
MetaGraph: Indexing and Analysing Nucleotide Archives at

Petabase-scale

Mikhail Karasikov, 1,2,3,4,‡ Harun Mustafa, 1,2,3,4,‡ Daniel Danciu, 1,2 Christopher
Barber, 1,2 Marc Zimmermann, 1,2 Gunnar Rätsch, 1,2,3,4,∗ and André Kahles 1,2,3,4,∗
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Abstract

The amount of biological sequencing data available in public repositories is growing expo-
nentially, forming an invaluable biomedical research resource. Yet, making all this sequencing
data searchable and easily accessible to life science and data science researchers is an unsolved
problem. We present MetaGraph, a versatile framework for the scalable analysis of extensive
sequence repositories. MetaGraph efficiently indexes vast collections of sequences to enable
fast search and comprehensive analysis. A wide range of underlying data structures offer
different practically relevant trade-offs between the space taken by an index and its query
performance. Achieving compression ratios of up to 1,000-fold over the already compressed
raw input data, MetaGraph indexes can represent the content of large sequencing archives
in the working memory of a single compute server. We demonstrate our framework’s scal-
ability by indexing over 1.4 million whole genome sequencing (WGS) records from NCBI’s
Sequence Read Archive, representing a total input of more than three petabases. Meta-
Graphprovides a flexible methodological framework allowing for index construction to be
scaled from consumer laptops to distribution onto a cloud compute cluster for processing
terabases to petabases of input data. Notably, processing of data sets ranging from 1 TB of
raw WGS reads to 20 TB of human RNA-sequencing data results in indexes whose memory
footprints are small enough to host on standard desktop workstations.

Besides demonstrating the utility of MetaGraph indexes on key applications, such as
experiment discovery, sequence alignment, error correction, and differential assembly, we
make a wide range of indexes available as a community resource, including indexes of over
450,000 microbial WGS records, more than 110,000 fungi WGS records, and more than
40,000 whole metagenome sequencing records. A subset of these indexes is made available
online for interactive queries. All indexes will be available for download and in the cloud. In
total, indexes comprising more than 1 million sequencing records are available for download.

As an example of our indexes’ integrative analysis capabilities, we introduce the concept
of differential assembly, which allows for the extraction of sequences present in a foreground
set of samples but absent in a given background set. We apply this technique to differentially
assemble contigs to identify pathogenic agents transfected via human kidney transplants. In a
second example, we indexed more than 20,000 human RNA-Seq records from the TCGA and
GTEx cohorts and use them to extract transcriptome features that are hard to characterize
using a classical linear reference. We discovered over 200 trans-splicing events in GTEx and
found broad evidence for tissue-specific non-A-to-I RNA-editing in GTEx and TCGA.
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1 Introduction

For more than a decade, continuing innovation in the area of high-throughput sequencing has
propelled research in the biomedical domain and led to an exponential growth in worldwide
sequencing capacity [50]. As a consequence, sequencing costs for entire human genomes have
dropped well below the critical mark of 1,000 USD per sample and the new critical line of
100 USD will likely be reached in the near future. This also results in an exponential growth of
sequencing data available in public and controlled-access repositories. The number of sequenced
nucleotides contained in the European Nucleotide Archive (ENA) currently doubles every 27
months, resulting in a current size of close to 1.6 · 1016 nucleotide bases (16 petabases) [8] of
raw read data. Transmitting the entirety of such a data set across a wire for any kind of access
is clearly uneconomical and renders it currently virtually inaccessible to the broader research
community for comprehensive analyses. However, even for defined subsets of samples that are
collected within larger-scale studies by international consortia, such as The Cancer Genome
Atlas (TCGA) [52], the Genotype Tissue Expression (GTEx) [34] project, or the MetaSUB
project [15], the entire data of a single study can comprise hundreds of terabytes, making access
complicated.

The classical pattern for accessing sequencing data on public repositories is to identify rele-
vant samples using descriptive metadata and to extract a copy or a slice of the data for further
processing. More recently, repositories started mirroring their contents into cloud storage, ad-
dressing the download problem, but at the same time often creating additional costs for off-the-
premise compute. Today’s existing infrastructure is largely adapted to this pattern of access,
only indexing the metadata (e.g., sample and study ID, organism name, taxonomic information,
related publications, etc.) of all samples to make it accessible and easily searchable. However,
any query involving the raw sequencing data itself requires a copy of the data, complicating its
analysis and reducing its accessibility for many researchers. To address this issue, we propose a
scalable approach to index such large repositories of sequencing data, transforming them into a
highly compressed and more accessible representation for downstream analysis. A main focus of
this work is thereby on scalability, allowing the processing of sequence collections on a petabase
scale.

Driven by the open-data movement and the advances in high-throughput sequencing tech-
nology, it is our expectation that the number of studies aggregating large cohorts of samples will
further increase in the near future. In fact, we envision that making such data shareable and
searchable will become a problem of high practical relevance.

As indexing large sequence collections also poses interesting algorithmic questions, different
technical solutions addressing these questions have already been proposed in the recent past.
Naturally, a first focus lies on making the genetic variation in large cohorts, especially in human,
accessible for biomedical research and medicine. Only very recently frameworks for variation
graphs, such as VG [19], and methods for compressing haplotypes [17] or paths in graphs more
generally [38], have improved variation-aware alignment and variant calling in general [24]. While
successful for the analysis of single-species cohorts, these methods struggle to represent the large
variability present in distantly related organisms or in metagenomic applications.

Hence, a second focus of the algorithmic work has been put on the sequence or experiment
discovery problem: querying a sequence of interest (e.g., a transcript or an entire genome) against
all samples available in sequence repositories. For collections of assembled genomes, the BLAST
approach [6] has been in heavy use since 30 years, but lacks the scalability to allow for high
throughput searches on highly diverse sequence collections or to allow for the search in raw,
unassembled reads.

The methods currently available for solving the experiment discovery problem can be grouped
into three main categories: i) Methods based on sketching techniques, which summarize the input
data using one or multiple hashing operations and then use these summaries (sketches) to esti-
mate distances between query and target. Examples are MASH [42, 41] and KrakenUniq [13].

2

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/


ii) Methods employing Bloom filter based data structures to allow for approximate member-
ship queries. Examples are (Split)-Sequence Bloom Tree [48, 49, 23], Bloom Filter Trie [25],
BIGSI [12], and COBS [11]. iii) Methods for the exact representation of annotated de Bruijn
graphs, also called colored de Bruijn graph, storing additional metadata as labels of its nodes
or edges [27]. Examples are Mantis [44, 4], VARI [37], and others [2, 32]. A major challenge
faced by all existing methods is to unite the ability to efficiently operate on petabase scale input
data with the capacity for fast and versatile query operations. Further details on all the above
methods together with their specific limitations are provided in Supplemental Section B.

