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ABSTRACT 

Everyday decision-making commonly involves assigning values to complex objects with multiple value-

relevant attributes. Drawing on what is known about complex object recognition, we hypothesized two 

routes to multi-attribute evaluation: assessing the value of the whole object based on attribute 

configuration, or summing individual attribute-values. In two samples of healthy human participants 

undergoing eye-tracking and fMRI while evaluating novel pseudo-objects, we found evidence for distinct 

forms of multi-attribute evaluation. Fixations to, and transitions between attributes differed 

systematically when value was associated with individual attributes or attribute configurations. Further, 

ventromedial prefrontal cortex (vmPFC) and the perirhinal cortex were engaged during evaluation 

specifically when configural processing was required. These results converge with our recent findings 

that damage to vmPFC disrupts decisions when evaluation requires configural processing, and not in 

evaluating “the sum of the parts”. This suggests that multi-attribute decisions may engage distinct 

evaluation mechanisms relying on partially dissociable neural substrates. 

INTRODUCTION 

Choosing which snack to buy from a vending machine requires assessing the value of options based on 

multiple attributes (e.g. color, taste, healthiness). Value can be related to individual attributes (Suzuki, 

Cross, and O’Doherty 2017): for example if someone likes chocolate, all snacks containing this ingredient 

will be valued above those that do not. Value can also emerge from the combination of attributes, such 

as for chocolate-peanut snacks, where the combination of sweet and salty ingredients within the same 

snack might yield a value greater than the sum of the individual attributes. 

The object processing literature has shown that there are distinct neural substrates representing the 

individual elements that make up complex objects and the holistic, configural combinations of those 

elements (Bussey and Saksida 2002). When recognizing complex objects, attribute-level and whole 

object-level processing rely on dissociable brain regions along the hierarchically organized ventral visual 

stream (VVS). Posterior regions are involved in processing individual attributes whereas more anterior 

regions contribute to holistic (configural) object representations (Riesenhuber and Poggio 1999). Lesions 

to the perirhinal cortex (PRC), a medial temporal lobe structure situated at the anterior end of the VVS, 

impair object discrimination based on attribute configuration but spare discrimination based on 

individual attributes (Bartko et al. 2007; Bussey, Saksida, and Murray 2005; Murray, Bussey, and Saksida 

2007). Several fMRI studies have shown that BOLD activity in the human PRC is more sensitive to multi-

attribute configuration than to the component attributes of objects, whereas the lateral occipital cortex 
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demonstrates higher sensitivity to single attributes compared to anterior regions of the VVS (Devlin and 

Price 2007; Erez et al. 2016). This suggests that configural object recognition is supported by the PRC, 

and that individual attribute representations at earlier stages of object processing are sufficient for 

object recognition or discrimination under certain conditions. 

Leading neuroeconomic models suggest that the vmPFC encodes subjective value across stimuli as a 

“common currency” (Levy and Glimcher 2012), which might support flexible decision-making (Delgado 

et al. 2016). While many of these studies have presented multi-attribute objects (e.g. foods, trinkets), 

they have only rarely considered how the values of multiple attributes are combined. A handful of 

functional MRI studies have examined the neural correlates of options explicitly composed of multiple 

attributes. These have found that signal within the vmPFC reflects the integrated value of the 

component attributes when each independently contributes to value, i.e. when value is associated with 

individual elements of the option (Basten et al. 2010; Hunt, Dolan, and Behrens 2014; Kahnt et al. 2011; 

Kurtz-David et al. 2019; Lim, O’Doherty, and Rangel 2013; Park et al. 2011; Philiastides, Biele, and 

Heekeren 2010; Suzuki et al. 2017). However, this work does not address whether there are distinctions 

in the neural processes underlying value construction based on component attributes and value 

emerging from the holistic configuration of attributes.  

There is some recent evidence that this distinction between configural and elemental processing is 

important in evaluation, just as it is known to be important in complex object recognition. We recently 

found that lesions to the ventromedial prefrontal cortex (vmPFC) impaired decisions between objects 

when value was associated with the configural arrangement of attributes, but spared decisions when 

value was associated with individual attributes (Pelletier and Fellows 2019). 

Eye-tracking studies found that eye movements also distinguish between configural and elemental 

processing. In a reinforcement learning paradigm, the amount of time spent fixating an outcome-

predicting cue varied with the extent to which participants used cue-configurations or separate cues for 

learning (Duncan et al. 2018). It has also been found that when recognizing faces, people make more 

gaze transitions between attributes (e.g., eyes, nose) when configural processing is primed, and fixations 

are longer when elemental processing is primed (Bombari, Mast, and Lobmaier 2009). It is still an open 

question whether eye-movements on complex objects differ between configural and elemental 

evaluation. 
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Here, we relied on the framework provided by object processing research to better understand how the 

brain recognizes the value of multi-attribute objects. We employ a triangulation approach (Munafò and 

Smith 2018) to test this idea, using fMRI and eye-tracking to examine the neural and behavioural 

correlates of multi-attribute valuation. We hypothesized that estimating value in the configural 

condition would engage the vmPFC and high-level object recognition regions (i.e. PRC) to a greater 

extent than elemental valuation. We further hypothesized that fixations to, and fixation transitions 

between, value-predictive attributes would differ between configural and elemental value conditions. 

We report data from two independent samples of healthy participants: one behavioural and eye-

tracking study, and another that also included fMRI. The fMRI sample was based on a third pilot study to 

determine the sample size. All hypotheses and analysis steps were pre-registered (osf.io/4d2yr). 

METHODS 

Data were collected from three independent samples using the same experimental paradigm. This 

paradigm involved first learning and then reporting the monetary value of novel, multi-attribute pseudo-

objects under elemental or configural conditions. We collected an initial behavioural sample to 

characterize learning, decision-making and eye gaze patterns. We then undertook a pilot fMRI study to 

estimate the sample size needed to detect effects of interest. Informed by the pilot study that was used 

to determine the sample size, a third sample underwent fMRI and eye-tracking. Data from the 

behavioural sample informed the pre-registration of eye-tracking hypotheses to be replicated in the 

fMRI sample. 

Participants 

Participants were recruited from the Tel Aviv University community via online advertising and through 

the Strauss Imaging Center’s participant database. Participants were healthy volunteers, with normal or 

corrected-to-normal vision, without any history of psychiatric, neurological, or metabolic diagnoses, and 

not currently taking psychoactive medication. The study was approved by the ethics committee at Tel 

Aviv University and the institutional review board of the Sheba Tel-Hashomer Medical Center. 

Behavioural study 

Forty-two participants were recruited to take part in the behavioural experiment. Nine participants were 

excluded due to poor task performance according to the exclusion criteria detailed below. The final 

behavioural sample included 33 participants (15 women, mean age 22 y, range 18-32). Eye tracking data 

were not collected in three participants due to poor calibration of the eye-tracker.  
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fMRI pilot study 

Imaging data were collected in a pilot sample of 8 participants (four women, mean age 25 y, range 21-

31) to calculate the sample size needed to detect a significantly stronger modulation of value in the 

Configural compared to the Elemental trials in the vmPFC at an alpha level of 0.05 with 95% power. 

Power calculations were carried out with the fmripower software (http://fmripower.org/)(Mumford and 

Nichols 2008), averaging beta weights for the contrast of interest across all voxels of a pre-defined brain 

region. Based on these calculations, we pre-registered that 42 participants would be required. This 

sample size was also sufficient to detect a significant effect for the parametric modulation of value in 

the Configural condition alone, in the vmPFC (38 participants needed for 95% power). The vmPFC region 

of interest and the model used to analyse the pilot data are described below. Imaging data used for 

power and sample-size calculations are available on OpenNeuro 

(https://openneuro.org/datasets/ds002079/versions/1.0.0), and the code used to create the power 

curves and the vmPFC ROI mask are available with the pre-registration document (osf.io/4d2yr). Pilot 

participants were not included in the final sample. 

fMRI study 

Fifty-five participants were recruited to take part in the full fMRI experiment. Nine participants were 

excluded due to poor task performance in the scanner, according to the pre-registered exclusion 

criterion (detailed below). Three participants were excluded because of MR artefacts, and one 

participant was excluded due to excessive motion inside the scanner based on fMRIprep outputs 

(Esteban et al. 2019). The final fMRI sample thus included 42 participants (21 women, mean age 27 y, 

range 18-39). Eye-tracking data could not be collected in 9 participants due to reflections caused by MR-

compatible vision correction glasses. 

