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ABSTRACT 

 

Single-cell transcriptomics facilitates innovative approaches to define and identify 

cell types within tissues and cell populations. An emerging interest in the cancer field 

is to assess the heterogeneity of transformed cells, including the identification of 

tumor-initiating cells based on similarities to their normal counterparts. However, 

such cell mapping is often confounded by the large effects on total gene expression 

programs introduced by strong perturbations such as an oncogenic event. Here, we 

present Nabo, a novel computational method that allows mapping of cells from one 

population to the most similar cells in a reference population, independently of 

confounding changes to gene expression programs initiated by perturbation. We 

validated this method on multiple datasets from different sources and platforms and 

show that Nabo achieves higher rates of accuracy than conventional classification 

methods. Nabo is available as an integrated toolkit for preprocessing, cell mapping, 
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differential gene expression identification, and visualization of single-cell RNA-Seq 

data. For exploratory studies, Nabo includes methods to help evaluate the reliability 

of cell mapping results. We applied Nabo on droplet-based single-cell RNA-Seq data 

of healthy and oncogene-induced (MLL-ENL) hematopoietic progenitor cells 

(GMLPs) differentiating in vitro. Despite a substantial cellular heterogeneity resulting 

from differentiation of GMLPs and the large transcriptional effects induced by the 

fusion oncogene, Nabo could pinpoint the specific cell stage where differentiation 

arrest occurs, which included an immunophenotypic definition of the tumor-initiating 

population. Thus, Nabo allows for relevant comparison between target and control 

cells, without being confounded by differences in population heterogeneity. 

 

INTRODUCTION 

 

It is increasingly accepted that the majority of tumors are organized in cellular 

hierarchies, where the cancer stem cells or tumor-initiating cells (TICs) drive tumor 

growth (Clevers, 2011). TICs possess unique stem cell characteristics such as self-

renewal capacity, quiescence and drug resistance, which underlie metastasis and 

relapse. TICs are therefore a critical priority as targets for therapy. The development 

of improved immune-deficient mouse strains together with refinements to FACS-

based protocols for prospective isolation of functionally distinct progenitor 

populations have paved the way for the definition of the immunophenotype of a 

plethora of TIC-containing cell populations (Al-Hajj et al., 2003; Boiko et al., 2010; 

Bonnet and Dick, 1997; Quintana et al., 2008; Schepers et al., 2012; Singh et al., 

2004; Wang and Dick, 2005). Even though these efforts have been instrumental in 

shedding light on TIC biology, including the identification of leukemia-initiating 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.09.30.321216doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.321216
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

progenitor populations, they have also demonstrated that immunophenotypically 

defined populations are predominantly heterogeneous. Consequently, many times 

only a fraction of the cells are relevant for the research aim. Solving the cellular 

heterogeneity within TIC-containing fractions is particularly critical for molecular 

characterization and therapeutic target-identification, as transcriptional programs 

might otherwise be confounded by irrelevant cells. 

 

During the last half a decade, a series of technological breakthroughs  have radically 

improved our ability to quantify transcriptomes at the level of single  cells 

(Hashimshony et al., 2012; Jaitin et al., 2014; Macosko et al., 2015; Picelli et al., 

2014; Gierahn et al., 2017; Zheng et al., 2017). Clubbed under the generic term 

single-cell RNA-Seq (scRNA-Seq), this array of technologies has allowed for detailed 

analysis of cellular heterogeneity (Zeisel et al., 2015; Tirosh et al., 2016). Indeed, 

scRNA-Seq has led to the identification of new cell types (Grün et al., 2015; 

Ramsköld et al., 2012; Villani et al., 2017), deconstruction of developmental 

programs and lineage hierarchies (Treutlein et al., 2014; Trapnell et al., 2014; Shin 

et al., 2015; Blakeley et al., 2015; Moignard et al., 2015; Paul et al., 2015), spatial 

localization of cells in tissues (Achim et al., 2015; Satija et al., 2015), effects of high-

throughput gene editing (Dixit et al., 2016) and cell reprogramming (Treutlein et al., 

2016). A flurry of analysis methods has followed experimental innovations in this 

area. Most algorithms and software have focused on certain aspects of scRNA-Seq: 

data normalization (Vallejos et al., 2017), identification of cell clusters (Andrews and 

Hemberg, 2018), construction of lineage trajectories (Herring et al., 2018) and 

identification of differentially expressed genes (Jaakkola et al., 2017). Most recently, 
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data integration from multiple experiments has received necessary attention (Butler 

et al., 2018; Haghverdi et al., 2018; Kiselev et al., 2018).  

 

Increasing efforts in the genomics area now focus on investigating changes in 

heterogeneity following a cellular or molecular perturbation. This is of particular 

interest in cancer research. Here, the effect on cellular heterogeneity by oncogenic 

transformation or drug treatment has a critical impact for defining TICs, 

understanding the molecular mechanisms behind therapy resistance, and identifying 

TIC-specific therapeutic targets. One conceptual strategy to analyze such data is to 

perform ‘cell mapping’, wherein one of the samples is considered to be a base or 

reference population (for example a healthy cell population). Individual cells from one 

or more perturbed populations, called target populations hereon (e.g. tumor cells) 

are then mapped/projected to the reference population with the objective to identify 

their most similar counterparts. The current methods of cell mapping (Kiselev et al., 

2018), cell alignment (Butler et al., 2018) and batch correction (Haghverdi et al., 

