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Abstract

Scientists often embed cells into a lower-dimensional space when studying single-cell RNA-
seq data for improved downstream analyses such as developmental trajectory analyses, but the
statistical properties of such non-linear embedding methods are often not well understood. In
this article, we develop the eSVD (exponential-family SVD), a non-linear embedding method
for both cells and genes jointly with respect to a random dot product model using exponential-
family distributions. Our estimator uses alternating minimization, which enables us to have
a computationally-efficient method, prove the identifiability conditions and consistency of our
method, and provide statistically-principled procedures to tune our method. All these quali-
ties help advance the single-cell embedding literature, and we provide extensive simulations to
demonstrate that the eSVD is competitive compared to other embedding methods.

We apply the eSVD via Gaussian distributions where the standard deviations are propor-
tional to the means to analyze a single-cell dataset of oligodendrocytes in mouse brains (Marques
et al., 2016). Using the eSVD estimated embedding, we then investigate the cell developmental
trajectories of the oligodendrocytes. While previous results are not able to distinguish the tra-
jectories among the mature oligodendrocyte cell types, our diagnostics and results demonstrate
there are two major developmental trajectories that diverge at mature oligodendrocytes.

Keywords: gene expression, oligodendrocytes, latent space models, matrix factorization, random
dot product model

1 Introduction

Single-cell RNA-sequencing data give scientists an unprecedented opportunity to analyze the dynam-
ics among individual cells based on their gene expressions, but many analyses require first embedding
each cell into a lower-dimensional space as an important preprocessing step in order to make down-
stream methods more statistically or computationally tractable. For example, these low-dimensional
embeddings can be used to visualize high-dimensional data, to control for batch effects, to cluster
cells into cell types, to denoise or impute single-cell data, or to estimate trajectories to understand
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how cells develop over time; see Sun et al. (2019) for a comprehensive overview. Typically, these em-
beddings are computed from an n×p gene expression matrix, where each of the n rows and p columns
represent a different cell and a different gene respectively. Two of the most common methods to
compute these embeddings, uniform manifold approximation and projection (UMAP, McInnes et al.
(2018)) and the singular value decomposition (SVD), have different weaknesses that we strive to
remedy in this work. On one hand, UMAP produces flexible, non-linear embeddings that have seen
widespread usage for visualization purposes (Becht et al., 2019). However, since UMAP does not
yet have proven statistical properties such as consistency, there is a lack of consensus on how to tune
this method, and methods that build on these UMAP embeddings inherit this statistical ambiguity;
see Cao et al. (2019) and Bergen et al. (2020) for example. On the other hand, the SVD has been
extensively studied in the statistical literature, but is often restrictive in practice since it yields only
linear embeddings. In this article, we advance the literature by developing the eSVD (exponential-
family SVD), a non-linear embedding method that retains desirable statistical properties. As the
name suggests, the eSVD is a generalization of the SVD, and embeds each cell in a non-linear fashion
into a lower-dimensional space with respect to any one-parameter exponential-family distribution,
allowing the researcher to have much broader modeling flexibility. Methodologically, we design the
eSVD such that it can be appropriately tuned using matrix-completion ideas. Theoretically, unlike
similar work that also bridges this gap between the SVD and UMAP for single-cell applications such
as Durif et al. (2017) and Risso et al. (2018), we leverage recent theoretical developments in the
nonconvex optimization literature that formalize the statistical properties of the eSVD. With these
insights, we use the eSVD to analyze single-cell data1 in order to demonstrate better downstream
analysis results.

To illustrate the importance of embeddings, we focus on analyzing oligodendrocytes – cells that
enable rapid transmission of signals by producing myelin and providing metabolic support to neurons
in the central nervous system. These cells are intriguing to study due to their constant development
throughout a subject’s lifetime, unlike many other cell types that mature at adulthood (Menn et al.,
2006). As mentioned in Marques et al. (2016) and Cai and Xiao (2016), understanding how oligoden-
drocytes develop can lead to new insights into the cause of myelin disorders such as multiple sclerosis
and Alzheimer’s disease. We discuss the oligodendrocyte dataset and present a preliminary analysis
in Section 2, where we provide various diagnostics demonstrating the shortcomings of the SVD.
To better understand this phenomenon, we review the hierarchical model that the SVD implicitly
assumes in Section 3. Specifically, suppose a hierarchical model where each cell and each gene has its
own low-dimensional latent random vector. In the language of exponential-family distributions, this
model assumes that the cell’s expression of a particular gene is a one-parameter exponential-family
random variable whose natural parameter is the inner product of the two corresponding latent vec-
tors. By formulating this hierarchical model, we see that the SVD implicitly assumes a Gaussian
distribution with constant variance. However, this assumption is often violated since the variance
of each cell’s gene expressions is observed to vary dramatically with their mean expression level
(Love et al., 2014; Hicks et al., 2017). Hence, as we will review later, there is a rich line of work
that extends hierarchical models of this type to analyze single-cell data by replacing the Gaussian
distribution with more appropriate exponential-family distributions (Pierson and Yau, 2015; Townes
et al., 2017; Durif et al., 2017; Risso et al., 2018), of which this article continues.

