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Abstract

Passive acoustic surveys provide a convenient and cost-effective way to monitor animal pop-

ulations. Methods for conducting and analysing such surveys, especially for performing

automated call recognition from sound recordings, are undergoing rapid development. How-

ever, no standard metric exists to evaluate the proposed changes. Furthermore, most metrics

that are currently used are specific to a single stage of the survey workflow, and therefore

may not reflect the overall effects of a design choice.

Here, we attempt to define and evaluate the effectiveness of surveys conducted in two

common frameworks of population inference – occupancy modelling and spatially explicit

capture-recapture (SCR). Specifically, we investigate precision (standard error of the final

estimate) as a possible metric of survey performance, but we show that it does not lead to

generally optimal designs in occupancy modelling. In contrast, precision of the SCR density

estimate can be optimised with fewer experiment-specific parameters. We illustrate these
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issues using simulations.

We further demonstrate how SCR precision can be used to evaluate design choices on

a field survey of little spotted kiwi (Apteryx owenii). We show that precision correctly

measures tradeoffs involving sampling effort. As a case study, we compare automated call

recognition software with human annotations. The proposed metric captured the tradeoff

between missed calls (8% loss of precision when using the software) and faster data through-

put (60% gain), while common metrics based on per-second agreement failed to identify

optimal improvements and could be inflated by deleting data.

Due to the flexibility of SCR framework, the approach presented here can be applied to

a wide range of different survey designs. As the precision is directly related to the power of

detecting temporal trends or other effects in the subsequent inference, this metric evaluates

design choices at the application level, and can capture tradeoffs that are missed by stage-

specific metrics, thus enabling reliable comparison between different experimental designs

and analysis methods.

1 Introduction

Sound has been used to monitor vocalising animal populations for many years. Vocal cues

are counted in field surveys, and the counts are used directly as an index of population

size, or as input to more complex models for inferring species spatial distribution, temporal

trends, community diversity, or other properties (see review in Gibb et al. (2018)). Over

the past two decades, this use of acoustics has been changed drastically by the development

of autonomous recording units, ARUs (Brandes, 2008; Blumstein et al., 2011; Shonfield and

Bayne, 2017; Darras et al., 2019).

In their most basic usage, the recorders act as a replacement for field observers in order

to collect survey data at a lower cost (Lemckert et al., 2005; Williams et al., 2018), but they
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have great potential, opening up entirely new monitoring possibilities, such as analysing

the ultrasound range for bats (Sugai et al., 2018), localising the calling animals (Collier

et al., 2010), or using automated sound detectors to speed up processing (Potamitis et al.,

2014). This has sparked various developments in acoustic survey methodology: studies have

investigated the optimal number and placement of recorders (e.g., Pérez-Granados et al.

(2018); see also the review in Sugai et al. (2019)), compared hardware (Rempel et al., 2013;

Pérez-Granados et al., 2019), and optimised recording time and duration (Cook and Hartley,

2018; Hagens et al., 2018; Pérez-Granados et al., 2018). The large amounts of data generated

by ARUs has also prompted interest in algorithms to perform call denoising, detection and

recognition (Acevedo et al., 2009; Priyadarshani et al., 2018b; Stowell et al., 2018).

However, no unified metric to evaluate these various developments exists. For example,

denoising success is usually measured by signal-to-noise ratio (Priyadarshani et al., 2016) or

by successful species classification after denoising (Connor et al., 2012). In turn, the species

classification methods are evaluated by measuring their agreement with manual annotations,

i.e., area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, or

specificity (see Methods or Knight et al. (2017) for definitions). These measures can vary

hugely between datasets: methods with claimed accuracy of >90% can turn out to be only

40% accurate on a different dataset (Priyadarshani et al., 2018b). Further complications

arise because the target is not inherently binary – agreement can be measured per time unit,

at the syllable level, call level, or file level, with different results (cf. Acevedo et al. (2009);

Swiston and Mennill (2009); Towsey et al. (2012); Potamitis et al. (2014)). In fact, a perfect

match with human annotations may not be achievable at all, given that even experts do

not always agree (Mortimer and Greene, 2017). This lack of standardisation hampers any

attempt to compare or improve the methods.

Another issue that complicates survey method comparison is that improvement in one

particular part of the process does not necessary correspond to more accurate or reliable

monitoring overall. Compared to field observations, sound recorders have lower detection
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radius (Yip et al., 2017) and do not capture visual cues, but having recorded data provides

many other benefits (Darras et al., 2019). Automated methods for annotation unavoidably

miss some calls and likely introduce false positives, in return for faster processing, while

additional data sources, such as radio tracking, may come at an extra cost and require

sacrifices in sample size. These tradeoffs are not captured by stage-specific metrics (Knight

et al., 2017). As summarised in Blumstein et al. (2011), “there is a growing need for a

common framework in which to develop, run and fully evaluate new bioacoustic recognition

systems. Such a framework would include standard performance metrics”.

For single-species, single-population surveys, which estimate one quantity of ecological

interest, a natural choice of metric is the final precision (i.e., the variance) of this esti-

mate. This metric corresponds directly with the power of making subsequent inferences,

such as detecting abundance changes, tracking colonisation, or identifying biological factors

influencing the species distribution (Stevenson et al., 2015; Metcalf et al., 2019). Thus, it

allows the evaluation of changes to any part of the survey protocol at the final stage of

ecological application. We focus on two popular statistical survey frameworks: occupancy

models (which aim to estimate the fraction of area occupied by the population) and spatial

capture-recapture (SCR), which estimates the density of animals in the survey area; these

are summarised in the Methods section. We investigate how the variance of the density or

occupancy estimate from such models can be used for evaluating changes in survey design.

