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 1 

Abstract  1 

 2 

Introduction: Studies that examine the role of rare variants in both simple and complex 3 

disease are increasingly common. Though the usual approach of testing rare variants in 4 

aggregate sets is more powerful than testing individual variants, it is of interest to 5 

identify the variants that are plausible drivers of the association. We present a novel 6 

method for prioritization of rare variants after a significant aggregate test by quantifying 7 

the influence of the variant on the aggregate test of association.  8 

 9 

Methods:  In addition to providing a measure used to rank variants, we use outlier 10 

detection methods to present the computationally efficient Rare Variant Influential 11 

Filtering Tool (RIFT) to identify a subset of variants that influence the disease 12 

association. We evaluated several outlier detection methods that vary based on the 13 

underlying variance measure: interquartile range (Tukey fences), median absolute 14 

deviation and standard deviation. We performed 1000 simulations for 50 regions of size 15 

3kb and compared the true and false positive rates. We compared RIFT using the Inner 16 

Tukey to two existing methods: adaptive combination of p-values (ADA) and a Bayesian 17 

hierarchical model (BeviMed). Finally, we applied this method to data from our targeted 18 

resequencing study in idiopathic pulmonary fibrosis (IPF). 19 

 20 

Results: All outlier detection methods observed higher sensitivity to detect uncommon 21 

variants (0.001 < MAF > 0.03) compared to very rare variants (MAF < 0.001). For 22 

uncommon variants, RIFT had a lower median false positive rate compared to the ADA. 23 
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 2 

ADA and RIFT had significantly higher true positive rates than that observed for 24 

BeviMed. When applied to two regions found previously associated with IPF including 25 

100 rare variants, we identified six polymorphisms with the greatest evidence for 26 

influencing the association with IPF.  27 

 28 

Discussion: In summary, RIFT has a high true positive rate while maintaining a low false 29 

positive rate for identifying polymorphisms influencing rare variant association tests. 30 

This work provides an approach to obtain greater resolution of the rare variant signals 31 

within significant aggregate sets; this information can provide an objective measure to 32 

prioritize variants for follow-up experimental studies and insight into the biological 33 

pathways involved. 34 
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 3 

Introduction 1 

 2 

The number of studies that investigate the role of rare genetic variants in complex 3 

diseases has been steadily increasing. This is in part due to the hypothesis that rare 4 

variant effects might account for the discrepancy between estimated heritability for 5 

complex traits and that accounted for by common variant associations [1].  In addition, 6 

sequencing technologies have become less expensive such that more studies have the 7 

ability to study rare variation in large numbers of individuals or families.   A study of 8 

circulating adiponectin levels found that among Hispanics, low frequency variants 9 

explained more variation in the trait than common variants [2]. Rare variants have been 10 

shown to have modest [3] or large effect sizes [1,4]. Rare variants can be associated 11 

with increased [5] or decreased risk of disease [6]. Often rare variants influencing a trait 12 

are only observed in a few families [7]. Thus, rare variants exhibit a range of association 13 

patterns and can exhibit an important contribution to human trait variation.    14 

 15 

Studies of rare variation often require either whole genome sequencing or targeted 16 

sequencing on large study populations. Even with large sample sizes, there often 17 

remains insufficient power for testing rare and uncommon variants individually [8,9]. 18 

This is due to the low frequency of observations as well as the higher testing burden, as 19 

there are far more rare variants compared to common variants in the genome. To 20 

overcome this issue, methods for testing rare/uncommon variants often involve 21 

aggregating information across a genomic region [10]. Variants may be grouped into 22 

sets based on genomic information (e.g. gene bodies, exons), linkage disequilibrium 23 
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 4 

blocks, association windows, or into overlapping sliding windows of a fixed size in terms 1 

of physical distance or number of rare variants included. Methods for testing rare 2 

variants in aggregate fall into three main types: burden tests, variance component tests, 3 

and combined burden and variance component tests. The underlying assumption of 4 

burden tests is that the effects of the rare variants within a given set are in the same 5 

direction. Variance component tests ease this constraint and have higher power to 6 

detect disease association with a mixture of protective and deleterious rare variants. 7 

Given the underlying model by which rare variants are associated with disease in a 8 

given region is unknown, tests which combine the burden and variance component 9 

approaches weight the given contributions of the burden and variance components to 10 

improve power.  11 

 12 

Once a set of variants is found to be associated with a phenotype of interest, a logical 13 

next step is the identification of the plausible drivers of the association that might be the 14 

best statistical candidates for functional studies. Experimental validation of all rare 15 

variants in a significant set is generally unreasonable based on time and expense. The 16 

ability to narrow down the list of rare variants to those most likely to be contributing to 17 

the association signal could help target experimental validation. Additionally, reporting 18 

the rare variants most likely to be causal within a significant set of variants focuses 19 

functional efforts and can aid in comparison of results across studies. 20 

 21 

Several methods have been proposed for statistically identifying the most likely causal 22 

