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ABSTRACT 
Modeling of structural brain variation over the lifespan is important to better understand factors contributing to healthy 
aging and risk for neurological conditions such as Alzheimer’s disease. Even so, we lack normative data on brain 
morphometry across the adult lifespan in large, well-powered samples. Here, in a large population-based sample of 26,440 
adults from the UK Biobank (age: 44-81 yrs.), we created normative percentile charts for MRI-derived subcortical 
volumes. Next, we investigated associations between these morphometric measures and the strongest known genetic risk 
factor for late-onset Alzheimer’s disease (APOE genotype) and mapped the spatial distribution of age-by-sex interactions 
using computational surface mesh modeling and shape analysis. Vertex-wise shape mapping supplements traditional gross 
volumetric approaches to reveal finer-grained variations across functionally important brain subcompartments. Normative 
curves revealed volumetric loss with age, as expected, for all subcortical brain structures except for the lateral ventricles, 
which expanded with age. Surprisingly, no volumetric associations with APOE genotype were detected, despite the very 
large sample size. Age-related trajectories for volumes differed in women versus men, and surface-based statistical maps 
revealed the spatial distribution of the age-by-sex interaction. Subcortical volumes declined faster in men than women 
over the full age range, but after age 60, fewer structures showed sex-dependent trajectories, indicating similar volumetric 
changes in older men and women. Large-scale statistical modeling of age effects on brain structures may drive new insights 
into individual differences in brain aging and help to identify factors that promote healthy brain aging and risk for disease. 
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1. INTRODUCTION 
 
Regional brain morphometry changes significantly from early development to old age. In neurological and psychiatric 
disorders, disease-related processes influence brain volumes beyond the changes expected from normal aging. Given the 
crucial need to distinguish abnormalities in disease from healthy brain variations, a comprehensive statistical model is 
needed to characterize brain volume variation over the lifespan. Such a model would help establish indicators of both 
healthy and disordered brain aging, similar to normative growth charts used to track height and weight in childhood (1).  
 
Prior studies of subcortical brain volumes over the lifespan have provided insights but most are limited by modest sample 
sizes (2). Recent large-scale efforts by the ENIGMA Consortium (3) and the iSTAGING Consortium (4) have pooled 
datasets from many cohorts worldwide and have dramatically increased sample sizes to improve power and drive 
consensus findings. Standardized, open-source processing pipelines (such as the gross volume and shape analysis 
approaches used here) can also improve replication and boost statistical power in neuroimaging studies. The UK Biobank 
study (5) also offers an opportunity to investigate age effects on brain metrics on an unprecedented scale. In this study, we 
aimed to study age effects on subcortical brain structures, and the modulating effects of sex and known sources of genetic 
risk for Alzheimer’s disease. To do this, we applied standardized methods to extract subcortical gross volumes to compute 
quantile regression models (i.e., percentile charts or nomograms) and model vertex-wise shape variation in a large cohort 
of adult individuals between 44-81 years of age.  
 
Although regional brain volumes are expected to decline with age, we hypothesized that men and women would differ, on 
average, in the trajectory of decline. We also expected that carriers of the APOE e4 genotype – the strongest known genetic 
risk factor for late-onset Alzheimer’s disease – would tend to show steeper age-related decline in the hippocampus 
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compared to those carrying APOE e3 and e2 genotypes – genotypes associated with typical or lower risk for disease, 
respectively. We further hypothesized that computational surface modeling combined with 3D statistical shape analysis 
would reveal complex age, sex and genotypic effects not detected by gross volumetric analysis.  
 
 

2. METHODS 
2.1 Datasets 
T1-weighted brain MRI scans from the UK Biobank (N=26,440; age 44-81 years) were collected for an overall sample 
that was well-balanced for proportions of women and men, and with regard to years of education (Table 1). 
 

Table 1. Full sample used to generate normative models (nomograms) and for gross volumetric analyses 

  Female Male All 
Mean (SD) (N=13,775) (N=12,665) (N=26,440) 
Age (years) 62.84 (7.34) 64.17 (7.62) 63.5 (7.50) 
Education (years) 16.31 (3.96) 16.94 (3.68) 16.6 (3.84) 

 
 

At the time of analysis, 9,414 subjects had available subcortical shape and APOE genotype data available (Table 2). 
 

