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ABSTRACT  

Understanding the molecular principles that govern the composition of the mammalian MHC-I 

immunopeptidome (MHC-Ii) across different primary tissues is fundamentally important to predict 

how T cell respond in different contexts in vivo. Here, we performed a global analysis of the 

mammalian MHC-Ii from 29 and 19 primary human and mouse tissues, respectively. First, we 

observed that different HLA-A, -B and -C allotypes do not contribute evenly to the global 

composition of the MHC-Ii across multiple human tissues. Second, we found that peptides that are 

presented in a tissue-dependent and -independent manner share very distinct properties. Third, we 

discovered that proteins that were evolutionarily hyperconserved represent the primary source of 

the MHC-Ii at the organism-wide scale. Finally, we uncovered a remarkable antigen processing 

and presentation network that may drive the high level of heterogeneity of the MHC-Ii across 

different tissues in mammals. This study opens up new avenues toward a system-wide 

understanding of antigen presentation in vivo and may serve as ground work to understand tissue-

dependent T cell responses in autoimmunity, infectious diseases and cancer.  
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INTRODUCTION 

In adaptive immunity, CD8+ T cells have the ability to eradicate abnormal cells through 

recognition of small peptide fragments presented by MHC (human leucocyte antigen (HLA) in 

humans) class I molecules. In this context, jawed vertebrates evolved an important antigen 

processing and presentation system capable of presenting thousands of different MHC class I 

peptides on the surface of virtually any nucleated cells (Neefjes et al., 2011). In mammals, around 

200 different cell types are decorated by large repertoires of self-MHC-I-associated peptides, 

collectively referred to as the mammalian MHC-I immunopeptidome (MHC-Ii) (Caron et al., 

2017; Vizcaíno et al., 2019).  

 

 The inter- and intra-individual complexity of the MHC-Ii account for its overall heterogeneity 

(Gfeller and Bassani-Sternberg, 2018; Maccari et al., 2017; Vizcaíno et al., 2019). In fact, each 

MHC-I allotype generally presents a distinct subset of peptide antigens, which are characterized 

by the presence of specific anchor residues that are necessary to bind MHC-I (Falk et al., 1991). 

In human, up to six different HLA-I allotypes are expressed at the individual level, and thousands, 

if not millions of different HLA-I allotypes are expressed across human populations, hence 

increasing enormously the inter-individual heterogeneity of the MHC-Ii (Robinson et al., 2017). 

In contrast, the murine MHC-Ii is much simpler. For instance, in the C57BL/6 mouse strain, 

peptide antigens are presented by only two classical MHC-I molecules (H2Db and H2Kb), and a 

total of approximately 200 different MHC-I allotypes are expressed among the most commonly 

used mouse strains (http://www.imgt.org/IMGTrepertoireMH/Polymorphism/haplotypes/mouse/MHC/Mu_haplotypes.html). In 

addition to its allotype-dependent composition, the mammalian MHC-Ii is also complicated by its 

tissue-dependency. In fact, two pioneering mapping studies recently pointed toward large 
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variations in the repertoire of MHC-I-associated peptides across different tissues (Schuster et al., 

2018) (Marcu et al. accompanying manuscript; https://www.biorxiv.org/content/10.1101/778944v2). 

However, very little is known about the molecular principles that shape the tissue-dependent 

processing and presentation of peptide antigens at the organism level.  

 

Classical biochemistry approaches have established the blueprint of antigen processing and 

presentation (Neefjes et al., 2011; Yewdell et al., 2003). In a nutshell, the biogenesis of peptides 

presented by MHC-I molecules is initiated with the transcription and translation of the source 

genes, and the resulting proteins are typically degraded by the proteasome and/or 

immunoproteasome in the nucleus and cytosol (Kincaid et al., 2011). Cytosolic peptides are 

rapidly targeted by cytosolic aminopeptidases, such as thimet oligopeptidase (TOP) (York et al., 

2003), leucine aminopeptidase (LAP) (Towne et al., 2005), and tripeptidyl peptidase II (TPPII) 

(Reits et al., 2004), which trim and destroy most peptides. A fraction of peptides escapes 

destruction by translocation into the endoplasmic reticulum (ER) lumen via transporter associated 

with antigen presentation (TAP) (Reits et al., 2000; Yewdell et al., 2003). In the ER, peptides may 

be further trimmed by ER aminopeptidase associated with antigen processing (ERAAP) and then 

bind MHC-I molecules for stabilization by the peptide loading complex (Blees et al., 2017; 

Serwold et al., 2002). Once stable, MHC-I-peptide complexes are released from the ER and are 

transported to the cell surface for peptide presentation to CD8+ T cells.  

 

Modern immunopeptidomics is driven by high-resolution mass spectrometry (MS) and 

investigates the composition and dynamics of the MHC-Ii (Caron et al., 2015). Complementing 

classical biochemistry techniques, immunopeptidomic technology platforms have yielded 
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important systematic insights into the biogenesis of the MHC-Ii (Granados et al., 2015). For 

instance, they have refined binding motifs for a wide range of MHC-I alleles in human (Abelin et 

al., 2017; Gfeller and Bassani-Sternberg, 2018), they have indicated that large numbers of MHC-

I peptides derive from genomic ‘hotspots’ (Müller et al., 2017; Pearson et al., 2016) (Marcu et al. 

accompanying manuscript) as well as non-coding genomic regions (Laumont et al., 2018), and 

they have demonstrated that abundant transcripts and proteins contribute preferentially to the 

composition of the MHC-Ii (Abelin et al., 2017; Bassani-Sternberg et al., 2015; Fortier et al., 2008; 

Granados et al., 2012; Pearson et al., 2016). Furthermore, immunopeptidomic approaches have 

validated that defective ribosomal products (DRiPs), immunoproteasome subunits as wells as other 

key players involved in the processing of peptide antigens (e.g. proteasome, ERAAP) markedly 

influence the repertoire of peptides presented by MHC-I molecules  (Bourdetsky et al., 2014; 

Milner et al., 2013; Nagarajan et al., 2016; Trentini et al., 2020; Verteuil et al., 2010).  

 

The understanding of how the MHC-Ii is generated in different primary tissues in vivo, in human 

as well as in animal models, is fundamentally important to rationalize and predict how T cells 

respond in various contexts (Tscharke et al., 2015). However, immunopeptidomics studies that 

focused on the systematic deciphering of the MHC-Ii biogenesis have been almost exclusively 

conducted in transformed cells. Therefore, the rules that govern the composition and tissue-

dependency of the mammalian MHC-Ii remains poorly understood and many fundamental 

questions remain unanswered to date. For instance, what is the relative contribution of individual 

HLA-I allotypes to the composition of the MHC-Ii within and across tissues? To what extent does 

the MHC-Ii conceal tissue-specific patterns/signatures that are conserved across species? What are 

the many transcription factors, proteases and trafficking proteins involved in the generation, 
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elimination and transport of MHC-I peptides in different tissues, and how does the expression and 

activity of those architects influence the tissue-dependency and overall heterogeneity of the MHC-

Ii at the organism-wide scale? In this study, we applied a systems-level, cross-species approach to 

tackle these fundamental questions.  
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RESULTS  

Two immunopeptidomic mapping studies have very recently drafted the first tissue-based atlases 

of the mouse and human MHC-Ii (Schuster et al., 2018) (Marcu et al. accompanying manuscript). 

These pioneering mapping efforts provide qualitative and semi-quantitative information about the 

currently detectable repertoire of MHC-I peptides in most organs, both in mouse and human. 

Specifically, the mouse atlas was generated from 19 normal primary tissues extracted from 

C57BL/6 mice expressing H2Kb and H2Db (Schuster et al., 2018). The human atlas was generated 

from 29 human benign tissues extracted from 21 different subjects expressing a total of 51 different 

HLA-I allotypes (Marcu et al. accompanying manuscript; see NOTE below for the reviewers and 

editor) (Figure 1). Those HLA-I allotypes cover the most frequent HLA-A, -B and -C alleles in 

the world. Below, we first focused on the analysis of the MHC-Ii in different mouse and human 

tissues to provide a general understanding of the heterogenicity, tissue-dependency and 

conservation patterns of the MHC-Ii. Next, we connected tissue immunopeptidomes to RNA-seq 

and protein expression data found in various tissue-based atlases (Geiger et al., 2013; Söllner et 

al., 2017; Wang et al., 2019) to dissect how the mammalian MHC-Ii is being shaped in different 

tissues (Figure 1).  

