
Gut microbiome dysbiosis is associated with elevated toxic bile acids in Parkinson’s 

disease 

 

 

Peipei Li1,*, Bryan A. Killinger1,2, Ian Beddows1, Elizabeth Ensink1, Ali Yilmaz3,4, Noah Lubben1, 

Jared Lamp5, Meghan Schilthuis1, Irving E. Vega5, Markus Britschgi6, J. Andrew Pospisilik7, 

Patrik Brundin1,8, Lena Brundin1,8, Stewart Graham3, Viviane Labrie1,8 

 

 

1Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503 USA 

2Department of Neurological Sciences, Rush Medical College, Chicago, IL, 60612 USA 

3Metabolomics Department, Beaumont Health-Research Institute, Royal Oak, MI, 48073 USA 

4Oakland University-William Beaumont School of Medicine, Rochester, MI, 48309 USA 

5Integrated Mass Spectrometry Unit, Department of Translational Neuroscience, College of 

Human Medicine, Michigan State University, Grand Rapids, MI, 49503 USA 

6Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation 

Center, 13 Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland 

7Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503 USA 

8Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State 

University, Grand Rapids, MI, 49503 USA 

 

*corresponding author: peipei.li@vai.org 

 

Keywords: Parkinson’s disease, microbiome, bile acids, appendix, gut 

Running title: Gut microbiome-derived bile acids increased in Parkinson’s disease 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2020. ; https://doi.org/10.1101/2020.09.26.279851doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.26.279851


2 

Abstract 

 

The gut microbiome can impact brain health and is altered in Parkinson’s disease (PD) patients. 

Here, we investigate changes in the functional microbiome in the appendix of PD patients 

relative to controls by metatranscriptomic analysis. We find microbial dysbiosis affecting lipid 

metabolism, particularly an upregulation of bacteria responsible for secondary bile acid 

synthesis. Proteomic and transcript analysis corroborates a disruption in cholesterol 

homeostasis and lipid catabolism. Bile acid analysis reveals an increase in microbially-derived, 

toxic secondary bile acids. Synucleinopathy in mice induces similar microbiome alterations to 

those of PD patients. The mouse model of synucleinopathy has elevated DCA and LCA. An 

analysis of blood markers shows evidence of biliary abnormalities early in PD, including 

elevated alkaline phosphatase and bilirubin. Increased bilirubin levels are also evident before 

PD diagnosis. In sum, microbially-derived toxic bile acids are heightened in PD and biliary 

changes may even precede the onset of overt motor symptoms.     
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Introduction 

 

Parkinson’s disease (PD) is a common neurodegenerative disease that is clinically 

characterized by motor and non-motor symptoms. Some non-motor features of PD begin many 

years before the onset of motor symptoms, during the prodromal phase of PD (Kalia and Lang, 

2015). One of the first prodromal symptoms is constipation, pointing toward an early 

involvement of the gastrointestinal (GI) tract (Kalia and Lang, 2015). Aggregated α-synuclein (α-

syn), a pathological hallmark of PD, is apparent in the GI tract of prodromal PD patients (Hilton 

et al., 2014; Stokholm et al., 2016). α-Syn aggregates in the gut of experimental models have 

been reported to propagate to the brain and induce nigral neurodegeneration and PD-like motor 

and non-motor dysfunctions (Kim et al., 2019; Van Den Berge et al., 2019). Recently, the 

vermiform appendix has been implicated as one GI tract location that could contribute to the 

initiation of PD pathogenic processes (Killinger et al., 2018). The appendix contains an 

abundance of aggregated α-syn, particularly in enteric nerves, with PD patients having 

substantially higher amounts of these aggregates (Killinger et al., 2018; Stokholm et al., 2016). 

Removal of the appendix was associated with a decreased risk for PD in some, but not all, 

epidemiological studies (Killinger et al., 2018; Liu et al., 2020; Marras et al., 2016; Mendes et 

al., 2015; Svensson et al., 2016). This signifies that the appendix may be an important tissue to 

study to advance our understanding of some of the earliest events in PD pathogenesis. 

 

The appendix is an immunological organ that also acts as a storehouse for the gut microbiome 

(Donaldson et al., 2016; Killinger and Labrie, 2019). The gut microbiome and its metabolites are 

increasingly being recognized as crucial for brain health (Fung et al., 2017). Numerous studies 

support that there are microbiome changes in the stool of PD patients (Bedarf et al., 2017; 

Heinzel et al., 2020; Perez-Pardo et al., 2019; Scheperjans et al., 2015). The appendix contains 

a rich microbial biofilm, which differs from that of the rectum and stool (Jackson et al., 2014; 
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Tytgat et al., 2019). Importantly, the appendix has an anatomically shielded microbiome and is 

capable of modulating the microbiome in the rest of the large intestine (Masahata et al., 2014; 

Sanchez-Alcoholado et al., 2020). Consequently, changes in the appendix microbiome may 

have a widespread effect on the microbial flora of the intestine. Further, inflammation in the 

periphery and the brain has been proposed to have a central role in PD, and the microbiome 

and the host immune system has a bidirectional effectual relationship (Fung et al., 2017; 

Johnson et al., 2019). In the appendix, microbial metabolites have direct access to the immune 

cells within the lymphoid follicles and may thereby modify inflammatory responses and immunity 

(Bachem et al., 2019; Chun et al., 2019; Schulthess et al., 2019). Microbial metabolites can also 

alter brain inflammation and motor impairments in PD models (van Kessel and El Aidy, 2019). 

Thus, dysregulation of the appendix microbiome may be involved in PD, but this has yet to be 

examined. 

 

One important function of the gut microbiome is its involvement in the biotransformation of bile 

acids. Bile acids are amphipathic molecules that aid in the absorption of dietary lipids and also 

affect glucose homeostasis, inflammation, gastrointestinal functions, as well as blood–brain–

barrier integrity and signaling in the brain (Hegyi et al., 2018; McMillin and DeMorrow, 2016; 

Wahlström et al., 2016). In the liver, primary bile acids — cholic acid (CA) and 

chenodeoxycholic acid (CDCA) — are synthesized from cholesterol. Bile acids are stored and 

concentrated in the gallbladder before their release into the small intestine. Most primary bile 

acids are reabsorbed in the distal ileum for transport back to the liver as a part of the 

enterohepatic circulation (Wahlström et al., 2016). The remaining primary bile acids that enter 

the large intestine are converted by the microbiome into secondary bile acids — deoxycholic 

acid (DCA), lithocholic acid (LCA), and to a lesser extent, ursodeoxycholic acid (UDCA). 

Secondary bile acids are produced solely by bacteria, largely by those in Clostridium clusters 

XIVa and XI of the Firmicutes phylum (Wahlström et al., 2016). LCA and DCA are hydrophobic 
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bile acids that are cytotoxic at elevated physiological concentrations (Chen et al., 2019a; 

Pavlidis et al., 2015). LCA, the most toxic bile acid, is highly insoluble, which limits its 

reabsorption, and it is primarily excreted in stool. For DCA, the second most cytotoxic bile acid, 

approximately 50% is passively reabsorbed in the large intestine, and it returns via the 

enterohepatic circulation for detoxification in the liver. Increases of LCA and DCA have been 

implicated in intestinal inflammation, liver injury, cholestasis, and gallstone formation (Berr et al., 

1994; Chen et al., 2019a; Hang et al., 2019; Song et al., 2020). Whether there are hydrophobic 

bile acid changes or bile-related illnesses that impact PD risk is unknown. 

 

Here, we performed a metatranscriptomic analysis of the appendix microbiome in PD patients 

and controls. In parallel, we performed an in-depth analysis of the appendix microbiome of a 

mouse model of synucleinopathy and examined the effects of gut inflammation. The microbial 

taxa and pathway alterations we identified led us to an analysis of bile acids in PD patients and 

in the mouse model, where we identified increases in the hydrophobic bile acids LCA and DCA. 

This was consistent with proteomic and transcript analyses revealing perturbations in lipid 

metabolism and uptake in the PD gut. In an analysis of liver and gallbladder disease blood 

markers, we found evidence of biliary abnormalities in PD, including elevated bilirubin, which 

was associated with a worsening of motor dysfunction. In at-risk individuals, increased bilirubin 

levels preceded PD diagnosis, indicating that bile-related abnormalities may represent upstream 

events in PD pathogenesis. Thus, microbiome-mediated changes in hydrophobic bile acids and 

a disruption of biliary function may be involved in the development of PD. 
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Results 

 

Microbiome changes in the PD appendix and in response to synucleinopathy and gut 

inflammation 

We performed a comprehensive analysis of the microbiome in appendix tissue of PD patients 

and controls using metatranscriptomic sequencing. Metatranscriptomic analysis profiles the 

functionally active microbiome. Our analysis examined the appendix microbiome of 12 PD 

patients and 16 controls, and adjusted for age, sex, postmortem interval, and RIN (tissue 

quality). Postmortem appendix tissue was from PD patients with confirmed brain Lewy 

pathology (PD Braak stage ≥ 3), while controls had no brain Lewy pathology (Supplementary 

File 1). We had on average 14,288,947 ± 5,008,507 reads per sample for microbiome analysis 

after data quality control. Microbial taxa were identified using MetaPhlAn2, and we found 

transcripts for 65 genera, 37 families, 20 orders, 15 classes, and 9 phyla in the human 

appendix. Overall, we did not find changes in the richness of microbiome communities between 

PD patients and controls at any taxonomic level (alpha diversity, Shannon index; Figure S1). 