The aforementioned work often add additional nuances on top of the hierarchical model in order
to model single-cell data better, but this often results in complicated estimators that become too
intractable to statistically analyze. Hence, we design the eSVD in such a way that the posited
statistical model retains the most important aspects common to the aforementioned work, while we
can leverage recent theoretical developments to analyze the estimator’s statistical properties. Specif-
ically, the eSVD uses alternating minimization, a popular and computationally efficient approach
used in the matrix factorization literature to solve the nonconvex optimization problem at hand,

1We use the term “single-cell data” to refer to single-cell RNA-sequencing data specifically in the remainder of this
article.
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described in Section 4. We present the eSVD’s statistical theory in Section 5, which builds upon the
theoretical analyses of Zhao et al. (2015) and Lei (2018). These statistical properties include iden-
tifiability conditions and consistency, which ensure that researchers well-understand the estimated
embedding and have a solid statistical foundation to build downstream analyses on top of. However,
to ensure that the eSVD does not sacrifice too much modeling flexibility for theoretical tractability,
we compare the eSVD to competing methods used to analyze single-cell data in Section 6 using
synthetic data.

Finally, we return to our preliminary analysis of oligodendrocytes in Section 7, where we show
that the eSVD embedding improves our analysis of cell developmental trajectories to match the
latest scientific findings. These trajectories explain the heterogeneity among the oligodendrocytes
by describing the smooth transition of gene expression among individual cells along a continuum,
reflecting the cells’ gradual transcriptional changes during development (Trapnell et al., 2014). Al-
though early research suggest oligodendrocytes develop along a single trajectory (Kessaris et al.,
2006), recent work suggest that oligodendrocytes could potentially branch out into various mature
types (Marques et al., 2016; van Bruggen et al., 2017; Marques et al., 2018). Our improved analysis
match these findings – we show the eSVD embedding estimates two distinct trajectories. We develop
visualization tools to show our developmental trajectory findings, and conclude in Section 8 with
practical extensions and theoretical questions left open for future work. While we focus on using
the eSVD embedding to estimate cell developmental trajectories in this article, we emphasize that
this embedding can be used for other applications highlighted earlier in this section, and provide
additional analyses on another single-cell dataset in the appendix.

2 Preliminary analysis

We analyze a dataset of oligodendrocytes from mice brains collected by Marques et al. (2016) as a
prototypical example to demonstrate shortcomings of the SVD embedding when applied to single-
cell data. This dataset, henceforth called the Marques dataset, contains the gene expression of 5,069
oligodendrocytes that are clustered into thirteen cell sub-types using a biclustering algorithm (Zeisel
et al., 2015) in Marques et al. (2016). These thirteen cell sub-types were later grouped into six major
cell types and manually labeled based on cell-type specific marker genes (Zhang et al., 2014), shown
in Figure 1.. We preprocess the data by selecting 983 highly informative genes, normalizing each cell
by its library size (i.e., total counts across all genes), and log2-transforming each entry. These details
are described in Appendix C. As suggested in the literature, it is common to log2-transform the
gene expression matrix prior to using the SVD, since the log2-transformation can ideally stabilize
the variance (Townes et al., 2017; Butler et al., 2018). However, as we see in the preliminary analysis
in this section, this analysis strategy will result in modeling concerns that we wish to remedy in the
rest of this article.

We review the SVD embedding, as it provides motivation for the eSVD in the next section. Let
A ∈ Rn×p represent the observed single-cell RNA-sequencing data matrix with rank m, where n is
the number of cells and p is the number of genes. Here, loosely speaking, each entry Aij measures
how many instances of genetic material for gene j is observed for cell i after pre-processing. Let the
SVD of A be denoted as ÛD̂V̂ > where Û ∈ Rn×m and V̂ ∈ Rp×m are both orthonormal matrices
and D̂ ∈ Rm×m is a diagonal matrix. For a given latent dimensionality k ≤ m, the SVD embedding
for each cell i ∈ {1, . . . , n} (denoted as X̂i ∈ Rk) and each gene j ∈ {1, . . . , p} (denoted as Ŷj ∈ Rk)
is defined as