 

[NOTE FOR THE REVIEWERS AND EDITOR: Please note that the entire bioinformatic analysis 

of the human MHC-Ii dataset in the current version of the manuscript was performed using an 

early/unreleased version of the HLA ligandomic dataset whereas the bioinformatic analysis in the 

original HLA Ligand Atlas manuscript (Marcu et al. accompanying manuscript; 

https://www.biorxiv.org/content/10.1101/778944v2) was performed using the latest version of the 

data. Since the two manuscripts were not created using the exact same version of the dataset, the 
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reviewers may pinpoint technical (not conceptual) inconsistencies between the two manuscripts at 

this review stage. For instance, human thymuses were absent in the early/unreleased version and 

were incorporated in the latest version. In addition, in the latest version, sample names/data source 

were annotated differently, individual replicates (sometimes entire samples) were removed in the 

quality control step, inconsistent tissue names were merged and some tissues were excluded, 

including stomach-related tissues due to quality issues. To solve this technical inconsistency issue, 

we plan to re-perform our bioinformatic analysis using the latest dataset in preparation of a revised 

version of the manuscript. We anticipate that reprocessing all the data would reduce the noise and 

improve the quality of the figures but would not change any of the conceptual findings currently 

stated in the manuscript.]  

 

HLA-I allotypes are unevenly represented across tissue immunopeptidomes 

A key open question regarding the heterogeneity of the human MHC-Ii is whether individual HLA-

I allotypes contribute evenly or unevenly to the composition of the MHC-Ii across different tissues. 

In fact, every subject presents up to two HLA-A, two HLA-B and two HLA-C allotypes. If all 

allotypes were evenly represented at the cell surface across tissues, one would expect similar 

proportions of peptides assigned to each allotype in all tissues. To address this question, we first 

assessed the global tissue distribution of all detectable peptides that were assigned to HLA-A, -B 

and -C. Among 33 sampled benign tissues extracted from a total of 13 autopsy different subjects, 

we found HLA-A, -B and -C immunopeptidomes to be unevenly represented across tissues 

(Figure 2A). In fact, we investigated the contribution of each HLA-A, -B and -C allotypes 

expressed in the three subjects for which the most tissues had been sampled (i.e. AUT-DN11, 

AUT-DN13 and AUT-DN12) (Figure 2 B-D). Interestingly, we observed differential peptide 
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distribution across tissues for many HLA-I allotypes. For instance, ~55% of peptides in the Colon 

of subject AUT-DN12 were assigned to A*02:01 compared to ~22% on average in all other tissues, 

resulting in an enrichment of about 2.5-fold for A*02:01 (Figure 2D). The enrichment of A*02:01 

peptides in the Colon of subject AUT-DN12 was also further accompanied by an under-

representation of A*11:01, B*15:01 and B*35:01 in the Colon, and an enrichment of C*03:04 and 

C*04:01 alleles (Figure 2D). Similarly, we also noted that ~55% of peptides in the liver of subject 

AUT-DN13 were assigned to HLA-B40:02 compared to ~20% on average in all other tissues, 

resulting in an enrichment of about 2.8-fold for this specific HLA-B subtype in this particular 

subject (Figure 2C). Furthermore, we noted that the stomach over-represented peptides associated 

to HLA-C (i.e. C*07:01, C*07:01 and C*04:01 in subject AUT-DN11, AUT-DN13 and AUT-DN-

12, respectively). To provide a global picture about enrichment values that are associated to 

individual HLA-I allotypes, we calculated the average enrichment of all HLA-I allotypes across 

the investigated subjects and highlighted alleles that were enriched by more than 1.5-fold in at 

least one tissue (Figure 2E). This analysis highlighted 65 enrichment values distributed across 27 

specific HLA-I subtypes and 29 different tissues (Figure 2E). Overall, those enrichment values 

ranged from 1.5 to 6.1-fold, and seven (out of 11) HLA-A, 10 (out of 16) HLA-B and 10 (out of 

10) HLA-C subtypes were assigned in at least one tissue with an enrichment value above 1.5-fold. 

Whether the quality of tissues sampled can lead to artifactual data and affect these enrichment 

values is a possibility and would need to be further investigated. Nevertheless, these results 

strongly indicate that HLA-I allotypes do not contribute evenly to the composition of the MHC-Ii 

across different tissues and subjects, and therefore, considerably contribute to the overall 

heterogeneity of the human MHC-Ii.  
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The high level of heterogeneity among immunopeptidomes of different tissues shows 

pronounced similarities between mouse and human 

Antigen processing and presentation is a conserved and ubiquitous biological process. Here, we 

hypothesized that the MHC-Ii might conceal tissue-dependent immunopeptidomic signatures that 

are conserved across mammalian organisms. Therefore, we sought to identify immunopeptidomic 

patterns/signatures between mouse and human.  First, we looked at the distribution of MHC-I 

peptides counts that were detected by MS across different mouse (Figure 3A) and human (Figure 

3B) tissues. We noted that specific mouse organs yielded high numbers of MHC-I peptides (e.g. 

Spleen) whereas immune privilege organs (e.g., Brain, Testis, Ovary) yielded low numbers of 

MHC-I peptides (Figure 3A). Very similar observations were made in human (Figure 3B and 

Marcu et al. accompanying manuscript). In fact, direct comparison of MHC-I peptide counts 

between mouse and human tissues resulted in a positive correlation (R-squared value = 0.55) 

(Figure 3C). Next, we performed principal component analyses (PCA) of tissue dependent 

intensities of mouse and human MHC-I peptides (Figure 3D and E). PCA were performed from 

highly heterogenous immunopeptidomic data integrating peptides presented by two and 51 

different MHC-I allotypes, respectively. Despite the high heterogeneity, our analysis revealed two 

main clusters in each species. Notably, immune-related organs clustered together in both species 

(see cluster 2 in Figure 3D and E). Immune clusters included Spleen, Bone Marrow, Lymph nodes 

and Thymus (mouse), as well as other types of non-immune related organs such as Kidney, Lung, 

Liver and Colon. This observation raised the following question: what are the MHC-I peptides that 

are either shared or unique across these tissues?  
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To address the above question, we created connectivity matrices, which summarize the number of 

MHC-I peptides shared and uniquely observed between all possible pairs of tissues in mouse 

(Figure 3F) and human (Supplementary Figure 1). The number of uniquely observed/tissue-

specific peptides can be found along the diagonal of the connectivity matrices in Figure 3F and 

Supplementary Figure 1. In mouse, we observed that 15% (910 out of the 6097 unique peptides 

found in mouse) of the total H2Db/Kb immunopeptidome was shared across Spleen, Bone Marrow, 

Kidney, Lung, Liver and Colon (Figure 3F). As an example, 1768 peptides (29% of the total 

H2Db/Kb immunopeptidome) were shared between Spleen and Kidney, and 1288 peptides (21% 

of the total H2Db/Kb immunopeptidome) were shared between Bone marrow and Liver (Figure 

3A). In human, we observed that 4% of the total HLA-ABC immunopeptidome was shared across 

these six organs for all subjects. Once deconvolved by allotype or subject, we observed that, on 

average, 3% (range: 1% HLA-C*07:04 — 10% HLA-A*01:01) and 1.6% (range: 1% AUT-DN13 

— 2.6%, AUT-DN17) of HLA-I peptides were shared across these organs, respectively 

(Supplementary Figure 2). In contrast, larger fractions of MHC-I peptides were found to be 

uniquely observed/tissue-specific in each species. Overall, 36% (2193 out of 6097 unique 

peptides) and 42% (29375 out of 69919 unique peptides) of the total H2Db/Kb- and HLA-ABC- 

immunopeptidome were uniquely observed in specific tissues, respectively. Thus, these data 

suggest that a significant proportion of MHC-I peptides might be tissue-specific whereas a 

relatively smaller proportion of peptides are shared across various immune and non-immune 

organs, both in mouse and human. This conclusion can be raised from the current data generated 

using the presently available state-of-the-art MS technology. However, one has to consider that 

MS is not yet as sensitive as other genomic technologies such and whole genome sequencing or 

RNAseq methods. Therefore, it is possible that the tissue-specific peptides described above were 
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also presented on a wider range of tissues, but were not detected due to their lower abundance and 

the detection limit of the mass spectrometer. Hence, the exact numbers and proportions mentioned 

above will possibly change in the future as MS technology evolves, but the concept of tissue-

specific and shared peptides across tissues of an entire organism will unlikely change. With this 

consideration in mind, we conclude that both the mouse and human MHC-Ii are composed of 

peptides that are tissue-specific as well as shared across different tissues. These two categories of 

MHC-I peptides may show distinct properties or trends, and were further investigated below. 