Experimental paradigm 

The experimental paradigm was adapted from a recently published study (Pelletier and Fellows 2019). 

Participants learned the monetary values of novel multi-attribute pseudo-objects (fribbles) in two 

conditions (configural and elemental), after which they were scanned while bidding monetary amounts 

for the objects. Fribbles were developed to study object recognition, and are designed to mimic real-

world objects (Williams 1998). They are composed of a main body and four appendages which we refer 

to as attributes, each available in three variations. Two fribble sets were used, one for each condition 

(randomly assigned for each participant); each set had the same body but different appendages. 
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In the configural condition, value was associated with the unique configuration (conjunction) of two 

attributes. In the elemental condition, value was associated with each of two individual attributes, which 

then could be combined to obtain the value of the whole object. Four different object sets were used 

across participants and the object set-condition assignment was counterbalanced. Learning order was 

counterbalanced across participants (configural followed by elemental and vice versa) and the order of 

object presentation was randomized in all experiment phases. An example of the stimuli as well as the 

value associations are shown on Figure 1. All four sets used can be found in the Supplementary Material 

(Fig. S1).  

Figure 1. Stimuli and conditions. Example of fribbles sets and object-value associations. In the elemental 

condition, objects were masked during the learning blocks so it was clear that value was predicted by a single 

salient attribute. In the learning probe, the values of two attributes learned individually were then summed to 

generate the object-value. 

 

Learning phase 

Participants were instructed before the experiment that they were acting as business owners, buying 

and selling novel objects. Before acquiring objects in their own inventory, they began by observing 

objects being sold at auction to learn their market price. 

The learning phase included five learning blocks and one learning probe per condition. A block began 

with a study slide displaying all 6 objects to be learned in that condition, along with the average value of 
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each object, giving the participant the opportunity to study the set for 60 s before the learning trials 

(Fig. 2A). The learning trials began with the presentation of an object in the center of the screen above a 

rating scale, asking “How much is this item worth?”. Participants had 5 s to provide a value estimate for 

the object, using the ‘left’ and ‘right’ arrow keys to move a continuous slider and the ‘down’ arrow key 

to confirm their response. Feedback was then provided indicating the actual selling price of the object, 

with a bright yellow bar and the corresponding numerical value overlaid on the same rating scale. The 

object, rating slider and feedback were displayed for 2 s, followed by 2 s fixation cross. Each learning 

block presented all 6 objects 6 times each in random order for a total of 36 trials. After five learning 

blocks, learning was assessed with a probe consisting of 24 trials of the 6 learned objects presented four 

times each, in random order. The structure of probe trials was identical to the learning trials, but no 

feedback was given after the value rating. 

In the elemental condition, values were associated with individual attributes. During the learning blocks, 

the object’s body and irrelevant attributes were occluded with a 50% transparent white mask, making 

the specific value-predictive attribute more salient (Fig. 1). Participants were explicitly told that value 

was associated only with the unmasked attribute. During the learning probe, objects were presented 

without masks, so all attributes were equally salient, and participants were instructed to sum the values 

of the two attributes they had learned. 

In the configural condition, objects were displayed without masks during the entire learning phase, and 

the value of the object was associated with the unique configuration of two attributes. In this condition, 

participants could not learn object-values by associating value with any single attribute, because each 

attribute was included in both a relatively high-value and a relatively low-value object, as depicted in the 

object-value table (Fig. 1). 

After learning, each of the 6 objects of the elemental condition had the same overall-value (sum of the 

two attribute-values) as one of the 6 configural objects. The object set in each condition contained 6 

value-relevant attributes, each of which was part of two different objects in each set. 
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Figure 2. Experimental paradigm. A) Structure of a learning block. B) Trial structure of the bidding task (fMRI) task. 

C) Areas of interest (AOIs) used to assign eye fixations to the value-relevant attribute for eye-tracking analysis, 

depicted as black rectangles overlaid on an example object for each set. 

 

Bidding task 

After learning, participants placed monetary bids on the learned objects to acquire them for their 

inventory while eye movements were tracked and, in the fMRI studies, fMRI was acquired. The task 

comprised four runs (scans) each containing the 12 objects (6 per condition) repeated twice in random 

order for a total of 24 trials. The structure of a bidding trial is depicted in Fig. 2B. Before the bidding 

task, participants performed one practice run to familiarize themselves with task timings. 

To make the task incentive-compatible, participants were instructed beforehand that all auctions would 

be resolved at the end of the session. If they bid sufficiently close to, or higher, than the true 

(instructed) object’s value, this object would be acquired and placed in their inventory. After the task, 

we would buy all the items in their inventory with a profit margin for the participant (similar to the 

situation where stores sell their products for a higher price than they paid from the manufacturer). The 

additional bonus compensation was calculated by summing the total amount paid by the experimenter 
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to buy the participant’s inventory, minus the total of the bids placed by the participant to acquire these 

items. The margins were set so that the maximum bonus could not exceed 10 ILS (~$3 USD equivalent). 

Participants were told that they could not lose money in the experiment; if the total of their bids was 

substantially higher than the total retail value of their inventory, the bonus compensation was 0. 

Anatomical scans and functional localizer task 

After the bidding task, FLAIR and T1 anatomical scans and B0 field maps were acquired for the fMRI 

samples, with the parameters detailed bellow. 

After structural scans, participants performed a functional localizer task adapted from (Watson, Wilding, 

and Graham 2012) to define participant-specific visual regions of interest for analysis of the bidding task. 

Images from four categories (faces, scenes, objects and scrambled objects) were presented in blocks of 

15 s, each containing 20 images displayed for 300 ms with a 450 ms inter-stimulus interval. Participants 

were instructed to press a button using the index finger of the right hand when an image was repeated 

twice in a row (1-back). The task was comprised of 4 runs of 12 blocks each. A 15 s fixation block ended 

each run. One run contained three blocks of each image category in a counterbalanced order. 

Data acquisition 

Behavioural data  

All phases of the experiment were programmed in Matlab (R2017b, The Mathworks, Inc.), using the 

Psychtoolbox extension (PTB-3) (Brainard 1997). During the learning phase, and during the bidding task 

for the behavioural sample, stimuli were displayed on a 21.5-inch monitor and responses were made 

using a standard keyboard. We recorded ratings and reaction time for each learning trial. During the 

bidding task in the fMRI, stimuli were presented on a NordicNeuroLab 32'' LCD display (1,920 x 1,080 

pixels resolution, 120 Hz image refresh rate) that participants viewed through a mirror placed on the 

head coil. Participants responded using an MR-compatible response box. Value ratings, reaction time, 

and the entire path of the rating slider were recorded for each trial. 

Eye tracking data 

We recorded eye gaze data during the bidding task using the Eyelink 1000 Plus (SR research Ltd., Kanata, 

Ontario, Canada), sampled at 500 Hz. Nine-point calibration and validation were carried out before each 

run of the task. 
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fMRI data 

Imaging data were acquired using a 3T Siemens Prisma MRI scanner and a 64-channel head coil. High-

resolution T1-weighted structural images were acquired for anatomical localization using a 

magnetization prepared rapid gradient echo (MPRAGE) pulse sequence (Repetition time (TR) = 2.53 s, 

echo time (TE) = 2.99 ms, flip angle (FA) = 7°, field of view (FOV) = 224 × 224 × 176 mm, resolution = 1 × 

1 × 1 mm). 