Table 2. Subsample with available data used for nomograms stratified by APOE genotype and for surface-based 
subcortical shape analyses 

  Under Age 60 Over Age 60 All 
  (N=3,372) (N=6,042) (N=9,414) 
Sex    
Female 1,922 (57.0%) 2,976 (49.3%) 4,898 (52.0%) 
Male 1,450 (43.0%) 3,066 (50.7%) 4,516 (48.0%) 
Years of Education (SD) 17.09 (3.39) 16.22 (4.11) 16.5 (3.89) 
Age (SD) 54.16 (3.60) 67.24 (4.27) 62.56 (7.46) 
BMI (SD) 26.57 (4.59) 26.78 (4.11) 26.7 (4.29) 
Genotype    
   E2E2 23 (0.7%) 40 (0.7%) 63 (0.7%) 
   E2E3 440 (13.0%) 738 (12.2%) 1,178 (12.5%) 
   E3E3 2,009 (59.6%) 3,724 (61.6%) 5,733 (60.9%) 
   E4E3 832 (24.7%) 1,400 (23.2%) 2,232 (23.7%) 
   E4E4 68 (2.0%) 140 (2.3%) 208 (2.2%) 

 

 

2.2 Image Processing Pipelines 
Brain MRI scans were segmented using the FreeSurfer software package, version 5.3 (6), with quality control procedures 
implemented in the ENIGMA consortium (7), to obtain gross volume measures for left and right nucleus accumbens, 
amygdala, caudate, hippocampus, putamen, pallidum, thalamus and lateral ventricles along with intracranial volume 
(ICV). 
 
The ENIGMA Shape Analysis pipeline is a surface-based parametric mapping technique used to detect subcortical shape 
differences across subjects and to map statistical effects of covariates of interest. Using FreeSurfer segmentations as initial 
inputs, shape registration is based on shape templates and template medial models. Each subcortical structure is represented 
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as triangulated surface mesh. Points on the surface act as vertices that form the overall 3D mesh. A medial model was fit 
for each structure and was used along with intrinsic shape features to compute a registration to the template (8, 9). 
 
Two point-wise measures of shape morphometry were derived. The first, termed radial distance or thickness, was 
calculated using the medial model approach where for each point 𝑝 ∈ 𝑀 on the surface, and given a medial curve	𝑐: [0,1] →
𝑅!. The radial distance is defined by: 
 

𝐷(𝒑) = 	min{‖𝒄(𝑡) − 	𝒑‖	|𝑡 ∈ [0,1]} 
 
The second measure, based on surface Tensor Based Morphometry (TBM), generalizes TBM on Euclidean spaces to 
surfaces (9). The differential map between the tangent spaces of two surfaces replaces the Jacobian:  
 

𝐽: 𝑇𝑀! → 𝑇𝑀 
 
In our model, 𝑀" is the average template, and 𝑀 is the surface we wish to study. 𝐽 is a linear mapping, and may be thought 
of as the restriction of the standard Jacobian determinant to the tangent spaces of the template and study surfaces. While 
analysis of the full tensor using log-Euclidean metrics on symmetric positive-definite matrices is possible (9, 10), these 
analyses are difficult to interpret. Our model instead considers the Jacobian determinant, representing the surface dilation 
ratio between the template and the study subject. An interpretation of this measure is the areal dilation or contraction 
required to match a small surface patch around a particular point of the subject surface to the corresponding point on the 
template. A higher Jacobian indicates a larger volume of a structure’s subfield corresponding to the region. Our final TBM 
measure is the logarithm of the Jacobian determinant, to obtain a distribution closer to Gaussian. 
 
In this way, both radial distance (termed thickness from now on) and the logarithm of the Jacobian determinant (termed 
simply Jacobian from now on) were calculated in native space for up to 2,502 points across each subcortical structure, 
providing an index of regional shape differences across subjects (Figure 1). The ENIGMA Shape Analysis pipeline has 
been applied in several recent large-scale studies mapping subcortical effects of substance abuse (11), major depression 
(12) and 22q11.2 deletion syndrome (13). 
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Figure 1. ENIGMA Shape Analysis Pipeline (http://enigma.ini.usc.edu/ongoing/enigma-shape-analysis/). Shape models are generated 
for the caudate, putamen, pallidum, hippocampus, amygdala, thalamus and nucleus accumbens. 