X̂i =
(n
p

)1/4

·
(√

D̂1,1 · Ûi,1, . . . ,
√
D̂k,k · Ûi,k

)
, for i ∈ {1, . . . , n} (2.1)

Ŷj =
( p
n

)1/4

·
(√

D̂1,1 · V̂j,1, . . . ,
√
D̂k,k · V̂j,k

)
, for j ∈ {1, . . . , p}. (2.2)
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Figure 1: The SVD embedding of the oligodendrocytes from Marques et al. (2016) after preprocessing
including a log2-transformation, shown alongside a table summarizing the cell types. The six major cell
types are listed in the table with the number of cells in each type, along with how they are differentiated
into the thirteen different cell sub-types. The rows are organized from the “youngest” cell types to “most
mature” cell types from top to bottom. The youngest three major cell types are colored orange. while the
oldest three are colored blue, green and yellow respectively. The second and third latent dimensions are
shown on the left, along with contours of the estimated densities to visualize high-density regions (one for
each color of cells).

We can see that the SVD embedding is a linear embedding since X̂i is the first k elements of the
ith row in (n/p)1/4 · AV̂ D̂−1/2. A scatterplot of the second and third latent dimensions of such an
embedding is shown in Figure 1. Later in this article, we will show that this embedding implic-
itly assumes a constant-variance Gaussian distribution in Section 3, and show that this particular
formulation handles identifiability concerns discussed in Section 4.

Now, we show that the SVD embedding (and its equivalent reparameterizations) does not model
the data well, which could produce misleading results in downstream analyses. First, we visualize
the quality of fit of the SVD embedding by purposefully omitting a small subset of randomly-selected
entries in A and estimating the embedding as a matrix-completion problem. We can then assess
the quality of fit of the embedding by comparing the values of these omitted entries in A to their
predicted values. Figure 2 demonstrates this diagnostic, where the left plot shows the observed values
in A that are not omitted (i.e., the “training set”) verses their respective predicted values, while the
right plot shows the observed values that are omitted (i.e., the “testing set”) verses their respective
predicted values. This missing-value diagnostic is commonly used both for assessing the quality of fit
as well as for model selection (Li et al., 2020), and we will return to it in detail in Section 4. We see
that while the embedding’s performance on the testing set is more-or-less equivalent to that on the
training set, the variability decreases as the gene expression increases. This is in opposition with the
working model in the literature that suggests that larger gene expressions should be more variable
than smaller ones (Witten, 2011; Risso et al., 2018). In fact, prior to taking the log2-transformation,
Figure 3 demonstrates that the variance in gene expression increases with its mean, reinforcing
this model. Combined, all the diagnostics demonstrate that applying a log2-transform and using
the SVD in conjunction seem to distort the properties of the data. This inspires us to develop a
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Figure 2: Diagnostic based on matrix completion to assess the fit using the SVD embedding for either the
observed values that are not omitted (i.e., the “training set”) (A) or the observed values that are purpose-
fully omitted (i.e., the “testing set”) (B), both verses their respective predicted values. This embedding is
estimated using softImpute (Mazumder et al., 2010). The shaded red region is centered around the identity
function (the ideal mean function) and marks the 10th to 90th quantiles of the constant-variance Gaussian
model (based on the empirical variance) for different values of the predicted mean. The blue dotted line
represents the principal angle between the observed values and their predicted value counterparts, where we
mark its divergence from the identity function’s 45◦. More details of this diagnostic is discussed in Section 4,
while details of the fitting process using softImpute can be found in Appendix C.

more appropriate embedding method that still retains desirable statistical properties. In the next
section, we review the optimization problem that the SVD solves and see how it can be extended to
one-parameter exponential families more generally, which will motivate our method, the eSVD.

3 Statistical model and background

In this section, we explain the random dot product model that we investigate in this article, and its
relation to other work.