variants [11–15]. One method uses a classic backward elimination procedure; a variant 23 
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 5 

is removed from the set if its removal decreases the aggregate test p-value, and this 1 

process is repeated until no improvement in the p-value from removing a variant is 2 

observed [11]. Related stepwise procedures could be envisioned that use either the p-3 

value or various information criteria (e.g., Bayes information criteria, Akaike information 4 

criterion). Another method considers the problem of prioritizing variants in aggregate 5 

tests as a variable selection problem using kernel machine methods [16]. Although this 6 

method was developed for prioritization of common variants rather than rare variants, 7 

conceptually it is reasonable for rare variants. There are also previously published 8 

methods which test each variant individually, such as using a Fisher’s Exact Test and 9 

applying the adaptive combination of p-values procedure (referred to as ADA) to the 10 

resulting p-values [12]. This method has been shown to be more powerful than the 11 

backward elimination method proposed by Ionita-Laza, et. al., 2014.  Most recently, the 12 

BeviMed method applies a Bayesian hierarchical model and makes inference on 13 

whether a rare variant is causal based on power posteriors [15].  Methods like the 14 

backward elimination method and adaptive combination of p-values are iterative in 15 

nature and therefore computationally intensive. In addition, the Bayesian approach is 16 

developed for genome-wide testing of rare variant associations in rare Mendelian 17 

disorders under specific (unknown) modes of inheritance rather than being more 18 

broadly applicable.  19 

 20 

We present a novel method for prioritization of rare variants within a given set of 21 

variants after the set of variants is found to be significant using aggregate testing 22 

methods. Building on the rich outlier-detection statistical literature, we present a 23 
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 6 

computationally efficient approach to be applied following identification of a set of 1 

variants that is agnostic to putative function.  Our approach, which we refer to as RIFT 2 

for Rare Variant Influential Filtering Tool, leverages the influence of the variant on the 3 

aggregate test of association by quantifying the change in the aggregate test when that 4 

variant is removed. It is particularly well suited for rare and uncommon variants, the 5 

most common applications of aggregate tests, but is applicable to aggregate testing of 6 

variants of all frequencies. When applied to a significant set of rare/uncommon variants, 7 

RIFT provides a scheme for quantifying the contribution of an individual variant to the 8 

overall association signal, while adjusting for covariates. This method also provides a 9 

quantitative measure by which to rank variants for further investigation and several 10 

visualizations to aid in evaluation of a region of interest.  11 

 12 

Methods 13 

 14 

Overview 15 

We present the Rare Variant Influential Filtering Tool (RIFT) to quantify the effect of 16 

each variant on an aggregate test of association (Figure 1).  In our simulations, we 17 

consider variants with a minor allele frequency (MAF) of <3% (i.e., rare and 18 

uncommon), but note that the method is directly applicable to any set of variants, 19 

including common variants or mixtures of rare and common variants.  First, we describe 20 

our jackknife (leave-one-out) approach to obtain a score for each variant when applied 21 

to a set of rare variants from an aggregate test. We then describe several outlier 22 

detection methods that aim to identify influential variants (IVs) when applied to the 23 
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 7 

variant scores within a set. We perform simulations to evaluate the jackknife scores and 1 

the ability of the outlier detection methods to identify variants simulated to be associated 2 

with the outcome. Finally, we apply RIFT to recently published rare variant regions 3 

found to be significantly associated with idiopathic pulmonary fibrosis [17].  4 

 5 

Localization Approach 6 

For a given set of rare variants, we define the p-value resulting from the aggregate test 7 

as !(#). For rare variant j, we calculate the p-value from the aggregate test of the 8 

variants within the set excluding variant j and refer to this p-value as p(-j). P-values are 9 

transformed into chi-square statistics (df = 1) using the inverse cumulative distribution 10 

function (CDF) of the chi-square distribution (Equation 1), where %(&')(  corresponds to 11 

!(&') and %(#)(  corresponds to !(#).  For each rare variant j, we calculate a delta chi-12 

square score, denoted Δ%(&')( , which represents the change of the chi-square statistic 13 

when the rare variant j is removed (Equation 2). For variant j, Δ%(&')(  provides a relative 14 

measure of how the results of the aggregate test compare with and without variant j. 15 

Larger negative values indicate larger contributions to the overall test statistic.  16 

 17 

Equation 1: Inverse CDF function of the chi-square distribution (df = 1) can be written in 18 

terms of the inverse CDF of the normal distribution, N(0,1) denoted as *&+. 19 

%(&')
( = .*&+ /

!(&') + 1
2

34
(

(1) 20 

Equation 2: Delta chi-square score 21 

∆%(&')
( = %(&')