In addition to the more recent use in addressing the experiment discovery problem, de Bruijn
graphs are also known as a classic framework for read set representation in sequence assembly
in both single-sample [10, 39, 20, 21, 32] and multi-sample [27, 51] settings. Of these, the
HipMER [20] and MetaHipMER [21] single-sample assemblers scale to massive data sets stored
in distributed hash tables. None of these methods, however, tackles the problem of assembly
from an integrative analysis perspective. Examples of such queries can include a core genome
assembly, where sequences common to all samples in a cohort are desired [36, 35], or a differential
assembly, where sequences shared by a foreground cohort and absent from a background cohort
are desired. We introduce the latter concept as an application made tractable at scale by the
framework proposed in this work.

To bridge this evident gap in the landscape of sequence analysis tools for large data col-
lections, we present MetaGraph, a versatile framework for indexing and analysis of biological
sequence libraries at petabase scale. While the approach is not restricted to any specific input
alphabet, for the remainder of this work, we will focus on nucleotide sequences originating from
DNA or RNA sequencing samples. MetaGraph enables building indexes of large collections of
sequences employing an annotated de Bruijn graph for sequence search and assembly.

The MetaGraph framework provides a wide range of compressed data structures for trans-
forming very large sequencing archives into k-mer dictionaries, associating each k-mer with labels
representing metadata associated with its originating sequences.

The data structures underlying MetaGraph are designed to balance the trade-off between
the space taken by the index and the time needed for query operations. A main design goal of
our framework is to allow both performing experiments on single desktop computers and scaling
up to distributed compute clusters. This is achieved through a modular approach, efficient
parallelization and the computation in external memory. We describe these aspects in the first
part of the Results section along with our assessment of scalability.

We then outline results using MetaGraph to index data from a diverse collection of public
sources, ranging from large RNA-Seq cohorts like TCGA [52] and GTEx [34], over vast archives of
whole genome sequencing (WGS) samples comprising over 1 million samples of microbial, fungal,
plant, and metazoa organisms currently available in the Sequence Read Archive (SRA) [30], to
large sets of highly diverse whole metagenome sequencing samples, like the MetaSUB [15] set or
all available human gut metagenome samples. The total amount of sequences indexed in these
graphs exceeds by far the crucial figure of one petabase and at last makes this data fully and
efficiently searchable by sequence.

Finally, we use these and some smaller data sets not only to demonstrate the scalability
and performance of MetaGraph but also to demonstrate how the graph indexes can be used for
biological discovery.

2 Results

2.1 A powerful framework for efficient sequence representation

The MetaGraph index consists of two main components: i) a de Bruijn graph and ii) its an-
notating metadata (Figure 1, middle right). The graph is represented by a k-mer dictionary
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mapping all k-mers observed in the input sequences to positive integer identifiers assigned to
them. These k-mers serve as elementary tokens in all operations on the MetaGraph index.

The metadata on the graph is a binary relation between k-mers and their labels representing
any categorical features, such as source sample IDs and quantized expression levels. This relation
is represented as a sparse binary matrix called the annotation matrix, with one row for each
k-mer and one column for each label. The (i, j)th element of this matrix has value 1 if and
only if the ith k-mer is associated with the jth label. This matrix can be of an enormous size,
containing up to 1 trillion rows and 1 million columns. Yet, due to its sparsity, it can be
efficiently compressed.

A notable feature of our framework is that its theoretical concepts, as well as their ac-
tual implementation, support the indexing of sequences over arbitrary finite alphabets. Thus,
MetaGraph can be used for indexing biological sequences of all kinds, such as raw DNA/RNA
sequencing reads, assembled genomes, but also protein sequences.
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Figure 1: The MetaGraph framework – Schematic overview of graph construction and represen-
tation. Left: Individual sequencing samples are assembled into raw graphs which are then cleaned to
remove noisy and erroneous paths. Right: Individual graphs are combined into the MetaGraph in-
dex (top), consisting of the compressed sequence index and a compressed annotation matrix (middle).
MetaGraph is then used as the basis for downstream applications, such as sequence search, differential
assembly, and other queries (bottom).

The framework is modular in nature, enabling the use of a variety of interchangeable rep-
resentations for storing the sequence index and the annotation matrix. These representations
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may be chosen to optimise the space usage for different kinds of inputs and the execution time
of desired queries. MetaGraph is open source and its code, links to pre-compiled binaries and
application examples are available under https://github.com/ratschlab/metagraph.

Scalable multi-sample index construction The workflow for constructing the MetaGraph
index consists of three main stages: data pre-processing, graph construction, and annotation.

Typically, the first stage (data pre-processing) involves the distributed construction of sep-
arate de Bruijn graphs from the raw data associated with each of the future annotation labels
(e.g., the input samples in Figure 1, bottom left), and a subsequent cleaning of these graphs
to remove possible sequencing errors (Figure 1, top left). Annotation labels can be defined
to represent any feature of the input sequences, such as sample ID and organism, expression
quantile, chromosome number, etc. The graph cleaning step is optional and is not performed
on reference data considered to be error-free, such as reference genomes and protein sequences.
The curated graphs are then stored as a minimal set of linear paths, called contigs, covering all
nodes in the graph. This set of contigs acts as a non-redundant representation of the k-mers
from the original input sequences associated to that annotation label.

In the second stage of construction, all contigs obtained in the first stage are merged into
a single joint de Bruijn graph (Figure 1, top right). This step can also be carried out in a
distributed manner (see Online Methods).

In the third construction stage – graph annotation – all contigs are mapped onto the joint
graph to mark the relations of each k-mer to the annotation labels. Conceptually, each label
forms a column of the annotation matrix and is represented as a compressed sparse binary
vector (Figure 1, middle right). In an optional additional step, the annotation matrix can
be transformed into a representation best suited for the target application (see Section 4.3 for
further details).

Fast and scalable queries on large indexes As sequence search is a key task for most
biomedical analyses, we devised several efficient search algorithms to identify sequence matches
in the graph and return associated labels. In the first approach, input sequences are split into
k-mers, which are directly mapped to nodes of the graph. The resulting set of paths directly
informs about corresponding annotations (Figure 2, top left). For increased sensitivity, we
also devised a graph alignment algorithm, which identifies the closest matching path in the
whole graph or in a sub-graph defined by the annotation columns (Figure 2, bottom left; see
Section 4.9.2 for details on the method and Section 2.3 for results on accuracy). One important
application of this type of query is experiment discovery, where each annotation label represents
an experiment and the MetaGraph index is scanned to find all experiments with reads similar
to the queried sequence pattern.