 

2.3 Modeling and Statistical Analysis 
The Python class LinearRegression from the scikit-learn library was used to adjust the subcortical volumes (average of 
left and right structures) for linear effects of ICV prior to fitting quantile regression models (termed nomograms, from now 
on). The Python library statsmodels, specifically class quantreg, was used to compute percentile curves for each structure 
based on standardized residuals, with structure volume as the dependent variable and age as the independent variable. We 
fit separate models for men and women and for all APOE genotypes to visualize age trends, stratified by genotype and by 
sex. 
 
Statistical analysis involved the application of multiple linear regression (lm package in R) to model the association 
between age, sex, age-by-sex interactions, and APOE genotype with both gross volumes and shape metrics (Jacobian and 
thickness) while adjusting for age, ICV, years of education, body mass index, and adjusting for multiple comparisons 
(FDR correction q<0.05).  
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3. RESULTS 
 

As expected, nomograms showed decreasing volume trends with age, for all structures, except for the lateral ventricles, 
whose volumes increased with age (Figure 2). A significant age-by-sex interaction in all gross volumes showed greater 
volumetric changes with age in men compared to women across the full age range (Table 3). However, in individuals over 
60 years old, this age-by-sex interaction was attenuated with fewer structures showing differential trajectories, indicating 
similar volumetric changes in older men and women. Shape analysis revealed complex age-by-sex effects, with subregions 
of certain structures showing both higher and lower rates of thickness and surface area loss in men compared to women 
with increasing age (Figure 4). 
 
No effect of APOE genotype nor any interaction between sex, age and genotype were observed, possibly due to the small, 
underpowered samples of APOE e2/2 and e4/4 genotypes (Table 3 and Figure 3).  
 
 
Table 3. Statistical analyses of left and right gross volumes in the full cohort. A. Effect of age adjusted for age2, sex, years of education, 
BMI and ICV. B. Effect of sex adjusted for age, age2, years of education, BMI and ICV. C. Age-by-sex interaction adjusted for age, 
age2, sex, years of education, BMI, and ICV. D. Age-by-sex interaction in individuals >60 years of age adjusted for age, age2, sex, 
years of education, BMI, and ICV. Highlighted cells indicate significant results after correction for multiple comparisons (FDR q<0.05). 
L:left; R:right; LatVent: lateral ventricles; thal: thalamus; caud: caudate; put: putamen; pal: pallidum; hippo: hippocampus; amyg: 
amygdala; accumb: accumbens; ICV: intracranial volume. 
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Figure 2. Nomograms for average left and right gross subcortical volumes in the full cohort (N=26,440). Left column: full cohort; 
middle column: females; right column: males. 
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Figure 2 (continued). Nomograms for average left and right gross subcortical volumes in the full cohort (N=26,440). Left column: 
full cohort; middle column: females; right column: males. 
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Figure 3. Nomograms for average left and right gross subcortical volumes, in the full sample, and in groups split by APOE genotype. 
All structures show a volume decline with age, in the age range studied here, except for the lateral ventricles, which expand with age 
(top row). Age trends stratified by genotype are shown in columns 2-6; these trends are statistically compared using formal tests, reported 
in the main text. Percentile curves included for 99%, 98%, 90%, 75%, 50%, 25% and 10%. 
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Figure 4. Shape analysis of subcortical brain structure, with regression coefficients plotted in regions passing correction for multiple 
comparisons (FDR q<0.05). A. Effect of sex on thickness and Jacobian adjusted for age, age2, years of education, BMI and ICV. Warm 
(red/yellow) colors indicate positive model coefficients, or regions of greater Jacobian (surface area) or thickness values in men 
compared to women. Cooler (blue/green) colors indicate negative model coefficients, or regions of lower Jacobian (surface area) or 
thickness measures in men compared to women. B. Age-by-sex interaction adjusted for age, age2, sex, years of education, BMI and 
ICV. Blue/green regions indicate greater local surface area or thickness decline in men compared to women with increasing age. C. 
Age-by-sex interaction in individuals >60 years of age adjusted for age, age2, sex, years of education, BMI and ICV. 1: caudate; 2: 
putamen; 3: pallidum; 4: hippocampus; 5: amygdala; 6: thalamus; 7: nucleus accumbens. Gray regions indicate non-significant vertices 
after correction for multiple comparisons. Black structures are those for which no vertex-wise test was significant after correction for 
multiple comparisons. 
 