2018) rest on the critical assumption that the dissimilarity between the test cells and 

one or more reference subgroups is smaller than that between at least any one pair 

of reference subgroups. However, this assumption may not hold true in experimental 

settings wherein the expression variance of genes responsible for the cellular 

heterogeneity is smaller than the molecular response to the perturbation. This is 

often the case when comparing a cancer cell population to its heterogeneous 

population-of-origin and if cells have been perturbed to alter lineage determining 

transcriptional networks. Thus, to increase the impact of scRNA-Seq technologies, 

development of novel bioinformatics tools for improved cell mapping is warranted.  
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To address these challenges, we here introduce Nabo, a novel computational 

approach for cross-population cell mapping. Nabo provides a graph-theory based 

approach to statistically validate mapping and allows integrative comparison of 

multiple target populations to the same reference population. Using a variety of 

published as well as in-house generated datasets, we show that Nabo performs 

equally or better than currently available methods for conventional cell mapping. To 

demonstrate the power and impact of Nabo for cancer research, we perform scRNA-

Seq analysis on the cancer stem cell-containing population from our MLL-ENL 

mouse model for acute myeloid leukemia (Ugale et al., 2014) and demonstrate how 

Nabo, unlike current state-of-the art cell-mapping methods, readily identifies 

leukemia-initiating cells within a heterogeneous population. Thus, Nabo represents a 

novel tool for relevant analysis of scRNA-Seq data in which a perturbation to an 

originally heterogeneous population results in a large molecular change to the target 

cells. As such, Nabo has a critical implementation in cancer research for detection of 

TICs. 

 

 

RESULTS 

 

Nabo maps cell populations across datasets with high accuracy 

The generation of mouse models for leukemia by enforced expression of oncogenic 

fusion genes has been instrumental for our current conceptual understanding of the 

origin of cancer stem cells. Interestingly, while the oncogenic targeting of 

hematopoietic stem cells almost consistently results in leukemic transformation, 

other progenitor populations also has transformation potential (Eppert et al., 2011; 
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Heuser et al., 2011; Huntly et al., 2004; Krivtsov et al., 2006; Somervaille and Cleary, 

2006; Ugale et al., 2014). Thus, the generation of cancer stem cells does not 

necessarily include high-jacking of the normal stem cells’ molecular machinery, but 

could also occur due to re-activation of critical stem cell programs in progenitor 

populations (Eppert et al., 2011; Krivtsov et al., 2006). In fact, we have recently 

shown that the MLL-ENL fusion gene exclusively transforms heterogeneous 

progenitor populations with myeloid differentiation potential downstream of the 

hematopoietic stem cells (Ugale et al., 2014). Here, we used droplet-based scRNA-

Seq technology to try to address whether MLL-ENL transformation expands a 

specific subpopulation within the heterogeneous GMLP population, which would 

potentially reveal the origin of the leukemic stem cells in MLL-ENL AML.  

 

Purified GMLPs from transgenic mice carrying a doxycycline (dox) inducible MLL-

ENL fusion gene were cultured for five days with or without dox and approximately 

2,000 cells were subsequently processed for scRNA-Seq using the Chromium 

droplet-based platform. T-SNE visualization of the scRNA-Seq data (supplementary 

figure 1A) showed that the un-induced (WT) and induced (MLL-ENL) cells divided 

into two separate clusters, suggesting large molecular differences caused by the 

expression of the fusion gene. To rule out that this was not simply due to batch 

effects or other technical artefacts, we used Seurat’s canonical correlation analysis 

(CCA) based approach of combining datasets. The t-SNE plot of WT and MLL-ENL 

cells post CCA alignment (supplementary figure 1B) did not show any obvious cell 

clusters and the population structure that was otherwise observed in WT cells alone 

was lost after CCA alignment. Together these analyses demonstrate the weakness 

of conventional bioinformatics tools in comparing single-cell RNA-seq data from a 
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heavily perturbed cell fraction to its heterogeneous population of origin. The dramatic 

molecular effect of the perturbation that a pre-leukemic lesion represents 

overshadows the gene expression variation that otherwise separates the different 

subpopulations within the heterogeneous progenitor population, and thus eliminates 

the advantages of the single-cell dimension from the analysis. 

 

To specifically address these challenges, we designed a novel computational tool for 

cross-population cell mapping, called Nabo. When using Nabo to perform cell 

mapping, samples are divided into reference and test populations, where the test 

cells are projected or mapped over the reference population. Nabo defines a 

relationship between cells from the reference sample by creating a shared nearest 

neighbor (SNN) graph (Jarvis and Patrick, 1973). To create an SNN graph, the 

distance between each pair of cells is calculated based on the expression levels of 

genes. For each cell, an arbitrary number of cells that have the least distance to the 

given cell are identified and are regarded as that cells’ neighbors. Subsequently, 

cells that have common(shared) neighbors are connected to each other and the 

strength of each connection is determined by the number of shared neighbors 

(figure 1A). After creation of the SNN graph, Nabo maps cells from one or more 

target samples onto this reference graph by identifying an arbitrary number of the 

most similar reference cells for each target cell (figure 1B). The test cells are then 

connected to the reference graph by identifying the shared neighbors. Importantly, 

whether from the same or different samples, the test cells are always mapped 

independently from each other and hence can never have connections between 

themselves (see Methods for further details) (figure 1C). This feature will circumvent 

separation between test and reference cells based on large molecular effects due to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.09.30.321216doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.321216
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8

the specific perturbation. Upon mapping, Nabo provides a ‘mapping score’ to each of 

the reference cells based on the number and strength of connections that were 

made to that reference cell from the target cells (figure 1D). Thus, the higher the 

mapping score of a cell, the higher its similarity to the target cell relative to other 

reference cells. The reference populations can be partitioned into clusters (figure 

1E) and cluster-wise mapping scores can be identified to ascertain if the test cells 

were significantly similar to a subgroup of the reference population (figure 1F). 