The appendix of PD patients and controls also had a similar overall microbial community 

composition (beta-diversity, Whittaker index and NMDS ordination; Figure S1). The most 

abundant bacteria in the appendix of PD patients and controls were Lachnospiraceae, 

Ruminococcaceae, Porphyromonadaceae, Enterobacteriaceae, and Bacteroidaceae, together 

accounting for 68.6% of the relative family abundance (Figure S1). As a whole, the appendix 

microbial community identified in our metatranscriptomic analysis was similar to that found in 

surgically-isolated, healthy appendix tissues (Jackson et al., 2014) (order level: R=0.91, p<10-14; 

family level: R=0.26, p<0.05; Pearson’s correlation). 

 

In an analysis examining the abundance of microbial taxa, differences between the appendix 

microbiome of PD patients and that of controls were observed at all taxonomic levels (FDR 
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q<0.05, analysis using metagenomeSeq (zero-inflated Gaussian mixture model) and adjusting 

for age, sex, postmortem interval and RIN; Figure 1A; Supplementary File 2). The most 

significant change in the PD appendix microbiome relative to controls was in the order of 

Clostridiales, particularly an increase in Peptostreptococcaceae (Clostridium cluster XI; q<0.05 

observed across family and genus) and in Lachnospiraceae (Clostridium cluster XIVa; q<0.05 

family). The appendix of PD patients also had a prominent increase in Burkholderiales (family 

Burkholderiaceae, genus Burkholderia; q<0.05 observed across class, order, family, and genus) 

and a decrease in Methanobacteriales (family Methanobacteriaceae, genus 

Methanobrevibacter; q<0.05 across all taxonomic levels). Furthermore, the PD appendix had 

decreases of the genera Odoribacter, Clostridium, unclassified Sutterellaceae, and Escherichia 

(q<0.05 genus). 

 

To explore factors contributing to microbiome changes in PD and to control for the environment 

and diet, we explored appendix microbiome changes in a PD mouse model of synucleinopathy 

exposed to gut inflammation (Figure 2A). In mice, the cecal patch is the appendix equivalent. 

We examined the cecal patch microbiome in a synucleinopathy model: mice overexpressing 

human α-syn with the heterozygote A30P mutation (A30P α-syn mice) (Kahle et al., 2000). Gut 

inflammation was induced by a chronic treatment of dextran sulfate sodium (DSS), a widely 

used model of ulcerative colitis (Chassaing et al., 2014). Adult A30P α-syn and wild-type mice 

were exposed to increasing concentrations of DSS over four weeks (2.5% to 4% DSS), followed 

by a four-week recovery period. The cecal patch microbiome was profiled by 16S rRNA 

sequencing in A30P α-syn and wild-type mice previously exposed to DSS or water (n=8-11 

mice/group; average 218,198 ± 5752 reads/sample; Supplementary File 3). There were 124 

genera, 53 families, 29 orders, 18 classes, and 11 phyla identified. We observed no differences 

in the richness of the microbial communities between the mouse groups (alpha diversity, 

Shannon index; Figure S2). The mouse groups also had a similar overall microbial community 
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composition (beta-diversity, NMDS ordination; Figure S2). The microbial community in the 

mouse cecal patch was similar overall to that of the human appendix in the metatranscriptomic 

analysis above (order level: R=0.88, p<10-10; family level: R=0.50, p<10-4; Pearson’s 

correlation). 

 

We investigated differences in the abundance of microbial taxa in the cecal patch that were 

induced by synucleinopathy. In mice overexpressing A30P α-syn, the most significant changes 

were within the order Clostridiales, including an increase within the Lachnospiraceae family (A2 

genus), in the Christensenellaceae family, and in unclassified Clostridiales (q<0.05, 

metagenomeSeq; Figure 2B; Figure S3; Supplementary File 4). However, there were also 

decreases in Clostridiales on the genus level (q<0.05 genera within the family 

Ruminococcaceae and Family XIII). Similar to the PD appendix, A30P α-syn overexpressing 

mice had an increase in Burkholderiales relative to wild-type mice (family Burkholderiaceae, 

q<0.05; Figure 2B; Figure S3; Supplementary File 4). Also, these mice had a decrease in 

Enterobacteriales (family Enterobacteriaceae, q<0.05 observed in order and family) and 

unclassified Bacteroidales (q<0.05 genus), as observed in PD. Moreover, we found that 

microbial changes at the family level were significantly correlated between the synucleinopathy 

model and the PD appendix (R=0.8; p<0.01, Pearson’s correlation; Figure 2C). Overall, 

synucleinopathy in mice induces microbial changes that significantly mimic those of the PD 

appendix. 

 

We next examined the effects of gut inflammation on microbial composition in the mouse cecal 

patch. Prior DSS exposure induced a prominent increase in Coriobacteriales (across all 

taxonomic levels), decreases in Bacteriodales (family and genus), an increase within 

Desulfovibrionales (genus), and mixed effects in family and genera within Clostridiales (q<0.05, 

metagenomeseq; Figure S4; Supplementary File 5). However, in general, DSS exposure in 
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mice did not result in changes in the microbiome that resembled those of the PD appendix 

(R=0.19; p=0.63, Pearson’s correlation; Figure 2C). In the A30P mouse model of 

synucleinopathy, DSS exposure intensified changes within the order Clostridiales (q<0.05 family 

and genus level; Figure S5; Supplementary File 6). The A30P α-syn mice, relative to wild-type 

mice, had a greater accumulation of genera within Clostridiales in response to DSS colitis, 

including an increase in Ruminococcaceae (q<0.05 genus; Figure 2D). Also, A30P α-syn mice 

had a strong decrease in Enterobacteriales following DSS exposure in comparison to wild-type 

mice (family Enterobacteriaceae, q<0.05 order and family; Figure 2D; Figure S5). In sum, 

synucleinopathy in mice partly recapitulates microbiome changes observed in the PD appendix, 

and experimentally-induced gut inflammation amplifies some of these microbiome alterations. 

 

Next, we examined whether there were microbial metabolic pathways altered in common 

between the PD appendix and the mouse model of synucleinopathy and gut inflammation. In the 

PD appendix, the most significant microbial pathway change was a loss of fatty acid metabolism 

(q<0.1, HUMANn2; Figure 1B; Supplementary File 2). Likewise, there was a decrease in lipid 

metabolism in the A30P α-syn overexpressing mice when compared to wild-type mice (q<0.1, 

PICRUSt2 and metagenomeSeq; Figure 2B; Supplementary File 4). Synucleinopathy combined 

with DSS inflammation also decreased lipid metabolism pathways (q<0.1, Figure S5; 

Supplementary File 6). Microbial shifts resulting from synucleinopathy and gut inflammation in 

mice also affected other metabolic processes, including carbohydrate, nucleotide, amino acid, 

and vitamin metabolism, and altered antimicrobial drug resistance (q<0.1, PICRUSt2 and 

metagenomeSeq; Figure 2B; Figure S4, S5). Thus, dysregulation of lipid metabolism is a 

microbial community pathway alteration that is shared between the PD appendix and a mouse 

model of synucleinopathy and gut inflammation. 
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Considering the prominent disruption of lipid metabolism pathways in the microbiome of PD 

patients, we investigated whether there were corresponding changes in the host. We analyzed 

the human proteome in appendix tissue of PD patients and controls. Pathway analysis of the PD 

appendix proteome showed a reduction in proteins affecting lipid metabolism (q<0.05 pathways, 

hypergeometric test; Figure 3; Supplementary File 7). There was also a dysregulation of 

pathways involved in protein localization, antigen presentation, glycolysis, and immune activity 

in the PD appendix (q<0.05 pathways, hypergeometric test; Figure 3). Overall, human 

proteomic changes affecting lipid homeostasis in the PD appendix corroborate the microbial 

pathway alterations affecting lipids in patients. 

 

Microbiome-driven bile acid changes in the appendix of PD patients and of the PD mouse 

model 

In the appendix of PD patients and the mouse model of synucleinopathy, we observed changes 

affecting lipid metabolism and changes in microbiota that generate hydrophobic secondary bile 

acids (Clostridium cluster XI) and in those that are bile acid-resistant (Burkholderiales) (Wallner 

et al., 2019). Consequently, we examined whether there was a disturbance in bile acid levels in 

the appendix of PD patients. We quantified 15 bile acids in appendix tissue from PD patients 

and controls (n=15 and 12, respectively), examining primary and secondary bile acids (Figure 

4A; Supplementary File 8). There was an 18.7-fold increase in LCA and a 5.6-fold increase in 

DCA in the appendix of PD patients relative to controls (p<0.05, robust linear regression 

adjusted for age, sex, and postmortem interval; Figure 4; Supplementary File 8). Similarly, 

group-level analysis examining bile acids with their taurine and glycine conjugates also showed 

a significant increase in LCA and DCA groups in the PD appendix (7.3-fold and 8.2-fold 

increase, respectively; p<0.05, robust linear regression; Figure 4). We did not observe any 

changes in primary bile acids or total bile acid levels in the PD appendix. Thus, the PD appendix 

exhibits elevated levels of hydrophobic, toxic bile acids that are produced by the microbiome. 
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We next examined bile acid changes in the cecal patch of the mouse model of synucleinopathy 

and gut inflammation. As observed in the PD appendix, the cecal patch of mice that 

overexpress human A30P α-syn had an increase in LCA and DCA (1.3-fold and 1.4-fold 

increase, respectively; p<0.05, robust linear regression; Figure 4; Supplementary File 8). 