Functional imaging data were acquired with a T2* weighted multiband echo planar imaging protocol (TR 

= 1,200 ms, TE = 30 ms, FA = 70 degrees, multiband acceleration factor of 4 and parallel imaging factor 

iPAT of 2, scanned in an interleaved fashion). Image resolution was 2 × 2 × 2 mm voxels (no gap between 

axial slices), FOV = 97 × 115 × 78 mm (112 × 112 × 76 acquisition matrix). All images were acquired at a 

30° angle off the anterior–posterior commissures (AC–PC) line, to reduce signal dropout in the ventral 

frontal cortex (Deichmann et al. 2003). We also calculated field maps (b0) using the phase encoding 

polarity (PEPOLAR) technique, acquiring three images in two opposite phase encoding directions 

(anterior-posterior and posterior-anterior), to correct for susceptibility induced distortions. 

Data and code sharing 

Unthresholded whole-brain statistical maps are available at NeuroVault.org 

(https://neurovault.org/collections/MXWQPPCW/). Neuroimaging data necessary to recreate all 

analyses are available in brain imaging data structure format (BIDS) on OpenNeuro 

(https://openneuro.org/datasets/ds002994/versions/1.0.1). Behavioural and eye-tracking data, codes 

for behaviour, eye-tracking and fMRI analysis, and all experiment codes are available on GitHub 

(https://github.com/GabrielPelletier/fribblesFMRI_object-value-construction). 

Data exclusion 

Participants who performed poorly in the bidding fMRI task were excluded from analysis based on pre-

registered exclusion criteria. Specifically, participants with average rating error ≥ 15 ILS in both 

conditions, or an average rating error ≥ 15 ILS for any single object were excluded. These criteria 

ensured that no participant using heuristics to estimate value (i.e. rough guessing based on a reduced 

number of attributes) was included in the final sample. Eye-tracking data were discarded for a trial if < 

70% of samples could be labeled as fixations. 

Statistical analysis 
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Behavioural data analysis 

Value learning outside the scanner was assessed by the change in average rating error across learning 

blocks. Learning error was defined as the absolute difference between the rating provided by the 

subject and the true value of the object or attribute. A repeated-measure ANOVA with learning block (5 

levels) and condition (2 levels) as within-subject factors was used to analyze rating error as learning 

unfolded. Group-level rating error in the learning probes was compared between conditions using a 

paired-sample t-test. 

Accuracy in the bidding task inside the scanner was analyzed by calculating the average error (absolute 

difference between bid and instructed value) across the six repetitions for each of the 12 objects, as well 

as the average error by condition. Group-level bidding error was compared between conditions using a 

paired-sample t-test. Rating reaction times were similarly compared between conditions. 

Eye-tracking data analysis 

Eye-tracking data files in EyeLink (.edf) format were converted using the Edf2Mat Matlab Toolbox 

(https://github.com/uzh/edf-converter). Periods of eye blinks were removed from the data, after which 

the x and y coordinates and the duration of each fixation during the 3s of object presentation were 

extracted. We identified each fixation according to whether it fell on one or the other of the learned 

attributes, or neither. The attribute AOIs were defined by drawing the two largest equal-sized rectangles 

centered on the attributes of interest that did not overlap with each other. The same two AOIs were 

used for the 6 objects within each set. All AOIs covered an equal area of the visual field, although the 

positions varied between object sets. An example of the pre-registered AOIs is presented on Fig. 2C. 

AOIs for all object sets along with their exact coordinates in screen pixels are shown in Supplementary 

material (Fig. S1). 

For each subject and each condition, we calculated the average number of fixations per trial, and the 

number of fixations in each of the AOIs. We also calculated the average duration of individual fixations 

within each AOI and the total time spent fixating on each AOI. Finally, we calculated the average number 

of transitions from one attribute-AOI to the other. We counted as a transition every instance of a 

fixation falling on an AOI immediately preceded by a fixation falling on the other AOI. These variables 

were compared between conditions at the group-level using paired-sample t-tests. 

fMRI data preprocessing 
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Raw imaging data in DICOM format were converted to NIfTI format and organized to fit the Brain 

Imaging Data Structure (BIDS) (Gorgolewski et al. 2016). Facial features were removed from the 

anatomical T1w images using pydeface (https://github.com/poldracklab/pydeface). Preprocessing was 

performed using fMRIPprep 1.3.0.post2 ((Esteban et al. 2019), RRID:SCR_016216), based on Nipype 

1.1.8 ((Gorgolewski et al. 2011), RRID:SCR_002502). 

Anatomical data preprocessing: The T1-weighted (T1w) image was corrected for intensity non-

uniformity (INU) with N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.2.0 (Avants 

et al. 2008)(RRID:SCR_004757) and used as T1w-reference throughout the workflow. The T1w-reference 

was then skull-stripped using antsBrainExtraction.sh (ANTs 2.2.0), using OASIS30ANTs as target 

template. Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, (Dale, 

Fischl, and Sereno 1999)), and the brain mask estimated previously was refined with a custom variation 

of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-

matter of Mindboggle (RRID:SCR_002438, (Klein et al. 2017)). Spatial normalization to the ICBM 152 

Nonlinear Asymmetrical template version 2009c ((Fonov et al. 2009) RRID:SCR_008796) was performed 

through nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions of both 

T1w volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) 

and gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 5.0.9, 

RRID:SCR_002823, (Zhang, Brady, and Smith 2001)). 

Functional data preprocessing: For each of the 8 BOLD runs per subject (across all tasks and sessions), 

the following preprocessing was performed. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. A deformation field to correct for susceptibility 

distortions was estimated based on two echo-planar imaging (EPI) references with opposing phase-

encoding directions, using 3dQwarp (Cox and Hyde 1997) (AFNI 20160207). Based on the estimated 

susceptibility distortion, an unwarped BOLD reference was calculated for a more accurate co-

registration with the anatomical reference. The BOLD reference was then co-registered to the T1w 

reference using bbregister (FreeSurfer) which implements boundary-based registration (Greve and Fischl 

2009). Co-registration was configured with nine degrees of freedom to account for distortions remaining 

in the BOLD reference. Head-motion parameters with respect to the BOLD reference (transformation 

matrices, and six corresponding rotation and translation parameters) were estimated before any 

spatiotemporal filtering using mcflirt (FSL 5.0.9, (Jenkinson et al. 2002)). The BOLD time-series (including 

slice-timing correction when applied) were resampled onto their original, native space by applying a 
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single composite transform to correct for head-motion and susceptibility distortions. These resampled 

BOLD time-series will be referred to as preprocessed BOLD in original space, or just preprocessed BOLD. 

The BOLD time-series were resampled to MNI152NLin2009cAsym standard space, generating a 

preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped 

version were generated using a custom methodology of fMRIPrep. Several confounding time-series were 

calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and three region-

wise global signals. FD and DVARS were calculated for each functional run, both using their 

implementations in Nipype (following the definitions by (Power et al. 2014)). The three global signals 

were extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological 

regressors were extracted to allow for component-based noise correction (CompCor, (Behzadi et al. 

2007)). Principal components were estimated after high-pass filtering the preprocessed BOLD time-

series (using a discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal 

(tCompCor) and anatomical (aCompCor). Six tCompCor components are then calculated from the top 5% 

variable voxels within a mask covering the subcortical regions. This subcortical mask is obtained by 

heavily eroding the brain mask, which ensures it does not include cortical GM regions. For aCompCor, six 

components are calculated within the intersection of the aforementioned mask and the union of CSF 

and WM masks calculated in T1w space, after their projection to the native space of each functional run 

(using the inverse BOLD-to-T1w transformation). The head-motion estimates calculated in the 

correction step were also placed within the corresponding confounds file. All resamplings can be 

performed with a single interpolation step by composing all the pertinent transformations (i.e. head-

motion transform matrices, susceptibility distortion correction when available, and co-registrations to 

anatomical and template spaces). Gridded (volumetric) resamplings were performed using 

antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the smoothing effects 

of other kernels (Lanczos 1964). Non-gridded (surface) resamplings were performed using mri_vol2surf 

(FreeSurfer). 

Confound files were created for each scan (each run of each task of each participant, in .tsv format), 

with the following columns: standard deviation of the root mean squared (RMS) intensity difference 

from one volume to the next (DVARS), six anatomical component based noise correction method 

(aCompCor), frame-wise displacement, and six motion parameters (translation and rotation each in 3 

directions) as well as their squared and temporal derivatives (Friston 24-parameter model (Friston et al. 