Specifically, we describe the concept of optimal design in these two frameworks, based on

the precision of the final estimate. In each case, we investigate how this optimum depends on

unobserved parameters, using simulations and approximations recently developed by Efford

and Boulanger (2019). We then focus on SCR and use field data from a bird survey to

demonstrate how the precision of density estimate can be used to evaluate tradeoffs involving

sample size, and apply this framework to compare automatic call detection software with

human listeners. We show that commonly-used metrics of classification accuracy can support

detrimental design choices. Finally, we discuss the remaining challenges that need to be
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overcome to enable standardised survey evaluation.

2 Methods

2.1 Occupancy modelling

Occupancy models (MacKenzie et al., 2002) seek to determine what fraction Ψ of the survey

area is occupied by the species of interest, based on S monitoring sites placed in the area.

(Each site corresponds to a sensor such as a recorder.) As the detection is not perfect,

an estimate of the probability p that a species is detected in a site where it is present is

needed; this can be interpreted as the sensitivity of the detector. To obtain this estimate,

the survey is repeated K times. Then, denoting by sk the number of sites where the species

was detected on occasion k, and s̄ the number of sites where the species was detected on

at least one occasion (i.e., was present, assuming no false positives), the occupancy model

corresponds to the following likelihood:

L(Ψ, p) = Ψs̄

K∏
k=1

psk(1− p)s̄−sk × (Ψ(1− p)K + 1−Ψ)S−s̄.

Various extensions to this model have been proposed, allowing, for example, different

numbers of surveys at each site, and site-specific detection covariates (MacKenzie et al.,

2002; Mackenzie and Royle, 2005; Clement, 2016).

The ultimate aim of this framework is to enable inference about the occupancy param-

eter Ψ, hence a natural metric for evaluating survey efficacy is the sampling variance of

this parameter, V ar(Ψ̂) (throughout, we use ·̂ to denote statistics based on samples). The

researcher can then choose the experimental design that minimises this variance, and thus

maximises the power for subsequent inference, while keeping the estimate unbiased. This ap-

proach is well-known in experimental design (Atkinson and Donev, 1992), and in occupancy

modelling in particular (Mackenzie and Royle, 2005; Clement, 2016; Gálvez et al., 2016).
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Formally, let all parameters that describe the study design comprise a vector m ∈ M .

Optimal design for occupancy models can then be defined as:

argmin
m

V ar(Ψ̂).

The parameter vector includes S and K that describe the sampling performed, and also

less obvious design attributes that impact the result, such as sensor detection distance and

performance of the call recogniser. The space M is constrained by the limited experimental

effort or technology tradeoffs; occupancy designs are usually analysed assuming fixed total

effort SK (Mackenzie and Royle, 2005). The detection probability can be separated into a

detectability component pd and an availability component pa, so that p = pdpa (Riddle et al.,

2010). Since pd can be controlled, it is included in m, but pa is represents the behavioural

properties of the species and so is outside the control of the investigator.

As the true values of the ‘nature’ parameters Ψ and pa are not known in advance, ideally

the optimal design should be insensitive to them, i.e.,

argmin
m

V ar(Ψ̂|Ψ = Ψ1) = argmin
m

V ar(Ψ̂|Ψ = Ψ2) ∀Ψ1,Ψ2

which is true iff:

V ar(Ψ̂|Ψ = Ψ2) = g(V ar(Ψ̂|Ψ = Ψ1))

for some strictly monotonic g(x) > 0.

However, the occupancy model does not allow the effects of these parameters to be isolated

as monotonic functions. With constant pa, pd, SK:

V ar(Ψ̂) =
ΨK

SK

(
1−Ψ+

(1− p)K

1− (1− papd)K −Kpapd(1− papd)K−1

)
(1)

and so:
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argmin
K

V ar(Ψ̂) = argmin
K

(−ΨK + f(pa, pd, K)) . (2)

for some appropriate function f(·).

Both terms in the right hand side expression contain K and are non-negligible, unless

papd → 1, so the optimal choice of K depends on the true value of Ψ. Similar results hold

for other parameters. For example, if there is a tradeoff between improved detection and

more sampling effort (so that SKpd is constant), then both K and pd will be involved in

both terms, meaning that there is no general solution without a priori knowledge of their

values.

2.2 Spatial capture-recapture

Spatially explicit capture-recapture (SCR, sometimes also abbreviated to SECR) is an al-

ternative framework for detection data analysis (Efford, 2004; Efford et al., 2009; Dawson

and Efford, 2009; Borchers et al., 2015), which aims to take into account distance between

the animal and the detector. The main inference target is the animal density D, which is

assumed to be uniform over the survey area and time, or have some parameterised functional

form. Animal home range centroids or other location descriptors x are assumed to be reali-

sations of a Poisson process with intensity equal to D. A detection function p(d|θ) describes

the probability of detecting animals located at distance d from a sensor given parameters θ.

The observed data is recorded as a binary capture history over K sampling occasions (e.g.,

days), S sensors, and N individual detected animals: Ω = {ωskn} where each ωskn = 1 if

sensor s ∈ S detected the particular animal n ∈ N during occasion k ∈ K.