Likewise, group-level analysis of bile acids with their conjugates found an increase in the LCA 

and DCA groups in the cecal patch of A30P α-syn mice (1.3-fold and 1.4-fold increase, 

respectively; p<0.05, robust linear regression; Figure 4). Primary bile acids shared between the 

mice and humans were not altered by synucleinopathy. Furthermore, prior exposure to DSS 

colitis did not induce any bile acid changes in the cecal patch (Supplementary File 8). Therefore, 

a model of synucleinopathy mimics the secondary bile acid changes observed in the PD 

appendix. 

 

The distal ileum is where primary bile acids are largely reabsorbed for return to the 

enterohepatic circulation; those that escape are subsequently converted to secondary bile acids 

by the gut microbiota in the large bowel (Wahlström et al., 2016). We examined whether there 

were bile acid changes in ileum tissue of PD patients relative to controls (n=20 PD and 20 

controls). In the PD ileum, primary bile acids were unchanged. However, there was a significant 

increase in the LCA group in the PD ileum (3.6-fold increase; p<0.05, robust linear regression, 

adjusting for age, sex, and postmortem interval; Figure 4; Supplementary File 8). This signifies 

a prevalent accumulation of the most toxic bile acid in the PD gut.  

 

Bile-associated transcript and proteomic changes in the PD gut 

Since we found a dysregulation of microbiome-derived bile acids in PD, we investigated whether 

PD patients had a differential expression of genes important for bile acid biosynthesis, signaling, 

and transport. In ileum tissue of PD patients and controls, we examined transcript levels of 
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nuclear receptors that regulate bile acid and cholesterol homeostasis (FXR and LXR, 

respectively), the bile acid-sensing receptor (TGR5), transporters for bile reabsorption (ASBT, 

OSTα/OSTβ, FABP6), and transporters for cholesterol reabsorption and efflux (NPC1L1 and 

ABCG5/ABCG8, respectively). We also examined liver tissue of PD patients and controls for 

transcript levels of these genes or their liver-specific functional equivalents (NTCP and FABP1 

for bile acid transport), as well as the rate-limiting enzymes for bile acid biosynthesis in the liver 

(CYP7A1 and CYP27A1). We found that the PD ileum had significantly elevated levels of gene 

transcripts involved in cholesterol homeostasis and transport: NR1H2, NR1H3, NPC1L1, 

ABCG5, and ABCG8 (p<0.05, one-way ANOVA test; Figure 5A; Supplementary File 9). In the 

liver, we did not observe changes in bile acid-related transcripts (Figure 5A; Supplementary File 

9). 

 

We performed a human proteomic analysis to identify biological pathways altered in the ileum of 

PD patients relative to controls. The PD ileum had a decrease in lipid metabolism, as was 

observed in the PD appendix (q<0.05 pathways, hypergeometric test; Figure 5B). In the PD 

ileum, there was also a dysregulation of antigen processing and presentation, immune 

activation, glycolysis, and actin filament organization (q<0.05 pathways, hypergeometric test; 

Figure 5B). We next determined the proteins most consistently altered in the PD ileum and 

appendix using a robust ranking algorithm (Kolde et al., 2012). We found that both the PD ileum 

and appendix had a strong decrease of fatty acid binding protein 6 (FABP6), the intracellular 

bile acid transporter involved in returning bile acids to the enterohepatic circulation (Figure 5C). 

The PD ileum and appendix also had a loss of pyridoxal kinase (PDXK), which is essential for 

vitamin B6 bioactivity (Parra et al., 2018), and of vacuolar protein sorting 35 ortholog (VPS35), 

which is a PD risk factor that affects neurodegeneration (Chen et al., 2019b). Thus, the human 

transcript and proteomic changes in the PD gut are consistent with a disruption in bile acid 

control, including alterations in mediators of cholesterol homeostasis and lipid metabolism. 
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Common blood markers are associated with PD in PPMI data  

Given the increase in toxic secondary bile acids found in the PD gut, we investigated whether 

we could detect changes in markers of liver and gallbladder function in PD. We analyzed blood 

test results from the highly clinically characterized individuals in the Parkinson’s Progression 

Markers Initiative (PPMI). This initiative includes a de novo PD cohort who, at enrollment, had 

been diagnosed with PD for less than two years and were not taking PD medications. In this 

cohort, we examined five commonly used markers of liver abnormalities: alanine transaminase 

(ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), albumin, and bilirubin. 

Though the mean values for each test were within the normal range, we found that de novo PD 

patients had a significant increase in ALP, bilirubin, and albumin, as well as a significant 

decrease in AST and ALT, relative to controls (p<0.05, robust linear regression adjusting for 

age, sex, and anemia measures; n=475 PD, 231 controls; Figure 6A; Supplementary File 10). 

De novo PD patients also had a higher prevalence of individuals with AST/ALT ratios above 1 

(De Ritis ratio), a sign of liver injury (p<0.05, chi-squared test). Similarly, a cohort of PD patients 

with a genetic risk for the disease, carriers of a LRRK2, GBA, or SNCA mutation, had an 

increase in ALP and a decrease in AST and ALT (p<0.001, robust linear regression; n=396 PD, 

619 controls; Figure 6B). Thus, newly diagnosed PD patients show notable changes in markers 

of biliary tract dysfunction. 

 

We next examined whether changes in these blood markers were associated with the severity 

of PD motor symptoms, and whether these changes were predictive of PD conversion risk. We 

found that bilirubin levels positively correlated with PD motor symptom severity (n=472 de novo 

PD patients, UPDRS part III; p<0.05, linear mixed-effects model; Figure 6C; Supplementary File 

10). No motor symptom associations were observed for the other blood markers. To further 

investigate these changes, we analyzed a PPMI cohort of individuals who have prodromal signs 
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of PD (hyposmia or REM sleep behavior disorder) and are consequently at risk of developing 

PD. We analyzed bilirubin levels in subjects before PD diagnosis. Prior to PD diagnosis, 

individuals that would later be diagnosed with PD had elevated bilirubin levels compared to 

individuals who did not convert to PD and to controls (p<0.01, robust linear regression adjusted 

for age, sex, and anemia measures; n=36 PD converters, 102 PD non-converters, 561 controls; 

Figure 6D; Supplementary File 10). In addition, bilirubin levels remained significantly elevated 

after PD diagnosis relative to non-converters and to controls (p<0.05, robust linear regression; 

Figure 6D). Therefore, PD patients have biliary abnormalities that occur prior to PD diagnosis.  

 

 

Discussion 

 

Our metatranscriptomic analysis revealed significant differences in the appendix microbiome of 

PD patients, which are closely related to bile acid dysregulation in the gut. First, in the PD 

appendix we found an increase in microbiota that generate hydrophobic secondary bile acids 

(Clostridium cluster XI) and that are bile acid-resistant (Burkholderiales), and several of these 

changes were recapitulated in a mouse model of synucleinopathy. Next, we analyzed bile acids 

in human appendix and ileum, as well as in the cecal patch of the synucleinopathy model and 

found a prominent increase in the hydrophobic bile acids LCA and DCA. Proteomic and 

transcript analysis supported a dysregulation of lipid metabolism and cholesterol homeostasis in 

the PD gut. Finally, an analysis of PD blood showed that markers of biliary tract dysfunction 

were present in both de novo and genetic forms of PD, and that bilirubin was elevated in at-risk 

individuals before a diagnosis of PD. In sum, our findings provide a novel look into the appendix 

microbiome in PD and demonstrate microbially-mediated bile acid disturbances in PD (Figure 7 

and S6). Our finding of biliary alterations in the early stage of PD draws attention to the 
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enterohepatic system, which has previously been overlooked in PD, but could hold therapeutic 

potential. 

  

We found significant microbiome differences in the PD appendix, specifically, an increase in 

Peptostreptococcaceae (Clostridium cluster XI), Burkholderiales, and Lachnospiraceae (which 

includes several genera in Clostridium cluster XIVa), as well as a decrease in 

Methanobacteriales. Several studies of the fecal microbiome have found dysbiosis in PD 

(Bedarf et al., 2017; Heinzel et al., 2020; Scheperjans et al., 2015; Weis et al., 2019); however, 

this study is the first to investigate the appendix microbiome in PD. Importantly, microbiome 

profiling was performed using a metatranscriptomic approach, which, unlike the prior 16S rRNA 

and metagenomic studies, has the advantage of capturing only living, active species and gives 

insight into functional mechanisms occurring during dysbiosis. Microbiome shifts in the appendix 

are particularly relevant given the role of the appendix in immunosurveillance and in affecting 

the microbiome in other intestinal regions (Killinger and Labrie, 2019). In addition, the microbial 

community we identified in our study of postmortem tissues was consistent with that of 

histologically normal, surgically-isolated human appendixes (Guinane et al., 2013; Jackson et 

al., 2014; Peeters et al., 2019). Differences between the appendix and fecal microbiomes limit 

comparison with previous studies of the PD microbiome; however, an increase in Clostridiales 

cluster XI in PD stool was observed by 16S rRNA analysis (Weis et al., 2019). Further, our 

findings are strengthened by the recapitulation of these changes in an α-syn overexpressing 

mouse model of PD, and thus it is unlikely that the microbiome changes were merely due to 

confounding environmental factors in the human cases. Our microbiome analysis does not 

distinguish between microbiome changes causing PD from those that are consequences of the 

disease, but our analysis of the synucleinopathy mouse model supports the relevance of the 

microbial changes to PD pathobiology.  
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Though it is established that the microbiome plays a role in human health and disease, the 

mechanisms by which microbiome changes could contribute to PD are not well understood. 

Some have proposed that the production of bacterial metabolites modulates inflammation and 

immune response in the brain (Erny et al., 2015; Fung et al., 2017; Sampson et al., 2016). 