1996)). A single time point regressor (a single additional column) was added for each volume with FD 
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value larger than 0.9, in order to model out volumes with excessive motion. Scans with more than 15% 

scrubbed volumes were excluded from analysis. 

fMRI data analysis 

fMRI data were analyzed using FSL FEAT (fMRI Expert Analysis Tool) of FSL (Smith et al. 2004). A general 

linear model (GLM) was estimated to extract contrasts of parameter estimate at each voxel for each 

subject for each of the four fMRI runs (first level analysis). Contrasts of parameter estimate from the 

four runs were then averaged within participants using a fixed effect model (second level analysis). 

Group-level effects were estimated using a mixed effect model (FSL’s FLAME-1). 

General linear model: The GLM included one regressor modelling the 3-s object presentation time for 

Configural trials, and one regressor modelling object presentation for Elemental trials. The model also 

included one regressor modelling object presentation for the Configural trials modulated by the value 

rating of the object provided on each trial (mean centered), and the equivalent regressor for Elemental 

trials. We included four regressors modelling the rating epoch of the trial, with two unmodulated 

regressors modelling the rating scale for Configural trials and Elemental trials separately, and two 

regressors modelling the rating scale epoch modulated by value ratings (mean-centered) for Configural 

trials and Elemental trials separately. The duration of the rating event in these four regressors was set to 

the average rating reaction time across all participants and runs. Rating reaction times were accounted 

for in the model using a separate regressor modelling the rating epoch for all trials, modulated by the 

trial-wise reaction time (mean-centered). The duration was set to the maximum response time of 3 s in 

cases where the time limit was reached. To account for accuracy, two additional confound regressors 

were added to the model; one regressor modelling object presentation for all trials modulated by the 

absolute difference between the participant’s rating and the instructed object value, and one regressor 

modelling the rating events with the same modulator. All regressors included in this GLM were 

convolved with a canonical double-gamma hemodynamic response function. Their temporal derivatives 

were also included in the model, with the motion and physiological confounds estimated by fMRIPrep as 

described above. 

Regions of interest (ROI) 

A vmPFC ROI was defined using the combination of the Harvard-Oxford regions frontal pole, frontal 

medial cortex, paracingulate gyrus and subcallosal cortex, falling between MNI x = -14 and 14 and z < 0, 

as in (Schonberg et al. 2014). This ROI was used for small volume correction where specified. 
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In addition, we defined four ROIs along the ventral visual stream of the brain; the perirhinal cortex 

(PRC), parahippocampal place area (PPA), fusiform face area (FFA) and the lateral occipital complex 

(LOC) using functional localizer data, as in (Erez et al. 2016). The PRC was defined based on a 

probabilistic map (Devlin and Price 2007) created by superimposing the PRC masks of 12 subjects, 

segmented based on anatomical guidelines in MNI-152 standard space. We thresholded the probabilistic 

map to keep voxels having more than 30% chance of belonging to the PRC, as in previous work (Erez et 

al. 2016). The lateral occipital complex (LOC) was defined as the region located along the lateral extent 

of the occipital pole that responded more strongly to objects than scrambled objects (p < 0.001, 

uncorrected). The fusiform face area (FFA) was defined as the region that responded more strongly to 

faces than objects. The PPA was defined as the region that responded more strongly to scenes than to 

objects. For each of these contrasts, a 10 mm radius sphere was drawn around the peak voxel in each 

hemisphere using FSL (fslmaths). To analyze brain activity in these regions during the bidding task, cope 

images from the second-level analysis (average of the four runs for each participant) were converted to 

percent signal change (as described in (Mumford 2007)), before averaging across all voxels within each 

ventral visual stream ROI. Group-level activations were compared against 0 using one-sample t-tests. 

We also defined a hippocampus (HIP) ROI for exploratory analyses. HIP was defined using the Harvard-

Oxford subcortical probabilistic atlas, defined as voxels having more than 30% chance of belonging to 

the hippocampus. ROI analyses including the HIP are reported in Supplementary Material (Fig. S6). 

Functional connectivity analysis 

Functional connectivity was assessed using generalized psychophysiological interaction analysis (gPPI), 

to reveal brain regions where BOLD time-series correlate significantly with the time-series of a target 

seed region in one condition more than another (McLaren et al., 2012). The seed region was defined 

based on the significant activation cluster found in the group-level analysis for the configural trials value-

modulation contrast, small-volume corrected for the vmPFC ROI (Fig. 6A). The seeds’ neural response to 

configural and elemental trials were estimated by deconvolving the mean BOLD signal of all voxels inside 

the seed region (Gitelman et al. 2003). 

The gPPI-GLM included the same regressors as the main GLM described above, plus two 

psychophysiological interaction (PPI) regressors of interest: one regressor modelling the seed region’s 

response to configural trials, and one regressor modelling the seed region’s response to elemental trials. 

These regressors were obtained by multiplying the seed region time-series with an indicator function for 
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object presentation of the corresponding condition, and then re-convolving the result with the double-

gamma hemodynamic function. The model additionally included one regressor modelling the BOLD 

time-series of the seed region. 

Inference criteria 

For behavioural and eye-tracking analysis, we used the standard threshold of p < 0.05 for statistical 

significance, and we report exact p-values and effect sizes for all analyses. Neuroimaging data are 

reported at the group level with statistical maps thresholded at Z > 3.1 and cluster-based Gaussian 

Random Field corrected for multiple comparisons with a (whole brain corrected) cluster significance 

threshold of p < 0.05. We report analyses restricted to the vmPFC ROI using the same inference criteria, 

with increased sensitivity to detect effects in this region defined a priori due to fewer comparisons 

(small volume correction). Ventral visual stream ROI results are reported using the statistical threshold 

of p < 0.05, Bonferroni-corrected for four comparisons as the number of ROIs (p < 0.0125).  

Deviations from preregistration 

The most substantial deviation from the pre-registered analysis concerns the main GLM defined for fMRI 

analysis. The pre-registered model did not include accuracy confound regressors (one for value 

modulation during object presentation and one for value-modulation during value rating), which we 

added after behavioural data analysis revealed a trend difference in accuracy between conditions. We 

also controlled for reaction times differently than what was stated in the pre-registration, this was done 

due to a mistake in the pre-registered analysis plan that was different from the usual process of 

accounting for RT (Botvinik-Nezer, Salomon, and Schonberg 2020; Salomon et al. 2020; Schonberg et al. 

2014). These changes to the GLM make the model more stringent and allow for a clearer interpretation 

of the value-related activations reported here, ruling out the possibility that they might reflect reaction-

time or difficulty/accuracy. 

RESULTS 

Behaviour 

We first present the behavioural results from the behavioural and fMRI studies, t0o establish the 

replicability of the behavioural effect. 

Learning phase   
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Participants learned the value of novel multi-attribute objects under two conditions, elemental and 

configural. Learning behaviour differed between conditions in both the behavioural and the MRI sample 

(this phase of the task was performed outside the scanner in both studies), with configural associations 

being generally harder to learn than elemental ones, as detailed below. 

Rating error decreased across learning trials and was generally higher in the configural condition as 

depicted in Figure 3A. This was formalized by a repeated measures ANOVA with block and condition as 

within-subject factors, which revealed a main effect of block (behavioural sample F4, 288 = 58.21, p < 

0.001, η2
p = 0.45; fMRI sample F4, 369 = 60.73, p < 0.001, η2

p = 0.40) and a main effect of condition 

(behavioural sample F4, 288 = 372.14, p < 0.001, η2
p = 0.56; fMRI sample F1, 369 = 470.84, p < 0.001, η2

p = 

0.56) on rating error. We also found a significant block by condition interaction (behavioural sample F4, 

288 = 37.98, p < 0.001, η2
p = 0.35; fMRI sample F4, 369 = 30.20, p < 0.001, η2

p = 0.25). This interaction 

reflects that accuracy becomes more similar across conditions as learning wore on, although rating error 

remained significantly greater in the configural compared to the elemental condition on the last (fifth) 

learning block (paired-sample T-test, behavioural sample t32 = 4.69, p < 0.001, Cohen’s d = 0.817; fMRI 

sample t41 = 6.46, p < 0.001, Cohen’s d = 0.90). 