3.1 Statistical model and estimation strategy

We model the entries of the single-cell dataset A ∈ Rn×p as conditionally independent random
variables drawn from a random dot product model – a latent hierarchical model commonly used
in other work (Pierson and Yau, 2015; Townes et al., 2017; Durif et al., 2017; Risso et al., 2018).
Specifically, for an appropriate one-parameter exponential-family distribution F parameterized by
its natural parameter θij , we impose model,

Aij ∼ F
(
θij = X>i Yj

)
, for (i, j) ∈ {1, . . . , n} × {1, . . . , p},

where X1, . . . , Xn
i.i.d.∼ G, and Y1, . . . , Yp

i.i.d.∼ H. (3.1)

where G and H represent two latent k-dimensional distributions, where k is much smaller than n or
p. We assume all the latent random vectors Xi’s and Yj ’s are jointly independent, and the observed
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Figure 3: (A) The standard deviation of the expression verses the mean expression across all the cells,
where each point represents one of the 983 genes in the preprocessed single-cell dataset. The color of each
point depends on how evenly the gene is expressed among each of the six oligodendrocyte cell types show
in Figure 1. The solid red horizontal and vertical lines and the dashed red line denoting the line y = x
are for visual reference. (B) Violin plot of the average expression of the genes reweighted according to the
first principal component among the six oligodendrocyte cell types, using the color scheme in Figure 1. The
statistics in both plots are computed prior to taking the log2-transformation, and is shown on the logarithm
scale in Plot A purely for visualization purposes. More details about these plots are in Appendix C.

Aij ’s are independent conditioned on the Xi’s and Yj ’s. Let the density of the exponential-family
distribution F be denoted as

p(Aij | θij) = h(Aij) exp
(
T (Aij)

>η(θij)− g(θij)
)
, (3.2)

where g(·) is a known log-partition function for F with a domainR, η(·) is a known natural parameter
function, and T (·) is a known sufficient statistic function. For notational convenience, we denote
X ∈ Rn×k and Y ∈ Rp×k as the matrices that collect all the latent vectors X1, . . . , Xn and Y1, . . . , Yp
row-wise, and denote Θ = XY > ∈ Rn×p as the rank-k natural parameter matrix that collects all
elements θij . Given the exponential-family form for F shown in (3.2), we need to impose the
following assumption to ensure the inner products X>i Yj for all (i, j) ∈ {1, . . . , n} × {1, . . . , p} yield
valid natural parameters,

Assumption 3.1 (Bounded inner product). Let R denote the domain of the natural parameters for
the distribution F . Assume that for any Xi ∼ G and Yj ∼ H,

P(X>i Yj ∈ R) = 1, almost surely.

Given the above model, our goal is to estimate the latent random vectors X1, . . . , Xn since these
latent vectors represent the low-dimensional embedding of all n cells. For a given exponential-
family distribution F , an intuitive strategy for estimating our desired embedding is to minimize
the negative log-likelihood based on the observed data A over all possible vectors X1, . . . , Xn and
Y1, . . . , Yp. Specifically, plugging into the exponential-family form (3.2) into the model (3.1), we
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derive the loss function

Ln(X,Y ) =
1

np

∑
(i,j)

[
g(X>i Yj)− T (Aij)

>η(X>i Yj)
]
, (3.3)

with the constraints X>i Yj ∈ R for all pairs (i, j). The above loss function is nonconvex, but if F is
the the constant-variance Gaussian distribution, this loss function is proportional to

1

np

∑
(i,j)

(Aij −X>i Yj)2,

which is specifically what the SVD minimizes (Maezika, 2016). This particular model is convenient
to use since the SVD provides a closed-form solution to the corresponding nonconvex optimization
problem, and leads to the SVD embedding shown in (2.1).

3.2 Relation to other work modeling single-cell data

As we have discussed previously in Section 2, this constant-variance assumption is too restrictive
to properly model single-cell data. Hence, many articles cited above replace the constant-variance
Gaussian distribution with other exponential-family distributions for F that allow the variance to
increase with the mean. For example, Witten (2011) and Risso et al. (2018) consider the Poisson and
negative binomial distribution specifically, after a suitable transformation of the natural parameters.
Additionally, these models often add other random effects on top of the existing random dot product
model (3.1) that influence the entries in A. For example, many methods like pCMF (Durif et al.,
2017) allow researchers to incorporate dropout into the model – a characteristic of single-cell data
where a substantial fraction of the gene expression for a cell is recorded as exactly 0 due to low
amounts of RNA in the cell (Kharchenko et al., 2014). Other methods such as ZINB-WaVE (Risso
et al., 2018) go further and allow covariate information such as gene length and cell size. Most
recently, Lopez et al. (2018) use deep autoencoders to estimate the embedding. However, there is
often a lack of theoretical analyses for the aforementioned estimators. This is because replacing the
exponential-family distribution F with any distribution aside from the constant-variance Gaussian
distribution leads to non-trivial nonconvex estimators that minimize the loss function shown in (3.3),
which make traditional statistical techniques for analyzing these estimators unsuitable. Therefore,
concerns such as identifiability are typically not addressed theoretically, leading to ambiguity on
performance of the estimators of such models.