Microbiome-produced short chain fatty acids were shown to enhance neuroinflammation in the 

brain and behavioral motor deficits in a mouse model of synucleinopathy (Sampson et al., 

2016). In addition, microbiome alterations are associated with ulcerative colitis and Crohn’s 

disease (inflammatory bowel diseases, IBD), which have an increased co-occurrence with PD 

(Hui et al., 2018; Villumsen et al., 2019). The microbiome can also affect autophagy, another 

cellular process implicated in PD (Donohoe et al., 2011; Lin et al., 2014; Xilouri et al., 2016). 

Our results implicate another pathway: microbial bile acid metabolism in PD. 

 

Bacterial species belonging to Clostridium cluster XI and Cluster XIVa, which include species in 

the families Peptostrococcaceae and Lachnospiraceae, are responsible for the conversion of 

primary bile acids to the more hydrophobic secondary bile acids in the large intestine; these 

were elevated in the PD appendix and in the cecal patch of our experimental mouse model. In 

both the PD appendix and α-syn overexpressing mouse model, there was also an increase in 

Burkholderiales. Burkholderia is a bacterial genus with a broad environmental distribution that is 

recognized to be an opportunistic, antibiotic-resistant pathogen. It can cause severe 

inflammation in immunocompromised individuals (Chiarini et al., 2006) and produce kynurenine 

and quinolinate (Kaur et al., 2019), which are proinflammatory metabolites associated with 

symptom severity in PD (Heilman et al., 2020). Burkholderia can also infect the brain via 

propagation in nerves (St John et al., 2016) or via peripheral immune cell entry across the 

blood-brain barrier (Hsueh et al., 2018). Of particular interest, Burkholderia species encode the 

rate-limiting enzyme for secondary bile acid synthesis (bile-acid dehydratase, baiE) (Wallner et 
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al., 2019). Thus, the PD appendix microbiome has an enrichment of microbiota that metabolize 

bile acids. 

 

In line with the microbiota shifts seen in the PD appendix, we found an increase in the 

secondary bile acids LCA and DCA in both the appendix and ileum of PD patients. LCA and 

DCA are highly hydrophobic and their increase has been long recognized to have direct 

cytotoxic effects (Chen et al., 2019a; Pavlidis et al., 2015). An accumulation of secondary bile 

acids can disturb cell membranes and epithelial barrier integrity leading to the generation of 

reactive oxidative species and induction of apoptosis (Hegyi et al., 2018). Furthermore, LCA and 

DCA alter host inflammatory responses and may contribute to PD pathogenesis through such a 

mechanism. DCA activates NF-κB, a transcription factor that is a key regulator of  

proinflammatory responses (Huo et al., 2011; Liu et al., 2017). Secondary bile acids, particularly 

LCA, control the differentiation and activation of regulatory T (Treg), T helper, and natural killer T 

(NKT) cells (Hang et al., 2019; Ma et al., 2018; Song et al., 2020), and there is evidence for T 

cell involvement in early PD (Lindestam Arlehamn et al., 2020). Gut inflammation has been 

shown to trigger pathogenic α-syn accumulation (Kishimoto et al., 2019; Stolzenberg et al., 

2017). Since bile acids can act as signaling molecules that modulate immune response (Duboc 

et al., 2013; Guo et al., 2016; Hang et al., 2019; Song et al., 2020), the microbial-driven bile acid 

changes may be a response to α-syn aggregation in the PD gut. In addition, the membrane-

damaging and inflammatory effects of raised hydrophobic bile acids in PD could propel the 

accumulation of pathological α-syn aggregates, which could potentially propagate from gut to 

brain. Further work in in vivo models will be necessary to elucidate the effects of secondary bile 

acids on PD pathology. 

 

Our study gives several insights into the potential causes behind the changes in the microbiome 

and bile acid composition in PD. Though we cannot exclude constipation as a contributing 
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factor, it is unlikely, because LCA and DCA increase colonic peristalsis and accelerate fecal 

transit time (Alemi et al., 2013; Misawa et al., 2020). Also, these secondary bile acids are 

reduced in mice given fecal microbiome transplants from constipated donors (Ge et al., 2017). 

Rather, our mouse experiments point to synucleinopathy as a contributor to the observed 

changes in secondary bile acids in PD. As in PD, A30P α-syn overexpressing mice had a 

significant increase in both LCA and DCA. In PD patients, there was no evidence of an 

overproduction of primary bile acids because there was no significant increase in primary bile 

acids or total bile acid pool size in the PD ileum, and there was no transcript abnormalities in 

enzymes responsible for primary bile acid synthesis in the PD liver. However, PD patients may 

have impaired bile acid reuptake in the ileum, as indicated by the prominent decrease in 

FABP6, a protein responsible for efficient transport of primary bile acids through enterocytes for 

recirculation (Praslickova et al., 2012). Thus, disrupted bile acid transport in the ileum and 

increased bile-metabolizing bacteria in the large bowel could together contribute to the raised 

levels of secondary bile acids in PD. This may also contribute to the observed abnormalities in 

cholesterol homeostasis in the PD gut, as demonstrated by the transcriptional increase in 

cholesterol transporters and proteomic disruption of lipid metabolism pathways. It is also worth 

noting that changes in bile acids can in turn modulate the composition of the microbiome; bile 

acids exert strong selective pressure on the gut microbiota. Though this study does not 

delineate which changes occur first in PD, the bi-directional relationship between the 

microbiome and bile acid composition creates a system which, once triggered, may lead to a 

self-reinforced condition of dysbiosis, peripheral inflammation, and α-syn aggregation.  

 

Disruption of bile acid homeostasis has been linked to liver and gallbladder disease. In our 

analysis of blood markers, we found newly diagnosed, idiopathic PD patients had indicators of 

liver and gallbladder dysfunction, with an increase in bilirubin, ALP and in the ALT:AST ratio. 

Likewise, ALP levels were increased in PD patients with genetic risk for the disease (carriers of 
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a SNCA, LRRK2, or GBA risk variant). Notably, the mean values of these markers in PD 

patients still fell within normal ranges, signifying that PD patients overall are not suffering from 

clinical liver or gallbladder disease at the time of testing. However, the significant differences in 

PD patients could indicate sub-clinical abnormalities that nevertheless provide meaningful clues 

about PD pathobiology. Indeed, liver injury may have a role in PD. Numerous epidemiological 

studies have shown that chronic liver diseases are associated with a greater risk of developing 

PD (Burkhard et al., 2003; Lin et al., 2019; Pakpoor et al., 2017). Elevated secondary bile acids 

in the enterohepatic system can induce liver injury; both DCA and LCA are hepatotoxic, and 

LCA administration in animals is a common model of intrahepatic cholestasis (blocked bile 

ducts) (Song et al., 2011). Secondary bile acids also contribute to gallstone disease (Berr et al., 

1996; Di Donato et al., 1986; Marcus and Heaton, 1988). Both liver dysfunction and gallstone 

disease can lead to elevated blood levels of bilirubin, and, interestingly, we found that bilirubin 

levels were increased in PD and associated with the severity of motor dysfunction in patients 

(UPDRS part III score). Bilirubin changes were also found to precede PD diagnosis, pointing to 

biliary abnormalities early in PD. Thus, the increase in secondary bile acids observed in PD may 

cause hepatobiliary abnormalities that are detectable before PD diagnosis. 

 

Targeting the appendix microbiome and bile acids may be an innovative approach for future 

therapeutics. Microbiome transplantation effectively restores the commensal microbiome in 

intestinal infections (Mullish et al., 2019) and has been proposed for the treatment of PD. Since 

the appendix contains a thick, shielded biofilm matrix in which bacteria reside (Killinger and 

Labrie, 2019; Palestrant et al., 2004), this could be a strategic location to administer a long-

lasting transplant. Experimental models indicate that the appendix can influence the microbiome 

in the large intestine, and routine shedding of biofilm fragments from the appendix may 

repopulate the intestine with the healthy, transplanted microbiome (Donaldson et al., 2016; 

Masahata et al., 2014). Our results suggest that bacteria that withstand bile acids and promote 
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DCA and LCA conjugation to its less toxic derivatives may be most therapeutic. In addition, 

preventing the damaging effects of LCA and DCA with the hydrophilic, anti-inflammatory bile 

acid UDCA could benefit PD patients. UDCA has been shown to counteract the effects of the 

hydrophobic secondary bile acids in the liver and gallbladder (Rodrigues et al., 1998; Salen et 

al., 1980). UDCA also has neuroprotective effects in PD models (Mortiboys et al., 2015) and is 

currently being tested in clinical trials for PD (Sathe et al., 2020). In addition to therapeutic 

applications, measures of blood markers of liver abnormalities may be useful for PD prognosis 

in at-risk individuals. In particular, a longitudinal shift to increased bilirubin may signal a risk of 

phenoconversion to PD. 

 

In sum, our results point to specific changes in the microbiome of PD patients that suggest 

biliary dysfunction as a previously unexplored mechanism involved in PD. Though further 

investigation is needed, bile acids could play a key role at the intersection of microbiome 

dysbiosis, inflammation, and α-syn misfolding. Considering the relative accessibility of the GI 

tract and existing therapies for bile acid-related disorders, targeting microbial-derived secondary 

bile acids may be a new avenue for earlier diagnosis and alleviation of PD symptoms. 
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Materials and Methods 

 

Human Tissue Samples 

Human appendix, ileum, and liver tissue from PD patients and controls was obtained from the 

Oregon Brain Bank. For each individual, we had information on demographics (age, sex), tissue 

quality (postmortem interval), and pathological staging (Supplementary File 1). PD cases were 

pathologically confirmed to have brain Lewy body pathology, and control individuals had no 

brain Lewy body pathology. All human postmortem tissue work had the approval from the ethics 

committee of the Van Andel Institute (IRB #15025). 