 

Using scRNA-Seq data from freshly isolated human peripheral blood mononuclear 

cells (66,000 peripheral blood mononuclear cells) as well as for purified CD19+ B 

cells, CD14+ monocytes and CD56+ natural killer (NK) cells (Zheng et al., 2017), 

Nabo correctly mapped cells of known identity onto a more heterogeneous group of 

cells containing multiple cell types (figure 2A). We found that the mapping score of 

the reference cells was significantly clustered (p < 1e-50; proportions z-test) to the 

cells expressing the corresponding marker gene (supplementary figure 2A). 

Reference cells expressing CD79A and MEIS1 (B cell marker genes) were mapped 

by CD19+ B cells with a specificity of 0.976 and 0.995. Similarly, for CD14+ 

Monocytes: 0.975 (CD14), 0.997 (FTL), 0.988 (LYZ) and for NK cells 0.993 (GNLY) 

and 0.994 (NKG7) mapping specificity was found. This indicated that Nabo could 

reliably project cells onto a heterogeneous population with high accuracy. 

Importantly, Nabo did not require any prior cluster knowledge to perform cell 

mapping. 

 

To illustrate Nabo’s ability to perform cell identity prediction, we took advantage of 

two publically available scRNA-seq datasets containing 6,000 (6K) and 33,000 (33K) 
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PBMCs obtained from a healthy donor. We created a reference graph of the 33K 

dataset, partitioned it into clusters and created a t-SNE layout of the cells for 

visualization (supplementary figure 2B). Using Nabo, we mapped the cells from the 

6K dataset cells onto this reference graph, with the objective of identifying the 

heterogeneity of the 6K cells (figure 2B). The cluster identities generated by Nabo 

correlated to 90.6 % with clusters generated by regular Seurat analysis of the 6K 

dataset alone (figure 2C). Nabo outperformed Random Forest (κ: 0.395), a general 

classification algorithm, as well as scmap-cell (κ: 0.772) (Kiselev et al., 2018), a 

single-cell RNA-Seq cell projection tool. Mapping scores were then generated for the 

33K cells by individual mapping of each cluster from the 6K data. Importantly, the 

mappings of distinct clusters from the 6K population were strongly restricted to the 

33K cluster, with similar expression levels of marker genes (figure 2D). 

Quantification analysis revealed that 92.34% of all mapping scores were ascribed to 

cells with correct cluster identity (supplementary figure 2C). 

 

Finally, we explored Nabo’s ability to perform cell mapping when reference and 

target samples are from different studies and use different scRNA-Seq platforms. For 

this, we used 4 different published scRNA-Seq datasets from pancreatic islets of 

Langerhans (Baron et al., 2016; Muraro et al., 2016; Segerstolpe et al., 2016; Xin et 

al., 2016). We chose one of the datasets as the reference population (Baron et al.; 

InDrop sequencing) and, using Nabo, constructed an SNN graph of the same 

dataset and calculated a force directed layout of the graph for visualization (figure 

3A). After mapping the other three datasets onto this reference graph (figure 3B), 

we found that Nabo was able to correctly map 69.3% (Xin et al, C1-IFC SMARTer 

platform (κ: 0.687)), 63.79% (Muraro et al., CEl-Seq2 platform (κ: 0.733)) and 
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88.36% (Segerstolpe et al SMART-Seq2 platform (κ: 0.927)) of the target cells to 

their appropriate cluster type as defined by the reference dataset (figure 3C). In 

comparison, scmap-cell correctly mapped 78.75% (κ: 0.665), 81.32% (κ: 0.764) and 

50.65% (κ: 0.45) of cells in the three datasets. Thus, as per the Cohen’s kappa 

scores, Nabo performed equally well- or better than scmap-cell in cell mapping using 

data obtained from different platforms. Together, these experiments demonstrate 

that Nabo performs equally or better than currently available methods for several 

different aspects of conventional cell mapping. 

 

Identification of MLL-ENL leukemia-initiating cells using Nabo 

Having an improved mapping tool at hand, we used Nabo on our scRNA-Seq data to 

compare the heterogeneity of MLL-ENL-transformed and WT GMLPs. A shared 

nearest neighbor graph of WT cells was created and partitioned into 12 clusters 

(figure 4A). MLL-ENL cells were projected onto this WT graph, providing a mapping 

score for each WT cell that signifies the reference cell’s similarity to the MLL-ENL 

cells (figure 4B). MLL-ENL cells were classified as members of either one of the WT 

graph clusters or they remained unassigned if enough evidence to perform 

assignment was lacking. Intriguingly, WT cells with high mapping score were 

significantly (p<1e-6; Chi-squared test) closely connected on the graph where cluster 

5 of WT cells had the absolute highest average mapping score (5.02) followed by 

cluster 11 (1.89) (figure 4C). Of all MLL-ENL cells that were assigned to a cluster, 

70.44% were assigned to cluster 5. In contrast, scmap-cell was unable to assign the 

vast majority (98.73%) of MLL-ENL cells to any cluster, while scmap-cluster 

assigned most of the MLL-ENL cells (77.5%) to cluster 6. However, with increased 

stringency (see Methods), scmap-cluster failed to assign 81.56% of MLL-ENL cells 
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to any cluster (figure 4D). To test how the results of each tool were dependent on 

the clustering itself, we used Seurat to perform clustering of the reference population 

(supplementary figure 3A-B) and then predicted the identity of MLL-ENL cells 

again. Even with a different partitioning of the cells, Nabo, under two different 

stringency settings, assigned 56.18% and 45.6% of MLL-ENL cells to Seurat’s 

cluster 5, which mostly comprised of the same cells as the cluster 5 from the SNN 

graph (figure 4A). Using this strategy, both scmap-cell and scmap-cluster (with high 

stringency settings) left 69.29% and 69.96% cells unassigned. Scmap-cell however, 

did assign 20.98% of cells to Seurat’s cluster 5. With default settings, scmap-cluster 

assigned 45.51% of cells to cluster 5. Interestingly, scmap-cluster assigned only 1 

cell to cluster 10 and no cell to cluster 11, which combined constituted the cells from 

the SNN cluster 6 (figure 4A), to which scmap-cluster had assigned 916 cells 

(77.5%) (supplementary figure 3C). The mapping performed by Nabo clearly 

indicates that the MLL-ENL cells bear a strong relative preference for cells that are 

from cluster 5. We also found that Nabo, unlike scmap, consistently predicted the 

association of MLL-ENL cells to WT clusters across different cluster partitioning.  

