 4a left, 4b left). 

Additionally, PARRM showed no significant differences in the frequency domain at either 

sampling rate (Figure 4a right, 4b right). This was true even at frequencies affected by artifact 

where other filters either over (notch) or under (MAS and matched) filtered. Lastly, PARRM had 

a relative root mean squared error (RRMSE) close to one for both sampling rates indicating 

effective signal recovery on a single trial basis exceeding performance of the Hampel filter (Figure 

4c, 4d). For all three metrics, PARRM exceeded performance of all other filters for both low and 

high sampling rates. 
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Figure 4: PARRM performance exceeds state of the art filters for nonstationary signals at low and 
high sampling rates in simulated data. (a) Averaged time-voltage series and windowed power spectral 
density of 30 simulated linear chirps (0 Hz to 100 Hz, 2 second duration, variable separation) during 
concurrent 150 Hz stimulation for unfiltered, Hampel filtered, MAS filtered, Match filtered, Notch filtered, 
PARRM filtered, and artifact free recordings sampled at 200 Hz. Black solid bars indicate significant 
difference from artifact free signal (2-Sample t-test, p < 0.05). (b) Average time-voltage series and average 
windowed power spectral density of 30 simulated linear chirps (0 Hz to 200 Hz, 2 second duration, variable 
separation) during concurrent 150 Hz stimulation for unfiltered, Hampel filtered, MAS filtered, Match 
filtered, Notch filtered, PARRM filtered, and artifact free recordings sampled at 1000 Hz. Black solid bars 
indicate significant difference from artifact free signal (2-Sample t-test, p < 0.05). (c, d) Evaluation of filter 
performance based on time domain relative root mean squared error (RRMSE: ratio between MSE of 
artifact free vs. theoretical chirp to MSE of filtered vs. theoretical chirp) of simulated chirps during 
concurrent 150 Hz stimulation sampled at 200 Hz and 1000 Hz.   
 

Next, a parameter sweep was performed to test the effect of varying chirp length (1-10 s), 

amplitude (0.5-5 V), pulse width (30-180 µV), and frequency (80-180 Hz) on PARRM 

performance, measured by RRMSE and Relative R Ratio (S. Fig. 5). Effects for chirp length and 
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pulse width were all within the margin of error. RRMSE and Relative R Ratio increased for 

increasing stimulation amplitude. RRMSE and Relative R Ratio decreased for stimulation 

frequencies above 100 Hz. All changes were at most 8% different from baseline indicating that 

PARRM performed well for a wide range of stimulation parameters and recorded signals. 

 

PARRM significantly attenuates stimulation artifacts from the Activa PC+S 

We then applied PARRM to an extensive 1012 recording session dataset from two human 

neuropsychiatric DBS participants (NCT03457675). Prior to application of PARRM, the unfiltered 

electrophysiological signal recorded during stimulation for both participants displayed a large 

artifact, obscuring the LFP signal of interest (Figure 5a, left, S. Fig. 6a left). Following the 

application of PARRM, the amplitude of the resulting signal was reduced by a factor of 20. 

However, unexpected oscillations with non-stationary frequency content centered at 

approximately 6 Hz and 3 Hz for OCD-P1 and OCD-P2, respectively, remained after filtering 

(Figure 5a center, S. Fig. 6a center). Average power spectral densities were computed for all 

recordings and confirmed that the expected stimulation harmonics were well attenuated for both 

participants (Figure 5a right, S. Fig. 6a right).   

 

PARRM removes artifacts in a wide range of therapeutic stimulation paradigms 

After establishing the suitability of PARRM to deep brain recordings during DBS therapy, we 

evaluated the applicability of PARRM to different neuromodulation modalities to recover neural 

signals during 1) 150.6 Hz DBS using the Summit RC+S for OCD in the right BNST and left 

VC/VS (Figure 5b, S. Fig. 6b), 2) 120 Hz DBS in an EMU setting recording from left prefrontal 

cortex and amygdala (Figure 5c, S. Fig. 6c), 3) 50 Hz and 10 kHz SCS during rest in sheep 
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recording approximately from spinal segments L5-S1  (Figure 5d, S. Fig. 6d), and 4) 130.2 Hz 

DBS using the Summit RC+S for PD in the STN recording from right M1 (Figure 5e). The 

effectiveness of PARRM for each setting was evaluated by comparing filtered recordings to 

unfiltered recording using raw time domain traces and power spectral densities. In all four 

modalities, PARRM was able to attenuate the stimulation artifacts at every amplitude and 

frequency leading to large reductions in artifact amplitude in both the time and frequency domains. 