( − %(#)
( (2) 22 
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 8 

 1 

Outlier Detection for Identifying IVs 2 

The delta chi-square score provides a quantitative measure to rank the rare variants 3 

within a significant set according to the impact of that variant on the aggregate test of 4 

association. In addition to ranking, it is also desirable to identify the subset of 5 

polymorphisms influencing the set’s statistical association.  We considered this as an 6 

outlier detection objective, whereby unusually large delta chi-square scores across a 7 

significant set of variants correspond to the set of association influencing 8 

polymorphisms.  Sample values more extreme than a pre-specified cutoff are 9 

determined to be outliers.  Outlier detection methods are rooted in using an estimate of 10 

the sample variance that is robust to outliers, and robust measures of spread are often 11 

applied for that purpose. We considered two non-parametric approaches to identifying 12 

outliers and compared these to a parametric approach.   13 

 14 

Non-parametric variance estimation approaches 15 

In 1977, Tukey defined the commonly-known descriptive univariate boxplot that displays 16 

the interquartile range (IQR) as a measure of spread (IQR = distance between the first 17 

[Q1] and third [Q3] quartiles; [18]. Boundaries based on the IQR are referred to as 18 

“fences”, and observations lying outside the fences are considered outliers. The inner 19 

fence is defined by Q1 - 1.5*IQR and Q3 + 1.5*IQR; the outer fence is defined by Q1 - 20 

3*IQR and Q3 + 3*IQR. Note that the outer fence boundary is further away from the 21 

median than that of the inner fence boundary, and is therefore more conservative in 22 

classification of outliers. The IQR is robust to extreme values in the data and therefore 23 
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identification of outliers using the IQR are superior to methods that rely on parametric 1 

variance estimators in the presence of outliers [19]. Additionally, the IQR and 2 

corresponding Tukey fences do not make any distributional assumptions and have been 3 

shown to be effective as long as the data are not highly skewed [19]. 4 

 5 

Another measure of spread that does not assume a parametric distribution for the data 6 

is the median absolute deviation (MAD). Identification of outliers based on the MAD is 7 

provided in Equation 3 (further details can be found in Leys, Ley, Klein, Bernard, & 8 

Licata, 2013). Similar to the IQR, the MAD as a measure of spread is robust to extreme 9 

values compared to the standard deviation, which is greatly influenced by extreme 10 

values. The MAD requires specification of a constant and a cutoff; as others have used 11 

for criteria in outlier detection, we set the constant corresponding to the normal 12 

approximation (b = 1.4826) and a cutoff value of three; observations more than three 13 

MAD away from the median are considered outliers [21,22].  14 

Equation 3: 15 

789 = : ∙ <=>?@ABCD' − DECF;	DE = <=>?@A(D) (3) 16 

 17 

For completeness, we compare the cutoffs based on both the Inner and Outer Tukey 18 

fences and MAD to that of the standard deviation (SD), in which observations more 19 

extreme than three standard deviations from the mean are considered outliers. This 20 

method is often referred to as the three sigma rule [23]. Given that we expect causal 21 

variants to reduce the chi-square statistic when removed, we further limited 22 

classification of IVs to variants having a negative delta chi-square score.  23 
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 1 

Simulated Data 2 

We follow a previously developed simulation approach to generate rare variant data 3 

with a binary outcome [24,25]. Specifically, to generate case-control rare variant data 4 

under both null and alternative hypotheses, we simulated 10,000 haplotypes for a 1MB 5 

genomic region under a coalescent model with parameters consistent with a European 6 

population using the software package COSI [26]. We considered 50 different genomic 7 

regions of size 3kb and included only rare variants with MAF < 0.03. To generate 8 

samples of cases and controls from the population, we repeatedly selected two 9 

haplotypes at random and converted these haplotype data to genotypes at each variant 10 

location. We determined the probability of subject k being a case, defined as pk, based 11 

on a logistic regression equation where bk represents the coefficient for variant k 12 

(Equation 4). Gjk corresponds to number of minor alleles carried by subject k for variant j 13 

and b0 the disease prevalence. For all simulations, the disease prevalence was fixed at 14 

0.05. Case status, Yk, is specified using the Bernoulli (pk) distribution.  15 

Equation 4: 16 

JKL?M(!N) = O# +PO'Q'N

R

'S+

(4) 17 

UN	~	W=XAKYJJ?(!N) 18 

Consistent with previously published simulation of rare variant data, we defined the 19 

coefficient for variants under the alternative (Equation 5) to be a function of the 20 

population minor allele frequency (MAFj) for variant j [24,25]. This relationship between 21 

the coefficient and the population MAF results in larger odds ratios for more rare 22 
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variants. The constant, c, defines the strength of association between the causal 1 

variants and the outcome.   2 

Equation 5: 3 

O' = ZCJKL+#78['C (5) 4 

With c set to 0.4, this corresponds to an odds ratio of 3.32 for a variant with a MAF of 5 

0.001 and 7.39 for a variant with a MAF of 0.00001. After determining case status for a 6 

large sample of individuals, we sub-sampled to obtain a specified number of cases and 7 

controls. As expected, the sub-sampling of the population results in some variants (both 8 

under the null and alternative) to be no longer observed in a given sample.   9 

 10 

Note that our approach can be applied to any such aggregate test (for a review of 11 

methods for rare variant aggregate tests, please see Seunggeung Lee, Abecasis, 12 