 

As a control to address if the results obtained from Nabo-generated mapping were 

due to technical biases such as -cell-cycle effect or sequencing depth, we used low 

variance genes (LVGs) rather than high variance genes to create the reference 

graph and perform the mapping. We visualized the mapping scores on LVG 

reference graph using the same layout as for the actual reference graph. This 

revealed a substantially more even distribution of cells across the graph 

(supplementary figure 4A). Additionally, the distribution of LVG mapping scores 

across the clusters was relatively uniform, with cluster 5 having an insignificantly 
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higher mapping score distribution than others (supplementary figure 4B). However, 

in absolute terms, the mean mapping score in cluster 5 was 33.78 times lower in 

LVG mapping compared to original (HVG) mapping. Also, using LVG mapping, Nabo 

failed to assign 92.89% of cells to any cluster (supplementary figure 4C). To 

investigate the robustness of the mapping, we prevented MLL-ENL cells from 

mapping to reference cells that had received a mapping score higher than 1 in the 

actual mapping (10.75% cells). If WT cells with high mapping scores were not 

significantly more similar to MLL-ENL cells than to the rest of the WT cells, then in 

this control setup, called blocked mapping, a subset of these cells will receive 

similarly high mapping scores. While 58 of the reference cells received a mapping 

score higher than 5, only one cell passed this threshold in blocked mapping 

(supplementary figure 4D). Under these blocked mapping conditions, cluster 9 

received the highest mapping scores (supplementary figure 4E). However, this was 

still 5.86 times lower than the mean mapping score of cluster 5 from the actual 

mapping (figure 4c). Also, 64.13% of cells were not assigned to any cluster by 

Nabo’s classifier (supplementary figure 4F), which was 2.33 times higher than 

observed in the actual mapping (figure 4C).  Overall, these two controls indicated 

that the mapping of MLL-ENL on WT cells was significant and non-trivial. As these 

controls are critical and useful methods for evaluating mapping results in exploratory 

studies, they have been assigned to Nabo for easy inclusion in an analysis workflow. 

Within Nabo, we have also included a heuristic to identify mapping specificity of each 

target node. Mapping specificity of a node will be higher if all the reference nodes it 

connects to are also close to each other. When applied to MLL-ENL cells, we found 

that the cells that projected to cluster 5 and cluster 11 (figure 4A and 4C) had higher 

average mapping specificity than other MLL-ENL cells (supplementary figure 5A). 
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These mapping specificities can also be viewed from a reference cell’s perspective, 

by averaging the mapping specificity of all the target cells that map to a given 

reference cell (supplementary figure 5B). 

 

To define the identity of WT cells in cluster 5, to which an overwhelming majority of 

the MLL-ENL cells had mapped, we used Nabo to identify marker genes specifically 

expressed within this cluster. The cumulative expression of these marker genes 

were then cross-referenced to known cell types from bulk transcriptome datasets 

obtained from the BloodSpot database (Bagger et al., 2016). Using the annotations 

of each cluster, a myeloid and a lymphoid differentiation trajectory could be inferred 

in the WT graph (figure 4A). Interestingly, within this trajectory, the MLL-ENL-

mapped cluster 5 as well as cluster 9 represented subpopulations with the most 

primitive molecular signatures identified as LMPP- and Pre-GM-like, respectively 

(supplementary figure 6). This observation is in concordance with previous reports 

that suggest that overexpression of oncogenes in pluripotent/multipotent cells can 

prevent primitive cells from terminally differentiating and subsequently develop into 

tumors (Cozzio et al., 2003).  

 

To further investigate the gene signature of ‘MLL-ENL like WT cells’, we focused 

only on a subset of cells within cluster 5 that received a mapping score greater than 

1 (92 cells) and compared them to their nearest 89 cell neighbors (see Methods) 

(supplementary figure 7A). We found 96 genes with significantly higher expression 

(adjusted p-value < 0.05) in MLL-ENL like WT cells, including FLT3, BCL2, SOX4 

and AFF3 (supplementary figure 7B). Many of these genes were not just higher in 

test cells compared to control cells, but also when compared to rest of the cells on 
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the graph (supplementary figure 7C). Interestingly, WT cells with high mapping 

scores demonstrated a primitive gene expression signature when compared to the 

rest of WT cells (supplementary figure 8A), but a more differentiated signature 

compared to MLL-ENL cells that mapped to these WT cells (supplementary figure 

8B). On the other hand, MLL-ENL cells displayed a higher expression of genes that 

are normally expressed in hematopoietic stem cells (supplementary figure 8C). 

These results strongly indicate that MLL-ENL induction perturbs a primitive 

subpopulation of GMLPs and induces a gene expression program that is normally 

found upstream in the lineage hierarchy. 