The corresponding likelihood is of the form:

L(D,θ) = P (N |θ)×
∫
R2N

fX(X|D,θ)P (Ω|X, D,θ)dX,

where X denotes space (so fX is the pdf of animal locations) and θ contains the parameters
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for the chosen detection function. The basic SCR form can be extended to allow non-

homogeneous density, customized detection probability function, or additional information

collected by the sensors; it allows great flexibility to analyse diverse experimental designs,

and incorporate environment and behaviour covariates (Borchers and Efford, 2008; Efford

et al., 2009; Dawson and Efford, 2009; Reich and Gardner, 2014; Stevenson et al., 2015;

Borchers et al., 2015; Boulanger et al., 2018).

For analysing acoustic surveys, the above model is not immediately applicable. The

basic operational unit of acoustic SCR is a call (i.e. {ωis} is 1 if call i is detected on

recorder s). Call locations are considered dependent, and bootstrap procedures are required

to estimate sampling variances of the estimates (Stevenson et al., 2015). The parameter

D then corresponds to call density, and turning this into the underlying animal density Da

requires either the ability to identify individuals in an unsupervised way, or prior knowledge

of their call rate µ. The first is generally extremely difficult, and the second may well be

hard to identify (see e.g., Digby (2013) for kiwi, the species we focus on in the experimental

section). However, even if the true call rate µ was known, the animal density would be

estimated as D̂a = D̂/µ (Stevenson et al., 2015). Therefore, call rate comparisons can be

used to test biological hypotheses about population changes, providing that the underlying

call rate remains unchanged.

Precision of estimates has been used occasionally for SCR study design (e.g., Sun et al.

(2014)), but without investigating the theoretical or empirical grounds for using it – likely

because no closed form expression for the variance of the estimates was available. For stan-

dard SCR, Efford and Boulanger (2019) recently derived an approximation to the sampling

variance of D̂, assuming Poisson-distributed number of detected animals N , and number of
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recapture events R, as:

V ar(D̂) ≈ D2/min{E(N), E(R)}, where

E(N) =

∫
R2

(
1−

S∏
s=1

K∏
k=1

p(ds(x))

)
D(x)dx

E(R) =

∫
R2

S∑
s=1

K∑
k=1

p(ds(x))D(x)dx− E(N).

Here S and K are the number of sensors and survey occasions, respectively, as previously,

while ds(x) denotes the distance between sensor s and animal x, and p(·) is the detection

function.

Acoustic surveys are usually analysed as single-occasion data (K = 1), conducted for τ

time units, and the detections (N and R) are calls emitted by each animal at a fixed rate µ

(Stevenson et al., 2015). To apply the above equations to such analysis, we assume that the

density (of calls) is homogeneous and equal to µDa, and obtain:

E(N) =

∫
R2

(
1−

S∏
s=1

p(ds(x))

)
µDaτdx

E(R) =

∫
R2

S∑
s=1

p(ds(x))µDaτdx− E(N).

The optimisation task can then be written as:

argmin
m

V ar(D̂) = argmin
m

(µDa)
2

µDaf(S, τ, p)
= argmin

m
1/f(S, τ, p),

and so the optimal design m = (S, τ, p) is invariant to the true density D or call rate µ (or

any other parameters that have a constant and uniform effect on the cue density). Thus, in

this respect, the design for acoustic surveys in the SCR framework can be optimised without

prior knowledge of behavioural parameters.
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2.3 Simulations

We used numeric examples to illustrate the different effects of parameters within occupancy

studies and SCR models.

To illustrate that the optimal design for occupancy studies depends on the values of

population-specific parameters, we calculated the standard error of Ψ̂ over several values of

pa, pd,Ψ and K. (Recall that pd is meant to capture the effect of design choices, such as

detection thresholding, while pa cannot be manipulated by the observer.) We assumed fixed

sampling effort of 24 sites, i.e. S = 24/K, and then simply calculated the variance using

Equation (1).

As our results concerning SCR rely on the approximate variance formula, as well as inde-

pendent call locations, we verified that they are valid for acoustic surveys using simulation.

We used the ascr package to generate binary detection histories, as outlined in Stevenson

et al. (2015). In summary, the user defines a survey by providing detector positions and

an area for integration (we used a 3 × 3, 4 × 4 or 5 × 5 grid of detectors spaced at 200 m,

surrounded by a 200 m buffer). Call locations are then simulated in this area. To generate

‘observed’ detection histories at each detector, ascr filters these call locations based on de-

tection parameters and distance to each detector. We used a half-normal detection function

g(d) = g0 exp
(

−d2

2σ2

)
. In practice, different hardware, call recognition algorithms or detection

thresholds would have an effect on the detection probability, so the study design consisted of

detection parameters g0, σ, and number of detectors S. We did not vary the survey duration

τ in the simulation, since as the capture histories do not include actual call times, a longer

survey at smaller call rate would be indistinguishable from a shorter survey with higher call

rate.

We initially modelled the call locations as independent, i.e., as realisations of a spatial

Poisson process with intensity equal to the call densityD and repeated simulations for several

values of D between 100 and 500. For each tested combination of design parameters and

D values, 100 survey datasets were generated, an SCR model fitted to each dataset, and
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the observed standard deviation of D̂ used to estimate the corresponding standard error.

Relative bias was estimated as (E(D̂ −D))/D.