Boehnke, & Lin, 2014).  For exposition of the method, we use a combined burden and 13 

variance component test, the Sequence Kernel Association Optimal Unified Test 14 

(SKAT-O), due to its popularity in rare variant analyses [25]. We used the 15 

recommended settings – including a linear weighted kernel, estimation of p-values using 16 

the “davies” method and the variant weights as a function of the MAF using the 17 

Beta(1,25) distribution. If the SKAT-O p-value met the significance level (here, alpha 18 

level of 0.05), we then applied our localization method to obtain a chi-square statistic 19 

and delta chi-square score for each variant. We considered the proportion of the total 20 

1000 samples with a SKAT-O p-value that met the significance as an estimate of the 21 

power of SKAT-O for that region. SKAT-O performs a grid search to determine the 22 

optimal value of the parameter r that weights the relative influence of the burden and 23 
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variance statistic. The parameter r determined to be optimal for the full data was then 1 

fixed when calculating the leave-one-out p-values. This insured that within a significant 2 

set, the jackknife p-values and corresponding chi-square statistics are comparable. To 3 

identify IVs, we applied the previously described outlier detection methods to the 4 

resulting delta chi-square scores. For every variant, we calculated the proportion of 5 

times it was labelled as an IV across the samples it was observed; for variants under 6 

the alternative, this corresponds to a true positive rate and for variants under the null, 7 

this corresponds to a false positive rate.   8 

 9 

Comparison with existing methods 10 

We compared the performance of RIFT to that of ADA and BeviMed by applying both 11 

methods to simulated datasets.  Due to the superior performance and computational 12 

efficiency of ADA compared to the backward selection procedure, we chose to limit our 13 

comparisons to these two methods [12].  We followed our simulation approach above, 14 

where we simulated 50 genomic regions of size 3kb with 10% of rare variants under the 15 

alternative and effect size parameter of 0.4.  Given RIFT is developed for regions which 16 

are previously found to be associated via an aggregate test of association, we restricted 17 

our comparisons of methods to regions where the SKAT-O was significant at 0.05.  We 18 

performed ADA using the default parameters: 1) a MAF threshold of 0.05, 2) calculation 19 

of p-values using Fisher’s exact test, 3) assuming an additive model and 4) 1000 20 

permutations for calculation of the final region ADA test p-value.  For each replicate, the 21 

final set of variants (per-site p-value smaller than the optimal value) were classified as 22 

IVs.  We applied BeviMed using the default parameters: 1) for each variant, a prior 23 
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probability of association of 0.01 and b) prior probability of a dominant model of 1 

inheritance of 0.5.  BeviMed returns the posterior probability of association for both the 2 

dominant and recessive models of inheritance.  For each of these models, we classified 3 

any variant with a posterior probability greater than 0.9 as a IV. We compared the above 4 

methods to our localization method (RIFT) using both the Inner Tukey and MAD criteria 5 

applied to the delta chi-square scores (referred to as RIFT:Inner Tukey and RIFT:MAD).  6 

To compare the performance of the above methods, we calculated the true positive rate 7 

and false positive rate across samples in which a variant was observed.   8 

 9 

Impact of Varying Sample Characteristics on RIFT Performance  10 

To determine the robustness of RIFT performance to varying characteristics of a given 11 

sample, we performed additional simulations that varied the following parameters: # 12 

haplotypes simulated (1,000 and 100,000), sample size (5,000 cases and 5,000 13 

controls), region size (0.75kb), disease prevalence (10%), coefficient of disease 14 

association (c = 0.8) and proportion of alternative variants (20%).  For each, we 15 

simulated 500 samples for each of 10 regions while fixing the other simulation 16 

parameters to those used in the comparisons with the ADA and BeviMed methods.  We 17 

summarized these different conditions by the structure of the resulting genotype data 18 

(number of variants, etc.), number of samples meeting SKAT-O significance level 19 

(power of SKAT-O) and finally in the performance of RIFT such as the relationship 20 

between delta chi-square score, MAF and true positive rate (Supplemental Table 1).   21 

  22 

Application to Rare Variant Regions Associated with IPF 23 
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We applied our leave-one-out localization method to data from a recently published 1 

targeted resequencing study in idiopathic pulmonary fibrosis (IPF) [27] as part of the 2 

Global IPF Collaborative Network 3 

(http://www.ucdenver.edu/academics/colleges/medicalschool/departments/medicine/Glo4 

balIPF/Pages/GlobalIPF.aspx).  We applied RIFT with the goal of identifying rare 5 

variants within regions associated with IPF to focus follow-up experimental validation 6 

studies. We report results for two regions, each containing 50 rare variants. To provide 7 

insight into putative function, we include functional annotation information obtained from 8 