 

To further verify that the MLL-ENL induced cells were actually in a less differentiated 

state than the WT GMLPs, we chose to map the MLL-ENL-transformed GMLPs 

against total cKit+ BM cells (Säwen et al., 2018), which consists of a wider range of 

hematopoietic progenitors (supplementary figure 9A). First, we mapped 500 highly 

purified hematopoietic stem cells (HSCs) (LSK CD150+ CD48-; (Säwen et al., 2018)) 

to the reference graph (figure 5A). Interestingly, these 500 cells mapped almost 

exclusively to a rare group of 7 cells within the cKit+ reference graph, demonstrating 

the stringency of Nabo and establishing the location of the most primitive cell type 

within the trajectory of the graph. We then mapped the WT GMLPs and MLL-ENL 

induced GMLPs on the cKit+ cells (figure 5B-C). To quantify the differentiation state 

of the reference cells, we assigned the differentiation potential for each cell  

(Weinreb et al., 2018) (figure 5D) and inferred a pseudo-time axis of the data (figure 

5E). This revealed that the sorted HSCs were most upstream, followed by MLL-ENL 

induced GMLPs and then WT GMLPs (figure 5E), thereby confirming our earlier 

observations (figure 5A-C). When annotating the cell clusters of the cKit+ reference 
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population, we found that WT GMLPs mapped  cells had signatures of GMPs and 

differentiated granulocytes, while MLL-ENL mapped cells had highest similarity to 

gene signatures of preGMs and LMPPs (supplementary figure 9B). Thus, Nabo is 

a powerful tool to predict the identity of TICs from scRNA-Seq data. 

 

Nabo has a broad implementation for mapping perturbed populations of 

different cell systems 

 

Similar to oncogenic transformation, overexpression or deletion of transcription 

factors may cause large-scale transcriptional changes and disrupt the heterogeneity 

of a cell population. Such effects will create substantial differences between the 

normal and perturbed cells, resulting in their independent clustering. To evaluate if 

Nabo would be a useful tool for these kinds of experimental settings, we used a 

scRNA-seq dataset comparing differentiating WT murine embryonic stem cells 

(ESCs) with ESCs deficient for the transcription factor YY1 (Weintraub et al., 2017).  

 

Using tSNE visualization, it was previously observed that YY1- cells clustered away 

from the YY1+ cells, resulting in a loss of single-cell resolution (Weintraub et al., 

2017). In an attempt to compare the heterogeneity between YY1+ and YY1- cells, we 

used Nabo and created a reference graph for YY1+ cells that was visualized using a 

force directed layout after partitioning the graph into six clusters (figure 6A). After 

mapping the YY1- cells (figure 6B), we found that the mapping scores were mainly 

concentrated in the clusters corresponding to clusters 4, 5 and 6 (figure 6C). 

Visualizing marker genes for pluripotency and primary germ layers (figure 6D) 

revealed that clusters 5 and 6 were dominated by endodermal and mesodermal 
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molecular signatures, respectively. As the mapping scores were largely low or 

absent in cells with pluripotency and ectodermal lineage marker expression, we 

inferred that YY1 depletion in murine ESCs either results in accelerated 

differentiation towards mesodermal and endodermal lineages, or in the loss of 

pluripotent and ectodermal progenitor cells. This finding is consistent with the notion 

that YY1 is critically important for ectodermal development (Satijn et al., 2001) and 

demonstrate the utility of Nabo to define cellular heterogeneity following different 

types of perturbation in a broad range of cell types. 

  

DISCUSSION 

 

Recent advances in RNA sequencing methodology has allowed for measurements of 

global gene expression programs in individual cells as a proxy for their function. 

Thus, scRNA-Seq experiments offer an unprecedented possibility to dissect cellular 

heterogeneity in tissues or purified cell-fractions, that is now extensively used to 

visualize cellular hierarchies and compositions throughout the entire human body. 

Most approaches for analysis of scRNA-seq data have focused on statistical 

methods to discriminate cells by clustering into groups or trajectories. However, for 

scRNA-Seq to become useful when approaching changes in heterogeneity during 

situations of major perturbations of molecular programs, computational methods that 

allow for comparison of relevant information between datasets are critical. One way 

to integrate such data is through cell mapping, which allows identification of cell-cell 

relationships even when the data is spread across experiments, alternative 

sequencing platforms and studies. With Nabo, we aimed to develop an accessible 

and interpretable platform to perform cell mapping. The control datasets indicated 
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that Nabo has equal or improved accuracy than existing methods in conventional 

classification of target cells based on reference cell clusters. Nabo supplements two 

other recently published algorithms that aim to integrate scRNA-Seq datasets, 

mmCorrect (mutual nearest neighbors correction) (Haghverdi et al., 2018) and 

Seurat’s CCA (canonical covariate analysis) based cell alignment (Butler et al., 

2018). Both of these algorithms are geared towards removal of batch effects 

between the datasets. The implicit assumption made by these algorithms is that the 

differences between the populations being compared is mostly technical in nature. 

Nabo is not based on such assumptions. Instead, Nabo allow for relevant 

comparison of heterogeneity between populations even if they have large differences 

in gene expression profiles due to a biological component, such as overexpression 

of an oncogene. MNNcorrect is more useful when a user wants to obtain batch 

corrected expression values, while Seurat’s CCA can be useful in scenarios where 

the user wants an integrated low-dimensional embedding of two or more datasets. 

Both of these approaches, however, lead to changes of cell embeddings of the 

reference population for each new population/sample included. For example, the t-

SNE layout of cells will change when new samples are included. Nabo solves this by 

providing a quantitative measure that can be ascribed to each cell of the reference 

sample. In this way, no matter which and how many target populations are projected, 

the reference cells can always be visualized in their original space. 

 

In cell mapping and other predictive analytics approaches that use scRNA-seq data, 

one major challenge has been the validation of the results. We demonstrated two 

innovative approaches that Nabo uses to evaluate the mapping reliability that we 

believe could be particularly useful for experiments where little prior knowledge 
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about the mapping exists. The implementation of Nabo was done with two 

objectives: high accuracy and low memory requirements, so that the software can be 

run on ordinary desktops and laptops with modest hardware requirements. The 

tradeoff for this implementation was a runtime that increases quadratically with cell 

number. We were able to process PBMC data with 66,000 cells within 6hrs with just 

8 GB of RAM required. Most scRNA-Seq experiments carried out today are well 

within that range. 