PARRM was able to accurately remove artifacts and their harmonics at both low and high 

frequencies and, in the case of the EMU recording, identified and attenuated aliased artifacts. 

Lastly, PARRM was applied to data from M1 recorded using the Summit RC+S during a 

movement task where the subject was receiving concurrent 130.2 Hz DBS in the STN for PD. 

PARRM removed artifacts in the time domain on a single trial basis and reduced artifact amplitude 

in the frequency domain (Figure 5e) . When all trials were averaged, PARRM was able to recover 

a known high-gamma biomarker for movement onset that was previously obscured by stimulation 

artifact (Figure 5f). Together, these analyses demonstrate that PARRM is readily adaptable to a 

wide range of neural recording paradigms and can enable the recovery of neural biomarkers 

otherwise obscured by stimulation artifacts. 
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Figure 5: Demonstration of PARRM in human participants with DBS and SCS in ovine model. (a-d) 
Raw time-voltage LFP trace, PARRM filtered time-voltage LFP trace, and average PSD before (black) and 
after (blue) PARRM filtering, collected during (a) 150 Hz stimulation sampled at 200 Hz using Activa 
PC+S in OCD-P1 left VC/VS,  (b) 150.6 Hz stimulation sampled at 1000 Hz using Summit RC+S in OCD-
P3 right BNST, (c) 120 Hz stimulation sampled at 2000 Hz in TRD-P1 left ventral PFC during a cognitive 
control task, (d) 50 Hz spinal stimulation sampled at 30 kHz in ovine model using Ripple Nomad, (e) 130.2 
Hz stimulation in STN sampled at 1000 Hz using Summit RC+S in PD-P1 recorded in right M1 during 
movement task. Left: one unfiltered trial in time domain. Center: PARRM filtered trial in time domain. 
Right: PSD of whole task (f) Averaged continuous wavelet transforms for a movement task zeroed to 
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motion cue for stimulation on unfiltered data, stimulation off, and stimulation on PARRM filtered data 
recorded using the Summit RC+S in PD-P1 recorded in right M1. Location of high-gamma biomarker is 
indicated by the dashed red line. 
 

Potential for online application of PARRM in implantable technologies 

The feasibility of implementing PARRM as an online method for low sampling rate recordings 

was investigated using LFPs sampled at 250 Hz by the Activa PC+S over 250 days. Using 1012 

recordings from two Activa PC+S participants both in the clinic and at home, we estimated 

potential variability in the period over the 250-day span. Variation in the period was minimal 

(standard deviation of 10!" samples) with the maximum and minimum differing from the median 

by only 2 × 10!"samples. The estimated period was consistent across both devices with only a  

2 × 10!#sample difference between the medians (Figure 6a). Data filtered using past samples only 

and extreme periods were compared to data filtered using the standard PARRM approach where 

both past and future samples are used, and an accurate period is estimated. The similarity between 

these approaches was quantified using median absolute percentage error (MAPE). Using only past 

samples resulted in a MAPE of 0.6% when compared to a two-sided filter. Filtering using extreme 

periods and past samples resulted in a MAPE of approximately 1% when compared to a two-sided 

filter (Figure 6b). We then sought to estimate the minimum number of samples that were necessary 

to guarantee an accurate estimate for the period based on RRMSE with the simulated chirp data. 

RRMSE followed a roughly sigmoidal relationship with the number of samples used. RRMSE and 

its variability decreased for increasing number of samples. Improvement (decrease) beyond 1000 

samples was minimal (1% difference) (Figure 6c). We then computed the RRMSE as a function 

of two filter parameters: the period distance (𝐷$%&'()) and the half window size (𝑁*'+,). We found 

that increasing window size and decreasing period distance generally improved RRMSE. 

Improvement beyond a period distance of 1/150th of a period and 2000 samples was minimal 
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(Figure 6d). Improvements in RRMSE were not fully explained by the total number of samples 

averaged for each parameter combination (S. Fig. 8). These results demonstrate that PARRM can 

be implemented with minimal onboard memory enabling real-time artifact removal. 

 

 

Figure 6: Practical considerations for implementing signal recovery via PARRM in real-time. (a) 
Exact period estimations in samples over 1012 recordings for P1 and P2 over 250 days since DBS implant. 
(b) Median absolute percent error (MAPE) between the standard PARRM filtering approach (using past 
and future samples, and exact period estimation) and using past samples only with an exact period 
estimation, using past samples only with the maximum period across the 1012 recordings, and past samples 
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only with the minimum period across the 1012 recordings. (c) PARRM performance measured by relative 
root mean squared error (RRMSE) is dependent on the number of samples used to determine the period. 
Error bars show the spread (d) Heat map of RRMSE as a function of period distance (𝐷+,-./0) and half 
window size (𝑁1.23). Darker blue indicates superior PARRM performance. Orange point indicates the 
𝐷+,-./0  and 𝑁1.23  that were used for all analysis. (e) Voltage-time LFP trace after PARRM filtering 
containing a jump in the period. (f) LFP (blue) and concurrent EEG (red), aligned using location of period 
jump identified in both recordings. 
 