SNPDOC (https://wakegen.phs.wakehealth.edu/public/snpdoc3/index.cfm) and 9 

HaploReg v4.1 [28].   10 

 11 

Results 12 

 13 

Characteristics of simulated regions 14 

Among the 50 simulated 3kb regions, each region included between 43 and 73 rare 15 

variants (MAF < 3%) with a median of 58.5 variants. Though we explored a range of the 16 

proportion of variants assumed to be under the alternative, we report the results for 17 

simulations where 10% of the variants in a given region were simulated to be under the 18 

alternative. Results are qualitatively very similar for higher proportions of variants under 19 

the alternative (Supplemental Table 2).  After drawing random samples and selecting 20 

1000 cases and 1000 controls to reflect the sampling process, the average proportion of 21 

variants under the alternative across the 50 regions ranged from 9.7% to 15.2% with a 22 

median of 12.3%. Samples for a given region often contained higher than 10% 23 
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alternative variants due to the over-sampling of cases to obtain an equal number of 1 

cases and controls (Supplemental Table 2).  We applied our localization method to 2 

samples that had a SKAT-O p-value less than 0.05. With the low proportion of variants 3 

(10%) simulated under the alternative and effect size parameter, c, of 0.4, the observed 4 

median power of SKAT-O across the 1000 simulated samples was 22.0%.  As 5 

expected, increasing the effect size parameter to 0.8 for the same 50 regions 6 

dramatically increased the median power of SKAT-O to 99.1% (Supplemental Table 2).  7 

 8 

Performance of Our Localization Methods  9 

Across all regions, we found an interesting relationship between the delta chi-square 10 

score and the MAF (Figure 2). Delta chi-square scores were more extreme (and more 11 

variable) for variants with smaller odds ratios and correspondingly higher MAFs. The 12 

delta chi-square score is most sensitive to uncommon variants (0.03 > MAF ³ 0.001) 13 

with modest effect sizes and least sensitive to rare variants (MAF < 0.001) with stronger 14 

effect sizes. Positive delta chi-square scores were observed for some variants under the 15 

alternative; however, the average delta chi-square score was negative for all but three 16 

variants out of a total of 288 variants simulated under the alternative across the 50 17 

regions. The general directionality of the delta chi-square score is consistent with what 18 

we expect for causal variants, where the removal of a causal variant results in a larger 19 

p-value, smaller chi-square statistic and therefore a negative delta chi-square score. 20 

The relationship between the delta chi-square score and MAF was consistent when 21 

varying the number of haplotypes simulated; however, we observed an even stronger 22 
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relationship when increasing the sample size from 1,000 cases and controls to 5,000 1 

cases and controls (Supplemental Figure 2).   2 

 3 

Consistent with what was observed for the delta chi-square score, all outlier detection 4 

methods observed higher sensitivity to detect uncommon variants (0.03 > MAF ³ 0.001) 5 

compared to very rare variants (MAF < 0.001). The Inner Tukey fence had the highest 6 

true positive rate (correctly labeling a variant under the alternative as an IV) compared 7 

to other methods (Figure 3).  For variants with a MAF ³ 0.001, corresponding to an odds 8 

ratio less than 3.32, the Inner Tukey observed a median true positive rate of 0.60 (IQR: 9 

0.51, 0.87) compared to the SD method having a median of 0.30 (IQR: 0.10, 0.59; 10 

Supplemental Table 4). Among the 288 variants under the alternative, the Inner Tukey 11 

fence obtained the highest true positive rate 94.1% of the time and obtained a higher 12 

true positive rate than the other three methods 74.7% of the time. The false positive rate 13 

(inaccurately labeling a null variant as an IV) was remarkably low across all four 14 

methods, with the SD method having the lowest rate. For variants with MAF ³ 0.001, the 15 

SD method had a median false positive rate of 0 (IQR: 0, 0) and the Inner Tukey a 16 

median of 0.09 (IQR: 0.06, 0.18; Supplemental Figure 1, Supplemental Table 4). Taken 17 

together, the Inner Tukey has the best characteristics for correctly labeling a variant as 18 

an IV, as evidenced by the high true positive rate and low false positive rate. The SD 19 

method was substantially more conservative in labeling variants as IVs under the 20 

alternative, especially for those variants having a MAF ³ 0.0001.  21 

 22 

 23 
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Comparison with existing methods 1 

Similar to RIFT, we observed a trend among existing localization methods in terms of 2 

having increased ability to identify IVs at uncommon allele frequencies compared to 3 

rare. (Figure 4, Table 1).  While comparing the ADA and the BeviMed to the Inner Tukey 4 

and MAD, the ADA had the highest true positive rate across the entire MAF spectrum 5 

we considered, whereas BeviMed (dominant and recessive) observed the lowest true 6 

positive rate.  For uncommon variants (MAF ³ 0.001), the ADA had a median true 7 

positive rate of 0.92 (IQR: 0.78, 0.98) compared to BeviMed under the dominant model 8 

having a median of 0.12 (IQR: 0.00, 0.35).  The higher sensitivity of the ADA to correctly 9 

label IVs for rare MAFs is at the cost of having a high false positive rate (Figure 5; 10 

median false positive rate of 0.22 [IQR: 0.17, 0.34]).  As described above, the Inner 11 