 

Importantly, we also demonstrated an exclusive capacity of Nabo to ascribe mapping 

scores to reference cells. This allows for quantitative assessment of mapping and 

subsequent identification of specific groups of cells in the reference population that 

are similar to the test cells, which is advantageous when trying to determine the 

exact identity of TICs. Unlike current methods, Nabo is designed to ignore the 

massive transcriptional changes associated with a strong perturbant such as the 

onset of a strong oncogene and allow for cell mapping entirely based on expression 

of molecular signatures associated with heterogeneity. Using Nabo on scRNA-Seq 

data acquired from the TIC-containing GMLP population from our MLL-ENL mouse 

model of AML, we could identify a distinct target population characterized by a 

primitive and multipotent molecular signature. Interestingly, this population could be 

discriminated from other more differentiated GMLP populations by the expression of 

fms-like tyrosine kinase 3 (Flt3). Together, these results validate the usefulness of 

Nabo as a tool for scRNA-Seq analysis of tumor populations with the aim of defining 

the changes in heterogeneity caused by oncogenic transformation and subsequent 

TIC identification. 
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METHODS 

 

Nabo overview 

Nabo uses HDF5 file format to store the data on the disk. The data is stored in gene-

wise and cell-wise manner to allow quick subselection across both axes. For 

mapping, the reference dataset is first normalized (library size normalization) and the 

selected features are subjected to standard scaling. The data is normalized and 

scaled on the fly as it is being loaded from the disk. The scaled data is subjected to 

PCA reduction using an out-of-core (incremental) implementation of PCA. The 

Euclidean distances are computed between each pair of cells in the PCA space to 

identify k-nearest neighbor of each reference cell. The shared nearest neighbors are 

identified for each pair of KNN neighbors and if they have non-zero shared neighbors 

then an edge is added between the two cells with weight equal to the ratio of number 

of shared  neighbors (s) to s – maximum possible shared neighbors. The cells to be 

projected are too library scale normalized but their features are scaled as per the 

mean and standard deviation of features in the reference dataset. This scaled target 

data is then projected into the PCA space trained on reference data. The distance of 

each target cell to every reference cell is calculated using a modified Canberra 

metric. The metric is modified such that if in a given dimension the distance between 

target (t) and reference (r) cell value is greater than f * r, where f is a predefined 

factor between a range of 0-1, then distance is set as 1 (highest value). This means 

that if the target cell has a very high value in a given dimension, then that dimension 

would automatically cause the distance to saturate. 

 

Mapping score calculation 
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Mapping score is calculated using the `get_mapping_score` function of the Graph 

class. The score for a reference cell is calculated by calculating the weighted sum of 

all of its incoming projections. Mapping scores are always normalized to the number 

of projected cells, to allow comparison between two mapping score distributions as 

long as the other parameters remain similar.  

 

Classification of cells 

The classification of target cells is performed by the `classify_targets` function of the 

Graph class. The target cells are classified to one of the reference clusters using 

voting method. The projections (edges) of a given target cell to reference cells are 

grouped based on the cluster identity of the reference cells.  A weighted sum of 

projections is calculated for each of the groups. If a single group has a weighted sum 

that is higher than predefined threshold (default: 50% of total weighted sum), then 

the cell is classified to that cluster otherwise the target cell remains unassigned to 

any cluster. As an additional filter, projections can be discarded during calculation of 

cluster-wise weighted sums based on individual weight of each edge connection 

between a target cell and a reference cell. Furthermore, a target cell can directly be 

classified as unassigned if it has fewer projections than a pre-set cutoff. These two 

tunable parameters ensure that users have fine control on classification accuracy. 

 

Differential gene expression calculation 

Mann-Whitney U test (as available in the scipy.stats package in Python) is used to 

identify genes that are differentially expressed between two groups of cells. P values 

are corrected for multiple hypotheses testing using the Benjamini/Hochberg method 

(as implemented in the statsmodels package). If the number of cells in the control 
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are higher than the number of cells in the test group, the same number of cells as in 

the test group are selected from the control group. Such subselection of cells is 

performed after sorting the control cells in order to retrieve top nc values (from 

highest to lowest), where nc in number of test cells. This strategy helps improve the 

specificity of the results. To identify the genes driving a mapping specificity, 

reference cells with mapping score higher than a given threshold are selected (test 

cells); thereafter all the cells that are at the node distance of n (defined by the user) 

from the test cells, in the reference graph, are marked as control nodes against 

which genes upregulated in test nodes are identified. The higher values of n will 

cause identification of larger differences in transcriptomes of mapped and unmapped 

cells, while smaller values of n will highlight the smaller differences between the 

control and test cells.  

 

Hematopoietic gene signature identification 

Gene sets were queried against the ‘normal mouse hematopoiesis’ dataset that 

contains cell types from the BloodSpot database (Bagger et al., 2016). The median 

value of the gene set in each cell type was determined and these values were min-

max scaled across cell types. The results were visualized as area plots in polar 

coordinates to enable quick assessment for presence of cell type signature in a gene 

set. +/-1 standard deviation is also calculated by usage of biological replicate data of 

cell types and also visualized to provide a quick assessment of noise in the results. 

 

 

Data processing 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.09.30.321216doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.321216
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22

All the datasets were subjected to cell filtering, HVG identification, Louvain 

clustering, UMAP and/or tSNE embedding generation and marker gene 

identification; all using Seurat version 3.0.1. Parameters used of each individual 

dataset can be found in the online repository. The HVGs identified by Seurat were 

used to perform reference graph generation of the respective datasets. The same list 

of HVGs was also used to train classifiers and scmap. 