 

MHC-I peptides shared across multiple tissues are highly abundant and strong MHC-I 

binders.  

To investigate the properties of tissue-specific peptides versus those that are presented across a 

wide range of tissues, we sought to assess the influence of peptide intensity (MS1)/abundance and 

MHC binding affinity on tissue distribution. Hence, we plotted the frequency of peptide 

measurements across mouse and human tissues with against their average intensity or predicted 

MHC-I/HLA-I binding affinity (NetMHCpan4.0 rank score) (Supplementary Figure 3 for mouse 

and Supplementary Figures 4 and 5 for human). The human dataset has to be viewed in a subject-

specific manner as each subject presents its own repertoire of HLA-I alleles.  In mouse, we found 

that increasing cross-tissue presentation of an MHC-I peptides strongly correlated with increasing 

peptide abundance and increasing affinity for the MHC-I molecules (decreasing NetMHCpan 4.0 

rank score) (Supplementary Figure 3). The same behavior was generally observed in human, 

where peptides widely represented across tissues were highly abundant (Supplementary Figure 

4) and predicted to be strong HLA-I binders (Supplementary Figure 5) in all subjects. Together, 

these results suggest that peptide abundance and binding affinity for MHC-I molecules are key 
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properties that contribute to the widespread or tissue-specific presentation of peptides in the 

mammalian MHC-Ii.  

 

Tissue-specific MHC-I peptides arise from genes that are almost uniquely expressed in the 

peptide-producing tissue.  

Expression of tissue-specific source proteins contributes to shaping the tissue-specificity of the 

human MHC-Ii (Marcu et al. accompanying manuscript). Pioneering work in mice also proposed 

that transcriptomic signatures can be conveyed to the cell surface in the MHC-Ii (Fortier et al., 

2008). However, how gene expression shapes the composition of the mouse MHC-Ii across many 

different tissues remains to be clarified. To address this, we first assigned every mouse MHC-I 

peptide found in the tissue draft atlas of the MHC-Ii to its source gene. Using an RNA-Seq atlas 

of gene expression in mouse normal tissues (Söllner et al., 2017), we next assessed the transcript 

abundance of the MHC-I peptide source genes in nine tissues for which mRNA expression data 

were available (i.e. Brain, Colon, Heart, Kidney, Liver, Pancreas, Small intestine, Stomach and 

Thymus) (Figure 4). By doing so, we found that genes coding for any detectable MHC-I peptides 

as well as for tissue-specific MHC-I peptides were more actively transcribed compared to genes 

that were not coding for any detectable MHC-I peptides (Figure 4 A,B). 

 

Next, we reasoned that tissue-specific MHC-I peptides could derive from tissue-specific 

transcripts. To test this hypothesis, we averaged for every tissue the transcript abundance of genes 

coding for tissue-specific peptides and compared their expression across the nine tissues (Figure 

4C). As depicted, we observed that brain-specific MHC-I peptides derived from genes that were 

uniquely expressed in the brain. Interestingly, liver-specific MHC-I peptides derived from genes 
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that were predominantly, but not exclusively expressed in the liver—an expression pattern that 

was observed for seven out of nine tissues (colon, kidney, liver, pancreas, small intestine, stomach 

and thymus; Figure 4C). These data suggest that tissue-specific MHC-I peptides are generally 

derived from genes that are highly expressed in the same tissue of origin. Together, these results 

are in accordance with conclusions drawn in human from Marcu et al. (accompanying manuscript) 

and enforce the notion that gene expression plays a fundamental role in shaping the tissue 

specificity of the MHC-Ii in mammals.  

 

MHC-I peptides that are broadly presented across many tissues are encoded by genes that 

are highly expressed and evolutionarily hyperconserved. 

Above, we provided evidence that the MHC-Ii is composed of tissue-specific peptides as well as 

peptides that are widely presented across many different tissues. While tissue-specific MHC-I 

peptides appear to stem from genes predominantly expressed in the original tissue, we asked 

whether MHC-I peptides that were presented across most tissues derived from highly transcribed 

genes across the entire human or mouse genome. To answer this question, we created a selection 

of MHC-I peptides that were widely represented among the sampled tissues, referred herein as 

‘housekeeping/universal MHC-I peptides’ (Supplementary Figure 6A). While this selection is 

straightforward for the mouse data where we considered peptides identified in at least 18 of the 19 

tissues as housekeeping/universal peptides, a more complex approach was needed to select those 

peptides in the human dataset where several subjects, each representing a specific set of HLA-I 

alleles, were present. Details about the selection of those peptides in the human immunopeptidome 

tissue draft are described in the methods section ‘Selection of Housekeeping/Universal Peptides’ 

and are visualized in Supplementary Figure 6B-F and Supplementary Figure 7). First, we found 
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that the selected MHC-I peptides originated from 109 and 239 source genes in mouse and human, 

respectively (Supplementary Tables 1 & 2 and Supplementary Figures 6 & 7). Strikingly, we 

discovered that these genes were among the most transcriptionally expressed genes across the 

entire mouse (Figure 5A) and human (Figure 5B) genome. This result is in line with the above 

observation that widely presented peptides across the organism are of high intensity/abundance 

(Supplementary Figures 3 & 4). Moreover, it is noteworthy that those housekeeping/universal 

MHC-I peptides did not preferentially originate from large (heavy) proteins, as it could have been 

expected due to the higher numbers of possible peptide antigen products from large proteins 

(Supplementary Figure 8).  

 

Genes expressed in the majority of tissues in an organism are widely known as housekeeping genes 

and are thought to play essential roles in cellular integrity, energy management and replication 

(Zeng et al., 2016). Due to their vital functions, several research groups have described an 

evolutionarily hyperconservation of housekeeping genes across vertebrates and even yeast, 

suggesting that these vital genes build the foundation of life (She et al., 2009; Zhu et al., 2008). 

Akin to housekeeping genes, peptides that are represented in most tissues across an entire 

organism—referred above to as housekeeping/universal MHC-I peptides—could hypothetically 

originate from proteins that are preferentially hyperconserved across evolution. In this regard, it is 

reasonable to speculate that hyperconserved source proteins may have co-evolved for millions of 

years with ancients and ubiquitous degradation systems to become the fundamental ground source 

of MHC-I peptides for most tissues. To address this concept, we took advantage of the genome 

alignments between mouse and 59 vertebrates as well as between human and 99 vertebrates, made 

available by the UCSC Genome Browser (Lee et al., 2020) (see Materials and Methods section 
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‘Conservation of source genes from universal MHC-I peptides’ for details). To assess 

evolutionarily conservation across species, PhastCons scores (Siepel et al., 2005), which predict 

the probability of conservation for every base-pair in the aligned genomes, were consulted for 

mouse and human genes of interest (see Materials and Methods for details). When comparing the 

conservation scores of tissue-specific MHC-I peptide source genes with those from 

housekeeping/universal MHC-I peptide source genes, the latter were significantly more conserved 

at the Promoter and Exon level, both in Mouse (p-value = 1.2x10-16; p-value = 2.0x10-72) (Figure 

5C) and Human (p-value = 3.4x10-16; p-value = 3.3x10-98) (Figure 5D). For example, the 

conservation probability (PhastCons score) of half of the more conserved Exons (Cumulative 

Frequency > 0.5) of a tissue-specific peptide source gene in mouse is greater than 45%, whereas 

the conservation probability of a housekeeping/universal peptide source gene in mouse is greater 

than 80%, making the latter set of genes preferentially hyperconserved. Thus, this analysis 

indicates that tissue-specific versus housekeeping/universal MHC-I peptide source genes do not 

share the same degree of conservation across evolution. Together, our results suggest that highly 

expressed and hyperconserved genes are preferential sources of MHC-I peptides at the organism-

wide scale.  