PARRM is robust to spurious changes in stimulation artifact 

Lastly, we verified that PARRM is robust to spurious jumps in the stimulation period. After a jump 

in the period, PARRM temporarily filters using the incorrect phase of the artifact. However, due 

to the moving filter window, PARRM performance recovers a few seconds after a period jump 

(Figure 5e). These period jump events can be used to our benefit to align LFP recordings with 

external sensors, such as EEG (Figure 5f). These jumps can be located on the high sampling rate 

(30 kHz) EEG as increases in the difference between subsequent peaks. In the LFP, these events 

can be located by filtering using PARRM twice: once with a past window, and again with a future 

window. The peak in the product of the five-sample moving standard deviations of these two 

filtered recordings corresponds to the location of the alignment point (S. Fig. 9). These results 

demonstrate that PARRM can be robust to potential recording errors in an online environment and 

assist in temporal alignment of concurrent recordings. 

 

Discussion 

In summary, we have developed a novel method, PARRM, that removes aliased electrical 

stimulation artifact in low and high sampling rate LFP recordings even in cases where the 

frequency of the underlying neural signal overlaps with the frequency of the aliased artifact (Figure 

3). Before the development of PARRM, it was impossible to completely remove aliased artifacts 

resulting from stimulation frequencies or harmonics greater than the Nyquist frequency (125 Hz 

for recordings sampled at 250 Hz) without contaminating the underlying neural signal. Stimulation 
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frequencies over 125 Hz are clinically relevant for PD, OCD, TRD, and pain (16–18). This 

capability opens the door for use of power efficient and high channel count implantable 

neurostimulation devices without sacrificing data quality, and is particularly useful for the two 

existing commercial DBS systems capable of concurrent stimulation and sensing at 250 Hz: the 

Percept, and the NeuroPace RNS (19, 20). PARRM is a low complexity algorithm that can develop 

templates for subtraction based on past data samples, requiring minimal computational resources 

and onboard storage, and could be implemented on existing and future neurostimulation devices.  

 

Due to the conditions of our benchtop saline experiments, including impedance mismatch of 

electrodes in saline versus the human brain, most validation steps were completed via 

computational simulations. We chose to simulate our most limited recording scenario: the Activa 

PC+S at a sampling rate of 200 Hz. While the simulated waveform was not based on exact 

parameters of every component of the Activa PC+S device circuit, we believe that the simulations 

do not detract from the validation of the method. The simulated artifact waveform closely matches 

the reconstructed waveform observed during benchtop saline testing (S. Fig. 3). The simulation 

was an efficient way to evaluate PARRM performance over a vast array of DBS parameters and 

conditions. In the future, we hope that DBS device companies will consider publishing Simulink 

models of the DBS waveforms their devices produce to aid in artifact characterization and removal.  

 

We found that when applying PARRM to Activa PC+S recordings, distinct, low-frequency, 

nonstationary oscillations remained. Nonstationary oscillatory artifacts, varying on a timescale 

shorter than the filter window, cannot be successfully mitigated using PARRM. We investigated 

whether these nonstationary oscillations may have been the product of variable noise, dependent 
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on the phase of the waveform where a point was sampled, or, may have resulted from jitter in the 

true pulse location within a period compared to the pulse location predicted by PARRM. However, 

when this noise and jitter were incorporated into simulations, neither addition replicated the 

nonstationary oscillations (S. Fig. 7). Since these oscillations did not appear in saline recordings 

and could not be replicated via the addition of noise or jitter, we hypothesize that they arise from 

interactions between the electrical stimulation and the unique chemical medium and structural 

environment of the brain and should be investigated further in future studies. Recording 

configurations which minimize such artifacts, as well as aperiodic artifacts from other sources, are 

valuable for maximizing PARRM performance. 

 

Online, real-time artifact removal via PARRM will enable unbiased exploration of neural 

biomarkers that may have previously been obscured by stimulation artifact. More broadly, 

PARRM may be applicable in any domain in which a periodic artifact should be removed to 

recover an underlying signal of interest. While more development is required before PARRM can 

be applied to do onboard artifact rejection during concurrent neurostimulation therapy and sensing, 

PARRM could ultimately contribute to the accurate detection of neural biomarkers and the 

development of closed-loop neuromodulation therapies.  