 

Single-cell RNA-Seq of in vitro cultured GMLPs and MLL-ENL induction 

Granulocyte-macrophage-lymphoid progenitors (GMLPs) were enriched from BM of 

WT and iMLL/ENL mice by depletion of mature cells using biotinylated antibodies 

against lineage markers (CD4, CD8a, B220, CD11b, Gr1and Ter-119) and anti-biotin 

conjugated magnetic beads, according to manufacturer�s instructions (Miltenyi 

Biotech, Germany). GMLPs were sorted as Lin-Sca1+c-Kit+CD48+CD150- on a 

FACS Aria II or III cell sorter (Becton Dickinson, San José, CA). Propidium iodide 

(Invitrogen, Carlsbad, CA) was used to exclude dead cells. The 10,000 sorted 

GMLPs were maintained in OptiMEM (Invitrogen, Carlsbad, CA) supplemented with 

10% FCS, 0.1 mM β-mercaptoethanol (Invitrogen, Carlsbad, CA), 1x 

Penicillin/Streptomycin (Invitrogen, Carlsbad, CA), SCF (10 ng/ml), IL3 (5 ng/ml), G-

CSF (5 ng/ml) (all from Peprotech Inc., Rocky Hill, NJ) and 1 μg/ml doxycycline 

(Sigma-Aldrich, St. Louis, MO). After 4 days, cells were harvested and subjected to 

single cell (SC) RNA sequencing. ScRNA-Seq data was generated on the 10X 

platform (10X Genomics) according to the manufacturer’s instructions. 

Antibody clones and suppliers are as follow: 

Antibody Clone Supplier 
Sca1 D7  Biolegend 
Ckit 2B8 Ebioscience 
CD150 TC15-12F12.2 Biolegend 
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CD48 HM48-1 Pharmingen 
 

Data and code availability 

All code used to analyze the data and generate the figures can be found here: 

http://github.com/parashardhapola/nabo_manuscript. This repository also contains 

the count matrices of the datasets in MTX or CSV format. Nabo format HDF5 files 

can also be found in the same repository. Source code of Nabo is available here: 

http://github.com/parashardhapola/nabo. API and tutorials for usage of Nabo can be 

found here: nabo.readthedocs.io. YY1 dataset was downloaded from GSE103574 

(samples: GSM2774584 and GSM2774585). Pancreatic cells datasets were 

downloaded from these GEO repositories: GSE84133 (Baron et. al.), GSE85241 

(Muraro et. al.), GSE81608 (Xin et .al.). Data for Segerstolpe et. al. was downloaded 

from Array Express archive E-MTAB-5061. PBMC 68K, 33K and 6K cell dataset was 

obtained from 10x genomics data portal as count matrices (MTX format) generated 

using Cell Ranger version 1.1.0. Data for murine HSCs and cKIT+ cells was obtained 

from GSE122473. 

 

FIGURE LEGENDS 

 

Figure 1: Workflow of cell mapping using Nabo. (A) SNN graph of reference 

population. (B-C) Projection of test cells over the reference SNN graph. (D) 

Reference cells sized based on their mapping score. (E) Reference cells colored 

based on their cluster identity. (F) Reference cells colored based on cluster identity 

and sized as per mapping score. 
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Figure 2: The mapping accuracy of Nabo. (A) Mapping of three purified cell 

populations, CD19+ B cells, CD14+ monocytes and CD56+ NK cells on fresh PBMC 

cells. In the top t-SNE plot of the reference population, i.e. PBMCs, the cells are 

connected to each other based on the SNN graph of PBMCs. Middle panel of t-SNE 

plots shows cells sized based on the mapping scores obtained from mapping of each 

individual purified population. The cells are colored in blue and the edges in grey. 

Absence of blue cells indicates that no mapping score was assigned to those 

reference cells. The bottom panel of t-SNE plots shows the reference cells colored 

based on expression of marker genes of the respective mapped populations; darker 

blue color indicates higher expression. (B) Mapping of individual clusters of cells 

from one dataset to another. The t-SNE layout of cells from the 6K dataset has been 

shown with cells colored based on their cluster identity. The clusters are labeled 

based on expression of canonical markers. The bottom t-SNE plot shows the 

reference population, i.e. 33K PBMC dataset. The cells are connected to each other 

as for the SNN graph. As no clustering was done on this dataset, all cells are colored 

blue. (C) Comparison of cell types in the 6K dataset identified by Nabo and Seurat. 

Each data point in the scatter plot is sized to indicate number of cells. (D) The top 

panel contains the t-SNE plots of the 6K dataset, with individual cells colored based 

on the expression of defined marker genes for the indicated cell type. The middle 

plot depicts a t-SNE layout of the 33K dataset sized based on mapping scores 

following mapping of the respective 6K cluster. The gray lines indicate the edges in 

the SNN graph of the 33K dataset. The bottom panel of t-SNE plots shows 

expression of marker gens in the 33K dataset in same order as the top panel. 
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Figure 3: Mapping of pancreatic cells across datasets. (A) A force directed layout 

of pancreatic cells obtained from Baron et al. showing clusters of cells labelled based 

on marker expression. This cell population was used as reference population for 

mapping from other datasets. (B) Each panel shows a force directed layout of 

reference cells, with cells scaled in size based on mapping scores obtained by 

mapping of specific cell types from a given study. NA panel indicate that the cell type 

was not present in that study. (C) Barplots showing the number of cells whose cell 

type was predicted either correctly, incorrectly or remained unassigned with respect 

to cell types reported in the original study. 

 

Figure 4: Mapping of MLL-ENL expressing GMLPs. (A) A force directed layout of 

an SNN graph depicting normal GMLPs, with clusters assigned to numerals and 

colors. The different cell stages inferred from gene expression patterns is indicated. 