If the query is a single sequence, both mapping and alignment can be applied directly on
the full annotated graph. For larger queries of raw read data sets or many longer sequences, we
have designed an efficient batch query algorithm (Figure 2, right) that is able to exploit the
presence of k-mers shared between individual queries by forming an intermediate query graph
(see Online Methods 4.9.3 and Supplemental Section D.7 for further details). This additional
pre-processing leads to a 10 to 100 fold speedup in alignment, depending on the structure of the
query data (Supplemental Figure S-1).

2.2 MetaGraph is highly scalable

We evaluate both the construction and the query performance of MetaGraph and benchmark
them against other state-of-the-art indexing schemes: Mantis [4], BIGSI [12], and COBS [11],
using subsamples of increasing size drawn from a large data set of microbial whole genome
sequencing samples publicly available in the Sequence Read Archive; this set contains a diverse
range of samples consisting of 444, 906 virus, Prokaryote, and small Eukaryote genomes, and
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Figure 2: Graph querying approaches – Left: Schematic representation of the two main approaches
for sequence search. Top left: Ranking counts exact k-mer matches between query and graph. Bottom
left: Alignment finds all closest paths within a given edit distance. Right: Batched sequence search
combines all queries into an intermediate query-graph for subsequent ranking or alignment. All query
sequences are assembled into a batch graph that is then traversed to be queried against the full index.
Hits are aggregated into the query graph, which is then searched with the original input sequences.

was first presented in the evaluation of BIGSI [12]. Henceforth, we will refer to this data as the
SRA-Microbe set. A full list of SRA IDs used in the experiments is provided in Supplemental
Data Section 5. As all indexing schemes discussed here do compress the input data into a k-
mer dictionary, the original sequences can only be reconstructed unambiguously if additional
information is provided, which makes all of the methods lossy compressors of the input data. In
the context of this work, we will focus on the compression of the k-mer dictionary itself. While
Mantis and MetaGraph provide a lossless representation of all k-mers, BIGSI and COBS both
employ probabilistic data structures that can lead to false-positive matches when the index is
queried. Hence, we denote the latter two approaches as lossy compressors.

Higher rates of compression often come at the cost of a higher amount of compute for traver-
sal and search. As a consequence, there exists a trade-off between representation size of the index
and query performance, as is evident in the Rainbowfish and Multi-BRWT representations for
MetaGraph (Figure 3a–c). In case of probabilistic data structures there is an additional trade-
off for accuracy (Supplemental Figure S-5). While all representations grow approximately
linearly with the input size, the slope and growth behavior are drastically different (Figure 3a).
For Mantis, the full index grows irregularly with an increasing number of experiments, but is
always consistently significantly larger than MetaGraph (see also Supplemental Figure S-5
for further details). Despite using a lossy compression approach, BIGSI and COBS consistently
use more memory than MetaGraph as well. While BIGSI’s memory consumption follows a step
function, reflecting a regular doubling of its Bloom filter size, COBS’s index growth is closer to
linear, but is heavily dependent on the choice of false positive rate. MetaGraph outperforms all
of the above methods in terms of index size. Even when using the larger, query speed-optimized
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annotation formats, MetaGraph needs less memory than its competitors (Supplemental Fig-
ure S-5). Note, that the representation size of an index in memory is not only relevant for
construction, but also for any query, as the index needs to be loaded into memory for query
operations performed on it. Some key statistics of the SRA-Microbe data set and the final
index sizes for MetaGraph and BIGSI indexes comprising summary statistics for all data sets
presented in this work are listed in Table 1 and visualized in Figure 3e.
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Figure 3: Scalability and Performance – a) Size of evaluated index data structures for represent-
ing a set of bacterial whole genome sequencing experiments of increasing size, shown for both lossless
compression methods Mantis (green) and MetaGraph (red) and lossy compression methods BIGSI (grey)
and COBS (blue). b) Query times of the evaluated indexes for querying bacterial genome sequencing
data using batched sequence query. Color scheme as in a. c) Same as in b, querying AMR gene DNA
sequences from the CARD database [1]. d) Mapping score correlation to ground truth for different
graph approaches and sequencing platforms (left: Illumina, right: PacBio CLR). Bars represent 95%
CI’s from 100 bootstrap samples of queries. e) Overview of all MetaGraph index sets presented in this
work, showing input size as total number of bases on the y-axis and index size in total number of unique
k-mers on the x-axis. Marker size indicates the size of the index in GB. The solid portion of each marker
represents the fraction of total size taken by the graph and the transparent portion the fraction taken by
the annotation.

2.3 MetaGraph shows superior search performance

Utilizing the SRA-Microbe data set, we tested the query performance of each individual index
representation. For our query experiments we only use subsets of up to 30,000 samples, as the
memory usage of competing methods exceeded our technical setup.

Using the batch query strategy, MetaGraph is able to out-compete all current competitors
in query speed up to several orders of magnitude (Figure 3b and c). Remarkably, this not only

7

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/


holds for the lossless representations (Mantis), but also for the lossy representations (BIGSI,
COBS).

In addition to query performance, we also explored the accuracy of querying against read set-
derived genome graphs as a proxy for optimal linear reference sequence alignment (Figure 3d,
Supplemental Figure S-2). For this, we simulated Illumina HiSeq read sets from an Es-
cherichia coli K-12, MG1655 reference genome (GenBank accession ID NC 000913.3) with
ART [26] at varying coverage levels and constructed indexes in MetaGraph, Mantis, BIGSI,
and COBS formats. We then measured the accuracy of both exact match and alignment queries
(where applicable) using their respective methods. In addition we measured the accuracy of the
sequence-to-graph alignment tool GraphAligner [46] on a GFA representation of the MetaGraph
index (see Supplementary Section C). For testing, we simulated Illumina HiSeq and PacBio read
sets from 12 E. coli genomes (at a sum coverage of 1× for each platform) and aligned them to the
NC 000913.3 reference genome with the Parasail aligner [14] to compute ground-truth alignment
scores (see Section 4.12.1 for more details). We found that the accuracy of alignment, batch
alignment, and k-mer matching with MetaGraph outperforms all other tools in our compar-
isons. In addition, we observed that a coverage of C ≥ 20 was sufficient for the accuracy results
to match those obtained by using the original reference to build the graphs (Supplemental
Figure S-2). Although exact k-mer matching did not perform as well for all methods, the
alignment methods in MetaGraph substantially improve the accuracy of match scores for the
simulated PacBio reads.