 

Materials and Methods 

I. Human LFP recordings from implanted DBS devices for OCD:  

Research subjects were four participants, each with a history of long-standing OCD, that 

underwent clinically indicated DBS surgery for treatment of OCD. Two participants (OCD-P1 and 

OCD-P2) were implanted with the Activa PC+S (Medtronic, Minneapolis, MN, USA) device, and 
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two participants (OCD-P3 and OCD-P4) were implanted with the Summit RC+S (Medtronic, 

Minneapolis, MN, USA) device. Each participant gave fully informed consent according to study 

sponsor guidelines, and all procedures were approved by the local institutional review board at 

Baylor College of Medicine (H-40255, H-44941).  

DBS leads (Model 3778) were intracranially placed bilaterally in the VC/VS or BNST based on 

clinical indications and connected to the Activa PC+S or Summit RC+S to enable control of DBS 

and LFP recordings. OCD-P1 received bilateral stimulation while OCD-P2 received unilateral 

stimulation. LFP was sensed with bipolar contacts around the stimulation contact at a sampling 

rate of 200 Hz (Activa PC+S) or 1000 Hz (Summit RC+S). Scalp EEG sampled at 30 kHz was 

concurrently recorded using tripolar concentric ring electrodes (tCRE, CRE-Medical, University 

of Rhode Island, RI, USA).  

 

II. Intracranial electroencephalography recordings 

A research subject with a history of treatment-resistant depression (TRD-P1) was implanted with 

clinical depth electrodes (PMT, Chanhassen, MN, USA) spanning the amygdala, prefrontal cortex, 

orbitofrontal cortex and cingulate cortex, as well as bilateral DBS electrodes (Vercise Gevia; 

Boston Scientific, Marlborough, MA, USA) in the VC/VS and subcallosal cingulate. Research 

protocols were approved by the institutional review board at Baylor College of Medicine (H-

43036, H-40255), and the research subject provided written and verbal voluntary consent to 

participate in the study.  

Intracranial electroencephalographic (iEEG) signals from depth electrodes were recorded at 2 kHz 

with a bandpass of 0.3-250 (4th order Butterworth filter) using a 256 channel Blackrock Cerebus 

system (Blackrock Microsystems, Salt Lake City, UT, USA). Stimulation was concurrently 
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delivered through DBS electrodes using Cerestim (Blackrock Microsystems, Salt Lake City, UT, 

USA) to deliver continuous stimulation at 130 Hz, 100 µS pulse width and 4-6 mA. In order to 

remove line noise, notch filters were applied at 60, 120, and 180 Hz. 

 

III. Sheep spinal electrophysiological recordings:  

One sheep underwent surgery to implant a custom-built 24 contact SCS device on the epidural 

surface of the spinal cord from approximately the L5-S1 spinal segments. All study procedures 

were conducted with the approval of the Brown University Institutional Animal Care and Use 

Committee (19-04-0002) and in accordance with the National Institutes of Health Guidelines for 

Animal Research (Guide for the Care and Use of Laboratory Animals). Device wires were 

externalized and connected to a Nomad (Ripple Neuro, Salt Lake City, UT, USA) neural interface 

system to allow for simultaneous stimulation and recording of the spinal cord at 30 kHz. 

Stimulation was controlled by a custom-written MATLAB (Mathworks, Natick, MA, USA) script 

to deliver current at levels typically used for chronic pain management using SCS (0-2000 μA, 50 

Hz and 10 kHz). 

 

IV. Human LFP recordings from implanted DBS devices for PD:  

One PD patient (PD-P1) was implanted with bilateral cylindrical quadripolar deep brain stimulator 

leads into the subthalamic nucleus (STN, Medtronic model 3389) and bilateral placement of 

paddle-type quadripolar cortical paddles into the subdural space over motor cortex (MC, 

Medtronic model 0913025). Each pair of STN and MC leads was connected bilaterally to a Summit 

RC+S device in a pocket over the pectoralis muscle (Medtronic Summit RC+S model B35300R).  
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The paddle lead was placed in the subdural space through the same frontal burr hole used for the 

subthalamic lead. At least one contact covered the posterior precentral gyrus (presumed primary 

motor cortex), approximately 3 cm from the midline on the medial aspect of the hand knob. The 

STN leads was implanted in the motor territory of the STN. Placement was confirmed with 

movement-related single-cell discharge patterns. The study was approved by the hospital 

institutional review board (IRB) at University of California San Francisco Medical Center under a 

physician sponsored investigational device exemption (G180097) and was registered at 

ClinicalTrials.gov (NCT03582891). The patient provided written consent in accordance with the 

IRB and Declaration of Helsinki.  