Since many calls can come from the same bird, or from a group of birds calling in the same

place (such as alarm calls, territorial warnings, or duets), the call locations may be dependent

in practice. We therefore conducted a similar set of simulations to test the consequences

of violating this assumption. In ascr, this is implemented by simulating the locations of

animals from a process with intensity equal to Da, and repeating calls at each location µ

times. Several values of µ were tested with a fixed call density D = 300, 100 replicates

simulated, and each detection history analysed in a similar manner to the independent case.

2.4 Kiwi survey data

To show how SCR can be used to evaluate design tradeoffs in a practical setting, we con-

ducted an acoustic survey of kiwi pukupuku (little spotted kiwi, Apteryx owenii) in Zealan-

dia, a 225 ha wildlife sanctuary in Wellington, New Zealand. The likely population size

is around 200 kiwi, with 40 kiwi translocated to this site in 2001, and approximately 100

estimated in 2010 (Digby, 2013). Kiwi pukupuku has a life expectancy of >30 years; once

individuals become adult, mortality is low, and pairs produce a 1-2 egg clutch each year

(Colbourne, 1992; Robertson and Colbourne, 2004; Jolly, 1989).

This species is nocturnal, and both sexes call intermittently throughout the night, often

in duets; male and female calls are different. The calls consist of many repeated syllables

slowly rising in pitch, with fundamental frequency around 2-3 kHz for males and 1-2 kHz for

females (Supplementary Figure S2). The number of syllables and exact pitch vary between

calls. Further details on kiwi acoustics can be found in Digby (2013) and Digby et al. (2014).

There are other night callers at the study site, some of which can be confused with the kiwi

pukupuku, particularly some calls of the ruru (Ninox novaeseelandiae, a native owl).

We used data collected by 7 autonomous sound recorders (Song Meter SM2, Wildlife

Acoustics Inc., USA) over two nights in 2018, Oct 6 18:00–Oct 7 06:00 and Oct 7 18:00–Oct
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8 06:00. The recorders were attached to trees at about 1.5 m height and spread to cover an

area of 600× 800 m (Supplementary Figure S1), with an average spacing of about 300 m, a

distance chosen based on rough estimates of call propagation distance. Recorder positions

were projected to metres easting and northing using Universal Transverse Mercator (UTM)

zone 60G in R package rgdal. In total, 10 080 minutes of audio was recorded across seven

recorders.

Data was processed in the AviaNZ software (Marsland et al., 2019). In the automated

process, the software was first trained on a small amount of manually annotated data from

the same location, collected in September 2018. During this process (see Marsland et al.

(2019) for detailed description), the sound is decomposed into a wavelet representation:

this basis of compact functions allows to quantify the energy in different frequency bands

(nodes) at discrete time points. The software identifies an optimal set of wavelet nodes

for automated call detection. We trained two filters for the kiwi, using ‘high’ and ‘low’

(fundamental frequency above or below 2 kHz, approximately separating males and females)

calls separately. Detection thresholds were set to obtain 90% sensitivity on the training data.

The two nights studied (Oct 6 and Oct 7) were automatically processed using these filters:

as in training, the software reconstructed the signal from selected wavelet nodes and marked

putative calls when high energy in the reconstructed signal was detected. This approach is

optimised to avoid false negatives, which can result in a high number of false positive marks

from the software; this is a user-controllable parameter, and could be chosen to avoid false

positives, albeit at the cost of missing many actual calls, and so we chose the former for

the experiments reported here. All the potential ‘calls’ detected were reviewed by a human

observer, to ensure that final detections contained only true positives.

The audio data, automatic recognizer settings used for detection in this paper, and AviaNZ

format annotations are available at https://doi.org/10.5061/dryad.m70p89d (Oct 6th

data) and http://doi.org/10.5281/zenodo.4057094 (Oct 7th data). The AviaNZ soft-

ware is available at http://www.avianz.net.
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2.5 Survey data analysis

Acoustic SCR models were applied to the kiwi survey data in several experimental settings.

In all analyses, we used standard binary capture histories across the 7 recorders, labelled as

shown in Supplementary Figure S1. In such cases, the SCR detection function is estimated

only from the frequency of combined detections across multiple recorders, which requires

reliable identification of when two or more annotations on different recorders represent the

same call. To adjust for recorder clock drift, we measured how many 1-second blocks had calls

present on two neighbouring recorders, and adjusted the clocks in 1-second steps until this

overlap was maximised (Supplementary Figure S3); we visually inspected the spectrograms

to confirm that most overlaps after adjustment reflected the same call (Supplementary Figure

S4). For some pairs of recorders, no clear adjustment was identified, and most overlapping

annotations appeared to be different calls. In effect, the 7 recorders were split into 3 non-

overlapping groups, ZB-ZI-ZG; ZE; ZA-ZH-ZJ. Annotations were then converted into a call

capture history for each recorder. Annotations separated by <5 seconds were merged into a

single call, to avoid double-counting fragmented calls or female responses to male calls.

All statistical analyses were conducted using R. For SCR modelling, we used the ascr

package, which is available from https://github.com/b-steve/ascr. All other code used

in the analysis is available at https://github.com/jjuod/acoustic-survey-evaluation.