 

Global correlative analysis between tissue proteomes and immunopeptidomes unveils a core 

antigen processing and presentation network.  

We described above that the total number of MS-detectable MHC-I peptides was highly variable 

from one tissue to another, both in mouse and human (Figure 3 and Supplementary Figure 1). 

Differential expression and activity of antigen processing and presentation proteins in different 

tissues may contribute to this high variability (Rock et al., 2016). In fact, transcript levels of HLA-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.28.317750doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.317750


 17 

I, TAP1/2 and immunoproteasome were shown to correlate positively with the total number of 

MHC-I peptides detected across different human tissues (Marcu et al. accompanying manuscript). 

Notably, the same correlation pattern was observed for MHC-I proteins in mouse tissues (Schuster 

et al., 2018). To date, such correlative analysis has only been applied for a handful of proteins. A 

computational approach could be used to systematically identify any protein of the proteome for 

which their respective abundance across tissues correlate with the total number of MHC-I peptides 

across those same tissues. Therefore, we set out to apply this correlative approach at the proteome-

wide scale using protein abundances measured across different mouse and human tissues from two 

tissue-based proteomics atlases generated by MS (Figure 6A) (Geiger et al., 2013; Wang et al., 

2019).  

 

First, we computed a total of 4,255 (on 4,255 proteins) and 80,024 (on 10,095 proteins) correlations 

in mouse and human, respectively (see Materials and Methods). Strikingly, we found a subset of 

126 and 220 correlating proteins in mouse and human, respectively, whose abundance significantly 

correlated with the total number of MHCI peptide counts in a given tissue (p-value < 0.025 and R-

squared > 0.5 in Mouse; p-value < 0.05 and R-squared > 0.4 for at least two subjects in Human) 

(Supplementary Figure 9A & B, Supplementary Tables 3 & 4). From the 126 mouse proteins, 

106 correlated positively (84%) and 20 correlated negatively (16%) with MHCI peptide counts. 

Out of the 220 significantly correlating human proteins, 153 correlated positively (70%) and 67 

negatively (30%) (Supplementary Figure 10). 

 

To broadly assess biological processes and molecular functions in which these proteins are 

implicated, we performed gene ontology (GO) analysis on these significantly correlating proteins 
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(Supplementary Table 5). From the top 100 most significantly enriched GO terms implicated in 

biological processes in mouse and human, 40 were shared across both species (Supplementary 

Figure 11A). Similarly, from the 59 (mouse) and 74 (human) enriched GO terms assigned to 

molecular functions, 29 were found in both organisms (Supplementary Figure 11B). 

Remarkably, the shared GO terms were attributed to proteins implicated in the regulation of the 

immune system, antigen generation and protein degradation (Figure 6B). Furthermore, manual 

curation of the literature allowed us to associate those proteins to specific functional modules 

known to orchestrate transcription (e.g., STAT2/3, NFKB), TCR-MHC signaling (e.g., CD4, 

LCP1, VAV1/3) and antigen processing (e.g., PSMB3, PSME1, ERAP1) (Figure 6C & D). 

Among the latter, many proteasome subunits, proteases, carboxy- and aminopeptidases, as well as 

vesicular traffic proteins were identified (Figure 7). For example, human PSME1 is part of the 

proteasome activator complex (PA28) and is required for efficient antigen processing (Sijts et al., 

2001, 2002); PSMB3 is a component of the 20S core proteasome complex (Elenich et al., 1999; 

Huber et al., 2012); and ERAP1 plays a central role in peptide trimming for the generation and 

presentation of MHC-I peptides (Serwold et al., 2002). In these three examples, increased protein 

abundance correlated with a high number of MHC-I peptides (Figure 6C & D, Supplementary 

Figure 12A & B and Supplementary Tables 3,4 & 5). In contrast, we also observed that for some 

proteins (e.g., Uchl1, Ube2n and DAG1), decreased protein abundance correlated with high 

number of MHC-I peptides (Supplementary Figure 10B, C &D). Interestingly, Uchl1/Ube2n and 

DAG1 were previously reported to negatively regulate protein degradation and the mitogen-

activated protein kinase (MAPK) pathway, respectively. Moreover, five carboxypeptidases, two 

aminopeptidases and six proteases have not yet been linked to antigen processing in the literature 

but show significant correlations with MHC-I peptide counts in mouse or human tissues (Figure 
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7 and Supplementary Table 5). Thus, our systems-level analysis allowed us to identify many 

known key players as well as potentially new components of the antigen processing and 

presentation pathway. This led us to propose that we may have discovered a core antigen 

processing and presentation network composed of proteins involved in the generation, processing, 

presentation and recognition of MHC-I peptide antigens at the organism-wide scale. This study 

therefore opens up new avenues to further explore the architecture and dynamics of antigen 

processing and presentation in mammalian systems. 
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DISCUSSION 

The components of the antigen processing and presentation pathway shape how T cells respond to 

self and non-self (Rock et al., 2016). Those components have been traditionally discovered using 

hypothesis-driven approaches or genomic screening of cell lines presenting a phenotype of interest 

(Burr et al., 2019; Neefjes et al., 2011; Paul et al., 2011). MS-based immunopeptidomic approaches 

have also been used to validate the impact of those proteins on the global composition of the MHC-

Ii using in vitro or ex vivo model systems (Alvarez-Navarro et al., 2015; Nagarajan et al., 2016; 

Verteuil et al., 2010). To date, no study has taken advantage of the uncharted combination of 

immunopeptidomic, proteomic, transcriptomic and genomic data from a range of different primary 

tissues to infer the fundamental principles that form the mammalian MHC-Ii. In fact, akin to 

systems immunology methods (Villani et al., 2018), we deployed in this study an unbiased 

immunopeptidomic data-driven strategy using multiple tissue-based omics datasets, both in mouse 

and human, to i) reinforce the notion that the composition of the mammalian MHC-Ii is highly 

context-dependent, ii) provide fundamental information about the tissue-dependency, conservation 

and biogenesis of the MHC-Ii at the organism-wide scale, and iii) uncover a remarkable number 

of proteins that may collectively orchestrate the content and tissue-specificity of the MHC-Ii.  

 

In this study, we found that many proteins of the ubiquitin-proteasome degradation system as well 

as many proteases, amino- and carboxypeptidases were much more abundant in organs presenting 

a large number of MHC-I-peptide complexes. In addition, proteins known to negatively regulate 

protein degradation were found to be more abundant in organs presenting low numbers of MHC-I 

peptides. In fact, correlations between protein abundances and numbers of MHC-I peptides 

detected in tissues were noted to be remarkably informative and could be used to systematically 
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infer the role of new proteolytic enzymes in antigen processing. Proteolytic enzymes are critically 

important in antigen processing. Beside the proteasome, ~20 proteases act in the MHC-I 

presentation pathway and can alter presented peptides (Lázaro et al., 2015). ERAP1 is probably 

the most relevant example here since this aminopeptidase plays a major role in antigen processing 

through N-terminal peptide trimming into the endoplasmic reticulum and is associated with a 

number of different autoimmune diseases (Hanson et al., 2018; Serwold et al., 2002). Other 

aminopeptidases such as methionine aminopeptidase 2 (METAP2), leucine aminopeptidase 3 

(LAP3), peptidase D (PEPD) and dipeptidyl peptidase 4 (DPP4) were showcased in this study, the 

latter also known to be involved in TCR-MHC signaling (Ghersi et al., 2006; Wagner et al., 2016). 