Along with the increase in accuracy, reaction times decreased across learning blocks (main effect of 

block, behavioural sample F4, 288 = 7.17 p < 0.001, η2
p = 0.09; fMRI sample F4, 369 = 26.38, p < 0.001, η2

p = 

0.22). Reaction times were significantly faster in the elemental compared to the configural condition 

(main effect of condition, behavioural sample F4, 288 = 467.58, p < 0.001, η2
p = 0.62; fMRI sample F4, 369 = 

391.35, p < 0.001, η2
p = 0.51). We found no significant block by condition interaction in the behavioural 

sample (F4, 288 = 0.387, p = 0.818, η2
p = 0.005), but we did find a significant interaction in the fMRI sample 

(F4, 369 = 4.35, p = 0.002, η2
p = 0.05). 
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Figure 3. Accuracy and reaction time during the learning phase. A) Accuracy (top) and reaction time (bottom) 

across learning blocks in configural and elemental conditions. B) Accuracy (top) and reaction time (bottom) during 

the learning probe, by condition. Error bars represent one standard deviation. * Indicates a significant difference 

between conditions at p < 0.05, *** p < 0.001. 

 

Learning probe 

After five learning blocks, participants completed a learning probe without feedback, to assess the 

ability to assign value to the objects (Fig. 3B). The learning probe was the first phase in which 
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participants had to sum two attribute-values in the elemental condition. This phase was also performed 

outside the scanner. 

In the learning probe, accuracy was lower in the elemental condition compared to the configural 

condition in the behavioural sample (paired-sample T-test; t32 = 2.13, p = 0.041, Cohen’s d = 0.372) but 

was not significantly different between conditions in the fMRI sample (t41 = 1.30, p = 0.201, Cohen’s d = 

0.201). Participants were slower in the elemental compared to the configural condition in both samples 

(behavioural sample t32 = 5.47, p < 0.001, Cohen’s d = 0.953; fMRI sample t41 = 9.56, p < 0.001, Cohen’s d 

= 1.48). 

Bidding task 

After learning, participants were shown objects from the configural and elemental sets and were asked 

to bid. Participants in the fMRI study performed the learning and probe phases outside the scanner and 

then performed the bidding stage while scanned with fMRI. 

Bidding accuracy was high and not significantly different between the configural (mean rating error = 

2.26NIS, SD = 1.66) and elemental (M = 2.04NIS, SD = 1.66) conditions for the behavioural sample (t32 = 

1.08, p = 0.289, Cohen’s d = 0.188) (Fig. 4). In the fMRI sample, bids tended to be closer to the instructed 

value (smaller error) in the elemental (M = 2.18NIS, SD = 1.02) compared to the configural condition (M 

= 2.55NIS, SD = 1.63), although the difference did not reach significance and the effect was marginal (t41 

= 1.90, p = 0.065, Cohen’s d = 0.293). Nevertheless, we included a trial-by-trial accuracy measure in the 

fMRI GLM analysis to control for this potential confound. Rating reaction times were not significantly 

different between conditions (behavioural sample t32 = 1.80, p = 0.081, Cohen’s d = 0.314; fMRI sample 

t41 = 0.251, p = 0.803, Cohen’s d = 0.038). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.29.319293doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.319293
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

 

Figure 4. Accuracy and reaction time during the fMRI bidding phase. Individual and group average value rating 

error (top) and reaction time (middle) collapsed across all trials for each condition. Error bars represent one 

standard deviation from the group mean. Bottom panels show mean ratings for individual participants over the six 

presentations of each object with group-level linear regression fit. 

 

Eye-tracking 

We investigated whether eye movements during the 3-s object presentation epoch of the bidding task 

trials were different for objects learned in the elemental and configural condition (Fig. 5). The average 

number of fixations made on the whole object was similar between conditions (behavioural sample t32 = 

1.741, p = 0.091, Cohen’s d = 0.303; fMRI sample t32 = 0.479, p = 0.635, Cohen’s d = 0.083). However, we 

found consistent condition differences across samples in eye movements with respect to fixations to the 

value-predictive attributes. Participants made significantly more transitions between these attributes in 

the configural compared to the elemental condition (behavioural sample t32 = 3.364, p = 0.002, Cohen’s 

d = 0.586; fMRI sample t32 = 2.659, p = 0.012, Cohen’s d = 0.463), and the average duration of individual 
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fixations was longer in the elemental condition (behavioural sample t32 = 3.611, p = 0.001, Cohen’s d = 

0.559; fMRI sample t32 = 2.211, p = 0.034, Cohen’s d = 0.385). 

 

 

Figure 5. Eye-tracking results. Average number of fixations per trial (top), average number of transitions between 

attribute-AOIs per trial (middle) and average duration of individual fixations on attribute-AOIs (bottom). Error bars 

represent one standard deviation from the group mean. * indicate significant differences between conditions at p 

< 0.05, ** p < 0.01. 

 

Brain imaging 

vmPFC 

We hypothesized that the fMRI signal in vmPFC would correlate with configural object value, and that 

the correlation of signal in vmPFC and value would be stronger for configural compared to elemental 

trials. To test this hypothesis, we preregistered analysis of value modulation effects at the time of object 

presentation in the a priori defined vmPFC region of interest using small volume correction. We did not 
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find the hypothesized value signal in the vmPFC during the object presentation epoch. Signal in this 

region did not significantly correlate with value in any condition and there was no significant condition 

by value interaction. 

However, we found evidence in support of our hypothesis at the time of value rating. Two clusters in the 

vmPFC were significantly correlated with value for configural, but not elemental trials in the rating phase 

(Fig. 6A). The direct condition contrast did not reveal a significant condition by value interaction, 

although this effect did emerge at a more liberal cluster-forming threshold of Z = 2.3, revealing a cluster 

in the vmPFC in which signal was correlated more strongly with value in configural compared to 

elemental trials, and in which signal correlated with value in configural trials (Fig. 6B). 

 

 

Figure 6. Value-modulated activation clusters during value rating in the vmPFC. A) Clusters where the fMRI signal 

was significantly modulated by value in Configural trials using the preregistered cluster forming threshold (Z > 3.1). 

B) Conjunction analysis using a more liberal cluster forming threshold of Z > 2.3 revealed a vmPFC cluster where 

signal was significantly modulated by value in Configural trials but not in Elemental trials, and where value 

modulation was stronger for Configural compared to Elemental trials. Results were small volume corrected (SVC) 
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for the pre-registered vmPFC region of interest (shaded area), p < 0.05. The color bar indicates Z-statistics. 

Numbers below slices indicate MNI coordinates. L = left, R = right. 

 

Ventral visual stream 

We next tested whether the ventral visual stream regions of interest were sensitive to valuation 

condition. Our preregistered hypothesis was that at the time of object presentation, signal in the PRC, 

and not in anterior VVS regions, would be greater when recognizing objects learned in the configural 

condition. We found no significant main effect of condition on BOLD in the PRC (p = 0.460) or any other 

VVS region (LOC p = 0.286; FFA p = 0.731; PPA p = 0.136) (Fig. 7B, left) at the time of object presentation, 

indicating that during this time VVS ROIs were similarly activated in response to objects learned in the 

configural and elemental condition. 