Although being a compressed representation of the input, the graph structures still show a
remarkable sensitivity when queried with the original data, showing that indeed only a small
fraction of likely noisy reads was removed during the initial cleaning phase of the graphs. To
check how well MetaGraph preserves the sequence information present in the raw data and
how this affects alignment sensitivity relative to classical linear alignment tools, we re-aligned
raw reads from 10 randomly picked GTEx samples [34] back to a graph index containing all
GTEx sequences as well as genomic variation present in the gnomAD database [29]. Especially
the latter is easy to do using a graph approach, but much harder for classical aligners. When
we compared the number of aligned reads between MetaGraph and the STAR aligner [16], we
found on-par mapping in all cases and superior sensitivity in 8 out of 10 cases (Supplemental
Figure S-3a). When looking specifically into the fraction of reads unmappable by STAR, we
found that generally more than half of these reads can still be aligned by MetaGraph and find
support in almost all GTEx samples (Supplemental Figure S-3b).

2.4 Building petabase-scale indexes as a community resource

Applying only moderate cleaning on the input sequences (see Supplementary Section D.4), a
MetaGraph index typically requires orders-of-magnitude less storage than the original gzip-
compressed inputs (Figure 1e). The constructed indexes form a valuable community resource,
as they succinctly summarise large raw-sequence data sets, while supporting a variety of sequence
queries against them. Consequently, we have used the MetaGraph framework to construct in-
dexes on real-world data sets of varying size and complexity, including both DNA and RNA
sequencing samples (Table 1). The range of input data was chosen to represent properties
commonly occurring in biomedical research. On the one end stand large cohorts of samples
containing sequences sampled from a sequence pool of limited diversity. A representative of
this class are the RNA-Seq experiments from the GTEx cohort [34] and the TCGA cohort [52]
representing the human transcriptome. With a compressed input size of 40 and 65 Tbp, respec-
tively, the GTEx and TCGA cohorts can be indexed and compressed into annotated graphs of
only 157 GB and 65 GB, respectively. In the middle of the complexity spectrum reside whole
genome sequencing experiments and collections of reference genomes, where similarity between
samples is a function of evolutionary distance and the diversity within the data set is generally
much higher than in the human transcriptome cohorts. Representatives of this class are RefSeq
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and the UHGG gene genome catalog as well as the SRA-Microbe and SRA-Fungi data sets.
While RefSeq contains all sequences of assembled genomes available in version 97 of the RefSeq
database, comprising 1.7× 1011 bp of input, the UHGG genome catalog is a recently published
catalog of human gut reference genomes [3]. The SRA-Microbe and SRA-Fungi databases are
built on 446,506 microbial and 121,907 fungi whole genome sequencing samples, respectively,
available on SRA. Each of these datasets represents between 11 gigabases and 221 terabases of
sequence input, accumulating to a total of 386 terabases of input. Especially the large-input
cohorts, such as SRA-Fungi, required scaling to a commercial compute cloud for the first stage
of MetaGraph assembly.

As RefSeq covers a much higher diversity of input sequences than, e.g., SRA-Microbe, its
index size is correspondingly much larger. The fully searchable and annotated MetaGraph
representation of the SRA-Microbe data set is only 291 GB (compared to 1.6 TB for the BIGSI
index), while RefSeq has a total size of 1,040 GB (when annotated by species taxonomic IDs).
Lastly, on the other end of the spectrum stand cohorts containing whole metagenome shotgun
sequencing experiments. For this class we have selected the MetaSUB cohort, containing more
than 4,200 environmental metagenome sequencing samples comprising 7.3 terabases, and the
SRA-MetaGut cohort, containing all human gut metagenome sequencing samples available on
SRA (20, 639 as of 2018-05-25), comprising approximately 60 terabases. The input data in these
cohorts are samples from very diverse populations of organisms and contain a large diversity of
rare sequences. As a result, the index sizes are relatively large when compared to other data
sets, for MetaSUB 315 GB and for SRA-MetaGut 544 GB.

Table 1: Summary of constructed indexes for big data sets.

Dataset # bp Input (gz) k # k-mers Labels Graph Anno. Ratio

GTEx [34] 70 · 1012 40,000 GB 41 26 · 109 9,786 15 GB 142 GB 254x
TCGA [52] 81 · 1012 65,000 GB 31 2.1 · 109 11,095 1,6 GB 63 GB 1000x
RefSeq [40] 1.7 · 1012 469 GB 31 626 · 109 48,539 339 GB 410 GB 0.62x
UHGG catalog [3] 11 · 109 3,3 GB 31 9.6 · 109 4,644 5,3 GB 19 GB 0.13x
SRA Microbe [12] 221 · 1012 170,000 GB 31 39.5 · 109 446,506 31 GB 264 GB 576x
SRA Fungi 163 · 1012 81,000 GB 31 277 · 109 121,907 82 GB 501 GB 139x
MetaSUB [15] 7 · 1012 5,500 GB 19 71.7 · 109 4,220 49 GB 266 GB 17x
SRA MetaGut 63 · 1012 36,000 GB 31 49.9 · 109 20,639 30 GB 514 GB 66x

MetaGraph allows for distributed and interactive use In addition to the single-machine
use case, where the graph index is built and queried locally, MetaGraph also supports distributed
indexes via a client-server architecture. Using this concept, a set of graphs and annotations can
be easily distributed across multiple machines. Each machine runs MetaGraph in server mode,
offering one or multiple indexes, awaiting queries on a pre-defined port. This modularity makes it
straightforward to integrate one or many queries across a whole set of graphs served on multiple
servers. For easy integration of results and coordination of different MetaGraph instances, we
provide interfaces to popular scripting languages, such as Python, allowing for the interactive
usage of one or several (remote) MetaGraph index instances (Figure 4a).

We demonstrate this usability in publicly available example scripts1. In this analysis, the
full CARD AMR database [1] is queried against a MetaGraph index containing more than 4,400
whole metagenome sequencing samples from the MetaSUB cohort. We use the data to generate
a ranking of cities based on the average number of AMR-markers in a sample (Figure 4b),
largely consistent with the analysis performed on the raw data using orthogonal strategies [15].
Further, the script is used for exploratory analyses, linking sample metadata, such as surface
material at the sampling location, to the query results (Figure 4c). We invite readers to run
the script themselves, reproduce the plots interactively and further explore the available data.

1Available at https://github.com/raetschlab/metagraph
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In [1]: from metagraph.client import GraphClient

SRV = “metagraph.ethz.ch”
PORT = 12345
g1 = GraphClient(SRV, PORT, label=“metasub”)
g2 = GraphClient(SRV, PORT, label=”refseq”)

In [2]:

Out [2]:

query = “GGCTAACTACGTGCCAGCAGCCGCGGTAATAC”
g1.search(query, align=True)

Python Client API Graph server(s)
a

b
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Figure 4: Utility and usability – a) MetaGraph is designed to support a client-server infrastructure
as exemplified here with a Jupyter notebook in Python. In a few steps, several remote (or local) graph
instances can be created and queried interactively. Results are returned as a data frame that can be
used for further analyses. b) Number of antimicrobial resistance (AMR) markers per sample for different
cities in the MetaSUB study. Bars represent ±σ. c) Distribution of the mean number of AMR markers
grouped by surface material based on all samples of the MetaSUB dataset.