Interestingly, we also identified five carboxypeptidases (CPE, CNDP1, CPVL, CNDP2 and 

PRCP), none of them reported so far to influence the repertoire of MHC-I peptides. These 

carboxypeptidases might therefore represent new players of the antigen processing and 

presentation pathway. If tested and validated, such findings would be particularly interesting 

because angiotensin-converting enzyme (ACE) is the only ER-resident carboxypeptidase 

documented so far, and was shown to be immunologically relevant through production of minor 

histocompatibility antigens, polyoma virus epitopes and HIV gp160 epitope (Neefjes et al., 2011; 

Shen et al., 2011). The use of chemical inhibitors and CRISPR technology together with high-

throughput immunopeptidomic experiments would be of great value in this context to 

systematically investigate the role of those proteins in shaping the composition and heterogeneity 

of the MHC-Ii in different cell and tissue types.  

 

Two distinct categories of self-peptides were investigated in this study: those that are most likely 

tissue-specific and those that are widely presented across most tissues, i.e. the 
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housekeeping/universal MHC-I peptides. Interestingly, these two categories of self-peptides share 

very distinct intrinsic features. The latter is composed of peptides that are highly abundant and 

strong MHC-I binders in addition to derive from highly expressed genes that are preferentially 

hyperconserved across evolution. In contrast, tissue-specific peptides are relatively less abundant 

and are encoded by genes that are strongly expressed in the tissue of origin, but weakly or not 

expressed in most tissues. Given the distinct properties of those self-peptides, their respective 

impact toward various immunological processes could be dramatically different, for triggering T 

cell tolerance in particular. In fact, tolerance mechanisms through recognition of self-peptides, 

both in the thymus and in the periphery, are critical to eliminate or control self-reactive T cells that 

would otherwise lead to autoimmunity (Granados et al., 2015; Verteuil et al., 2012; Xing and 

Hogquist, 2012). Failure to T cell tolerance against housekeeping/universal peptides would have 

devastating consequences as self-reactive T cells would destroy most organs across the entire 

organism. Fortunately, we observed that genes coding for those peptides are among the most 

expressed across entire genomes, hence, increasing the probability that those peptides will be 

abundantly presented in the thymus to trigger clonal deletion of immature self-reactive T cells 

recognizing those peptides. Moreover, we made the fundamental observation that 

housekeeping/universal peptides originate from hyperconserved genes. Therefore, the adaptive 

immune system may have evolved for 500 million years a remarkable mechanism enabling the 

elimination of those T cells in a highly efficient manner. In contrast, controlling self-reactivity of 

T cells recognizing tissue-specific peptides might be more challenging, thereby rationalizing the 

need for peripheral tolerance processes to avoid tissue-specific autoimmunity (Matsumoto et al., 

2019).  
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Another important observation in this study was that the multiple HLA-I allotypes expressed by a 

given individual may contribute unevenly to the composition of the MHC-Ii from one organ to 

another. For instance, HLA-B40:02-associated peptides were found to be particularly enriched in 

the liver of a given individual compared to all the other organs. Overall, 65 enrichment patterns 

were observed across 27 specific HLA-I subtypes and 29 different tissues. These are important 

basic observations because peptide antigens that are processed and presented in a tissue-dependent 

fashion may cause differential phenotypic consequences in response to the same signal. For 

instance, in infectious diseases, Plasmodium parasites (malaria) and SARS-CoV-2 (COVID-19) 

have the ability to reach and infect many host tissues (Coban et al., 2018; Wadman et al., 2020). 

In this context, CD8+ T cells may behave very differently from one tissue to another following 

tissue-dependent processing and presentation of pathogen-derived peptide antigens, thereby likely 

impacting the overall efficiency of viral clearance by T cells. Interestingly, tissue-dependent 

antigen presentation may also lead to a web of tissue-resident memory T cells that functionally 

adapt to their environment to stop viral spread across the organism (Kadoki et al., 2017). Hence, 

tissue-specific variations in the MHC-Ii likely play a role in controlling infections or determining 

the severity of a disease. One can anticipate that immunopeptidomics approaches will be 

increasingly powerful in the future to investigate the dynamics of the MHC class I antigen 

processing and presentation pathway in vivo and evaluate its impact on tissue-dependent T cell 

responses in the organism.  

 

Systems understanding of MHC-I antigen presentation at the organism level is at an early stage. 

In the future, we envision that further improvement in proteomics and immunopeptidomics 

technologies will enable robust, precise and comprehensive measurements of proteomes and 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.28.317750doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.317750


 24 

immunopeptidomes in response to a wide range of immunological perturbations. Integration of 

those measurements over time, together with new high-throughput TCR-MHC peptide interaction 

studies (Dendrou et al., 2018; Moritz et al., 2019), will help understand how widespread and tissue-

specific changes in peptide processing and presentation impact tissue-dependent T cell responses, 

and hence, help understand inter-organ communications between T cell networks to shape the 

organismal circuitry of immunity (Chevrier, 2019; Kadoki et al., 2017). From a synthetic biology 

perspective, in-depth understanding of how MHC-I-associated peptides are generated in vivo will 

enable accurate prediction of their dynamics, and ultimately, will accelerate the engineering of 

new biological systems to control their presentation and function in immunity. 
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MATERIALS AND METHODS 

 

Retrieval and preparation of omics data from the literature 

Mouse immunopeptidome 

Raw data from the mouse immunopeptidome dataset (Schuster et al., 2018) were downloaded and 

re-analyzed using “PEAKS 9 (Bioinformatics Solutions Inc., Waterloo, Ontario, Canada)” (Tran 

et al., 2018). Peptides identified with an FDR<1% were further assessed for binding to the MHC-

I alleles H2Kb and H2Db using NetMHCpan4.0 (Jurtz et al., 2017). Peptides with a length of 

8,9,10,11 or 12 amino acids and a NetMHCpan-4.0 Rank score smaller than 0.5 (Rank < 0.5) were 

selected as MHC-I peptides. A collection of all mouse MHC-I peptides is made available in 

Supplementary Table 1. All downstream data analysis is based on this set of MHC-I peptides.  

 

Mouse RNAseq data 

Mouse RNAseq data were obtained from (Söllner et al., 2017) supplementary materials and can 

be found in Supplementary Table 1. Data were used for further analysis in the form provided.  

 

Mouse proteomics data 

Mouse proteomic data were downloaded from (Geiger et al., 2013) supplementary materials and 

can be found in Supplementary Table 3. Data were normalized across tissues based on median 

intensities and used for further analysis in the form provided.  

 

Human immunopeptidome 
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Human immunopeptidome data were obtained from an early/unreleased version of the data (see 

note above for the reviewers and editor). The resulting peptides that were assigned to their tissues, 

subjects and alleles can be found in Supplementary Table 2. Briefly, raw MS files were searched 

as described in Marcu et al. (accompanying manuscript). We used NetMHCpan-4.0 to annotate 

the best binding allele to each peptide. Peptide binding was predicted for alleles present in the 

subject from which peptide originated [based on allele genotyping as described in Marcu et al. 

(accompanying manuscript)]. Out of six alleles genotyped to each subject, the allele with the 

lowest NetMHCpan-4.0 Rank score was assigned to a given peptide. Peptides with a NetMHCpan-

4.0 rank smaller than 2 (Rank<2) were considered MHC-I peptides. The quantitative information, 

as reported by MHCquant (Bichmann et al., 2019), was also used in the current manuscript. Raw 

peptide intensities were used as approximative quantitative information and no normalization was 

performed due to the heterogeneous nature of pulldowns and primary tissue samples. Note that the 

latest version of the qualitative data can be found at https://hla-ligand-atlas.org/. 