 

V. Period-based Artifact Reconstruction and Removal Method (PARRM) 

At each time bin 𝑡, PARRM subtracts an estimate of the stimulation artifact at time bin 𝑡 from the 

recorded signal at time bin 𝑡 (Figure 2). The estimate of the stimulation artifact is formed by 

averaging the recorded signal at other time bins that are in a temporal region near time bin 𝑡 and 

also approximately at the same phase of stimulation as time bin 𝑡. The artifact is presumed to be 

roughly identical for all of these time bins, including time bin 𝑡. Averaging reduces the influence 

of brain signals and additional sources of noise, so that the subtracted signal is primarily artifact.  

Let 𝑇 denote the stimulation period relative to the sampling rate (in units of sampling time 

bins). The time bins included in the average are those times bins 𝑠 such that  

𝑁skip < |𝑠 − 𝑡| ≤ 𝑁bins 

and such that  

|𝑠 − 𝑡|		(mod	𝑇) ≤ 𝐷period						or					|𝑠 − 𝑡|		(mod	𝑇) ≥ 𝑇 − 𝐷period, 
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where 𝑎		(mod	𝑇)  denotes 𝑎  modulo 𝑇 , and where 0 ≤ 𝑁skip < 𝑁bins  and 0 ≤ 𝐷period ≤ 𝑇  are 

user-chosen design parameters. (The additional criterion 𝑠 − 𝑡 < 0 can be included so that only 

past observations are used to estimate the stimulation artifact; see Supplementary Materials.) Let 

B7 denote the collection of those times bins 𝑠 that are used for averaging and let |𝐵7| denote the 

number of such time bins. Using 𝑟7 to denote the recorded signal at time bin 𝑡, the corrected signal 

is 𝑐7 defined by 

𝑐7 				= 				 𝑟7 −
1
|𝐵7|

= 𝑟,
,∈9!

					= 		 = 𝑤'𝑟7!'

:bins

';!:bins

	, 

where 𝑤'  is a list of weights defined by 𝑤< = 1 , and 𝑤' = −1/|𝐵<|  if −𝑖 ∈ 𝐵< , and 𝑤' = 0 

otherwise. The final expression shows that the PARRM correction can be implemented by a fixed 

linear filter (with the filter weights denoted by 𝑤'), making it fast and simple to implement. (If the 

additional criterion 𝑠 − 𝑡 < 0 is used, then the final summation would begin at 𝑖 = 0. The final 

formula also needs to be modified near the start and end of stimulation; see Supplementary 

Materials.)  

The design parameters for the PARRM filter are 𝑁bins, 𝑁skip, and 𝐷period. Larger choices of 

𝑁bins  allow more data to be averaged in order to estimate the artifact, reducing estimation 

variability. But, larger choices of 𝑁bins also lengthen the temporal window used to estimate the 

artifact, perhaps introducing estimation bias if the artifact shape is changing in time. Because 

neural signals have temporal autocorrelation, it is important to avoid averaging data too close to 

time bin 𝑡 or the neural signal itself could be subtracted during artifact removal. Larger choices of 

𝑁skip help to mitigate this danger, but also reduce the amount of data used to estimate the artifact. 

Similar to 𝑁bins, larger choices of 𝐷period allow more data to be averaged, but also introduce more 
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estimation bias by temporally smoothing the estimated artifact. The optimal choices for these 

design parameters will vary depending on the situation; see Supplementary Materials. 

 

VI. Period estimation 

PARRM needs a precise estimate 𝑇of the stimulation period relative to the sampling rate. 𝑇 

can be determined via several methods. This paper uses an automated, data-driven method that 

works by searching for a period that creates a strongly resolved template (Fig. 2E, S. Fig. 1). For 

each candidate period 𝛿 > 0, the method estimates a waveform template with this period and then 

quantifies deviation from the estimated template. The candidate period with the smallest deviation 

is selected as the final estimate 𝑇of the period that is used by PARRM. A similar period finding 

method was described by Tzou et. al (21).  

Let 𝑚 ≥ 0 be an integer. For each potential period 𝛿 > 0 and each parameter vector 𝛽 =

(𝛽=, … , 𝛽>?@=) define the functions 

𝑓A,C(𝑡) = 𝛽= += 𝛽>D sin L
2𝜋𝑗𝑡
𝛿 O

?

D;=
+= 𝛽>D@= cos L

2𝜋𝑗𝑡
𝛿 O

?