2.5 Differential sequence assembly identifies pathogens in kidney transplant
patients

In addition to its sequence search capabilities, the MetaGraph index also provides the ability
to perform integrative analysis on its samples (corresponding to columnar operations on the
annotation matrix; Section 4.10). Conceptually, the individual columns of the annotation matrix
form a node mask on the graph, implying a sub-graph. Through logical combination of different
column sets, sequences can be assembled from these sub-graphs to model differential analyses
between groups (Figure 5a). We refer to this process as differential assembly. For further
details, we refer to the Online Methods Section 4.10.

The differential assembly procedure allows for the investigation of interesting biological ques-
tions. For instance, given a set of whole metagenome sequencing samples of two patient pop-
ulations that are distinguished by a certain phenotype (e.g., resistance to treatment), one can
categorise the patient samples according to this phenotype and let the annotation columns re-
flect this categorization (Figure 5a, top). The paths identified as differential between the two
categories can then be used as markers for further study (Figure 5a, bottom). Even in the
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Figure 5: Differential graph assembly – a) Differential assembly schema. Columns are grouped
according to logical operations, forming logical masks that define a subgraph over the full graph. The
example shows the subgraph implied by using nodes present in the first three columns, but not present
in any of the last three columns. b) Assignment of sequences resulting from differential assembly of
kidney transplant patients by mapping them to target genomes and samples. Rows represent patient
metagenome samples, columns matching labels of the differential assembly. Shading indicates fraction
of target genome covered. The SRR IDs represent samples annotated as JC polyomavirus, Salmonella
enterica, and uncultured bacteria (†) in the SRA-Microbe index, while NC 001699 represents the JC
polyomavirus reference genome.

case that no taxonomic label is known for a sequence associated with the phenotype of interest,
MetaGraph is still able to identify marker sequences that discriminate between patients and
controls.

To illustrate the utility of differential assembly, we performed an analysis on whole metagenome
sequencing samples collected from the urine of kidney transplant patients [47]. Using the pre-
transplantation samples of donors and recipients as background and the post-transplantation
samples of the recipients as foreground sets, we used the MetaGraph representation of all sam-
ples to assemble sequences present in the foreground but absent in the background for each pair.
Although many of the assembled differential sequences is quite short, an appreciable fraction is
long enough to be target specific (Supplemental Figure S-4). Consistent with the original
publication [47], we identified in 6 out of 15 samples JC polyomavirus as an agent transmit-
ted with transplantation by mapping the differential contigs to the MetaGraph RefSeq index
(Figure 5b).

2.6 Uncovering unexpected transcriptome features in GTEx and TCGA

The Genotype Tissue Expression (GTEx) project has become a de facto reference set for human
RNA-Seq expression and is widely used in the community [34]. While gene expression values
and other summary statistics of the more than 10,000 samples are easily accessible, the whole set
of raw sequence RNA-Seq files comprises more than 40 TB even in compressed state. Similarly,
The Cancer Genome Atlas (TCGA) has collected more than 10,000 RNA-Seq samples from
primary tumors, spanning across more than 30 cancer types, constituting a central resource for
cancer research. This cohort also amasses 65 TB in compressed sequences for RNA-Seq samples
alone.
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For either cohort, tasks that depend on access to the whole data set require an extraordinary
effort. For instance, in order to search for the presence of previously unobserved sequence
variants in the cohort (e.g., alternative splice forms or somatic variants) the entire data set
would need to be re-analyzed.

We compressed 9,759 RNA-Seq samples from GTEx, a total of 70 · 1012 bases, into a Meta-
Graph index of only 15 GB in size. This index does not only contain all variation detected in
the GTEx raw data, but also the human reference genome (version 38) and all variants from the
GnomAD cohort (release 3.0) [29]. Adding sample annotation increased the size to 473 GB and
750 GB if quantitative information per sample was used, an approximate 100-fold reduction in
size to the original data set. The compression of the TCGA cohort data shows a similar ratio,
reducing 81 · 1012 bases of input data into an annotated graph of 63 GB.

Detection of trans-splice junctions Exploiting the efficient query of the graph index, we
used it to investigate different features of the transcriptome. First, we assayed the use of exon
combinations arising from trans-splicing. In this atypical form of splicing the donor of an exon
is not connected to the acceptor of the subsequent exon but to the acceptor of the preceding
exon (Figure 6a, schema at the top). Due to their non-contiguity, classical linear RNA-Seq
aligners are unable to find such alignments, as we illustrate for alignments of a GTEx sample
with the STAR aligner [16] (Figure 6a, bottom). We created short sequences of length 81 bp
spanning all theoretically possible trans-junctions in the GENCODE (version 30) annotation,
using the hg38 reference genome. Aligning all sequences not matching to the reference genome
to the MetaGraph GTEx index resulted in 472 trans junction candidates, perfectly matching
against at least one sample path in the graph. Interestingly, the usage of these junction is not
uniformly distributed across tissues (Figure 6b) but also do not show correlation with the
number of samples available per tissue (Supplemental Figure S-6). Although having a lower
coverage than the flanking regular junctions, the high expression evidence makes an artefactual
alignment unlikely (Figure 6c).