 

Human RNAseq data 

Human RNAseq data were obtained from the GTEX repository https://www.gtexportal.org/home/  

(accessed January 10th 2020), the dataset used was: ‘GTEx_Analysis_2017-06-

05_v8_RNASeQCv1.1.9_gene_median_tpm.gct’. The subset of data used for this manuscript can 

be found in Supplementary Table 2. Data were used for further analysis in the form provided.  

 

Human proteomics data 
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Human proteomics data were obtained from (Wang et al., 2019). The subset of data used for this 

publication can be found in Supplementary Table 4. Data were used for further analysis in the form 

provided unless stated differently.  

 

Principal component analysis 

Principal component analysis and visualization was performed in R using the FactoMineR package 

(Lê et al., 2008). Input variables consist of all tissues for which immunopeptidomic data are 

available in mouse or human. For each tissue, a vector of individual peptide intensities (log10 

transformed) was loaded. The first two dimensions accounting for most of the variability in the 

data were plotted (Figure 2 D & E).  

 

Tissue Connectivity Maps  

For every possible pair of tissues, the number of overlapping peptides was determined for the 

mouse and human immunopeptidomes, respectively. A peptide was considered overlapping if an 

intensity value had been reported in both tissues. A connectivity matrix was generated from the 

resulting data for mouse and human, respectively (Figure 2F and Supplementary Figure 1).  

Noteworthily, the number of peptides unique to a given tissue is depicted along the diagonal of 

depicted heatmaps. 

 

Tissue-dependent representation of HLA alleles 

The proportion of peptides represented by a specific allele in a given tissue was calculated for 

every subject. Similarly, the mean proportion of every allele across tissues was calculated for every 
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subject. These values were then used to calculate the over- or under-representation of each allele 

in a tissue compared to the mean as follows: 

Subject dependent allele enrichment in tissues: 

•  
%[𝐴𝑙𝑙𝑒𝑙𝑒] 𝑖𝑛 𝑇𝑖𝑠𝑠𝑢𝑒 𝑘

(∑ %[𝐴𝑙𝑙𝑒𝑙𝑒] 𝑖𝑛 𝑇𝑖𝑠𝑠𝑢𝑒 𝑘𝑛
𝑘=0 )/𝑛

= 𝑇𝑖𝑠𝑠𝑢𝑒 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑎𝑙𝑙𝑒𝑙𝑒 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 

Examples for subject specific allele representations can be found in Figure 2 B-D. In order to 

assess trends across all subjects, we calculated the mean of these over- and under-representation 

values for all alleles across all subjects. To find trends among the data, we focused only on alleles 

over-represented by, on average, at least 1.5-fold in a given tissue across all subjects. Results are 

depicted in Figure 2 E. Note that every over-representation is coupled to an under-representation, 

allowing for straightforward visualization of results when only depicting over-representations. 

 

Connecting mouse immunopeptidomic data with mouse RNAseq data 

Source genes of mouse MHC-I peptides available from the Peaks results were mapped to 

ENSEMBL identifiers using the mouse annotation package org.Mm.eg.db in R (DOI: 

10.18129/B9.bioc.org.Mm.eg.db). These source genes were then mapped to the genes in the 

RNAseq dataset (Söllner et al., 2017) to assess their tissue-dependent RNAseq expression 

(Supplementary Table 1). All mappings between different gene identifiers were performed using 

the R package AnnotationHub (DOI: 10.18129/B9.bioc.AnnotationHub).  

 

 

Source genes from tissue-specific MHC-I peptides (Mouse) 

Genes mapped to a peptide which is present in only one of the nineteen tissues analyzed in the 

mouse immunopeptidome are considered to be source genes of tissue specific MHC-I peptides. 
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We have not assessed to what extend additional MHC-I peptides from such a gene are represented 

across tissues (for genes where more than one immunopeptide was identified). We found 1620 

source genes from tissue-specific MHC-I peptides in mouse. 

 

Conservation of source genes from universal MHC-I peptides (Mouse) 

Universal MHC-I peptides are defined as MHC-I peptides present in at least 18 of the 19 mouse 

tissue samples (Supplementary Figure 6A). 90 of such peptides from 85 genes were found in the 

mouse dataset (Supplementary Table 1). We calculated the conservation of the exon and promoter 

regions of the corresponding source genes and compared their genetic conservation to those from 

source genes of tissue specific MHC-I peptides. Conservation scores were extracted in form of 

PhastCons conservation probabilities (Siepel and Haussler, 2004; Siepel et al., 2005) from publicly 

available multiple alignments of the mouse genome and the genomes of 59 vertebrates 

(http://hgdownload.soe.ucsc.edu/goldenPath/mm10/multiz60way/) from the UCSC genome 

browser (https://genome.ucsc.edu/index.html) (accessed June 5th 2020). BigWig files containing 

PhastCons scores for the mouse genome were downloaded and queried for the genes of interest 

using the R package rtracklayer (Lawrence et al., 2009) together with gene positional information 

from the ‘TxDb.Mmusculus.UCSC.mm10.knownGene’ database provided by the UCSC genome 

browser (DOI: 10.18129/B9.bioc.TxDb.Mmusculus.UCSC.mm10.knownGene). PhastCons 

scores for nucleotides of the exon and promoter regions of housekeeping and tissue-specific source 

genes were extracted from the BigWig files. Promoter regions were defined as 200 bases 

downstream and 2000 bases upstream of the transcription start site. Conservation scores were then 

calculated using a 12-base pair sliding window along the extracted genetic regions and the 

maximum PhastCons value was used as the conservation score. The cumulative frequency of these 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.28.317750doi: bioRxiv preprint 

http://hgdownload.soe.ucsc.edu/goldenPath/mm10/multiz60way/
https://genome.ucsc.edu/index.html
https://doi.org/doi:10.18129/B9.bioc.TxDb.Mmusculus.UCSC.mm10.knownGene
https://doi.org/10.1101/2020.09.28.317750


 30 

PhastCons values for the exon and promoter regions of source genes from universal MHC-I 

peptides and source genes from tissue-specific MHC-I peptides were calculated and compared 

using the Wilcoxon rank sum test, respectively. This analysis and workflow were inspired by Zeng 

et al (Zeng et al., 2016) and Zhu et al (Zhu et al., 2008) who investigated the genomic conservation 

of housekeeping genes compared to tissue specific genes in mouse and human, respectively. 

Furthermore, ideas for the implication of PhastCons conservation rates were derived from Sun et 

al. (Sun et al., 2014). 

 

Annotating the molecular weight of immunopeptide source genes (Mouse) 

Molecular weights of proteins were retrieved from www.uniprot.org (Complete Mus musculus 

proteome, reviewed + un-reviewed proteins, accessed June 17 2020). Uniprot identifiers were 

matched to ENSEMBL gene identifiers and used for analysis. 

 

Connecting human immunopeptidomic data with human RNAseq data 

Source genes of human MHC-I peptides were mapped to ENSEMBL identifiers using the human 

annotation package org.Hs.eg.db in R (org.Hs.eg.db: Genome wide annotation for Human. R 

package version 3.8.2). These source genes were then mapped to the genes in the RNAseq dataset 

(‘GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct’) to assess their 

tissue-dependent RNAseq expression (Supplementary Table 2). All mappings between different 

gene identifiers were performed using the R package AnnotationHub 

(DOI: 10.18129/B9.bioc.AnnotationHub). 

 

Source genes from tissue-specific MHC-I peptides (Human) 
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Source genes representing one or more MHC-I peptides that were measured in only one tissue 

sample in the human immunopeptidome dataset were considered source genes from tissue-specific 

MHC-I peptides. In human we found 8846 of such genes. Similar to the mouse analysis, we did 

not assess to what extent these genes yield additional peptides present in more than one tissue 

sample.  