 

Metatranscriptomic analysis of PD appendix microbiome  

To profile functional microbiome changes in the PD appendix, we performed a 

metatranscriptomic analysis of the appendix of 12 PD and 16 controls. Frozen appendix tissue 

(~20 mg) was homogenized using a Covaris cryoPREP pulverizer and then in 1 mL of TRIzol 

(Life Technologies) with a ceramic bead-based homogenizer (Precellys, Bertin Instruments). 

Total RNA was isolated according to the TRIzol manufacturer’s instructions, treated with 

RNase-free DNase I (Qiagen) at room temperature for 30 min, followed by clean-up with the 

RNeasy Mini Kit (Qiagen). Total RNA yield and quality was determined using a NanoDrop ND-

1000 (Thermo Fisher Scientific) and an Agilent Bioanalyzer 2100 system (Agilent 

Technologies). Libraries were prepared by the Van Andel Genomics Core from 300 ng of total 

RNA using the KAPA RNA HyperPrep Kit with RiboseErase (v1.16; Kapa Biosystems). RNA 

was sheared to 300-400 bp. Prior to PCR amplification, cDNA fragments were ligated to 

NEXTflex dual adapters (Bioo Scientific). The quality and quantity of the finished libraries were 

assessed using a combination of Agilent DNA High Sensitivity chip (Agilent Technologies, Inc.), 

QuantiFluor dsDNA System (Promega Corp.), and Kapa Illumina Library Quantification qPCR 

assays (Kapa Biosystems). Individually indexed libraries were pooled, and 100-bp, single-end 
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sequencing was performed on an Illumina NovaSeq6000 sequencer using an S1 100 cycle kit 

(Illumina Inc.), with all libraries run on a single lane to return an average depth of 37 million 

reads per library. Base calling was done by Illumina RTA3, and output of NCS was 

demultiplexed and converted to FastQ format with Illumina Bcl2fastq v1.9.0. 

 

Preprocessing of the metatranscriptomic data involved the removal of sequencing adapters and 

low-quality bases from sequencing reads using Trim Galore (v0.5.0). The transcriptomic data 

was aligned to the human genome (GRCh38/hg38) with the twopassMode basic algorithm in 

STAR (v2.5.2b) (Dobin et al., 2013). Reads that did not align to the human genome (STAR 

option outReadsUnmapped) were then input to MetaPhlAn2 (v2.7.7) (Segata et al., 2012), 

which gives kingdom to species-level resolution for bacteria, archaea, eukaryotes, and viruses 

within the database (db_v20). We then performed functional profiling of the microbial community 

for the same non-human reads using HUMAnN2 (v0.11.1) (Franzosa et al., 2018) with the 

UniRef90 database. Pathway abundance data was normalized to counts per million using inbuilt 

HUMAnN2 functionality. To test for differential taxa abundance between PD patients and 

control, proportional microbial compositional data from MetaPhlAn2 was imported into R (v3.6) 

and converted back to counts for all taxa-level ids (features). To perform statistical analysis, we 

used the cumulative sum scaling normalization and the zero-inflated gaussian mixture model 

from the Bioconductor package metagenomeSeq (v1.28.0) (Paulson et al., 2013). Feature and 

pathway abundance data were examined using the fitZig function to determine microorganisms 

and pathways related to PD, adjusting for age, sex, postmortem interval, and RIN. P-values 

were derived from the empirical Bayes moderated F-statistic and adjusted for multiple testing 

correction using the Benjamini-Hochberg method, with q<0.05 set as the threshold for statistical 

significance. 

  

Microbiome analysis in a mouse model of synucleinopathy and gut inflammation 
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We examined microbiome changes by 16S rRNA sequencing of the V3-V4 hypervariable region 

in a mouse model of synucleinopathy as well as in response to gut inflammation. Microbiome 

changes were profiled in wild-type mice and in the synucleinopathy model: hemizygous 

Tg(Thy1-SNCA*A30P)18Pjk mice (A30P α-syn), which overexpress human α-syn with the A30P 

mutation under the neuron-selective Thy1 promoter (Kahle et al., 2000). A30P α-syn mice have 

been maintained on a C57BL/6 background for over 10 generations. Gut inflammation was 

induced using dextran sodium sulfate (DSS), a widely used model of ulcerative colitis 

(Chassaing et al., 2014; Grathwohl et al., 2019). Adult wild-type and A30P α-syn mice (3-

months of age) were exposed to a chronic DSS protocol that began at DSS concentration of 

2.5% and increased to 4% over 4 cycles (+0.5% increment per cycle). One cycle consisted of 5 

days of DSS, followed by 2 days of water (DSS: 160110, MP Biomedicals, LLC). The non-DSS 

colitis groups were administered normal drinking water. Mice were then given a 4-week long 

recovery period during which they received normal drinking water, followed by tissue harvest. 

Mice were anesthetized with pentobarbital and transcardially perfused with PBS before tissue 

collection. Cecal patch tissue was snap frozen and stored at –80°C until processing for DNA 

isolation. Approximately equal numbers of males and females were included in each genotype 

(wild-type, A30P α-syn) and treatment (water, DSS) group (Supplementary File 3). The animal 

experiments were endorsed by a Roche internal review board and approved by the local animal 

welfare authorities in Canton Basel-Stadt, Basel, Switzerland. 

 

Frozen cecal patch samples were ground on liquid nitrogen into a fine powder. DNA was then 

isolated from the tissue powder using the Powersoil DNA isolation kit (Qiagen) according to 

manufacturer’s protocol and quality was determined by a NanoDrop 2000 spectrophotometer 

(Thermo Fisher Scientific). The 16S rRNA concentration in each sample was confirmed by 

qPCR using the forward primer: 5’-TCCTACGGGAGGCAGCAGT, and reverse primer: 5’-

GGACTACCAGGGTATCTAATCCTGTT. Cecal patch samples were then processed for 
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sequencing according to the Illumina’s 16S Metagenomic sequencing library protocol (doc. 

#15044223). Briefly, 16S rRNA was amplified from samples using forward primer: 5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCGTCGGCAGCGTCAGATGTGTATAAG

AGACAGCCTACGGGNGGCWGCAG, and reverse primer: 5’-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTCTCGTGGGCTCGGAGATGTGTATA

AGAGACAGGACTACHVGGGTATCTAATCC. The 16S rRNA V3-V4 region amplicon (550 bp) 

was verified by gel electrophoresis. The amplicon was then purified using AMPureXP beads. 

The purified amplicon was indexed using Nextera XT index kit according to the manufacturer’s 

protocol. Sample libraries were purified with AMPure XP beads, verified with an Agilent 2100 

Bioanalyzer, and quantified with a Qubit dsDNA HS kit on a Qubit 3.0 fluorometer (Thermo 

Fisher Scientific). Sample libraries were then pooled in equimolar amounts. The Michigan State 

University Genomics Core performed pooled library quality and quantification using a 

combination of the Qubit dsDNA HS kit, Advanced Analytical Fragment Analyzer High 

Sensitivity DNA NGS and Kapa Illumina Library Quantification qPCR assays. Sequencing was 

performed on an Illumina MiSeq v3 flow cell, loading a library concentration of 3 pM and a 30% 

spike-in of the Illumina PhiX control DNA library. Sequencing was performed in a 300 bp paired-

end format on an Illumina MiSeq. Base calling was done by Illumina Real Time Analysis (RTA) 

v1.18.54, and the output of RTA was demultiplexed and converted to FastQ format with Illumina 

Bcl2fastq v2.19.1. 

 

For microbiome data analysis, we first removed adapters and low-quality reads (Q<30) from the 

sequencing reads with Trim Galore (v0.4.4). QIIME2 was used to profile the microbial 

community (Bolyen et al., 2019). In QIIME2, reads were first denoised and dereplicated with the 

dada2 algorithm prior to being classified against the SILVA database (v132) with a clustering at 

99% sequence identity criterion. For microbial pathway analysis, KEGG pathway abundances 

were estimated using the PICRUSt2 software (Langille et al., 2013). The taxa and KEGG 
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abundance data were imported into R (v3.5.1). A zero-inflated gaussian mixture model from 

metagenomeSeq (v1.28.0) was used to determine microorganisms and pathways altered by 

synucleinopathy (A30P α-syn genotype), adjusting for sex and DSS exposure, and altered by 

DSS-mediated gut inflammation, adjusting for sex and genotype. To determine the differential 

responses of A30P α-syn mice to gut inflammation, we examined genotype and DSS exposure 

interactions, adjusting for sex, using a zero-inflated gaussian mixture model from 

metagenomeSeq. We then used the contrasts.fit function from limma to identify microbiota 

differences in genotypes in response to DSS exposure with the following contrasts matrix: (DSS 

- Water in A30P syn mice) - (DSS - Water in wild-type mice). P-values were adjusted for 

multiple testing correction using the Benjamini-Hochberg method, with q<0.05 set as the 

threshold for statistical significance. 

 

Microbiome comparison with histologically normal surgical appendix samples 

To confirm that the postmortem appendix tissues used in our metatranscriptomic analysis had a 

similar microbiome composition to appendix samples from living individuals, we analyzed 16S 

rRNA sequencing data from three histologically normal, surgically-isolated appendix samples 

(accession ID: SRP035179, ages≥13) (Jackson et al., 2014). The 16S rRNA sequencing 

analysis for the surgically-isolated appendix samples was performed as described above. We 

then performed a Pearson’s correlation analysis to explore the similarity of microbiome 

composition in postmortem appendix tissue with normal surgically-isolated appendix tissues, 

examining microbial taxa at both the order and family level.  