D;=
 

The function 𝑓A,C is a periodic function with period 𝛿. Each 𝑓A,C is a candidate artifact waveform. 

The parameter vector 𝛽 controls the strength of the different frequencies that define 𝑓A,C, and 𝑚 

controls the number of allowed frequencies. Let Q(𝑡E , 𝑦E): 𝑘 = 1,… , 𝑛V be a collection of (time, 

value) pairs. The 𝑦E value used here is the change in recorded LFP amplitude at time 𝑡E with some 

preprocessing to obtain standardized units, reduce the influence of outliers, and reduce the size of 

the dataset; see Supplementary Materials. Mean squared error is used to measure how well the 

function 𝑓A,C fits these pairs:  

mse(𝛽, 𝛿) =
1
𝑛= W𝑦E − 𝑓A,C(𝑡E)X

>
.

+

E;=
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For fixed 𝛿, the optimal 𝛽, say, 𝛽Z(𝛿) = argminA mse(𝛽, 𝛿), can be computed exactly using linear 

regression techniques; see Supplementary Materials. The final estimate of the period is 

𝑇 = argminC 	minA 	mse(𝛽, 𝛿) = argminC 	mseQ𝛽Z(𝛿), 𝛿V	. 

The minimization over 𝛿 is complicated by many local minima, spurious ‘distractor’ solutions that 

mimic the harmonics of the true waveform (S. Figure 1), and high sensitivity to small changes in 

𝛿. The examples in this paper use a penalized, stagewise search that begins with smaller intervals 

of data (to reduce the sensitivity to 𝛿), smaller 𝑚 (to reduce the number of local minima), and a 

penalty for higher frequency solutions (to help avoid distractor solutions); see Supplementary 

Materials. This seems to be the most delicate part of the period-finding procedure. Once 𝑇 is found, 

it is fixed for PARRM. Simpler methods for period finding are under active development and will 

be described in a future publication.  

VII. Implementation of state-of-the-art filters  

Hampel filter, moving average subtraction, matched filter, and notch filter performance were used 

as a comparison point to PARRM performance. Hampel filters interpolate artifactual components 

in the frequency domain and have been shown to be an effective approach for removing DBS 

artifacts in EEG recordings. We implemented a standard Hampel filter in MATLAB based on the 

method described by Allen et al. (22). Moving Average Subtraction (MAS) employs peak finding 

to identify each stimulation pulse in an up-sampled recording before averaging neighboring pulses 

to construct a local template, and has been shown to be effective in signal recovery for low and 

high sampling rate EEG recordings during DBS. Following the method described by Sun and 

Hinrichs et al., we implemented a similar filter in MATLAB (23). Matched filters estimate the 

amplitude and phase of a series of sinusoidal harmonics of the artifact by maximizing cross 

correlation and have been shown to be effective in signal recovery for simulated DBS artifacts 
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added to EEG data. We implemented a matched filter in MATLAB using six matched components 

based on the method described by Sun et al. (24). Notch filters at the stimulation frequency and its 

harmonics are an effective method for removing DBS artifacts by completely attenuating power 

at affected frequencies. Second order Infinite Impulse Response (IIR) notch filters with a half-

power distance of 5 Hz were applied at the stimulation harmonics and their aliases using the 

MATLAB designfilt and filtfilt functions. For recordings sampled at 200 Hz, a high-pass finite 

impulse response (FIR) filter with 2 dB stopband attenuation, transition band between 2 and 3 Hz, 

and a passband ripple of 0.1 dB and a 20th order low-pass IIR filter at 97 Hz with 0.1 dB of 

passband ripple were used to attenuate the aliased components at 0 and 100 Hz (for 150 Hz 

stimulation). 

VIII. Experimental validation of PARRM in saline 

The artifact removal method was validated by simulating the recording conditions in the brain 

using a setup in a saline solution. The DBS lead (Model 3778) and case were immersed on opposite 

sides of a plastic container containing 1x phosphate buffered saline solution at room temperature. 

A platinum electrode connected to a waveform generator was placed adjacent to the stimulating 

electrode to simulate LFP (S. Fig. 2). Single frequency (10 Hz and 50 Hz) oscillations were 

injected by the waveform generator alongside 2 V, 150 Hz, 90 µs pulse width stimulation. The 

efficacy of the removal method was characterized by comparing the distributions of absolute errors 

of the artifact free injected signal with unfiltered, moving average subtraction (MAS) filtered, 

notch filtered, and PARRM filtered signals. Baseline noise was estimated during recordings where 

stimulation was off and there was no injected signal from the waveform generator. Significant 

differences from baseline noise were estimated using a Wilcoxon-Rank Sum test. 