 

Conservation of source genes from universal MHC-I peptides (Human) 

Defining source genes from universal MHC-I peptides in human is less straightforward compared 

to the mouse due to the heterogeneity of subjects from which tissues were sampled and HLA alleles 

representation. Hence, we defined a source gene from universal MHC-I peptides in the available 

human immunopeptidome as a gene for which one or more MHC-I peptides were either 1) present 

across all tissues in at least two patients or 2) present across all samples in which the assigned 

HLA allele was present or 3) among the top 100 peptides identified the most frequently across all 

measured samples, independent of allele or subject (Supplementary Figure 6 B-F). This analysis 

resulted in a total of 239 source genes from universal MHC-I peptides (Supplementary Figure 7 

and Supplementary Table 2).  

 

Conservation analysis was performed using PhastCons retrieved from an alignment of the hg38 

human genome with 99 vertebrates. Data were downloaded from the UCSC genome browser at 

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/ (accessed June 5th 2020). 

Genetic positions of genes of interest (genes from universal and tissue-specific MHC-I peptides) 

were mapped using the ‘TxDb.Hsapiens.UCSC.hg38.knownGene’ database 
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(DOI: 10.18129/B9.bioc.TxDb.Hsapiens.UCSC.hg38.knownGene) and conservation scores were 

calculated and compared the same way as the mouse conservation scores.  

 

Annotating the molecular weight of immunopeptide source genes (Human) 

Molecular weights of proteins were retrieved from www.uniprot.org (Complete Homo sapiens 

proteome, reviewed + un-reviewed proteins, accessed June 17 2020). Uniprot identifiers were 

matched to ENSEMBL gene identifiers and used for analysis. 
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Computing and analyzing protein wise correlation between tissue immunopeptide counts 

and protein abundances in mouse and human 

Protein expression data from mouse and human proteomic tissue drafts (Supplementary Tables 3 

& 4) were obtained from (Geiger et al., 2013) for mouse and (Wang et al., 2019) for human. Both 

datasets were chosen due to their recency and wide range of tissues sampled. Correlations between 

the expression pattern of a given protein across tissues and the overall number of MHC-I peptides 

sampled across tissues in mouse or human subjects were measured. Expression values (log10 

transformed) of each protein across tissues were plotted against the number of total MHC-I 

peptides identified in each tissue and R-squared and p-values were computed if more than 9 

measurement pairs (expression value and total number of MHC-I peptides) were available. For the 

human dataset, correlations were calculated for immunopeptidome data from every subject where 

above criteria were fulfilled. Expression values from jejunum and duodenum from the human 

proteomics dataset (Wang et al., 2019) were averaged and paired with total immunopeptide counts 

in the small intestine. P-values and R-squared values were reported. For the human data, we 

required p-values < 0.05 and R-squared values >0.4 in at least two patients to consider a correlation 

to be non-random (Supplementary Figure 9A). For the mouse data where only one subject is 

available, correlations with p-values < 0.025 and R-squared > 0.5 were considered to be non-

random observations (Supplementary Figure 9B). Correlation data for all proteins of the mouse 

and human datasets can be found in supplementary tables 3 & 4, respectively.  

 

Functional proteomic analysis 

Gene set enrichment analysis (GSEA; http://www.broad.mit.edu/gsea/) was performed using 

GSEA software and the Molecular Signature Database (MsigDB) on proteins from systematic 
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cross-tissue analysis of MHC class I peptides and protein expression. Top 100 significant gene 

sets using the Biological Process and Molecular Function modules overlap analysis were 

considered significant with P value and FDR < 0.05. We acknowledge our use of the GSEA, GSEA 

software, and MSigDB (Subramanian et al., 2005). Results can be found in Supplementary Table 

5.  
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FIGURE LEGEND 

 

Figure 1. Overview of immunopeptidomics, proteomics and transcriptomics datasets 

analyzed. (Left hand side) Graphic description of the Mouse B57BL/6 MHC-I Ligand Atlas, 

which was connected with two published proteomics and mRNA expression atlases of mouse 

tissues. (Right hand side) Graphic description of the Human HLA-I Ligand Atlas, which was 

connected with two published proteomics and mRNA expression atlases of human tissues. 

 

Figure 2. Distribution of HLA-A-, B- and C-specific immunopeptidomes across human 

tissues. (A) Relative proportion of individual HLA-A-, B- and C-specific immunopeptidomes per 

tissue among all subjects. (B-D) Relative proportion of individual HLA allele-specific 

immunopeptidomes per tissue for subject AUT-DN11 (B), AUT-DN13 (C) and AUT-DN12 (D). 

(E) Enrichment of HLA-I allotypes across all tissues sampled. Average enrichment values are 

depicted where an allotypes was sampled across several subjects. 

 

Figure 3: Comparison of tissue dependent MHC-I (Mouse) and HLA-I (Human) peptide 

antigens. (A) MHC-I peptide counts for each sampled mouse tissue, colors depict the MHC-I 

alleles, respectively. (B) HLA-I peptide counts for all sampled human tissues. Boxplots are 

represented as several tissues were sampled across different individuals. (C) Comparison of MHC-

I peptide counts/tissue (Mouse) and HLA-I peptide counts/tissue (Human). (D) Principal 

component analysis of the measured intensities (log10) of MHC-I peptides (Mouse). (E) Principal 

component analysis of the measured intensities (log10) of HLA-I peptides (Human). (F) Tissue 
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connectivity map of the ‘B57BL/6 MHC-I Ligand atlas’ (Mouse). Heatmap depicts the number of 

shared MHC-I peptides across tissues. 

 

Figure 4: mRNA expression of MHC-I source genes. (A) Violin plots depicting the distribution 

of mRNA expression of genes which generate MHC-I peptides (0), genes which generate tissue 

specific MHC peptides (1) or does not generate MHC-I peptides (2). (B) Donut plot depicting the 

number of tissue specific MHC-I peptides found in tissues for which mRNA expression data is 

available (9 of 19 tissues sampled in the ‘B57BL/6 MHC-I Ligand atlas’. (C) Heatmap 

representing the average mRNA expression of genes with tissue specific MHC-I peptides (y-axis) 

across tissues (x-axis).   

 

Figure 5: Expression and genetic conservation of genes coding for MHC-I/HLA-I peptides 

presented across most tissues (housekeeping/universal peptides). (A,B) mRNA expression of 

source genes of housekeeping/universal MHC-I/HLA-I peptides compared to all other mRNA 

transcripts in mouse (A) and human (B). (C,D) Exon and promoter conservation distributions of 

source genes of housekeeping/universal MHC-I/HLA-I peptides compared to source genes of 

tissue-specific MHC-I peptides in mouse (C) and human (D).  

 

Figure 6: Correlation of protein abundances at the proteome-wide scale with the total 

number of MHC-I or HLA-I peptides detected across tissues. (A) Protein expression data from 

protein expression maps of mouse and human tissues were correlated with the total number of 

MHC-I or HLA-I peptides detected per tissue. Correlations were simulated for every protein 

measured across nine or more tissues. Significantly correlating proteins were further investigated. 
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(B) Gene Ontology terms enriched from 126 mouse and 220 human proteins whose abundance 

significantly correlates with the number of MHC-I/HLA-I peptides counted per tissue. (C) 

Example correlation of proteasome subunit Psmb3 in Mouse with MHC-I peptides counted across 

tissues. (D) Example correlation of proteasome subunit PSME1 with HLA-I peptides counted 

across tissues in two human subjects (AUT-DN06 and AUT-DN04). 

 

Figure 7: Protein modules identified from the global correlative analysis are associated to 

antigen generation, processing and recognition. Mouse and human proteins annotated to 

enriched GO terms (Supplementary Table 5) were manually curated from the literature and were 

classified based on their respective biological function: proteasome, aminopeptidase, 

carboxypeptidase, protease, ubiquitin protein, GTPase-activating protein or regulator, guanine 

nucleotide–exchange factor (GEF), actin binding protein, transcriptional regulator, binding 

protein, cell adhesion protein, tyrosine or serine-threonine protein kinase (Kinase) and enzyme. 