Expression evidence for somatic variants in TCGA We were interested to collect the
RNA-Seq expression evidence for a large set of known somatic mutations in the TCGA cohort.
Based on all single nucleotide variants of the COSMIC database (version 82), we generated
query sequences from the GRCh37 reference genome spanning the variant with additional 20 bp
of sequence context both upstream and downstream. All sequences that did not map to the
GRCh37 reference, were then aligned to the MetaGraph TCGA index. We matched the corre-
sponding variants against the somatic variant calls of the MC3 project, performed on a large
set of TCGA samples [18]. For all samples with both expression and MC3 evidence available,
we asked which COSMIC variants were both detected in the whole exome sequencing (WXS)
based variant calling and supported by RNA-Seq expression evidence. While over half of the
positions were confirmed both by RNA-Seq and WXS, showing a Jaccard index of larger than
0.5 (Figure 6d), about 30% of the positions were mainly supported by RNA-seq, resulting in
a Jaccard index of 0. Thereby especially those positions that were solely found in RNA piqued
our interest. One such position is COSM6336980, that expresses the variant allele exclusively
in TCGA samples of the thyroid cancer sub-cohort (Figure 6e). Our first suspicion of a cancer
specific variant was not confirmed, when we found that also all of the normal samples in the
THCA cohort expressed the variant allele (Supplemental Figure S-7). Interestingly, when
confirming in the GTEx MetaGraph index, we found that also all GTEX thyroid tissue samples
exclusively express the variant allele (Figure 6f), which led us to hypothesize tissue-specific
RNA-editing as the possible source of this alteration. Interestingly, the observed variant is not
a classical A-to-I editing, but instead represents a silent G-to-A alteration, which shows an
astonishing pervasiveness across all thyroid tissue samples.
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Figure 6: Transcriptome graphs – a) Schematic of the trans-splicing principle illustrated using the
human gene DENND1A (chr 9) as an example. Top: Schematic representation of exon re-arrangement
into a trans-junctions. Bottom: Read alignments based on STAR for GTEx sample SRR627455. b)
Top 20 GTEx tissues sorted by number of detected trans-junctions. c) Distribution of the number
of supporting reads for all trans-junctions (red), compared to the distribution of read-support for the
acceptor of the upstream junction (green) and the donor of the downstream junction (blue). d) COSMIC
variants in cancer census genes that were found in the MetaGraph index. Each value on the x-axis
corresponds to a single variant. Variants are sorted by the Jaccard index (blue) describing how well
RNA and DNA samples agree on presence of the variant. Number of samples uniquely supporting
RNA and DNA is shown in green and red, respectively. e) Expression distribution for COSMIC variant
COSM6336980 across TCGA tumor samples, grouped by tumor type. Reference allele is shown in orange,
variant allele in blue. f) Expression distribution for COSMIC variant COSM6336980 across GTEx
samples, grouped by tissue. Colors as in e).
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3 Discussion

Recent advances in DNA sequencing technology have led to massive growth in the amount
of high-throughput sequencing data available to the scientific community. However, a lack of
standardized approaches for optimal representation and indexing of sequencing data at petabase
scale severely limits the interactive exploration of this data and complicates large-scale genomic
analysis efforts.

We presented MetaGraph, a scalable framework designed for indexing and analysis of large
collections of biological sequence data. MetaGraph sublinearly scales with the size of the input
data and in most cases constructs index representations smaller than those produced by current
state-of-the-art methods. In addition, unlike BIGSI and other databases designed for approxi-
mate membership queries, MetaGraph constructs exact k-mer index representations that make
no false-positive errors when querying.

We demonstrated the scalability of our approach by constructing queryable indexes for almost
the entire collection of microbial, fungi, plant, and metazoa whole genome sequencing datasets
present in NCBI’s Sequence Read Archive, comprising a total of more than 3.2 petabases of
input sequence, representing more than 1.4 million individual samples. We know of no other
available method that was applied to such large amounts of input data. Based on our scalability
experiments, we expect that the framework can also keep up with future increases in data growth.
However, when indexing the available data, we had to restrict ourselves to data generated on
platforms with modest error rate. It is part of our future work, to adapt our input cleaning and
error correction protocols to also be applicable to sequencing platforms with higher error rates,
such as PacBio’s SMRT or Oxford Nanopore Technologies long reads.

We have further explored the utility of MetaGraph on a number of diverse computational
biology applications. Based on a joint cohort of over 20,000 RNA-Seq samples from TCGA
and GTEx, we used MetaGraph to explore the human transcriptome for interesting features.
Thereby our focus was on properties that are hard to detect using linear reference genome
alignments or require the integration of many samples to be seen. Specifically, we have evaluated
the occurrence of trans-splicing and found over 200 cases commonly occurring within samples
of the GTEx cohort. So far our analysis was restricted to trans-junctions occurring within the
same gene but could be easily extended into a whole genome assay. A second focus of our
transcriptome exploration was on the expression of somatic variants from the COSMIC catalog
in different tissue and cancer types. We found that a large fraction of variants has evidence in
RNA, but is not reliably called using methods based on whole exome sequencing. One mechanism
we suggest contributes to this discrepancy is the occurrence of RNA editing. Thereby we put a
special focus on tissue-specific RNA-editing, which seems to occupy a regulatory role. Further
investigations in this direction are needed but are out of scope for this work.

Another innovative feature implemented in MetaGraph is a generalized framework for se-
quence assembly from subgraphs. This framework enables the user to fetch biological sequences
specific to certain properties or groups of interest (e.g., individual samples, patients subgroups,
or any set function of them). As a consequence, MetaGraph can answer such queries as “get
all sequences found in samples x and y but not present in sample z”, or “get all sequences
shared by all organisms in this taxonomic group”. This generalized view on assembly allows
for new kinds of integrative analyses. We demonstrated the concept of differential assembly
using whole metagenome sequencing of urine samples taken from kidney transplant patients.
Using MetaGraph, we could reproduce findings on the data in a few minutes and could gener-
alize the analysis. While our sequence assembly methods mirror those of other metagenomics
assemblers by extracting unitigs [10, 39, 32] (non-branching stretches of the de Bruijn graph),
the problem of chaining together unitigs to form longer contigs and scaffolds is a clear target for
future work [9]. In particular, the use of the annotation matrix to motivate the path traversal
strategy at branching points could potentially lead to the assembly of longer contigs without
compromising assembly quality with heavy cleaning procedures.
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A main goal of MetaGraph is to make large data sets accessible for interactive exploration.
We facilitate this via providing a server-mode for the MetaGraph-backend that enables inter-
active queries from a client via the MetaGraph API. Several of the display panels in this work
can be reproduced using the public MetaGraph instance and a Jupyter Notebook (Supplemental
Data, Section 5). The interfaces can be easily extended to also support querying from other
languages such as R or Julia.

We envision MetaGraph not only to provide a scalable framework for indexing highly diverse
sequence databases but also to serve as a versatile tool that enables researchers to perform large-
scale comparative analyses in genomics and medicine on typical academic compute clusters. It
makes public datasets interactively accessible that are otherwise too big to handle or hard
to retrieve. Along with the functionality currently provided, the scalability of many other
pipelines could also be improved by translating string matching procedures into equivalent graph
operations and supporting such operations using our framework.

4 Online Methods

4.1 Modularity of the framework

The MetaGraph framework consists of two main components: the sequence (k-mer) graph and
the annotation matrix. Both parts together form the MetaGraph Index. Each component can
be transformed into alternative representations, allowing for optimal compatibility to different
applications (e.g., per-sequence vs per-label queries). In the following, we will describe the
technical details of the graph framework. An explanation of the concepts and on outline of the
full construction workflow are described in Section 2.1.