(B) SNN graph of normal GMLPs where cells have been sized based on their 

mapping score obtained after projection of MLL-ENL induced GMLPs. (C) Boxplots 

showing the distribution of mapping scores across the clusters. The red line in each 

box indicates the median value. (D) Barplots showing the number of MLL-ENL cells 

that were assigned to each reference graph cluster. The minimum weight for 

assignment using Nabo was set at either 0 or 0.1 (default). In case of scmap-cluster, 

the weight fraction was set either at 0.7 (default) or 0.9. 

 

Figure 5: Assessing differentiation of MLL-ENL cells. Mapping of (A) purified 

HSC (B) WT GMLPs (C) and MLL-ENL induced GMLPs on the SNN graph of cKit+ 

cells. Cells have been size scaled proportional to the mapping score of respective 

target population. (D) The inferred differentiation potential c-kit+ cells. (E) The 
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differentiation potential of cells is shown on the x axis and the y axis shows the 

average mapping score on cells grouped into bin sizes of 100 cells. 

 

 

Figure 6: Nabo interrogation of the effects of YY1 depletion on murine 

embryonic stem cells. (A) SNN graph of murine embryonic stem cells (mESCs) 

where cells have been colored based on their cluster identity. (B) SNN graph of 

mESCs, where node size has been scaled proportional to the mapping scores 

obtained on projection of YY1 depleted mESCs. (C) Distribution of mapping scores 

across the mESC clusters. (D) SNN graph of YY1+ ES cells with expression of 

marker genes for each germ layer as well as pluripotency associated genes 

highlighted. 

 

Supplementary figure 1: (A) t-SNE plot showing cells from WT GMLPs (in blue) 

and MLL-ENL induced GMLPs (in red) as separate clusters. (B) t-SNE plot of WT 

and MLL-ENL induced GMLPs obtained after applying Seurat’s CCA algorithm. 

 

Supplementary figure 2: (A) The fraction of either mapped or unmapped cells 

expressing the given marker gene. The mapping was performed using the indicated 

cell population in the PBMC dataset. (B) Reference graph of the 33K data set, with 

cell labels obtained post clustering using Seurat. Cell labels were placed based on 

the expression of canonical marker genes. (C) Fraction of mapping scores that was 

either within or outside the 33K dataset Seurat clusters upon mapping of each 

corresponding 6K cluster. (D) A t-SNE visualization of the 6K PBMC dataset showing 

the cells (in red) whose cluster identity was differently predicted by Nabo and Seurat. 
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Supplementary figure 3: (A) A t-SNE plot of normal GMLPs obtained using Seurat. 

The cells have been colored based on cluster association, which is also indicated by 

numerals. (B)  The SNN graph (from Figure 4A) of normal GMLPs, using the same 

cluster identities as shown in A. (C) Barplots showing the number of MLL-ENL cells 

that were assigned to each cluster obtained from Seurat. The minimum weight for 

assignment using Nabo was set at either 0 or 0.1 (default). In case of scmap-cluster 

the weight fraction was set either at 0.7 (default) or 0.9. 

 

Supplementary figure 4: (A) SNN graph of normal GMLPs constructed using low 

variance genes sampled from the same expression range as the highly variable 

genes (HVGs). The cell positions have been set to be the same as in the SNN graph 

obtained using the HVGs (figure 4A). The cell size has been scaled to indicate the 

mapping score obtained when MLL-ENL induced GMLPs were projected on this 

graph. (B) The cluster-wise distribution of mapping scores shown in A. The same 

cluster identities were used in the HVG graph. (C) The number of MLL-ENL cells 

assigned to each of the cluster. (D) SNN graph of WT GMLPs following blocked 

mapping. (E) The cluster-wise distribution of mapping scores shown in D. The same 

cluster identities were used in the HVG graph. (F) The number of MLL-ENL cells 

assigned to each of the cluster after the projection shown in D. 

 

Supplementary figure 5: (A) Force directed layout of SNN graph of normal GMLPs 

along with the force directed layout of MLL-ENL cells. The reference cells are in gray 

and the MLL-ENL cells are colored based on their mapping specificity. The mapping 

specificity is indicated in dark purple (highest) and light yellow (least specificity). (B) 
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The average mapping specificity of each reference cell based on the specificity of 

each MLL-ENL cell that mapped onto those reference cells. Smaller and lighter 

colored cells have higher mapping specificies and those in large size and dark green 

color have lower specificity. The cells shown in grey were not mapped to. 

 

Supplementary figure 6: (A) Radar plots showing the predicted cell type for each of 

the normal GMLP cluster. The three area polygons in the radar plot show the mean 

and +/- 1 SD values. 

 

Supplementary figure 7: (A) Force directed SNN graph of normal GMLPs. The red 

dots represent cells with mapping scores higher than 1 and are from cluster 5. The 

blue dots represent cells which are at a path distance of 2 from red cells. The red 

cells were compared with blue cells to identify differentially expressed genes 

associated with mapped cells. (B) The expression of the top 30 most differentially 

expressed genes. The cells marked in dark red have higher expression and the ones 

marked in yellow have the less expression. (C) Notched boxplots showing the 

distribution of selected genes in the three groups. 

 

Supplementary figure 8: Radar plots showing the gene expression-based lineage 

affiliation of cells. Genes used to generate each plot were those differentially 

expressed (upregulated) obtained by comparing: (B) Normal GMLPs from cluster 5 

that received mapping scores over 1 compared to other cells at path distance of 2. 

(B) WT GMLPs from cluster 5 that received mapping scores over 1 compared to 

MLL-ENL cells that mapped to these cells. (C) The opposite approach of B. (D) All 

MLL-ENL cells compared to all normal GMLPs. 
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Supplementary figure 9: (A) SNN graph of c-kit+ cells, where cells have been 

colored based on the cluster identity. (B) Radar plots showing the lineage bias of 

each cluster, inferred from gene expression signature of each cluster. 
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