The roles of specific proteases, amino- and carboxypeptidases for processing peptide antigens 

remain unexplored and are depicted in grey. 
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MAIN FIGURES 

 

 
Figure 1. Overview of immunopeptidomics, proteomics and transcriptomics datasets analyzed. (Left hand side) 

Graphic description of the Mouse B57BL/6 MHCI Ligand Atlas, which was connected with two published proteomics 

and mRNA expression atlases of mouse tissues. (Right hand side) Graphic description of the Human HLAI Ligand 

Atlas, which was connected with two published proteomics and mRNA expression atlases of human tissues. 
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Figure 2. Distribution of HLA-A-, B- and C-specific immunopeptidomes across human tissues. (A) Relative 

proportion of individual HLA-A-, B- and C-specific immunopeptidomes per tissue among all subjects. (B-D) 

Relative proportion of individual HLA allele-specific immunopeptidomes per tissue for AUT-DN11 (B), AUT-

DN13 (C) and AUT-DN12 (D). (E) Enrichment of HLAI allotypes across all tissues sampled. Average enrichment 

values are depicted where allotypes were sampled across several subjects. 
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Figure 3: Comparison of tissue dependent MHCI (Mouse) and HLAI (Human) peptide antigens. (A) MHCI 

peptide counts for each sampled mouse tissue, colors depict the MHCI alleles, respectively. (B) HLAI peptide counts 

for all sampled human tissues. Boxplots are represented as several tissues were sampled across different individuals. 

(C) Comparison of MHCI peptide counts/tissue (Mouse) and HLAI peptide counts/tissue (Human). (D) Principal 

component analysis of the measured intensities (log10) of MHCI peptides (Mouse). (E) Principal component analysis 

of the measured intensities (log10) of HLAI peptides (Human). (F) Tissue connectivity map of the ‘B57BL/6 MHCI 

Ligand atlas. Heatmap depicts the number of shared MHCI peptides across tissues (Mouse). Note: The number of 

uniquely observed/tissue-specific peptides can be found along the diagonal. 
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Figure 4: mRNA expression of MHCI source genes. (A) Violin plots depicting the distribution of mRNA expression 

of genes which generate MHCI peptides (0), genes which generate tissue specific MHC peptides (1) or does not 

generate MHCI peptides. (B) Donut plot depicting the number of tissue specific MHCI peptides found in tissues for 

which mRNA expression data is available (9 of 19 tissues sampled in the ‘B57BL/6 MHCI Ligand atlas’. (C) Heatmap 

representing the average mRNA expression of genes with tissue specific MHCI peptides (y-axis) across tissues (x-

axis).   
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Figure 5: Expression and genetic conservation of genes coding for MHCI/HLAI peptides presented across most 

tissues (housekeeping/universal peptides). (A,B) mRNA expression of source genes of housekeeping/universal 

MHCI/HLAI peptides compared to all other mRNA transcripts in mouse (A) and human (B). (C,D) Exon and promoter 

conservation distributions of source genes of housekeeping/universal MHCI/HLAI peptides compared to source genes 

of tissue-specific MHCI peptides in mouse (C) and human (D).  
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Figure 6: Correlation of protein abundances at the proteome-wide scale with the total number of MHCI or 

HLAI peptides detected across tissues. (A) Protein expression data from protein expression maps of mouse and 

human tissues were correlated with the total number of MHCI or HLAI peptides detected per tissue. Correlations were 

simulated for every protein measured across nine or more tissues. Significantly correlating proteins were further 

investigated. (B) Gene Ontology terms enriched from 126 mouse and 220 human proteins whose abundance 

significantly correlates with the number of MHCI/HLAI peptides counted per tissue. (C) Example correlation of 

proteasome subunit Psmb3 in Mouse with MHCI peptides counted across tissues. (D) Example correlation of 

proteasome subunit PSME1 with HLAI peptides counted across tissues in two human subjects (AUT-DN06 and AUT-

DN04). 
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Figure 7: Protein modules identified from the global correlative analysis are associated to antigen generation, 

processing and recognition. Mouse and human proteins annotated to enriched GO terms (Supplementary Figure 11) 

were manually curated from the literature and were classified based on their respective biological function: 

proteasome, aminopeptidase, carboxypeptidase, protease, ubiquitin protein, GTPase-activating protein or regulator, 

guanine nucleotide–exchange factor (GEF), actin binding protein, transcriptional regulator, binding protein, cell 

adhesion protein, tyrosine or serine-threonine protein kinase (Kinase) and enzyme. The roles of specific proteases, 

amino- and carboxypeptidases for processing peptide antigens remain unexplored and are depicted in grey. 
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SUPPLEMENTARY FIGURES 

 
Supplementary Figure: 1: Connectivity map human immunopeptidome. This human heat map integrates 

immunopeptidomic data from 38 HLAI allotypes and 13 different subjects. The human heat map is not deconvoluted 

by HLA allotype nor subject and therefore provide a bird’s eye view of the human class I immunopeptidome. Note: 

The number of uniquely observed/tissue-specific peptides can be found along the diagonal. 
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Supplementary Figure 2: Proportion of peptides shared across Colon, Spleen, Liver, Lung, Bone marrow and 

Kidney. (A) Deconvoluted by best allele for which all 6 tissues were sampled. (B) Deconvoluted by subjects for which 

all six tissues were sampled.  
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Supplementary Figure 3: NetMHCpan4.0 rank and MHCI peptide intensities plotted against the number of 

measurements across tissues in the mouse dataset. 
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Supplementary Figure 4: MHC I peptide intensities plotted against the number of measurements across tissues 

in the human dataset. Each panel represents one subject. 
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Supplementary Figure 5: NetMHCpan4.0 rank (best allele) plotted against the number of measurements across 

tissues in the human dataset. Each panel represents one subject. 
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Supplementary Figure 6: Identification of the mouse and human tissue-independent MHCI peptides and their 

corresponding source genes. (A) Histogram showing the number of MHCI peptides presented in one or more tissues. 

1 measurement are MHCI peptides identified in only one tissue whereas 19 measurements are MHCI peptides 

identified in all the 19 tissues. Mouse source genes coding for MHCI peptides that were measured across more than 

17 tissues were considered for further analysis. (B) Source genes of the top 100 peptides from the human dataset 

measured the most frequently across tissues were considered ‘source genes of universal peptides’ . (C) In addition to 

B, source genes that present peptides across all tissues in at least two patients are also considered as ‘source genes of 

universal peptides’. (D) In addition to B and C, source genes that present peptides across all tissues for at least one 

allele are considered ‘source genes of universal peptides’. (E) Example of the distribution of peptide counts across 

tissues in AUT-DN14. (F) Example distribution of peptide counts across all samples containing allele A01:01. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.28.317750doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.317750


 58 

 
Supplementary Figure 7: Venn diagram of human universal-peptide source genes originating from the three 

selection criteria specified in Supplementary Figure 6 B-D. 
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Supplementary Figure 8: Molecular weight of universal-peptide and tissue-specific-peptide source proteins. 

(A) Mouse and (B) Human. 
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Supplementary Figure 9: Large scale correlation of protein intensities with the total count of MHCI peptides 

per tissue in human and mouse datasets. (A) R-squared of linear fits plotted against the corresponding p-values for 

the human data. Proteins whose fits show R-squared values> 0.4 (p-value<0.05) in at least two subjects are considered 

significant. (B) R-squared of linear fits plotted against the corresponding p-values for the mouse data. Proteins whose 

fits show R-squared values> 0.5 (p-value<0.025) are considered significant.  
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Supplementary Figure 10: Negative correlations between total immunopeptide counts and protein intensities.  

(A) Proportion of direction of slopes of significant proteins in human and mouse. (B-D) Example fits of proteins in 

human and mouse with negative correlation. 
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Supplementary Figure 11: Overlap of enriched gene ontology (GO) terms between Mouse and Human for 

genes significantly correlating with total MHCI/HLAI counts. (A) GO Biological Process (GO-BP). (B) GO 

Molecular Function (GO-MF). 
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Supplementary Figure 12: Example fit curves of prominent proteins. (A) Example fit of the protein CD4 in 

human (only curves of subjects with statistically significantly fit curves are shown). (B) Example fit of the protein 

Erap1 in mouse. 
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