We next performed exploratory analyses to examine whether VVS regions were sensitive to value. We 

found a significant condition by value interaction in the PRC: in this region, the BOLD signal for 

subjective value was stronger for configural compared to elemental trials (p = 0.016, Bonferroni 

corrected for four ROIs) (Fig. 7B, right). This effect was specific to the PRC and was not found in more 

posterior regions of the VVS (LOC, FFA and PPA uncorrected ps > 0.727). This effect was also specific to 

the object presentation epoch as there was no significant effect of condition (uncorrected ps > 0.216) 

and no condition by value interaction (uncorrected ps > 0.394) in any VVS regions during value ratings 

(Fig. 7C). We note that signal in the PRC and other VVS regions did not demonstrate significant value 

modulation for the configural or elemental trials examined separately (Supplementary Material, Fig. S2). 
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Figure 7. Ventral visual stream regions of interest analysis. A) Ventral visual stream regions of interest. The lateral 

occipital complex (LOC), fusiform face area (FFA) and parahippocampal place area (PPA) ROIs shown for a 

representative participant. The perirhinal cortex (PRC) ROI was the same for all participants. Numbers indicate 

coordinates in MNI space. B) Group average percent signal change during the object presentation epoch. C) Group 

average percent signal change at the value rating epoch. The left panels show the main effects of condition, 

assessed with the configural minus elemental trials contrast. The right panels show the condition by value 

interaction, assessed by contrasting the effect of value modulation in configural trials, minus value the effect of 

value modulation in elemental trials. Error bars represent SEM. Asterisk indicates significance at p < 0.05 for one 

sample t-test against 0, after Bonferroni correction for four comparisons. 
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Functional connectivity 

We carried out exploratory (pre-registered) functional connectivity analysis using gPPI, defining the seed 

as the significant vmPFC clusters found for configural trials value modulation (Fig. 6A). The gPPI analysis 

did not reveal any clusters across the whole-brain, and no VVS region displaying evidence for greater 

functional connectivity with the vmPFC seed in the configural compared to the elemental trials or vice 

versa. 

Whole brain analyses 

For completeness, we report exploratory whole brain analyses for the main effects of condition as well 

as the value modulation effects, during object presentation and value rating epochs. We accompany 

each figure with a table reporting the Pearson correlation between the group-level unthresholded 

statistical map and the 10 terms most strongly associated with this activation pattern across fMRI 

studies using the reverse inference tool of Neurosynth (Yarkoni et al. 2011). We first report the main 

effects of condition on brain activity at the time of object presentation. 

Object presentation 

The condition contrast revealed several brain regions that were significantly more active during the 

configural trials, including the right caudate, left lateral orbitofrontal cortex, the right inferior frontal 

gyrus, bilateral precuneus, bilateral lateral occipital complex and the cerebellum (Fig. 8A). The opposite 

contrast revealed that primary sensory-motor cortex, supplementary motor cortex and the superior 

frontal gyrus were more active during elemental trials (Fig. 8B). Complete information on all significant 

clusters is presented in Supplementary Material (Table S1). A cluster encompassing the left pre- and 

post-central gyrus correlated with object value in the two conditions (Fig. 8C-D). This activation likely 

reflects motor preparation to report the value rating, as a longer index finger press was systematically 

associated with moving the slider to higher values on the scale. 
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Figure 8. Whole-brain analysis of object presentation epoch. A) Clusters exhibiting greater activity in configural 

compared to elemental trials. B) Clusters exhibiting greater activity in elemental compared to configural trials. C) 

Clusters exhibiting value modulation in Configural trials. D) Clusters exhibiting value modulation in Elemental trials. 

Results were whole-brain cluster‐corrected, p < 0.05. Color bar indicates Z-statistics. Numbers below slices indicate 

MNI coordinates. L = left, R = right. 
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Table 1. Pearson correlations between term-based reverse inference maps from Neurosynth and the 

unthresholded statistical maps of the contrasts shown in Fig. 8. 

OBJECT PRESENTATION CONTRASTS TERM CORRELATION (R) 

A) CONFIGURAL > ELEMENTAL Retrieval 0.187 
 

Precuneus 0.176 
 

Episodic 0.145 
 

Memory retrieval 0.137 
 

Memory 0.122 
 

Recognition memory 0.122 
 

Episodic memory 0.114 
 

Semantic 0.111 
 

Navigation 0.101 
 

Retrosplenial 0.098 
   

B) ELEMENTAL > CONFIGURAL Motor 0.303 
 

Premotor 0.279 
 

Premotor cortex 0.262 
 

Movements 0.245 
 

Sensorimotor 0.238 
 

Motor imagery 0.237 
 

Supplementary 0.232 
 

Supplementary motor 0.225 
 

Primary motor 0.219 
 

Movement 0.218 
 

  

C) VALUE MODULATION CONFIGURAL Medial prefrontal 0.215 
 

Medial 0.19 
 

Social 0.155 
 

Resting 0.152 
 

Ventromedial 0.15 
 

Amygdala 0.147 
 

Resting state 0.146 
 

Orbitofrontal 0.143 
 

Emotional 0.142 
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Mpfc 0.137 

   

D) VALUE MODULATION ELEMENTAL Fa 0.082 
 

Orbitofrontal 0.064 
 

Orbitofrontal cortex 0.063 
 

prefrontal 0.061 
 

Corpus 0.061 
 

Retrieval 0.061 
 

Corpus callosum 0.059 
 

Medial prefrontal 0.059 
 

Callosum 0.059 
 

Prefrontal cortex 0.058 

 

 

Value rating 

We did not find any clusters where activity was significantly greater in one condition compared to the 

other during the value rating epoch. Clusters common to both conditions contained signal, which was 

significantly modulated by value, including a cluster encompassing the pre- and post-central gyrus, in 

addition to occipital and fusiform clusters (Fig. 9). The fMRI signal did not correlate with value more in 

one condition compared to the other in any brain region. 
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Figure 9. Whole brain analysis of the value rating epoch. A) Clusters exhibiting value modulation in Configural 

trials. B) Clusters exhibiting value modulation in Elemental trials. Results were whole-brain cluster‐corrected, p 

< 0.05. Color bar indicates Z-statistics. Numbers below slices indicate MNI coordinates. L = left, R = right. 

 

Table 2. Pearson correlations between term-based reverse inference maps from Neurosynth and the 

unthresholded statistical maps of the contrasts shown in Fig. 9. 

VALUE RATING CONTRASTS TERM CORRELATION (R) 

A) VALUE MODULATION CONFIGURAL Medial prefrontal 0.187 
 

Medial 0.165 
 

Ventromedial 0.145 
 

Orbitofrontal 0.143 
 

Default 0.14 
 

Ventromedial prefrontal 0.136 
 

Autobiographical 0.136 
 

Orbitofrontal cortex 0.135 
 

Default mode 0.134 
 

Posterior cingulate 0.131 
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B) VALUE MODULATION ELEMENTAL Hand movements 0.065 
 

Visual cortex 0.062 
 

Occipital 0.061 
 

Pitch 0.060 
 

Musical 0.059 
 

Planum temporale 0.059 
 

Auditory cortex 0.059 
 

Primary auditory 0.058 
 

Auditory 0.056 
 

Extrastriate 0.056 

 

DISCUSSION 

This study provides behavioural, eye-tracking and fMRI evidence that there are two ways to “see” the 

value of multi-attribute decision options. We found that evaluation of complex objects relied on 

different patterns of information acquisition, indexed by eye movements, and engaged different brain 

regions when value was predicted by configural relationships between attributes compared to when 

value could be added up from the values of individual attributes. Activity in the perirhinal cortex was 

related to value in configural more than elemental trials during object presentation, whereas at the time 

of value rating, the vmPFC showed value-modulated signal for configural trials only. Participants made 

more gaze transitions from one attribute to another when observing objects in the configural condition 

and made longer fixations on individual attributes in the elemental condition. 

This study includes a replication of the behavioural and eye-tracking effects in two samples and inclusion 

of a pilot imaging sample to inform the design of the full fMRI experiment, which was pre-registered. 

Further, these experiments directly build on a recent study in patients with vmPFC damage using the 

same stimuli (Pelletier and Fellows 2019), providing converging evidence in keeping with the goal of 

triangulation (Munafò and Smith 2018). The lesion study found that vmPFC damage impaired binary 

decisions between fribbles in the configural condition, but not in the elemental condition (Pelletier and 

Fellows 2019). The current work provides additional support for the hypothesis that vmPFC has a unique 

role in inferring the value of objects based on configural information: BOLD signal in that region was only 

detectably modulated by object value in the configural and not the elemental condition. It further 

argues that evaluation under this condition engages the perirhinal cortex, a region known to be critical 
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for multi-attribute object recognition, but here for the first time also implicated in the evaluation of such 

objects. 