Tukey observed a lower median false positive rate of 0.09 (IQR: 0.06, 0.18).  In 12 

summary, both of our leave-one-out methods (Inner Tukey and MAD) produced a high 13 

true positive rate for rare variants with MAF > 0.001 (comparable to ADA) while 14 

maintaining low false positive rates across the entire spectrum of MAF.   15 

 16 

Influential Variants in IPF Associated Loci 17 

In a rare variant analysis of targeted sequencing in 3,017 idiopathic pulmonary fibrosis 18 

(IPF) cases and 4,093 controls, we found several sets of rare variants associated with 19 

IPF. Rare variants were grouped into gene-sets or sliding windows and tested for 20 

association using SKAT-O. We applied RIFT to two significant rare variant windows, 21 

each of which contained 50 rare variants. The most significant window is located on 22 

chromosome 5 and spans the 5’ UTR, exon 1 and intronic regions of the TERT gene. 23 
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This window had a Bonferroni-adjusted SKAT-O p-value of 9.21x 10-16 after adjusting 1 

for sex and the most strongly association common variant in the region, rs4449583. 2 

After applying RIFT, there were three variants called outliers by both the Inner Tukey 3 

fence and MAD cutoffs (Figure 6). Annotation with SNPDOC found the variant with the 4 

largest delta chi-square (-28.7) to have unknown function and the second ranked IV 5 

(delta chi-square = -17.5) to be in a non-coding RNA transcript in the 5’ untranslated 6 

region of TERT (Table 2). We additionally applied the localization method to a window 7 

with a less significant association (SKAT-O Bonferroni-adjusted p-value = 0.0215; 8 

adjusted for sex only as there is not a top common variant in the region) as an example 9 

of a region with a more moderate aggregate rare variant association signal. This 10 

window is located in the RTEL gene on chromosome 20 spanning both exons and 11 

introns. Our localization method identified 3 IVs by both the Inner Tukey fence and MAD 12 

cutoffs with the most outlying variant having a negative delta chi-square score = -6.77 13 

(Figure 7; Table 2). This variant was annotated to be located in an intron of the RTEL 14 

gene and based on annotation with HaploReg, has enhancer histone marks identified in 15 

8 tissues including lung and a lung carcinoma cell line. The other two IVs were each 16 

annotated to be in the coding region of RTEL and are nonsense mutations.  17 

 18 

Discussion  19 

 20 

The delta chi-square score we outline here provides an estimate of the contribution of a 21 

given variant to the aggregate test statistic for a set of variants. This measure can be 22 

used to rank variants in order to prioritize follow-up studies. We also compared several 23 
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outlier detection methods to identify variants as having a disproportionate impact on the 1 

aggregate test of association, likely increasing the probability of capturing a causal 2 

variant. We found the inner Tukey fence to have the greatest sensitivity, and we 3 

recommend this method to obtain a set of variants most likely to be driving the 4 

aggregate signal. As expected, our method has higher sensitivity to detect uncommon 5 

variants (0.001 < MAF > 0.03) compared to extremely rare variants (MAF < 0.001).  This 6 

underscores the difficulty in detecting extremely rare variants individually and thoughtful 7 

alternative weighting schemes might provide leverage to better capture very rare 8 

variants.  The ADA method obtained the highest sensitivity for uncommon variants; 9 

however, this was at a cost of low specificity.  We found BeviMed lacked sufficient 10 

sensitivity in the classification of IVs under our simulation framework. We recognize this 11 

may be due to using their recommended parameter of 0.90 posterior probability for 12 

classification of IVs.  However, it is unclear how to determine an optimal value for the 13 

posterior probability, which likely depends on the features of each region (e.g., number 14 

of true causal variants, effect size of the variants, total number of variants tested).  15 

Without requiring user optimization or selection of parameters, RIFT with the Inner 16 

Tukey classification approach achieves higher sensitivity and specificity to ADA and 17 

BeviMed, respectively.   18 

 19 

The rare variants identified by our method to have the greatest evidence for influencing 20 

the association with IPF have been previously found to be associated with other 21 

diseases (Table 2). Common, non-coding variants in the promoter region of the TERT 22 

gene have been found in several human cancers [29,30]. Specifically, the two IVs with 23 
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the largest delta chi-square score (rs398123017 and rs373740199) have been identified 1 

in studies of familial and sporadic melanoma and thyroid cancer [31–34]. These 2 

mutations have been found to increase transcription of TERT and maintain telomerase 3 

activity resulting in long telomeres, thereby promoting tumorigenesis [35].  4 

 5 

On chromosome 20, two of the three rare variants identified by our method are 6 

missense mutations in the RTEL gene and have been previously identified in 7 

dyskeratosis congenita and the related Hoyeraal-Hreidarsson syndrome, both of which 8 

are diseases that result due to failures in telomere maintenance [36–38]. Though 9 