2.6 Measuring survey precision on data subsets

In theory, SCR precision is related to the duration of acoustic survey as the standard error

SE(D̂) ∝ 1/
√
T . To verify that this holds in practice, we fitted acoustic SCR models to

subsamples of the acoustic survey conducted over two nights. We fitted SCR models using

automatically annotated (human-reviewed) data from the two nights, or subsets of 75%,

50%, 25%, or 12.5% of it, by using only annotations within the respective fraction of each

hour (e.g., for the 25% fraction all annotations outside 18:00-18:15, 19:00-19:15, etc., were

ignored).
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We used the half-normal function to model detection probability. The area of integration

was defined by setting 700 m radius circles around each recorder, as the estimated detection

probability in our setup decayed to <0.005 at this distance. The main outputs of interest

were the call rate density D̂ and effective survey area (ESA) in hectares, derived from the

detection parameters; the effective detection radius was then calculated as
√
ESA/π. The

standard errors were calculated using the Hessian or by bootstrapping – drawing 200 replicate

surveys of the same length (Stevenson et al., 2015) – and converted to units of calls/ha/night.

2.7 Comparison of human and software call detection

In the next experiment, we used the SCR framework to compare automatic and manual call

annotation processes. Manual annotations were made for data from the Oct 6 night, using

audio playback and visual inspection of the spectrogram in AviaNZ (Marsland et al., 2019).

The processing was split between two observers, with each annotating ca. half of the dataset.

Automatic (human-reviewed) annotations for this night were already obtained as described

previously. We fitted two SCR models using either the manual or automatic (reviewed) an-

notations, and calculated the precision of the final density estimate using bootstrap sampling.

For comparison, we also calculated metrics based on agreement between automatic and man-

ual annotations. Using 1 s resolution, we calculated the numbers of seconds corresponding

to true/false negatives/positives (treating manual annotations as the ground truth), and

derived sensitivity (or recall, TP/(TP + FN)), specificity (TN/(TN + FP )), and accuracy

((TP + TN)/total), using standard definitions (Knight et al., 2017; Priyadarshani et al.,

2018b). Similar calculations were performed using 15 s windows. In each case, a window

that includes one or more annotations is considered a positive for the source of annotations.

Finally, we investigated the effect of recorder removal in a similar setup, using data from

the night of Oct 6. We excluded two recorders with the highest levels of noise (ZB and ZH)

or worst agreement with human annotations (ZA and ZI). SCR models were then re-fitted

using the remaining data, and all metrics recalculated.
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3 Results

3.1 The effect of population parameters on experimental design

It is generally known that optimal design for occupancy studies depends on the true occu-

pancy (Mackenzie and Royle, 2005). We replicated this result, with separate availability and

detectability components pa and pd, as shown in Figure 1. For example, designs with higher

replication effort (K = 6) were optimal when pa = 0.5,Ψ = 0.9, but they were the worst out

of the six tested designs when pa = 0.9,Ψ = 0.7. Design ranking was not consistent across

the other conditions either. A relatively small difference in parameter values was sufficient

to cause drastic changes in design ranking.

Figure 1: Standard error of the occupancy estimate Ψ̂ for different combinations of “nature”
parameters (availability pa, true occupancy Ψ) and design choices (detectability pd, survey occasions
K). Units of occupancy are fraction of area occupied (range 0 to 1, true values 0.7 or 0.9). Standard
errors calculated analytically, so no certainty bars provided.

In contrast, designs identified as optimal in the SCR framework are expected to remain

optimal under a broad range of density values. Figure 2 shows the estimated precision

(standard error) obtained under 9 different study designs (represented by different g0, σ, S

values). The design with g0 = 0.8, σ = 60, and a 4 × 4 detector grid was optimal under

all tested values of D; in general, the ranking of designs remained stable across the entire

range of D values tested. The design with g0 = 1, σ = 30 and a 5 × 5 detector grid was
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the worst in all conditions, and produced considerably biased estimates (up to 15 % lower;

Supplementary Figure S5). All other designs estimated densities within 3% of the true value.

Figure 2: Standard error of SCR density estimate D̂ for different values of true density D and
various design choices. Design choices are represented by different numbers of sensors (S in Meth-
ods) and different parameters of the detection function (g0, detection probability at 0 m distance,
and σ, controling detection decay). For each setting, capture histories were simulated, assuming
independent call locations, and density estimated with SCR. Dots are the standard errors based on
100 replicates, and vertical bars indicate 95% confidence intervals based on χ2 distribution of the
SE. Density units are calls per ha per survey.

Similar results were observed when dependency in call locations was introduced: relative

efficiency of study designs for SCR remained stable across various values of call rate µ (Figure

3). Some minor deviations were observed, likely attributable to sampling variation in the

sampling error itself. Bias was also similar to the independent case, at most 3.4%, apart

from the pathological design, which had 5-10% bias (Supplementary Figure S5).
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Figure 3: Standard error of SCR density estimate D̂ for different values of true call rate µ
and various design choices. Design choices are represented by different numbers of sensors (S
in Methods) and different parameters of the detection function (g0, detection probability at 0 m
distance, and σ, controling detection decay). Capture histories were simulated for each setting,
with total call density equal to 300 and calls repeated µ times in each position. Dots are the
standard errors based on 100 replicates, and vertical bars indicate 95% confidence intervals based
on χ2 distribution of the SE. Density units are calls per ha per survey.
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3.2 Precision accounts for changes in sampling effort

We now focus on SCR. In the first experiment based on real data, we investigated how SCR

estimates respond to changes in the amount of data processed.

Automatic detection using the AviaNZ software identified 5117 minutes of putative calls,

of these 3372 were suggested by the ‘high’ (male) and 1745 by the ‘low’ (female) call filter.