4.2 Graph representations

The graph component is fully encoded in a k-mer dictionary. MetaGraph supports several
data structures to represent this dictionary: i) the succinct de Bruijn graph (SuccinctDBG),
ii) a compressed bitmap representation (BitmapDBG), and iii) a contiguously-stored hash ta-
ble (HashDBG). For further details on the individual representation, please see Supplemental
Table S-2 and Supplemental Section D.2.

4.3 Annotation representations

Independent of the choice of k-mer dictionary representation, a variety of methods are pro-
vided for compressing the graph annotation to accommodate for different query types. For
fast sequence search queries, we provide implementations of the matrix compression techniques
from VARI [37] (RowFlat) and Rainbowfish [5]. For differential assembly and high compression
performance, we provide the Multiary Binary Relation Wavelet Tree (Multi-BRWT) compres-
sion technique [28]. Finally, two dynamic annotation matrix compressors, RowCompressed and
ColumnCompressed are provided for memory-efficient construction of the annotation matrix.
All representations can be converted into each other for adapting compression and query speed
to the respective use case.

4.4 Graph construction

For construction of the k-mer dictionary, all substrings of length k are extracted from the given
input sequences. This list of k-mers is made unique, where for each k-mer the number of times
it occurred in the input is stored. MetaGraph provides three choices to generate this so-called
k-mer spectrum of the input. First, MetaGraph accepts the output of KMC [31] as input.
Second, using the SortedSet approach, MetaGraph can directly generate the k-mer spectrum
in memory. Third, in case the k-mer spectrum is larger than the available memory, MetaGraph
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offers the SortedSetDisk approach, which constructs the spectrum in external memory. This
last approach has a fixed memory bound, but requires a higher amount of disk I/O. Any of the
three steps is then followed by k-mer insertion into the final graph representation.

4.5 Sequence extraction/assembly via graph traversal

All sequence information stored in the graph (or a defined subgraph, see Section 4.10) can be
extracted and output in FASTA format using the traversal operation. Starting at all nodes with
no incoming edges, the graph is fully traversed, writing the corresponding nuleotide of every
edge to the output at most once. We require that the resulting set of sequences is a disjoint
node cover of the graph (i.e., each k-mer in the graph appears in one and only one extracted
sequence).

MetaGraph distinguishes two main types of traversal output. 1) Traversal in contig mode
extends the output sequence until no further outgoing edge is present or the next edge has
already been output. 2) Traversal in unitig mode extends the output sequence until a node with
an indegree or outdegree not equal to one is reached, similar to the definition of unitig by [27].
For both traversal modes, we can additionally apply the constraint that only one of the forward
and reverse complement representation of a given k-mer is output, resulting in primary k-mers.

For all traversal modes, we assemble sequences in parallel [32] in three stages. We first start
from each node with no incoming edges and maintain bit vectors indicating which nodes have
been previously visited (see Supplementary Section D.8). We then start traversals from each
remaining branching node (i.e., with outdegree > 1). Finally, we traverse all remaining simple
cycles.

4.6 Graph cleaning and refinement

After initial graph assembly, nodes and edges likely originating from noisy inputs are pruned
off during contig assembly (see Section 4.10 for more details). For this, MetaGraph uses an
algorithm developed by Iqbal and colleagues [27]. Briefly, using the k-mer spectrum as input, an
abundance threshold for solid (non-noise) k-mers is estimated. All unitigs shorter than a given
length, or where the median read support for k-mers in the unitig is below the above threshold,
will be pruned off of the graph. For very large cohorts of raw sequencing files, an additional
step of pre-filtering based on the k-mer spectra can be added, such that all k-mers occuring only
once (singletons) are discarded.

4.7 Dynamic index augmentation and batch updates

Batches of new annotation columns can be added either as a new index constructed and hosted
on the same or a different server or they can be merged into an existing index. For merging, the
existing index is decomposed into buckets of contigs (each bucket of contigs corresponds to each
subgraph induced by the column), then the buckets are extended with the new sequences and
the index is constructed from these sequences again. Note that this doesn’t require processing
the raw data from scratch. We effectively use reduced data which is up to 100 times smaller
than the raw unclean reads.

4.8 Index distribution scheme

Large indexes can be partitioned into multiple sections (by columns) and hosted on multiple
machines. This enables virtually unlimited scalability. The graph representation can also be
separated from the annotation representation, generating further flexibility.
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4.9 Sequence search

This type of query takes a set of sequences as input and results in a corresponding set of paths in
the graph and their annotations. For higher throughput, this may be done by simply mapping
each k-mer in the input sequences to the graph and querying the graph annotation at these
node indices to return a label set (see Figure 1 bottom right – Sequence search). For increased
sensitivity, each sequence may be aligned to the full graph, or to labelled subgraphs to compute
their respective closest paths.

4.9.1 Exact k-mer matching

Each query sequence is decomposed into k-mers and these k-mers are mapped into the k-mer
dictionary. Then, the respective rows of the annotation matrix are decoded to answer the query.

4.9.2 Sequence-to-graph alignment

The alignment algorithm takes a classic seed-and-extend approach, using several heuristics in
both stages to improve query time.

Given an input sequence, seeds are found by finding exact `-mer matches (where ` may
be less than k) and calculating maximal exact matches within the graph’s unitigs (called Uni-
MEMs) [33].

Each seed is extended forwards and backwards in the graph to produce a local alignment
centred at the seed. The extension algorithm is a generalization of the Smith-Waterman-Gotoh
local alignment algorithm [22] to de Bruijn graphs, and extends the bit-parallel sequence-to-
graph alignment algorithms introduced in [45, 46]. The MetaGraph aligner not only features
support for affine gap penalties, but also implements heuristics which improve alignment accu-
racy in the context of long error-prone reads, or graphs derived from low-coverage samples (see
Figure 3c).

Briefly, each node in the graph is represented by three score vectors S, E, and F , representing
the best alignments so far up to that node (see Supplementary Section D.6 for more details).
Similar to Dijkstra’s algorithm, this alignment extension step maintains a priority queue of graph
nodes whose score vectors have not yet converged in value and iterates until the queue has been
exhausted. We additionally employ the X-drop criterion [7, 53] to reduce the search space of
the alignment.

This method results in a set of local alignments of the query sequence. From this, a set of
non-overlapping local alignments is computed via an algorithm similar to weighted job scheduling
(see Supplementary Section D.6 for details).

4.9.3 Batched sequence search and alignment

To increase sequence search performance, MetaGraph processes query sequences in batches and
queries each batch against small query graphs extracted from the full index. We introduce a
method for constructing query graphs from sequence batches which support both exact match,
and accurate alignment search queries.