extensive research was not performed for all variants within our significant sets (as 10 

we’ve previously noted is often prohibitive), identification of these variants in other 11 

diseases supports the ability of our approach to detect plausible impactful rare variants 12 

that drive our observed association with IPF.  13 

 14 

Though we have only evaluated the delta chi-square statistic and corresponding outlier 15 

detection methods for data containing unrelated individuals, RIFT is not restricted to 16 

aggregate tests for this specific study design.  Although we illustrated our approach 17 

using SKAT-O in a case-control framework, the methods are widely applicable to other 18 

aggregate tests and study designs.  For example, the method could be applied using 19 

tests developed for samples of related individuals such as famSKAT [39].   20 

 21 

Unlike many other localization methods, RIFT does not rely on outside functional 22 

information and is able to distinguish among variants with no known function that may 23 
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be contributing to disease risk. We recognize that incorporating functional information 1 

can increase the power to identify causal rare variants.  However, methods which rely 2 

on functional information are limited by the depth and accuracy of the annotation. Our 3 

method complements methods that utilize functional information to provide increased 4 

coverage in capturing plausible causal rare variation.  Outlier detection methods to 5 

identify influential variants will eventually break down if a large proportion of the variants 6 

are under the alternative.  It is plausible that in certain situations, the proportion of 7 

variants that are under the alternative is higher for a set of variants that all have putative 8 

function compared to a set that is selected agnostic of function.  Since it is unlikely that 9 

the majority of putatively functional variants in a gene are associated with a given trait, it 10 

is also unlikely that filtering to functional variants prior to testing with an aggregate test 11 

would be problematic for the outlier detection methods implemented in RIFT.  While 12 

RIFT maintains and perhaps even improves sensitivity for smaller numbers of variants 13 

included in the aggregate test (Supplemental Table 5), pre-filtering variants after the 14 

aggregate test is likely to be counter-productive.  We recommend not filtering to variants 15 

with putative function either before or after aggregate testing, but instead applying RIFT 16 

agnostic of putative function and, if desired, further prioritizing those identified IVs based 17 

on putative function.  18 

 19 

RIFT is available as an R package from https://github.com/rachelzoeb/RIFT. The time to 20 

complete an analysis with RIFT is dependent on the computation time of the aggregate 21 

test used.  SKAT-O is fast for sets with a relatively small number of variants (e.g., < 100 22 

rare variants) and requires parallelization for large significant sets. Future work will 23 
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require optimization of RIFT for larger groups of variants such as sets based on gene 1 

boundaries.   2 

 3 

Greater resolution of rare variant signals within significant sets of variants can provide 4 

valuable insight into the mechanism of disease and narrow the number of variants to 5 

prioritize for follow-up experimental studies. Often, aggregate tests contain such a large 6 

number of rare variants that follow up of each rare variant within the set would be 7 

prohibitive, even after filtering down to variants with functional evidence for causality.  In 8 

addition, filtering to variants with known function precludes the ability to identify new 9 

variants with as-yet unknown functional roles. In addition to being agnostic to functional 10 

information, RIFT can be applied after application of any aggregate test, including those 11 

that include common variants.  The ease and flexibility of this approach will aid 12 

investigators in post-aggregate association testing in a wide range of genetic studies.     13 
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TABLES 

 

Table 1. Summary of true positive and false positive rates, stratified by MAF for 

each localization method.  The outlier detection methods for RIFT (MAD and Inner 
Tukey) were applied to the delta chi-square scores. Simulation included 1000 samples 
per region, across 50 regions. Data were simulated to have 10% variants under the 
alternative with effect size parameter c = 0.4 (see Equation 5).  
 
 

Method 
True Positive Rate - Median (IQR) False Positive Rate – Median (IQR) 

MAF < 0.001 MAF ³ 0.001 MAF < 0.001 MAF ³ 0.001 

RIFT:MAD 0.03 (0.01, 0.11)  0.54 (0.43, 0.85)  0.00 (0.00, 0.01)  0.08 (0.04, 0.15)  

RIFT:Inner Tukey 0.04 (0.01, 0.15)  0.60 (0.51, 0.87)  0.00 (0.00, 0.01)  0.09 (0.06, 0.18)  

BeviMed:DOM 0.00 (0.00, 0.00)  0.12 (0.00, 0.35)  0.00 (0.00, 0.00)  0.00 (0.00, 0.00)  

BeviMed:REC 0.00 (0.00, 0.00)  0.02 (0.00, 0.27)  0.00 (0.00, 0.00)  0.00 (0.00, 0.01)  

ADA 0.17 (0.08, 0.35)  0.92 (0.78, 0.98)  0.01 (0.00, 0.05)  0.22 (0.17, 0.34)  
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Table 2. Influential Variants identified in two rare variant loci previously found associated with IPF 
 