Subsequent human review rejected most of these as false positives, leaving 514 min of calls

as the final result from this method of processing (370 from ‘high’ and 144 from ‘low’ filter

detections).

By fitting an SCR model to this dataset, a call rate density of 2.86 calls per hectare per

night was obtained (bootstrapped SE 0.146 calls per hectare per night), based on an effective

survey area of 103.4 ha. The detection function indicated that the probability of detecting

a call emitted at 200 m distance was 54% (for each recorder), or equivalently the effective

detection radius was 256 m.

When the data was subsampled to contain only a fraction of each hour, the observed

precision closely matched the predicted square-root relation (Figure 4). The asymptotic

and bootstrapped standard errors were very similar, as we did not assume any dependency

structure in the call locations. Hence, the precision measure can be immediately translated

into sampling effort and power: a researcher wishing to detect two times smaller effects at

the same power will need four times more audio data, for example.

3.3 Comparing recognition software with human detection

As a case study demonstrating the usage of the proposed metric, we compare the use of

automatic call detection software with fully manual processing of recordings. In manual

analysis of the first (Oct 6) night of recordings, 915 annotations were made, comprising

a total call duration of 232 min (Supplementary Figure S6). Excluding annotations <5

seconds, which usually indicate fragments of a single call, 720 calls remained. Processing 42

hours of audio took about 320 minutes of active user time. The distribution of calls detected
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Figure 4: Standard error of estimated call rate density using a full two-night dataset from a kiwi
survey (rightmost points), or subsamples of it. Points are measured SEs (obtained from asymptotic
approximations or by bootstrapping), the lines are best-fit inverse square-root curves.

by different recorders varied, in particular fewer calls were detected by recorders placed near

to a stream (ZE) and on a windy hilltop (ZB).

The automatic processing results (after review) largely matched the manual annotations.

Using the human annotation as ground truth, at 1 second resolution, 3.5% of the dataset

was marked as positives by both methods, and 94.2% as negatives by both. 1.6% of the

recordings were ‘false negatives’, i.e., manually annotated as calls, but missed by the au-

tomated detection, and the remaining 0.7% were detected by the automated, but not the

manual, processing. Some of these mismatches were due to imprecise annotation boundaries

(e.g., automatic detection can miss part of a call, or include a few seconds outside the call,

both of which are penalised), others represent genuine missed calls.

Using SCR, we obtained similar density estimates for the two processing methods, with

slightly lower precision when calls were marked automatically (Table 1, top rows). Density

values were well within one SE of each other, and no systematic difference was apparent

(2.93 vs. 2.89 calls per hectare per night). The automatic processing was worse at detecting

faint calls, which in SCR corresponds to a smaller survey area (114.3 vs. 99.3 ha) and larger

standard error of the estimated density (0.215 vs. 0.227 calls/ha/night). In terms of the
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detection function, human processing resulted in 61% detection probability at 200 m, in

contrast to 54% measured above.

Recorders / an-
notations

Density ± SE,
calls/ha/night

ESA, ha Sensitivity Specificity Accuracy

all / manual 2.93 ± 0.215 114.3 68.90% 99.26% 97.71%all / auto 2.89 ± 0.227 99.3
-ZA -ZI / man-
ual

3.46 ± 0.346 78.0 69.59% 99.40% 98.10%

-ZA -ZI / auto 3.91 ± 0.600 57.2
-ZB -ZH / man-
ual

3.57 ± 0.307 82.9 70.00% 99.23% 97.74%

-ZB -ZH / auto 3.39 ± 0.340 73.2

Table 1: Changes in concordance and SCR measures using all 7 recorders, excluding ZA and
ZI, or excluding ZB and ZH. Estimated call rate density, effective survey area (ESA), and their
standard errors calculated for manual or automatic annotations separately, using Oct 6 night data.
Sensitivity, specificity, accuracy obtained by comparing manual and automatic annotations over 1
second blocks.

However, manual processing was considerably more labour-intensive. Review of software

outputs took 132 minutes, making the automated processing with review 2.4 times faster (in

user time) than the fully manual workflow. Equivalently, given fixed total effort, 2.4 times

more data could be processed in the automated workflow, with almost all user time spent

on the review of the detections. Based on Figure 4, this would correspond to a 60% gain in

precision, far outweighing the 8% loss due to missed calls.

3.4 Standard agreement measures do not reflect optimal design

choices

To provide direct evidence of the shortcomings of standard concordance measures, we showed

that the match between manual and automatic annotations can be improved by reducing

the dataset. When using data from all 7 recorders, with the human annotation viewed as

ground truth, the overall sensitivity of the automatic detection method was 68.9%, specificity
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99.3%, and accuracy 97.7% (see Table 1, Supplementary Table S1). Recorder ZA had the

lowest sensitivity (59.7%), and ZI the lowest accuracy (96.2%); on these grounds, data

from these two recorders was excluded, and all measures recalculated using data from the

5 remaining recorders. Despite the obvious loss of information, all agreement measures

increased: sensitivity to 69.6%, specificity to 99.4%, accuracy to 98.1%. Similarly, the ZB

and ZH recordings were found to have a great deal of wind noise in them. Excluding these

instead gave an even larger increase in sensitivity and almost no change in specificity or

accuracy. In contrast, data loss decreased the SCR estimate precision in each case: standard

errors were increased by 40-75%, while the density estimate itself was increased by about

20%.