We did not find that the total value of an object obtained by combining two separately learned 

attribute-values was reflected in the fMRI vmPFC signal. This null result alone cannot rule out that 

vmPFC is involved in value integration from multiple elements, but taken together with the finding that 

damage to vmPFC did not impair the ability to make choices based on such values, it suggests alternate 

mechanisms for value construction under such conditions, not requiring vmPFC.  

Across a large body of existing fMRI work, vmPFC is reliably associated with subjective value (Bartra, 

McGuire, and Kable 2013; Rushworth and Behrens 2008). Activity in the vmPFC has previously been 

shown to reflect the value of items composed of multiple attributes, each modelled as independently 

predictive of value (Basten et al. 2010; Lim et al. 2013; Suzuki et al. 2017). One study using a very similar 

approach to the elemental condition here found that integrated value could be decoded from vmPFC 

signal using multivariate pattern analysis (MVPA) (Kahnt et al. 2011). MVPA has greater sensitivity to 

detect value-related signals that vary across participants and voxels than univariate analysis (Davis et al. 

2014; Kahnt 2018). It is possible that we did not detect value related fMRI signals in the elemental 

condition in vmPFC using univariate analysis simply because this variable is represented more 

heterogeneously than in the configural condition. However, whereas a difference in coding scheme 

between conditions could partly explain our fMRI results, it is not consistent with the previous finding 

that vmPFC damage disrupts decisions in the configural but not the elemental condition. 

Other neuroimaging studies of multi-attribute decision-making found correlates of value summed across 

attributes in other brain regions, not vmPFC (Berker et al. 2019; Fujiwara et al. 2009). The current 

findings add to the view that the vmPFC is not critical for value integration in general, but rather is 

engaged under a narrower set of conditions. We propose a more specific account whereby the vmPFC is 

required for inferring value from the configural relationships among lower-level attributes. This view 

might explain prior observations that patients with vmPFC damage are able to evaluate complex social 

or aesthetic stimuli, but seem to draw on different information to assess the value of such stimuli, 

compared to healthy participants (Vaidya, Sefranek, and Fellows 2018; Xia et al. 2015). 

This current work also addressed whether regions known to be involved in complex object recognition 

are likewise involved in assessing the value of such options. Given previous findings of PRC activation in 

tasks requiring holistic object representation, but not in tasks accomplished on the basis of individual 
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attributes (Devlin and Price, 2007), and lesion studies demonstrating a causal role for PRC in configural 

object discrimination (Barense, Gaffan, and Graham 2007; Buckley and Gaffan 1998; Bussey, Saksida, 

and Murray 2002, 2003), we predicted greater activity in the PRC for evaluating objects in the configural 

condition. This hypothesis was not supported by our data, with no main effect of condition in the PRC or 

other VVS regions. It is possible that objects were processed similarly through the VVS in both conditions 

to support holistic recognition, as their general appearance (the body and position of appendages) was 

informative of whether a given stimulus was from the elemental or configural set. In any case, such 

holistic processing may be obligatory, even if not task-relevant. 

However, we found that fMRI VVS signals were differently sensitive to value between conditions. 

Specifically, BOLD activity in the PRC was modulated by value more for configural compared to 

elemental trials. There are previous reports of value-correlated signal across the VVS, including in the 

primary visual cortex (Nelissen et al. 2012; Serences 2008), lateral occipital complex (Persichetti, 

Aguirre, and Thompson-Schill 2015), the PRC (Mogami and Tanaka 2006) and several of these regions 

combined (Arsenault et al. 2013; Kaskan et al. 2017). Across studies, reward has been paired with stimuli 

ranging in complexity from simple colored gratings to complex real-world objects, but no work 

previously contrasted conditions in which valuation relied on characteristics represented at different 

stages of the VVS hierarchy. Our findings suggest selective involvement of the PRC in encoding value 

when it is associated with the high-level (i.e. configural) object representation that this region supports. 

The condition by value interaction observed for PRC activity was only observed at the time of object 

presentation, on average six seconds before the rating phase where value signal was detected in the 

vmPFC, arguing against the possibility that value-related PRC activation is driven by the vmPFC. The 

findings rather suggest that configural value emerges at least in part from activity in the VVS regions 

involved in holistic object recognition, with vmPFC activation following later. Electrophysiological 

recordings in macaques have found that PRC neurons are sensitive to object value slightly later than 

neurons of the immediately preceding VVS stage (area IT) (Mogami and Tanaka 2006), suggesting that 

value emerges along the VVS object processing stream. Mogami and Tanaka (2006) found that PRC 

neurons demonstrated value sensitivity at ~200 ms after stimulus onset, whereas other work reported 

value selectivity only after ~400-500ms in the OFC (Kennerley et al. 2008; Wallis and Miller 2003). 

Electroencephalography recordings in humans found that upon presentation of a reward-paired object, 

a value-correlated signal was detected rapidly in occipital cortex and traveled anteriorly to the 

prefrontal cortex as time passed (Larsen and O’Doherty 2014). With these data, the current work is 
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compatible with the recently proposed idea that value representations arise in a more distributed way, 

as information moves from sensory inputs to action generation (Yoo and Hayden 2018). 

We did not find evidence for increased functional connectivity between the vmPFC and PRC (or any 

other brain region) during configural object valuation. This null result must be taken with caution, as the 

study was not powered to find such an effect. There are anatomical connections (Heide et al. 2013) and 

there is evidence of functional connectivity (Andrews-Hanna, Smallwood, and Spreng 2014) between the 

vmPFC and the medial temporal lobe in humans, and the PRC and medial OFC are reciprocally connected 

in macaques (Kondo, Saleem, and Price 2005). The current findings of value-related activations at 

different stages of the trial in the PRC and the vmPFC suggest that interactions between these two 

regions might be important for value estimation in configural conditions. Further work using methods 

with better temporal resolution will be needed to test this hypothesis. 

We also found systematic differences in eye gaze patterns between conditions, replicated in two 

samples, one behavioural and one inside the MRI scanner. Fixations were shorter and more transitions 

were made between attributes of objects in the configural condition. Sequential sampling models have 

shown that value and gaze interact in driving the decision process (Krajbich, Armel, and Rangel 2010), 

and that gaze duration has a causal influence on value (Shimojo et al. 2003). However, little is known 

about fixation patterns within multi-attribute objects during choice (Krajbich 2019), and how they relate 

to the value construction process, regardless of expected value. Consumer research has extensively 

studied value construction strategies employed during multi-attribute decisions using process tracing 

measures including eye-tracking (Bettman, Luce, and Payne 1998; Russo and Dosher 1983). However, 

this work artificially decomposes options by laying out attributes as text and numbers in a matrix or 

table format, thus may not relate to everyday choices between real objects. Elucidating the interplay 

between gaze patterns and value construction for multi-attribute decisions where value predictions are 

based on visual information will be an important avenue of future research (Schonberg and Katz 2020). 

Although we attempted to match the two conditions for difficulty, and further addressed this potential 

confound by controlling for trial-by-trial rating reaction time and accuracy in all fMRI analyses, we could 

not account for potential condition differences in speed of evaluation during the fixed object 

presentation time and the subsequent ITI. If evaluation is faster in the elemental condition, value-

correlated signal might be passed on to motor regions earlier than in the configural condition (Hare et 

al. 2011; Yoo and Hayden 2018). The slider response requirement also meant that motor responses 
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were confounded with rated values, potentially explaining why motor regions showed value-correlated 

activation at the time of object presentation in the elemental condition. 