IX. Experimental validation of PARRM using Simulink 
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The recording circuit for the Activa PC+S device was simulated using Simulink (Mathworks, 

Natick, MA, USA) (25) (S. Fig. 3A). The simulation input was a train of modeled DBS pulses 

sampled at 120 kHz, and the output was the simulated stimulation waveform as if it were being 

recorded by the Activa PC+S (S. Fig. 3B). The Simulink model is publicly available on GitHub 

(see Availability statement). By default, a stimulation frequency of 150 Hz, amplitude of 2 V, and 

pulse width of 90 µs were used. The simulation reached a steady state after two seconds. The final 

stimulation waveform was then used to create pulse trains that match the simulated injected signal 

in length. Each simulated pulse train was downsampled by a factor of 601 or 121 (199.67 Hz or 

992 Hz) to replicate the true sampling rate, which deviates slightly from the sampling rate stated 

by the device (200 Hz or 1000 Hz). For each simulation, the stimulation pulse train was added to 

a series of 30 linear chirps. Each chirp was two seconds in length and separated from the following 

chirp by one second with 0.1 seconds of jitter. Chirp amplitude was twice the root mean squared 

amplitude of the baseline noise. Gaussian noise equal in magnitude to what was observed in saline 

was added to each simulation. For the signals sampled at roughly 200 Hz, chirps ranged from 0 to 

100 Hz. For the signals sampled at roughly 1000 Hz, chirps ranged from 0 to 200 Hz. PARRM 

performance using simulated data was compared to that of a hampel filter, MAS filter, matched 

filter, and notch filter. A parameter sweep was run to test PARRM performance across varying 

stimulation frequencies (80-180 Hz), amplitudes (0.5-5 V), pulse widths (30-180 µs), and chirp 

lengths (1-10 s).  

X. Spectral analysis 

Time frequency decomposition was performed using a continuous complex Morlet wavelet 

transform. For data sampled at 200 Hz, 500 steps from 0 to 100 Hz were used. Wavelets were 

constructed using one cycle at the minimum frequency up to 20 at the maximum frequency. Steps 
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were linearly spaced for analysis of chirp signals and logarithmically spaced for analysis of 

stationary sinusoidal signals. For data sampled at 1000 Hz, 500 linearly spaced steps from 0 to 200 

Hz were used. Wavelets were constructed using one cycle at the minimum frequency up to 30 at 

the maximum frequency also with linearly spaced steps. For analyzing the frequency content of 

each chirp, we computed a windowed power spectral density using the decomposition. The power 

for each frequency was computed by averaging the power in a window centered at the time the 

frequency of interest occurred during the linear chirp. The window size was four samples for the 

200 Hz recordings and 20 samples for the 1000 Hz recordings. Stationary power spectral densities 

were computed using the MATLAB pspectrum function. 

XI. Estimation of filter performance 

1. Visual comparison: averaged chirp  

In order to visually compare the different filtering approaches, all 30 chirps were averaged 

together to produce a single average chirp. This method was used to visually show how well 

each filter was able to recover the signal over many trials. 

2. Frequency domain chirp comparison metric: Windowed PSD 

In order to compare how well each filtering approach was able to recover the chirp signal in 

the frequency domain, the distribution of power was compared for each frequency. Power 

was computed by calculating the decibel ratio of the signal of interest and the concurrent 

noise. Significant differences from the artifact free signal (chirp without simulated DBS) at 

each frequency were computed using a 2-sample t-test.  

3. Time domain chirp comparison metric: Relative root mean squared error 

In order to compare how well each filtering approach was able to recover the chirp signal in 

the time domain, the distributions of relative root mean squared error were compared. 
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Relative root mean square error (RRMSE) was calculated for each chirp by dividing the root 

mean squared error between the filtered and theoretical chirp signals by the root mean 

squared error of the artifact free and theoretical chirp signals. 

4. Parameter sweep metric: Relative R Ratio 

In order to compare how well each filtering approach was able to recover the chirp signal in 

the frequency domain as a whole, the distribution of relative R ratios was computed (26). 

Relative R ratio was computed as 

𝑅 = 𝑚𝑒𝑎𝑛
F(G&'H

()*+!,-,.())
(!1,2-())

I

F(G&'H
()-,,())
(!1,2-())

I
 , 

where 𝑃J'F7%&%)  is the power for the filtered signal, 𝑃7K%(&  is the power for the theoretical 

chirp signal (without noise), and 𝑃J&%% is the power for the chirp signal without stimulation 

artifact. 