 

Bile acid sample preparation and metabolite quantification 

Liquid chromatography–mass spectrometry (LC-MS) was used to measure primary and 

secondary bile acids in the appendix, and ileum of PD patients and controls, and in the cecal 

patch of the mouse model of synucleinopathy and gut inflammation. Tissues (25 mg) were 
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homogenized using a bead homogenizer at 5,500 rpm for 30 s in 300 µL of extraction solvent 

(85% ethanol and 15% phosphate-buffered saline solution). Samples were then sonicated at 

4°C for 10 min. Proteins and other impurities were removed by centrifugation at 13000 × g for 

30 min at 4°C. The supernatant was collected and 10 µL was loaded onto the Biocrates Bile 

Acid kit (Biocrates Life Sciences). Data were acquired using an Acquity I-class (Waters) coupled 

with a Xevo TQ-S mass spectrometer (Waters). All specimens were acquired in accordance 

with the protocol for the Biocrates Bile Acids kit. Bile acid concentrations (nmol per gram of 

tissue weight) were calculated utilizing the Biocrates MetIDQ software and TargetLynx (Waters). 

For group-level analyses, the concentration of the bile acid and its glycine and taurine 

conjugates were summed. For example, the LCA group is the sum of LCA, GLCA, and TLCA, 

and the DCA group is the sum of DCA, GDCA and TDCA. For all-primary, all-secondary, and 

total bile acid analyses, the respective bile acids and their conjugates were summed. 

 

Bile acid data were normalized by log10 transformation, as previously described (Pan et al., 

2017). Bile acid changes in the PD appendix and ileum and in the cecal patch of the mouse 

model of synucleinopathy and gut inflammation were determined by multivariate robust linear 

regression models with empirical Bayes from the limma (v3.30.13) statistical package (Ritchie et 

al., 2015). For the appendix and ileum, we determined bile acid changes in PD, adjusting for 

age, sex, and postmortem interval. For the mouse cecal patch, we determined bile acid changes 

induced by A30P α-syn overexpression, adjusting for sex and DSS exposure, and altered by 

DSS-mediated gut inflammation, adjusting for sex and genotype. To determine whether bile 

acids were differentially altered in A30P α-syn mice in response to gut inflammation, we 

examined genotype and DSS exposure interactions, adjusting for sex, in the limma robust linear 

regression model, followed by a contrasts.fit function with the following contrasts matrix: (DSS - 

Water in A30P syn mice) - (DSS - Water in wild-type mice). P-value <0.05 was the threshold for 

statistical significance. 
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Mass spectrometry and proteomics analysis 

Quantitative proteomic analysis was performed to determine host biological pathways altered in 

the PD appendix and ileum. For this analysis, we used existing proteomic data from the PD and 

control appendix (n=3 individuals/group; PXD015079) and generated new proteomic data for 

the PD and control ileum (n=4 individuals/group). Mass spectrometry for the appendix and ileum 

samples was performed using the same protocol by the Integrated Mass Spectrometry Unit at 

Michigan State University. The wet tissue weight of each sample (~30 mg tissue/sample) was 

measured and 5-fold lysate buffer (20 mM Tris Base (pH 7.4), 150 mM NaCl, 1 mM EGTA, 1 

mM EDTA, 5mM sodium pyrophosphate, 30 mM NaF, 1x Halt Protease Inhibitor Cocktail 

(Thermo Fisher Scientific)) was used to homogenize the tissue on ice with a tissue grinder 

(Tissue Master 125, Omni International). The homogenate was centrifuged at 18,407 × g for 10 

min at 4°C and the supernatant was retained. Protein concentration in each sample was 

determined using a BCA assay (Pierce BCA Protein Assay, Thermo Fisher Scientific). Protein 

lysates (10 μg) were denatured using 25 mM ammonium bicarbonate/80% acetonitrile and 

incubated at 37°C for 3 h. The samples were dried and reconstituted in 50 μl of 25 mM 

ammonium bicarbonate/50% acetonitrile/trypsin/LysC solution (1:10 and 1:20 w/w 

trypsin:protein and LysC:protein respectively) and digested overnight at 37°C. The samples 

were dried and reconstituted in 50 μl of 25 mM ammonium bicarbonate/5% acetonitrile.  

 

Samples were loaded onto an UltiMate 3000 UHPLC system with online desalting. Each sample 

(10 μl) was separated using a C18 EASY-Spray column (2 μm particles, 25 cm x 75 μm ID) and 

eluted using a 2 h acetonitrile gradient into a Q-Exactive HF-X mass spectrometer. Data 

dependent acquisition for Full MS was set using the following parameters: resolution 60,000 (at 

200 m/z), AGC target 3e6, maximum IT 45 s, scan range 300 to 1500 m/z, dynamic exclusion 

30 s. Fragment ion analysis was set with the following parameters: resolution 30,000 (at 200 
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m/z), AGC target 1e5, maximum IT 100 ms, TopN 20, isolation window 1.3 m/z, NCE at 28. 

Each sample was run in triplicate. The mass spectra from each technical replicate were 

searched against the Uniprot human database (filtered-proteome_3AUP000005650) using the 

LFQ method in Proteome Discoverer (v. 2.2.0.388, 2017) set as follows: at least 2 peptides 

(minimum length=6, minimum precursor mass=350 Da, maximum precursor mass 5000 Da), 

tolerance as set to 10 ppm for precursor ions and 0.02 Da for fragment ions (b and y ions only), 

dynamic modification was set for methionine oxidation (+15.995 Da) and N-terminus acetylation 

(+42.011 Da), target FDR (strict minimum value 0.01), Delta Cn minimum value 0.05). LFQ was 

calculated using the following parameters: ratio calculation set to pairwise ratio based, 

maximum allowed fold change 100, ANOVA (background based). The technical replicates from 

each biological sample were pooled to perform diagnosis comparisons, using a non-nested test. 

Proteins were quantified using the pairwise peptide ratio information from extracted peptide ion 

intensities. Only proteins with abundances recorded in at least 50% of samples were 

considered. Proteins with a log fold change between groups exceeding ± 0.2 were considered 

altered. Pathway analysis of proteins altered in the PD appendix and ileum was performed using 

g:Profiler (Raudvere et al., 2019), with networks determined by EnrichmentMap and clustered 

by AutoAnnotate in Cytoscape (v3.7.1) (Reimand et al., 2019). To identify the proteins that were 

most altered in both the PD appendix and ileum, we first determined the proteins that exhibited 

significant changes and had the same direction of change in both the PD appendix and ileum. 

These altered proteins were ranked by log fold change, ranking separately for appendix and 

ileum. We then determined the proteins most consistently altered in the PD appendix and ileum 

using the aggregateRanks function from the RobustRankAggreg package (v1.1) (Kolde et al., 

2012). 

 

qPCR analysis of gene transcripts involved in bile acid and cholesterol homeostasis 
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We examined transcriptional changes of genes involved in bile acid transport and cholesterol 

homeostasis in the PD ileum (n=6 controls, 8 PD patients) and liver (n=6 controls, 6 PD 

patients). Ileum and liver samples from PD patients and healthy controls were matched for sex, 

age, and postmortem interval. Tissue (30-50mg per sample) was homogenized in 1 mL TRIzol 

with a handheld homogenizer for ileum and with Precellys bead tubes for liver. Following 

standard TRIzol RNA extraction, samples were treated with DNase (Qiagen) for 30 min. RNA 

cleanup was performed using a RNeasy column (Qiagen) according to the manufacturer’s 

instructions, with the addition of two 5 min washes with 75% ethanol. Isolated RNA quantity was 

determined with a NanoDrop 2000 spectrophotometer, and RNA integrity was confirmed with an 

Agilent 2100 Bioanalyzer. RNA was converted to cDNA using a High Capacity cDNA kit 

(Applied Biosystems). Samples were analyzed by qPCR with TaqMan reagents (Applied 

Biosystems; Supplementary File 11), using 25 ng of cDNA per qPCR reaction. Samples were 

run in triplicate and results were normalized to plate standardization controls. Delta delta CT 

values of gene transcripts were used to determine statistical changes in the ileum and liver of 

PD patients relative to controls, normalized to housekeeping control genes (β-actin and HPRT 

for liver,  β-actin or villin for ileum). Statistical analysis was performed using one-way ANOVA 

with p-values <0.05 considered to be significant changes.  

 

Blood marker analysis in Parkinson’s Progression Markers Initiative (PPMI) data 

We examined whether common blood markers of liver function were altered in PD patients and 

with the severity of the disease using the highly clinically characterized PPMI dataset (Parkinson 

Progression Marker Initiative, 2011). Data was downloaded from the PPMI website 

(https://www.ppmi-info.org/access-data-specimens/download-data/) on May 13 2020, and 

included screening demographics, blood chemistry hematology, PD features, MDS Unified 

Parkinson Disease Rating Scale (UPDRS) patient questionnaire, and prodromal diagnostic 

questionnaire. Five commonly used tests to check liver abnormalities, including alanine 
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transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), albumin, 

and bilirubin, were examined. The MDS-UPDRS score was used to examine the relationship of 

blood markers with the severity of the disease. MDS-UPDRS total score was calculated based 

on PPMI score calculations standard by 59 variables from MDS-UPDRS part I, II and III, and PD 

motor symptoms were determined from MDS UPDRS part III. In our analysis, we examined the 

de novo PD cohort, which included 475 newly diagnosed PD patients (within 2 years of 

diagnosis) who were not taking PD medications at the time of enrollment and 231 healthy 

controls. PD patients had DaTscan imaging evidence of dopamine deficiency and at least two of 

the following: resting tremor, bradykinesia, and rigidity. We also analyzed the genetic PD cohort, 

which included 396 PD patients with a mutation in LRRK2, GBA or SNCA as well as 619 

controls.  