We also note that the agreement measures depended on the resolution at which pres-

ence/absence was determined. Using larger windows (15 s instead of 1 s), we obtained

considerably higher sensitivity for every recorder combination tested (increase to around

75% from 69%), with specificity still remaining above 99% (Supplementary Table S2). A

drop in accuracy to 95.4% was observed, as would be expected when the fraction of positives

in the ground truth (or true species prevalence) increases.

4 Discussion

Many studies over the last two decades have suggested improvements to the methodology of

performing and analysing acoustic surveys for conservation purposes. In this paper we have

highlighted some of the issues that arise when trying to evaluate such improvements: (1)

optimal design in certain models strongly depends on unknown parameters such as the true

occupancy, and (2) the success of a single stage of the survey process does not necessarily

reflect the overall performance; these can lead to large uncertainty in abundance estimates,

with obvious negative consequences.

The former issue is known in the occupancy modelling literature (Mackenzie and Royle,
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2005; Gálvez et al., 2016), but the latter has received less attention: for example, call recog-

nition is mainly evaluated using agreement metrics (e.g., Potamitis et al. (2014); Stowell

et al. (2018); Metcalf et al. (2019)), and even though some problems stemming from them

have been discussed (Knight et al., 2017; Priyadarshani et al., 2018b; Sofaer et al., 2019), no

alternatives have been proposed. In the main comparison presented here – manual versus

automatic call detection – we have showed that the standard metrics rate the detection soft-

ware poorly, since they do not account for the gain in processing speed, nor accurately reflect

the impact that missed detections have on the final density estimation. This example high-

lights that detrimental changes to the survey (deleting large portion of data in this case),

can produce no effect, or even appear as improvements, on a single stage of the process-

ing pipeline. Similarly, the standard performance measures depended on the measurement

resolution, as seen in literature e.g. Metcalf et al. (2019).

We propose that the issues discussed could be alleviated by using the precision of the SCR

density estimate as a metric for evaluating acoustic survey methodology. As it has a close

relationship with the inferential power, this metric corresponds to the desired ecological out-

puts at the application level. Our results demonstrate that this metric properly accounted for

changes in effective sample size, and correctly identified that automatic processing provides

an overall improvement to survey efficiency.

In practice, this framework can be used by conservation managers to compare candidate

survey designs using simulated capture histories, or test different processing softwares using

real recordings. In our case, the sampling effort is represented by the human listening time,

as that is a major bottleneck in current acoustic surveys (Shonfield and Bayne, 2017), but

the same approach can be used to find the best experimental design given total budget or

other constraints. Cost-benefit analyses of acoustic surveys have been performed previously,

but without a general metric they had to assume that all options have equal detection

properties (Lemckert et al., 2005; Williams et al., 2018), or otherwise constrain the compared

designs, such as setting a fixed study duration and area (Pérez-Granados et al., 2019). The
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approach presented here allows comparing diverse study designs directly by summarising

multiple variables into the final estimate precision, either with occupancy or SCR models. In

both cases, the necessary standard error calculations are readily available in the modelling

software, but in occupancy studies the optimal choices of experimental design depend on

unobserved parameters, and so design tradeoffs need to be identified on a case-by-case basis

and thus are not directly applicable to issues such as recogniser algorithm development.

Even in SCR, the optimal design requires some knowledge of the target species ecology. In

particular, the need for overlapping detection ranges means that spacing between detectors

must be chosen based on the expected call propagation distance (taking into account that

imperfect call recognition will reduce this distance). If the recorder grid is concentrated

entirely within a single call range, or spaced too widely, resulting in very few ‘recaptured’

calls, the estimated densities will be considerably biased, and this bias is not captured by

our metric. However, there is some evidence (Sun et al., 2014) that SCR models are robust

to moderate deviations from optimal spacing.

Knowledge of the call rate µ is needed to convert the density of calls into actual population

counts, and this is rarely straightforward. The call rate of little spotted kiwi, like many

other animal and bird species, is affected by factors such as season, temperature, humidity,

population density, and even light levels (Keast, 1994; Digby, 2013; Watson et al., 2016).

In this study we therefore limited our field data analysis to the density of calls. However,

current monitoring protocols (e.g., Colbourne and Digby (2016)) already assume that the

call rate is fixed and equal in all surveys compared, to allow inferring population trends

from changes in cue count; under the same assumptions, conclusions derived from relative

precision of call density still apply to animal density.

An alternative, which merits further research, is the recognition of individuals from their

calls, which can be accommodated by the SCR framework (Stevenson et al., 2015). While

individual-specific features in kiwi syllables were shown to exist in Digby et al. (2014) and

Dent and Molles (2016), determining individual counts in an unsupervised way for large
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populations will be a much more complicated task (Gibb et al., 2018), although there has

been progress in other bird species, see e.g., Puglisi et al. (2004); Ptacek et al. (2015); Stowell

et al. (2017).

The main dataset used in this paper comprises recordings over two nights from seven

recorders. These recordings were analysed both automatically (with the outputs verified by

humans) and manually, with the aim of demonstrating the use of the precision of the SCR

density estimate for this change in analysis method. As the two processing choices differed

strongly, we found the two nights sufficient to establish the difference, but larger samples

would be needed if surveying cryptic species, or in open areas where wind conditions can

cause large variability in recording quality (Priyadarshani et al., 2018a).

While our recording period was short, and longer observation across different seasons

would be needed to establish the call rate, the results are in line with more complete studies.