XII. Movement Task 

A movement task written using jsPsych was presented to PD-P1 on a laptop touch screen computer 

(27). The patient was presented with a target appearing in one of four locations on the screen 

followed by a cue to move and a baseline period (each lasting up to three seconds). The patient 

performed 60 reaches (15 to each target, randomized) with therapeutic deep brain stimulation off 

or on in the STN. Synchronization of neural data and task data was done using the clock of the 

patients’ study computer. Two channels were recorded from motor cortex with a 1000 Hz sampling 

rate.  

For movement-related changes in spectral power, data were filtered using a two way 3rd order FIR 

filter (eegfilt from eeglab toolbox with fir1 parameters) and bandpassed in frequencies between 1-

200 Hz (28). Data from all trials were aligned relative to the onset of movement and averaged. The 
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averaged amplitude was normalized by a 1000 ms window prior to cue presentation (time 0). Data 

were z-scored by subtracting the average baseline amplitude and dividing by the baseline standard 

deviation. This z-score procedure was performed for each frequency separately. 

 

XIII. Feasibility for use of PARRM as an online method 

Using 1012 recordings from two human participants implanted with the Activa PC+S, we 

investigated whether it would be feasible to implement PARRM using an existing device. For 

PARRM to be effective as an online method, filter performance should depend on past samples 

only (rather than past and future samples) and should be robust to any foreseeable variation in the 

stimulation period over time. Additionally, the recording duration required to make an initial 

period estimate should be minimal, and filtering should require minimal resources onboard the 

device. To this end, a 40-second-long segment from each of the 1012 recordings was filtered using 

PARRM. The period was estimated for each recording. Extreme periods were identified by finding 

the maximum and minimum period over all the 1012 recordings. Data filtered using past samples 

only and extreme periods were compared to data filtered using the previously described approach 

where both past and future samples are used, and an accurate period is estimated. In total, the data 

were filtered using (1) past and future samples and accurate periods, (2) past samples only using 

accurate periods, (3) past samples only using minimum extreme periods, and (4) past samples only 

using maximum extreme periods. In order to quantify the magnitude of difference between the 

four filtering approaches, the median absolute percentage error (MAPE) between the original 

approach and the alternative approach was computed for each recording. Additionally, the RRMSE 

was found as a function of the number of samples used to determine the period, the period distance, 

and the window size for simulated chirps sampled at 200 Hz. 
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XIV. LFP synchronization with external sensors 

For one of the human participants (P2) implanted with the Activa PC+S, we synchronized the LFP 

recording with concurrent EEG. Synchronization was achieved by identifying ‘jumps’ in the 

stimulation period which occurred simultaneously in both recordings. Jumps in the difference 

between EEG peak times found using the MATLAB findpeaks function were used to locate these 

events in the EEG. In LFP recordings, these events were located by comparing data filtered using 

only past versus only future samples. A moving standard deviation with a window of five samples 

was computed for both recordings and the ‘jump’ corresponded to the peak in their product. 
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Figures: 

Fig. 1.  PARRM will enable biomarker detection during ongoing neurostimulation to enhance 
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efficacy of closed-loop neuromodulation. 

Fig. 2. Illustration of stimulation period determination, template reconstruction, and template 

subtraction via PARRM.  

Fig. 3. PARRM effectively recovers sinusoidal signals at frequencies separate from and 

coincident with the aliased artifact.  

Fig. 4.  PARRM performance exceeds state of the art filters for non-stationary signals at low and 

high sampling rates in simulated data. 

Fig. 5. Demonstration of PARRM in human participants with DBS, iEEG recordings during 

concurrent DBS, and Spinal Cord Stimulation in ovine model. 

Fig. 6: Practical considerations for implementing signal recovery via PARRM in real-time. 

 

Supplemental Figures: 

Materials and Methods 

S. Fig. 1. Distractor period mimics a harmonic of the true DBS waveform.  

S. Fig. 2. Experimental saline setup. 

S. Fig. 3. Simulated Activa PC+S frontend filtering circuit and output DBS waveform. 

S. Fig 4. Continuous wavelet transforms of simulated chirps 

S. Fig 5. Simulations show that PARRM is effective at a wide range of DBS parameters. 

S. Fig 6.  Additional demonstration of PARRM in human participants with DBS, iEEG recordings 

during concurrent DBS, and Spinal Cord Stimulation in ovine model. 

S. Fig. 7. Exploration of non-stationary oscillations leftover after PARRM in human data.  

S. Fig. 8. Number of samples averaged as a function of window size and period distance. 

S. Fig. 9.  Illustration of method for finding period jumps in LFP.  
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