In conclusion, this neuroimaging study, building directly on recent work in lesion patients provides 

evidence for two ways of building the value of complex objects, supported by at least partly distinct 

neural mechanisms. Leveraging object-recognition research to inform studies of multi-attribute value-

based decisions, this work suggests that the relationship between attributes and value might influence 

how an object is processed through the VVS. Research at the interface of these two fields of study may 

bring fresh perspectives on the brain basis of both perception and motivated behavior.  
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SUPPLEMENTARY MATERIAL 

Table S1. Regions showing significant activations clusters for whole brain imaging contrasts presented in 

Fig. 7 and Fig. 8. For each cluster, the list shows all regions from the Harvard-Oxford atlas that contained 

more than 5 voxels within that cluster, along with the peak X/Y/Z location for the cluster in MNI space 

 

Contrast 

Cluster 

# 

Cluster 

size X Y Z 

Peak Z-

value p Region 

# of voxels 

in region 

Configural > Elemental Object 

Presentation 1 65 8 8 6 4.980 0.0168 
  

 
       

R._Caudate 34 

 
2 77 40 -68 -46 4.900 0.00635 

  

        
Cerebellum 77 

 
3 176 56 28 22 4.580 7.69e-06 

  

        
R._Inferior_Frontal_Gyrus_pars_triangularis 44 

        
R._Middle_Frontal_Gyrus 35 

        
R._Inferior_Frontal_Gyrus_pars_opercularis 13 

        
R._Frontal_Pole 8 

 
4 184 -44 -60 46 4.110 4.77e-06 

  

        

L._Lateral_Occipital_Cortex_superior_divisi

on 118 

        
L._Angular_Gyrus 32 

 
5 193 14 -68 28 4.340 2.8e-06 

  

        
R._Precuneous_Cortex 183 

 
6 307 42 -74 48 4.760 6.25e-09 

  

        

R._Lateral_Occipital_Cortex_superior_divisi

on 262 

 
7 354 -14 -82 -36 5.200 6.34e-10 

  

        
Cerebellum 290 

 
8 374 -2 36 42 5.320 2.47e-10 

  

        
L._Superior_Frontal_Gyrus 189 

        
L._Paracingulate_Gyrus 106 

        
R._Superior_Frontal_Gyrus 29 

        
R._Paracingulate_Gyrus 16 

 
9 478 14 -72 -30 5.720 2.35e-12 

  

        
Cerebellum 370 

 
10 1060 -38 22 -4 4.940 9.6e-22 

  

        
L._Frontal_Pole 358 

        
L._Middle_Frontal_Gyrus 148 

        
L._Frontal_Orbital_Cortex 116 

        
L._Inferior_Frontal_Gyrus_pars_triangularis 115 
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L._Insular_Cortex 21 

        
L._Inferior_Frontal_Gyrus_pars_opercularis 12 

 
11 1097 2 -68 60 5.060 2.85e-22 

  

        
L._Precuneous_Cortex 650 

        
R._Precuneous_Cortex 150 

        
L._Cuneal_Cortex 45 

        
R._Cuneal_Cortex 12 

Contrast 

Cluster 

# 

Cluster 

size X Y Z 

Peak Z-

value p Region 

# of voxels 

in region 

Elemental > Configural Object 

Presentation 1 67 54 -2 40 5.200 0.0142 
  

        
R._Precentral_Gyrus 67 

 
2 219 -6 2 64 6.160 6.56e-07 

  

        

L._Juxtapositional_Lobule_Cortex_(formerly

_Supplementary_Motor_Cortex) 174 

        
L._Superior_Frontal_Gyrus 19 

 
3 288 -64 8 22 5.290 1.63e-08 

  

        
L._Precentral_Gyrus 185 

        
L._Inferior_Frontal_Gyrus_pars_opercularis 19 

 
4 505 -56 -4 38 5.520 7.42e-13 

  

        
L._Precentral_Gyrus 372 

        
L._Postcentral_Gyrus 16 

Contrast 

Cluster 

# 

Cluster 

size X Y Z 

Peak Z-

value p Region 

# of voxels 

in region 

Configural Object Presentation 

modulated by Value 1 172 -42 -26 62 5.340 3.34e-06 
  

        
L._Postcentral_Gyrus 138 

        
L._Precentral_Gyrus 19 

Contrast 

Cluster 

# 

Cluster 

size X Y Z 

Peak Z-

value p Region 

# of voxels 

in region 

Elemental Object Presentation 

modulated by Value 1 56 -36 -22 64 4.150 0.0231 
  

        
L._Postcentral_Gyrus 40 

        
L._Precentral_Gyrus 16 

Contrast 

Cluster 

# 

Cluster 

size X Y Z 

Peak Z-

value p Region 

# of voxels 

in region 

Elemental trials Rating Scale 

modulated by Value 1 110 -46 -78 6 4.930 0.000254 
  

        

L._Lateral_Occipital_Cortex_inferior_divisio

n 66 

        

L._Lateral_Occipital_Cortex_superior_divisi

on 37 
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2 147 -22 -88 22 5.090 1.78e-05 

  

        

L._Lateral_Occipital_Cortex_superior_divisi

on 75 

        
L._Occipital_Pole 70 

 
3 165 -14 -86 -16 5.050 5.3e-06 

  

        
L._Occipital_Fusiform_Gyrus 117 

        
L._Occipital_Pole 21 

        
L._Lingual_Gyrus 15 

 
4 273 -42 -26 62 6.060 7.83e-09 

  

        
L._Postcentral_Gyrus 158 

        
L._Precentral_Gyrus 50 

 
5 367 26 -98 0 5.110 5.36e-11 

  

        
R._Occipital_Pole 270 

        

R._Lateral_Occipital_Cortex_inferior_divisio

n 92 

Contrast 

Cluster 

# 

Cluster 

size X Y Z 

Peak Z-

value p Region 

# of voxels 

in region 

Elemental trials Rating Scale 

modulated by Value 1 117 28 -94 2 4.550 0.000178 
  

        
R._Occipital_Pole 116 

 
2 205 -44 -26 62 5.120 5.36e-07 L._Postcentral_Gyrus 157 

        
L._Postcentral_Gyrus 157 

        
L._Precentral_Gyrus 32 

 
3 237 -48 -78 18 4.750 5.96e-08 

  

        

L._Lateral_Occipital_Cortex_inferior_divisio

n 171 

        

L._Lateral_Occipital_Cortex_superior_divisi

on 38 

 
4 242 -16 -84 -10 4.620 5.96e-08 

  

        
L._Occipital_Fusiform_Gyrus 166 

        
L._Occipital_Pole 23 

        
L._Lingual_Gyrus 16 

 
5 411 -24 -86 34 4.690 9.17e-12 

  

        

L._Lateral_Occipital_Cortex_superior_divisi

on 281 

        
L._Occipital_Pole 59 

Contrast 

Cluster 

# 

Cluster 

size X Y Z 

Peak Z-

value p Region 

# of voxels 

in region 

Configural Rating Scale modulated by 

Value, SVC for vmPFC ROI 1 15 -4 30 -26 3.780 0.0376 
  

        
L._Subcallosal_Cortex 8 

        
L._Frontal_Medial_Cortex 6 

 
2 17 2 60 -10 3.720 0.0283 

  

        
R._Frontal_Pole 13 
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3 18 0 40 -26 3.940 0.0247 

  

        
L._Frontal_Medial_Cortex 12 

        
R._Frontal_Medial_Cortex 6 
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Figure S1. Object sets, object-value associations and areas of interest used for eye-tracking analysis. A) 

Object sets. Each participant is assigned one of the two fribbles families. Each condition is then assigned 

one object set from the selected family. The condition-object set pairing is counterbalanced across 

participants. B) Example of object value-association for one participant. C) Pre-registered areas of 

interest (AOI) for eye-tracking analysis, overlaid on an example object for each of the 4 object sets. AOIs 

are identical for all six objects within each object set. Numbers indicate (x origin, y origin; height; width) 

in screen pixels. 
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Figure S2. Value modulation in ventral visual stream regions of interest. A) Ventral visual stream regions of 

interest. The lateral occipital complex (LOC), fusiform face area (FFA) and parahippocampal place area (PPA) ROIs 

shown for a representative participant. The perirhinal cortex (PRC) ROI was the same for all participants. Numbers 

indicate coordinates in MNI space. B) Average contrasts of parameter estimate for value modulation at the object 

presentation epoch. C) Average contrasts of parameter estimate for value modulation at the rating epoch. Error 

bars represent SEM. Numbers above or bellow bars indicate uncorrected p-values for one-sample t-tests against 0 

(baseline). 
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