Approximate kiwi call rates per individual can be obtained from the data in Colbourne

and Digby (2016) to be between 0.64–2.8 calls/night for five sites with brown kiwi (Apteryx

mantelli), and 1.4 for a survey of great spotted kiwi (Apteryx haastii). Assuming kiwi density

in our study area was about 1 individual/ha (Digby, 2013), a reasonably similar call rate

of 2.9 calls/night was obtained. We emphasise that this comparison is only for illustrative

purposes.

Our estimates of the detection parameters also match prior knowledge: a previous play-

back experiment for the same kiwi species reported effective detection radius of about 300-

400 m, or an area of about 25 ha for a single recorder and software processing (Digby et al.,

2013).

One major assumption limiting the use of SCR models with automated call recognisers –

at least in their current state (Knight et al., 2017; Priyadarshani et al., 2018b) – is that there

are no false positive annotations. To minimise their rate in this study, all calls suggested

by the detection software were manually reviewed. This way, instead of trying to optimise

the balance of false negatives and false positives, which can have unpredictable effects on
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the SCR models, the user needs to balance false negatives vs. the review effort – a tradeoff

that can be solved with the framework presented here. While we cannot reliably quantify

the number of false positives that remained after the review, we expect it to be very few,

given the distinctive pattern of the kiwi call. Misidentification would be a much bigger issue

for other bird species, and also amphibian sounds (McClintock et al., 2010; Mortimer and

Greene, 2017).

As better recognisers become available, we expect the number of detections that need

human review to decrease; this will further shift the balance in favor of automated processing

methods. In the current paper, we chose to use a basic wavelet recogniser, in order to give a

conservative estimate of the improvements brought by automation. More complex machine

learning models are frequently used for bird call recognition, and may produce fewer false

positives (Stowell et al., 2018). However, for kiwi call recognition in long-term recordings, an

extension of the wavelet method used here has been shown to perform well (Priyadarshani

et al., 2020). Ongoing developments are combining the detections into a smaller number

of segments to review, and focusing user effort on the least certain annotations to further

reduce the occurrence of false positives.

An interesting alternative was proposed by Barré et al. (2019), who used all detected

cues (including false positives) in their models of bat activity, and afterwards tested the

conclusions for robustness. Unfortunately, the measurement error added this way would be

a particular problem for monitoring rare species, and those vocalising at lower range, where

more environmental noise is present (Priyadarshani et al., 2018b). Nonetheless, a metric

that allows quantifying this problem would be a valuable extension to our framework.

Although we demonstrated the issues in evaluating two particular types of survey – occu-

pancy models and grid-based SCR – various other study designs are common in ecoacoustics,

and can be evaluated using similar ideas, providing they result in a single estimate of abun-

dance and its precision. Soundscape studies (Pijanowski et al., 2011; Sueur et al., 2014), for

example, use acoustic indices to characterise a community directly, without estimating the
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abundance of each species. Recently, Bradfer-Lawrence et al. (2019) showed how a similar

framework, focusing on the overall precision of the index estimation, can be used to optimise

the design of soundscape studies. Evaluating surveys of species richness has been discussed

in Darras et al. (2016) and Darras et al. (2018), although their focus was on estimating bias,

not efficiency. Even if we consider only single-species, single-population surveys using au-

tonomous recorders, different configurations of the recorders are possible, leading to different

design issues.

The overlapping grid configuration used in this study is uncommon: in a recent survey,

Sugai et al. (2019) found that 71% of passive acoustic monitoring studies used only a sin-

gle recorder per site. However, many different designs, including single-recorder ones, can

be expressed as special cases of SCR, providing that some source of information about the

detection function is available, such as the estimated distance to each cue for distance sam-

pling (Borchers et al., 2015). As an example, Sebastián-González et al. (2018) estimated the

relationship between distance and recorded power of a bird call in a separate experiment,

and then used this function to allow distance sampling from single-recorder sites. Yip et al.

(2019) showed that such a procedure results in more accurate estimation of the true density

than traditional distance sampling by a human observer. Another option is to calibrate the

detection function using playback experiments (Llusia et al., 2011; Darras et al., 2016; Ha-

gens et al., 2018), although this is not trivial because it requires knowing the true loudness at

which the animal vocalises naturally. In any case, the framework presented here can be used

with such surveys, and even allows a comparison of them with other designs, e.g., to evaluate

the cost-benefit tradeoff of using a recorder grid. The latter task would require measuring

the uncertainty in the pilot estimates of the detection function; incorporating that into the

current approach could be a useful future development.

Occupancy studies avoid many of these issues and ultimately may be easier to conduct in

practice. The popularity and ease of use of the occupancy framework also means that more

data is available for historical comparisons, and it will likely remain a common approach
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in monitoring. However, guiding occupancy studies by their precision relies on knowing

study-specific parameters such as the true occupancy that are typically unavailable at the

onset of a study. In contrast, final precision of SCR allows the experimenter to identify

universally optimal design choices, which is necessary for developing methods such as call

detection software. The SCR framework can be readily extended to incorporate other types

of information available to the researcher, e.g., time of arrival, telemetry data, or spatial

covariates (Borchers et al., 2015; Linden et al., 2018), and applied to any vocalising species.

Because of this flexibility, a large variety of management decisions can be evaluated following

the approach presented here. We hope that the established SCR methods, combined with

our baseline results and field dataset, which allows the testing of new analysis methods on

standardised data, will provide a consistent way to evaluate new developments in acoustic

survey design and analysis.
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