 

We first determined blood markers altered in de novo PD and in genetic PD patients, controlling 

for the age at the time of blood draw, sex, and anemia measures (levels of red blood cells, 

hemoglobin, and hematocrit as three additional covariates). In this analysis, averaged values for 

each blood marker of each individual in the PPMI was used, and statistical analysis was 

performed using a robust linear regression in the limma package (Ritchie et al., 2015). Next, we 

determined blood markers linked to the severity of the motor symptoms (as defined by MDS-

UPDRS III) and total disease symptoms (MDS-UDPRS total score), adjusting for disease 

duration, age of PD onset, sex, and anemia measures, as well as UPDRS score and disease 

duration interaction. Statistical analysis was performed by a linear mixed-effects model in lme4 

(Bates et al., 2015). Finally, we assessed differences in blood markers of liver function in the 

prodromal cohort. The prodromal cohort consisted of individuals with REM sleep behavior 

disorder (RBD) or hyposmia who are at risk of developing PD. Blood markers were evaluated at 

the date of enrollment into the PPMI, prior to any PD diagnosis. We separated the prodromal 

PD patients into the group of individuals that were later diagnosed with PD (n=36 converters) 
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and those that were not (n=102 non-converters), comparing these groups with controls (n=561 

controls). We also compare the blood markers of converters at the time of first PD diagnosis to 

those of controls, non-converters, and converters before PD diagnosis at the time of enrollment 

into the PPMI. Statistical analysis was performed using a robust linear regression in the limma 

package, adjusting for age at the time of blood draw, sex, and anemia measures. P<0.05 was 

the threshold for statistical significance. 
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Figures 

 

 

Figure 1: The PD appendix exhibits shifts in the active microbiome that affect lipid 

metabolism. Metatranscriptomic analysis was used to determine changes in the functional 

microbiome in the appendix of PD patients (n=12 PD, 16 controls). (A) Microbiome changes in 

the PD appendix. Metatranscriptome data were analyzed by MetaPhlAn2 and a zero-inflated 
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gaussian mixture model in metagenomeSeq, adjusting for age, sex, RIN, and postmortem 

interval. Results are displayed using GraPhlAn, showing the taxonomic tree with kingdom in the 

center, and branching outwards to phylum, class, order, family, and genus. Microbial taxa 

highlighted in red are increased in PD, and blue are decreased in PD (q<0.05, 

metagenomeSeq). (B) Microbiome metabolic processes altered in the PD appendix. Top 

microbial pathways altered in PD identified by HumanN2. Red dashed line denotes q<0.1 

pathways as determined by metagenomeSeq. 
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Figure 2: Microbiome changes induced by synucleinopathy and gut inflammation in the 

mouse cecal patch. The microbiome was profiled by 16S rRNA sequencing in the cecal patch 

of a mouse model of synucleinopathy, A30P α-syn overexpressing mice. In addition, 

microbiome changes in responses to gut inflammation by prior DSS colitis exposure was 

determined in the A30P α-syn and wild-type mice. The 16S rRNA data were analyzed using 

QIIME2 and a zero-inflated gaussian mixture model in metagenomeSeq, adjusting for 

covariates (sex and DSS exposure or genotype) was used to identify differences in the 

microbiome (q<0.05, metagenomeSeq). Microbial metabolic pathway changes were determined 

by PICRUSt2. n=40 mice, 8 A30P/DSS, 10 A30P/water, 11 WT/DSS, 11 WT/water. (A) 

Schematic of experimental design to examine microbiome changes in A30P α-syn or wild-type 

mice exposed to DSS colitis or water. (B) Microbiome changes altered in response to 

synucleinopathy. Taxonomic tree showing changes in microbial taxa (left panel) and related 

microbial functional pathways (right panel) in the A30P α-syn overexpression model, relative to 

wild-type mice. Taxonomic tree built using GraPhlAn, with kingdom in the center, and branching 

outwards to phylum, class, order, family, and genus. Microbial taxa highlighted in red are 

increased in A30P α-syn mice relative to wild-type mice, and blue are decreased in A30P α-syn 

mice. Top microbial pathways altered by synucleinopathy are shown. Red dashed line denotes 

q<0.1 pathways determined by metagenomeSeq. (C) The mouse model of synucleinopathy 

recapitulates microbiome changes in the PD appendix. Left panel: Correlation of microbiome 

changes at family level in the PD appendix with those altered in the cecal patch of the mouse 

model of synucleinopathy and gut inflammation. p<0.01 represents a significant correlation 

between microbiome changes in the PD appendix and those occurring in response to A30P α-

syn overexpression. Right panel: Heatmap demonstrating microbiome differences at the family 

level in the PD appendix and in the cecal patch of mice with A30P α-syn overexpression or in 

response to DSS colitis. Microbial families existing in both humans and mice are shown. Red 

signifies an increase in the microbial taxa in PD or mouse model, and blue signifies a decrease. 
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(D) Microbiota changes in the A30P α-syn mouse cecal patch in response to gut inflammation. 

Abundance (percentage) of each microbial genera altered in synucleinopathy model by DSS 

colitis with nominal p<0.05. Comparison between the DSS panel (left) and water panel (right) 

demonstrates changes in microbiota abundances in A30P α-syn mice in response to DSS, 

relative to wild-type mice. Taxonomic tree shows from phylum to family level. 
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Figure 3: Proteomic analysis identifies altered lipid metabolism pathways in the PD 

appendix. Pathway enrichment analysis of proteomic changes in the PD appendix relative to 

controls (n=3 PD, 3 controls). Pathway analysis of quantitative proteomic data was performed 

using g:Profiler. Nodes are pathways altered in the PD appendix that were clustered into 

functionally similar networks by EnrichmentMap (nodes are q<0.05 pathways, hypergeometric 

test). Node size represents the number of genes in the pathway gene set, and edges connect 

pathways with similar gene sets (0.7 similarity cutoff). The lipid metabolism pathway network is 

highlighted in peach. 
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Figure 4: Increase in microbiome-derived secondary bile acids in the appendix of PD 

patients and synucleinopathy mouse model. Bile acid analysis was performed by liquid 

chromatography–mass spectrometry in the PD and control appendix (n=15 PD, 12 controls) and 

ileum (n=20 PD, 20 controls), as well as in the cecal patch of A30P α-syn overexpressing mice 

(n=21 wild-type, 19 A30P α-syn mice exposed to DSS or water). Bile acid changes were 

determined by robust linear regression, which for the human appendix and ileum data controlled 

for age, sex, and postmortem interval, and for the mouse cecal patch data controlled for sex and 

DSS exposure. (A) Illustration of the bile acid changes identified in this study and the bile acid 

pathway. Primary bile acids are generated in the liver and secondary bile acids are produced by 

the microbiome in the intestine. In the secondary bile acid section of the image, boxes highlight 

the DCA and LCA groups (DCA, LCA and their respective conjugates). Bile acids increased in 

the PD appendix or PD ileum, relative to controls, are marked by a blue and green arrow, 

respectively. Bile acids increased in the A30P α-syn mice, relative to wild-type mice, are marked 

by a purple arrow. The flame symbol denotes highly hydrophobic bile acids that have 

proinflammatory effects when elevated. (B) Secondary bile acid changes in the PD appendix, 

PD ileum, and in the synucleinopathy mouse model. The boxplot center line represents the 

mean, the lower and upper limits are the first and third quartiles (25th and 75th percentiles), and 

the whiskers are 1.5× the interquartile range. *p<0.05, robust linear regression 
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Figure 5: Dysfunctional cholesterol and lipid metabolism in the PD ileum. (A) Transcript 

levels of genes in the ileum (left panel) and liver (right panel) affecting the abundance of 

cholesterol and bile in the enterohepatic circulation. Transcript levels of genes affecting 

cholesterol and bile acid homeostasis (NR1H2, NR1H3, NR1H4, GPBAR1) and their transport 

and reabsorption into the enterohepatic circulation (NPC1L1, ABCG5, ABCG8, ASBT, OSTα, 

OSTβ, FABP6) were examined in the ileum. In the liver, transcript levels of these genes or the 

equivalent bile acid transporters (NTCP, FABP1) were examined, as well as the rate-limiting 
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enzymes for bile acid production (CYP7A1, CYP27A1). Transcript levels were analyzed by 

qPCR and normalized to housekeeping genes (villin1, β-actin). Relative expression ± s.e.m in 

the ileum (n=8 PD, 6 controls) and liver (n=6 PD and 6 controls). *p<0.05, one-way ANOVA. (B)  

Pathway analysis of proteomic changes in the PD ileum. Quantitative proteomic analysis in PD 

and control ileum was performed by mass spectrometry and changes in proteomic pathways 

were determined using g:Profiler (n=4 PD, 4 controls). Nodes are pathways altered in the PD 

ileum that were clustered into functionally similar networks by EnrichmentMap (nodes are 

q<0.05 pathways, hypergeometric test). Node size represents the number of genes in the 

pathway gene set, and edges connect pathways with similar gene sets (0.7 similarity cutoff). 