 

4. DISCUSSION 
 
Here, in one of the largest subcortical brain morphometry studies to date, we provide five key findings. First, nomograms 
indicate generally decreasing volume trends for all structures over the adult age range studied, except for the lateral 
ventricles whose volumes increased with age, as expected. Second, differential aging trajectories for women and men, as 
visualized in the nomograms from the full cohort (N=26,440), were confirmed with formal statistical analysis of gross 
volumes and with shape analyses. A significant age-by-sex interaction in all gross volumes showed greater volumetric 
changes with age in men than women across the full age range studied. Third, in individuals over 60 years old, an attenuated 
age-by-sex interaction was observed, with fewer structures showing significant differential trajectories in men versus 
women, indicating similar volumetric changes in older men and women. Fourth, shape analysis revealed patterns of 
complex age-by-sex effects over the full age range, with subregions of certain structures showing both higher and lower 
rates of thickness and surface area loss in men compared to women with increasing age. Again, in individuals over 60 
years old, that interaction was attenuated with shape maps revealing fewer vertices with a significant age-by-sex 
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interaction. Fifth, no significant association with APOE genotype was detected in the current sample, though nomograms 
show the need for more study samples to better model age effects in groups carrying at least one APOE e2 or APOE e4 
allele. 
 
The failure to detect an APOE effect may be cohort specific, as previous UK Biobank analyses have not detected the 
hypothesized APOE effects (14). The worldwide frequency of APOE e2, e3 and e4 alleles are 8.4%, 77.9% and 13.7%, 
respectively (15). Even large-scale, population-based samples such as UK Biobank struggle to collect data from enough 
e2 and e4 carriers to empower analyses of the documented protective and detrimental effects of these genotypes in the 
general population. As the UK Biobank study continues to release more MRI data, our ability to model the normative 
trajectories of these less common but highly impactful genetic factors may improve. 
 
The current study has several limitations. First, although we refer to the age effects as trajectories, the pattern of aging is 
inferred here from cross-sectional data; trajectories fitted from longitudinal data may better reflect the changes occurring 
for specific individuals in the population. Especially at older ages, poorer health, mortality, and attrition effects may limit 
the individuals represented in the study, so the brain metrics in older ages may represent people in better health for their 
age than in the younger portion of the age range. Applying these nomograms to individuals beyond the UK biobank would 
require adaptation. As different scanners and imaging protocols differ in their signal to noise ratio for the measures 
examined here, the models provided here may not extend to data collected from different scanners or using different 
acquisition protocols. Methods to adapt nomograms and statistics across cohorts are under rapid development and include 
ComBat, its particular variants (ComBat-GAM, CovBat, and longitudinal ComBat) and hierarchical Bayesian methods in 
which the mean, variance, and other moments of the data distribution can be modeled as arising from a random process 
whose distributional parameters are also estimated. Such harmonization efforts will allow nomogram data to inform the 
analysis of new datasets, as well as assist in the cooperative analysis of both small and large datasets for specific questions.  
 
In summary, we presented aging trajectories for subcortical brain volumes and were able to map a spatially complex age-
by-sex interaction using high-resolution shape morphometry. Ongoing work aims to more closely investigate the 
differential aging effects in men and women that map on to underlying subfields or nuclei with known structural and 
functional brain connectivity. Analyses incorporating measures of white matter integrity from the same UK Biobank 
sample will help identify potential structural vulnerabilities that could inform future mechanistic insights into healthy 
aging and age-related brain disorders such as Alzheimer’s disease.   
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