Given a batch of query sequences, the sequences are transformed into a transient batch
graph, which is then traversed to extract non-redundant contigs. The contigs are then queried
against the full MetaGraph index via exact match. From the hit set, an annotated query graph
is constructed representing the drastically smaller intersection of the batch graph with the full
MetaGraph index. All inputs are then searched against the query graph.

To take advantage of the improved performance of searching against a query graph, while
still extracting enough variation to allow for accurate alignment results, the query graph is
augmented with an additional set of neighbouring contigs from the full index. We refer to this
extension as the hull of the initial query graph (see Supplementary Section D.7).
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4.10 Differential sequence assembly

This second type of query consists in the extraction of sequences from a given subgraph (see
Figure 1 bottom middle – Sequence extraction). Depending on how such a subgraph is defined,
this may be used for filtering low coverage contigs, constructing the core genome of a cohort, or
the enriching for differential sequences in one cohort with respect to a control cohort.

For example, the iterative cleaning steps performed in traditional sequence assembly can be
seen as the construction of a node mask on a de Bruijn graph, from which contigs are extracted
through traversal of the resulting subgraph. Through the use of columnar operations on the
annotation matrix, graph masks constructed via the integration of several labels can be used to
assemble contigs representing a differential analysis of these samples. We refer to this process
as differential assembly (Figure 5a). More precisely, a mask containing all k-mers present in
a foreground cohort of samples which are not present in a background cohort may be defined.
Then, during the traversal steps of assembly, nodes which are not included in the mask may be
excluded from consideration.

Subgraphs may be selected either based on k-mer abundances, or by combining columns
from the annotation matrix (corresponding to set operations on the columns’ respective k-mer
sets). In the former case, an initial analysis of the k-mer abundaces of the graph is used to
determine an abundance cutoff (see Section 4.6). Then, the subgraph is defined as all unitigs
whose mean k-mer abundace is above this cutoff. In the latter case, given a set of labels, an
initial subgraph is defined as all nodes corresponding to these labels. Next, unitigs from this
subgraph are extracted and their corresponding annotations are analysed to determine whether
they should be included in the final, refined subgraph. For instance, given a set of foreground
and background labels, a unitig may be kept if the foreground labels are enriched in the unitig’s
annotations and if the background labels are absent.

4.11 API

For a simple and easy to use interaction with the large graph indices, MetaGraph offers a
Python API that enables programmatic access to a MetaGraph server. Started in server mode,
the MetaGraph index will be persistently present in memory and accepts queries on a pre-defined
port. The API then allows sending search or alignment queries to the index and returns the
result as a Pandas data frame for further downstream analysis.

4.12 Experiments

The following sections briefly summarize the steps taken for the experiments presented in this
work.

4.12.1 Measuring the accuracy of sequence search

Given the reference genome for Escherichia coli K-12 MG1655 (RefSeq accession NC 000913.3 []),
we simulated Illumina HiSeq-type reads with ART Illumina [26] with coverage C and assembled
the read set using Metagraph. Then, we constructed Metagraph, BIGSI, and COBS indexes
from these contigs. For evaluation, we simulated both Illumina HiSeq and PacBio CLR-type
reads (the latter using PBSIM [43]) from 12 E. coli reference genomes (see Supplementary Sec-
tion C) and computed their optimal semi-global alignment scores to the NC 000913.3 reference
using the Parasail aligner [14].

4.12.2 Construction of SRA-Microbe graph

The SRA-Microbe graph was constructed from the same samples used to construct the BIGSI
index [12]. A merged canonical graph with k = 31 was constructed from cleaned contigs obtained

18

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/


from the European Bioinformatics Institute FTP file server. The graph was then serialized into
primary contigs, then reconstructed and annotated by sample ID to form the final graph.

4.13 Construction of the SRA-Fungi, SRA-Plants, and SRA-Metazoa graphs

SRA ID lists of whole genome sequencing experiments from the Fungi, Plants, and Metazoa
kingdoms were obtained from the NCBI metadata queried on 09/25/2020, 08/17/2020, and
09/17/2020, respectively, using the Google Cloud Platform’s BigQuery service. Briefly, each
sample was either transferred and decompressed from NCBI’s cloud mirror or downloaded from
ENA (if not available on SRA) onto a cloud compute server and subjected to k-mer counting
using KMC3 [31] to generate the k-mer spectrum. If the median k-mer count on the spectrum
was less than 2, the sample was further processed without cleaning. Otherwise, the sample was
subjected to cleaning, using MetaGraph’s clean mode, pruning tips shorter than 2k, and using
an automatically detected coverage threshold for unitig removal, with a fallback value of 3. After
cleaning, for each sample a canonical graph with k = 31 was created and serialized into primary
contigs. For each cohort (Fungi, Plants, and Metazoa) the serialized samples were joined into a
merged graph representation. Further details are available in the Supplemental Methods.

4.13.1 Construction and query of GTEx graphs

All available RNA-Seq samples that were part of the version 7 release of GTEx [34] were down-
loaded via dbGaP. A list of all samples used is available in the Supplemental Data Section 5.
Each sample was individually transformed into a graph using k = 41 and then cleaned using
MetaGraph’s clean module, trimming tips shorter than 2k and using an automatically detected
coverage threshold with fallback 3 for removing noisy unitigs, and then serialised to disk into
fasta format. All resulting fasta file were then assembled into a joint graph and then serialized to
disk again into primary contigs. From these primary contigs a final graph was assembled. The
primary merged graph was then annotated using the cleaned fasta file of each sample, generating
one label per sample. All individual annotation columns were then collected into a joint matrix,
that was transformed into relaxed Multi-BRWT representation.

4.13.2 Construction and query of TCGA graphs

All available TCGA RNA-Seq samples availabe at the Genomic Data commons were downloaded.
A list containing all processed samples is available in the Supplemental Data Section 5. The
same assembly and annotation strategy as for GTEx samples was used, with the only difference
that k was chosen as 31.

5 Supplemental Data

Additional resources for this project, including sample metadata, interactive notebooks and anal-
ysis scripts are available in GitHub at https://github.com/ratschlab/metagraph_paper_

resources. The source code of the MetaGraph software is available under GPLv3 License at
https://github.com/ratschlab/metagraph.
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[45] Mikko Rautiainen, Veli Mäkinen, and Tobias Marschall. Bit-parallel sequence-to-graph
alignment. Bioinformatics, 35(19):3599–3607, 2019.

[46] Mikko Rautiainen and Tobias Marschall. Graphaligner: Rapid and versatile sequence-to-
graph alignment. Genome Biology, 21(1):1–28, 2020.

[47] Peter W Schreiber, Verena Kufner, Kerstin Hübel, Stefan Schmutz, Osvaldo Zagordi, Aman-
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