The lipid catabolism pathway network is highlighted in peach. (C) Top 10 proteins that were 

most consistently altered in the PD appendix and ileum. Heatmap showing the proteins ranked 

as the most consistently disrupted in the PD appendix and ileum, as determined by a robust 

ranking algorithm. Log fold change is shown, and red signifies greater disruption in PD. 
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Figure 6: PD patients have biliary abnormalities that correspond to motor symptom 

severity and occur prior to PD diagnosis. Blood markers of liver and gallbladder function 

assessed in PD patients were bilirubin, albumin, ALP, ALT, and AST. Changes in blood markers 

were examined in newly diagnosed PD patients (de novo PD cohort, n=475 PD, 231 controls) 

and PD patients with a genetic risk factor (carriers of a mutation in SNCA, LRRK2, or GBA, 

n=396 PD, 619 controls) from the PPMI study. (A, B) Changes in common blood markers of 

liver and gallbladder disease in newly diagnosed PD patients (de novo PD, A) and with genetic 

risk for PD (genetic PD, B), compared with controls. Signed log p refers to the significance of 

blood marker change, with sign corresponding to the direction of the change in PD; green is 

increased, and purple is decreased in PD. *p<0.05, by robust linear regression, adjusting for 

age at the time of blood test, sex, and anemia measures (red blood cells, hemoglobin and 
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hematocrit). (C) Bilirubin changes correlated to severity of PD motor symptoms. PD motor 

symptoms in de novo PD patients were determined by UPDRS score III. p=0.01 signifies that 

bilirubin levels increase with the severity of PD motor symptoms, by linear mixed-effects model, 

adjusting for disease duration, age of PD onset, sex, anemia measures, as well as UPDRS III 

score and disease duration interaction. (D) Bilirubin levels prior to PD diagnosis in individuals at 

risk of developing PD. Changes in blood markers were examined in the prodromal PD cohort, 

consisting of individuals with RBD or hyposmia (prodromal features of PD). Comparison of 

bilirubin levels in prodromal PD patients that will later be diagnosed with PD (n=36 converters) 

and those that will not (n=102 non-converters), relative to controls (n=561). Blood markers were 

assessed at the date of enrollment into the PPMI, prior to any PD diagnosis; and for converters 

we also examined bilirubin levels after PD diagnosis. *p<0.05 and NS=not significant, by robust 

linear regression, adjusted for age at the time of blood draw, sex, and anemia measures. The 

boxplot center line represents the mean, the lower and upper limits are the first and third 

quartiles (25th and 75th percentiles), and the whiskers are 1.5× the interquartile range. 
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Figure 7: Graphical summary of microbiome and biliary changes in PD. Microbial dysbiosis 

and an accompanying increase in microbiome-derived toxic secondary bile acids are prevalent 

in the PD appendix. Synucleinopathy in mice recapitulates microbiome changes relevant to PD, 

some of which are amplified by gut inflammation. Microbiome changes in PD included 

significant increases in Clostridiales and Burkholderiales, which are involved in the conversion 

of primary bile acids to secondary bile acids. Accordingly, elevated secondary bile acids, LCA 
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and DCA, were seen in PD and in the synucleinopathy model. Transcript and proteomic 

analyses of the PD gut showed further disruptions in cholesterol metabolism and transport. 

Bilirubin and ALP were elevated in newly diagnosed PD patients relative to controls. Bilirubin 

increases in PD correlated to the severity of motor symptoms. Moreover, in a prodromal cohort 

bilirubin was increased in individuals who would later convert to PD relative to controls and to 

individuals who did not convert to PD.  
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(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2020. ; https://doi.org/10.1101/2020.09.26.279851doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.26.279851


55 

Figure S1. Microbial diversity in the human appendix. The functional microbiome was 

determined in metatranscriptomic sequencing data from 12 PD patients and 16 controls. (A) 

Alpha diversity (Shannon index) calculated by vegan package. (B) Beta diversity (Whittaker 

index) calculated by vegan package. (C) NMDS plot showing the distribution of samples 

according to the microbial community. (D) Microbiota composition in the human appendix at the 

genus level. Top 15 most abundant microbiota genera are listed. (E) Microbiota composition in 

the appendix at the family level. Top 15 most abundant microbiota families listed. 
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Figure S2. Microbial diversity in the mouse model of synucleinopathy and gut inflammation. The 

microbiome was profiled by 16S rRNA sequencing in the cecal patch of the A30P α-syn 

overexpressing mice and wild-type mice previously exposed to DSS colitis or water. (A) Alpha 

diversity (Shannon index) calculated by vegan package. (B) Beta diversity (Whittaker index) 

calculated by vegan package. (C) NMDS plot showing the distribution of samples according to 

the microbial community. For visualization, outlying samples 168 and 156 are not shown in A, B, 

or C but were included in the analysis. (D) Microbiota composition in the mouse cecal patch at 

the genus level. Top 15 most abundant microbiota genera are listed. (E) Microbiota composition 

in the mouse cecal patch at the family level. Top 15 most abundant microbiota families listed. 
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Figure S3. Microbiome alterations in the A30P α-syn mouse cecal patch. Abundance 

(percentage) of each microbial genus altered in A30P α-syn overexpressing mice relative to 

wild-type mice with nominal p<0.05. Taxonomic tree denotes phylum to family level. 
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Figure S4. Microbiome changes in response to gut inflammation in the mouse cecal 

patch. Microbiome changes in mice previously exposed to DSS-mediated gut inflammation 

were determined by 16S rRNA sequencing. The 16S rRNA data were analyzed using QIIME2 

and a zero-inflated gaussian mixture model in metagenomeSeq, adjusting for covariates (sex 

and genotype) was used to identify differences in the microbiome (q<0.05, metagenomeSeq). 

Microbial metabolic pathway changes were determined by PICRUSt2. n=21 water and 19 DSS 

colitis exposed wild-type and A30P α-syn mice. Taxonomic tree shows changes in microbial 

taxa (left) and related microbial functional pathways (right) in the DSS exposed mice, relative to 

mice given water. Taxonomic tree built using GraPhlAn, with kingdom in the center, and 

branching outwards to phylum, class, order, family, and genus. Microbial taxa highlighted in red 

are increased in the cecal patch in response to DSS colitis, relative to water, and blue are 

decreased. The red dashed line represents pathways that are q<0.1, by a zero-inflated 

gaussian mixture model in metagenomeSeq. 
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Figure S5: Microbial changes in the synucleinopathy model in response to gut 

inflammation. Microbiome (left) and related pathways (right) differentially altered in the cecal 

patch of A30P α-syn overexpressing mice in response to gut inflammation (n=8 A30P/DSS, 10 

A30P/water, 11 WT/DSS, 11 WT/water). The 16S rRNA sequencing data were analyzed with 

QIIME2 and pathway analysis was performed using PICRUSt2. Microbiome changes were 

determined by metagenomeSeq, followed by a contrasts.fit comparison in limma, adjusting for 

sex (q<0.05, metagenomeSeq). Taxonomic tree built using GraPhlAn, with kingdom in the 

center, and branching outwards to phylum, class, order, family, and genus. Microbial taxa 

highlighted in red are increased in the cecal patch of A30P α-syn mice in response to DSS 

colitis, and blue are decreased. Microbial functional pathways differentially altered in A30P α-

syn mice following DSS colitis are shown, and red dashed line represents q<0.1 pathways. 
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Figure S6: Experimental design and main findings of our study investigating functional 

changes in the appendix microbiome in PD. The human appendix is an immunological organ 

that is also considered to be a storehouse for the gut microbiome. Recently, the appendix has 

been implicated in the risk of developing PD (Killinger et al., 2018). To determine whether the 

PD appendix exhibits functional changes in the microbiome, we performed a metatranscriptomic 

analysis of the PD and control appendix. Microbiome changes in PD were compared to those in 

the cecal patch (appendix-equivalent) of a mouse model of synucleinopathy and gut 

inflammation. We identified microbiome changes in the PD appendix that affect lipid 
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homeostasis and the synthesis of secondary bile acids, which in turn led us to an analysis of 

bile acids. In the PD appendix, we found an increase in the microbially-derived, cytotoxic bile 

acids LCA and DCA. These bile acid changes were recapitulated in the mouse model of 

synucleinopathy. Proteomic and transcript analysis also demonstrated a disruption in 

cholesterol and lipid metabolism in the PD gut. Since elevated LCA and DCA can lead to liver 

injury and gallstone disease, we profiled blood markers of liver and gallstone dysfunction in PD 

patients using the PPMI dataset. We found evidence of biliary dysfunction in PD patients, which 

occurred even before clinical onset of motor symptoms.      

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2020. ; https://doi.org/10.1101/2020.09.26.279851doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.26.279851


63 

Supplementary Files 

 

Supplementary File 1. Demographic and clinical information for human samples. 

Supplementary File 2. Differences in PD appendix microbiome and related pathways identified 

by metatranscriptomic analysis  

Supplementary File 3. Mouse sample information. 

Supplementary File 4. Differences in A30P α-syn mouse cecal patch microbiome and related 

pathways 

Supplementary File 5. Differences induced by gut inflammation in the mouse cecal patch 

microbiome and related pathways 

Supplementary File 6. Combined effect of synucleinopathy and DSS inflammation on the mouse 

cecal patch microbiome and related pathways 

Supplementary File 7. Proteomic changes in the human PD appendix and ileum. 

Supplementary File 8. Changes in bile acid composition in the human PD appendix, and ileum 

and in the cecal patch of mice with synucleinopathy and gut inflammation 

Supplementary File 9. Differences in gene transcripts related to bile acid homeostasis in the 

human PD ileum and liver identified by qPCR  

Supplementary File 10. Changes in blood markers of biliary function in PD patients in the PPMI 

data 

Supplementary File 11. Primers used in liver and ileum qPCR experiment 
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