Chr:Posa MAb MAFc Delta Chi-
Square 

rs# SNP-DOC annotation Nearest 
Gene 

Publications/Clinical Notes 

chr5:1294704 A 0.00056 -3.65  coding-synon,ncRNA TERT  

chr5:1295161 G 0.00353 -17.50 rs878855297 ncRNA,untranslated-5 TERT - Familial and sporadic melanoma (Horn et al., 2013) 
- High penetrance, early onset melanoma (Harland et 

al., 2016) 
- Cancer cell lines, found to abrogate telomerase 

silencing and promote tumorigenesis (Chiba et al., 
2015) 

chr5:1295228 A 0.00705 -28.68  unknown TERT - Familial and sporadic melanoma (Horn et al., 2013; 
Huang et al., 2013) 

- Cancer cell lines, found to abrogate telomerase 
silencing and promote tumorigenesis (Chiba et al., 
2015) 

- Thyroid cancer (Liu and Xing, 2016) 
chr20:62324391 A 0.05008 -6.77 rs41308092d intron RTEL  

chr20:62324564 T 0.00197 -3.25 rs398123017 
 

ncRNA,nonsense RTEL - Dyskeratosis congenital (Ballew et al., 2013; Walne 
et al., 2013)  

- Hoyeraal-Hreidarsson syndrome (Deng et al., 2013) 
- Familial interstitial pneumonia (Cogan et al., 2015) 
- Idiopathic pulmonary fibrosis (Todd et al., 2017) 

chr20:62324600 T 0.00098 -2.60 rs373740199 coding-synon,ncRNA,nonsense RTEL - Dyskeratosis congenital (Ballew et al., 2013) 
- Hoyeraal-Hreidarsson syndrome (Moriya et al., 

2016) 
- Idiopathic pulmonary fibrosis (Todd et al., 2017) 
- Early-onset Inflammatory Bowel Disease (Petersen 

et al., 2017) 
aNCBI Build 37 coordinates 
bMinor allele observed in our data 
cMinor allele frequency observed in our data 
dHaploReg results: promoter histone marks found in skin, GI and enhancer histone marks found in 8 tissues including lung and a lung carcinoma 
cell line 
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FIGURES 
 
Figure 1. Flow chart of RIFT.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Identify set of rare variants via 
aggregate testing 

(e.g. SKAT-O)

STEP 1
For each variant, obtain delta chi-
square scores via leave-one-out 

approach∆"!

∆"!

STEP 2
To identify influential variants, apply 
outlier detection methods to set of 

delta chi-square scores

Methods: Tukey Fences, MAD or SD



 30 

Figure 2. Delta chi-square score more sensitive to the more frequently observed 
rare variants with correspondingly smaller effect sizes. Mean delta chi-square 
score plotted by odds ratio for variants simulated under the alternative across all 50 
regions.   Data were simulated to have 10% variants under the alternative with effect 
size parameter c = 0.4 (see Equation 5). 
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Figure 3.  True positive rate (proportion correctly labeled IV) for variants under 
the alternative for each outlier detection method of RIFT as a function of MAF. 
Corresponding odds ratio is also provided for reference. Smoothed line and confidence 
band provided by the loess method. Data were simulated to have 10% variants under 
the alternative with effect size parameter c = 0.4 (see Equation 5). 
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Figure 4. True positive rate (proportion correctly labeled IV) for variants under the 
alternative for each localization method as a function of MAF. Corresponding odds 
ratio is also provided for reference. Smoothed line and confidence band provided by the 
loess method. Data were simulated to have 10% variants under the alternative with 
effect size parameter c = 0.4 (see Equation 5). 
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Figure 5. False positive rate (proportion incorrectly labeled IV) for variants under 
the null for each localization method as a function of MAF. Smoothed line and 
confidence band provided by the loess method. Data were simulated to have 10% 
variants under the alternative with effect size parameter c = 0.4 (see Equation 5). 
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Figure 6. Chi-square (top and delta chi-square scores (bottom) by genomic 
position for the IPF-associated rare variant loci on chr5 (bp: 1294397-1295255). 
Color for the top plot corresponds to SNP-DOC functional annotation and for the bottom 
plot, color corresponds to outlier by the Inner Tukey method and shape corresponds to 
outlier by the MAD method.  
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Figure 7. Chi-square (top and delta chi-square scores (bottom) by genomic 
position for the IPF-associated rare variant loci on chr20 (bp: 62324166-
62324601). Color for the top plot corresponds to SNP-DOC functional annotation and 
for the bottom plot, color corresponds to outlier by the Inner Tukey method and shape 
corresponds to outlier by the MAD method.  
 

 
 
 

10

12

14

16

Ch
iï

sq
ua

re

SNP Function

unknown
codingïsynon,ncRNA
codingïsynon,ncRNA,missense
codingïsynon,ncRNA,nonsense

intron
ncRNA,missense
ncRNA,nonsense

ï5.0

ï2.5

0.0

62324200 62324300 62324400 62324500 62324600
Physical Position (bp)

De
lta

 C
hi
ïs

qu
ar

e

RIFT:Inner Tukey Not Outlier Outlier RIFT:MAD Not Outlier Outlier