To resolve this theoretical ambiguity, we design the eSVD to estimate the embedding based on the
random dot product model (3.1) for any exponential-family distribution F with no other random
effects. In this way, we can tractably analyze the statistical properties of eSVD while retaining
abundant flexibility to effectively model single-cell data.

3.3 Matrix factorization

To the best of our knowledge, the first statistical results for estimators that extended the SVD to
generic exponential-family distributions by minimizing a loss function similar to (3.3) come from
Gunasekar et al. (2014) and Lafond (2015). There, the authors minimize the loss function over
the natural parameter matrix Θ and add a trace penalization term to encourage the estimate to
be low-rank. While this formulation yields a convex optimization problem, it requires solving a
semidefinite program which can be computationally prohibitive for large datasets. This consideration
has motivated researchers to investigate the statistical properties of estimators that minimize the loss
function (3.3) directly as a nonconvex optimization problem. Specifically, alternating minimization
is a suitable candidate for this task, where each iteration alternates between optimizing either one of
two low-rank matrices X and Y while treating the other fixed. This algorithmic strategy pre-dates
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the convex relaxation approach; see Collins et al. (2002), Jain et al. (2013), Udell et al. (2016),
Landgraf and Lee (2019) and the references within for discussions and additional variants. From an
algorithmic standpoint, our method is a direct continuation of such work. However, the statistical
properties of such estimators have only recently been characterized rigorously. For example, to
accommodate the constraints in Assumption 3.1, Wang et al. (2016), Yu et al. (2020) and Chi et al.
(2019) adapt the theoretical framework to study slightly different estimators based on alternating
projected gradient descent. In contrast, our work will build on techniques used in Zhao et al. (2015)
and Balakrishnan et al. (2017) to retain our focus on alternating minimization.

However, all the aforementioned theoretical results do not directly apply the random dot product
model (3.1), which contains an additional source of randomness induced by the hierarchical structure.
In contrast, our theory is able to account for this additional source of randomness by drawing upon
connections to the network literature. Specifically, the random dot product model (3.1) is similar
to those used in latent position random graphs studied in the network literature (Hoff et al. (2002)
and Athreya et al. (2017)). Hence, we draw inspiration from Lei (2018) on how to address these
identifiability concerns and to develop proof techniques in this article.

There are many other embedding methods in the literature more broadly, such as non-negative
matrix factorization, kernel PCA, and manifold-based embedding methods such as UMAP and
Isomap. We defer a thorough discussion contrasting eSVD with such estimators to Appendix B.

4 Method: eSVD (Exponential-family SVD)

We describe the eSVD in this section, which is designed to be a general framework to minimize the
loss function (3.3) for any choice of a one-parameter exponential-family distribution F . To keep the
presentation clear, we describe some of the more nuanced implementation details in Appendix B.
We also describe an important diagnostic to assess the quality of fit, as demonstrated in Section 2.
This diagnostic can be also be used as a tuning procedure to select the most appropriate choice for
F or nuisance parameters.

4.1 eSVD and its application to the curved Gaussian distribution

Similar to other nonconvex matrix factorization methods (Wang et al., 2016; Yu et al., 2020), our

method requires an initial estimate of the rank-k matrix of natural parameters, Θ̂′, where k is
pre-determined. To achieve this, we use an initialization method based on Wang et al. (2016).
To simplify the presentation here, we provide details in Appendix B.1. This initialization scheme
performs a rank-k SVD based on transforming each entry of A via the inverse of the log-partition
function g(·). Given this initial estimate, consider its SVD Θ̂′ = UDV >. To start the alternating

minimization stage of our method, we set Y
(0)

= V .
After initialization, the eSVD then refines the estimate by performing alternating minimizations.

Denoting a generic matrix and its SVD by Θ̂ = UDV >, let LeftSVD(Θ̂) = U , the function that
maps a matrix to its left singular vectors. Then, for iterations t ∈ {0, . . . , T − 1},

X(t+1) = argmin
X∈Rn×k

Ln(X,Y
(t)

) : X>i Y
(t)

j ∈ R, ∀(i, j), (4.1)

X
(t+1)

=
√
n · LeftSVD(X(t+1)), (4.2)

Y (t+1) = argmin
Y ∈Rp×k

Ln(X
(t+1)

, Y ) : (X
(t+1)

i )>Yj ∈ R, ∀(i, j), (4.3)

Y
(t+1)

=
√
p · LeftSVD(Y (t+1)). (4.4)

After all T iterations, the eSVD outputs the final estimate after a reparameterization. That is,
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letting Θ̂(T ) = X
(T )

(Y (T ))> have a rank-k SVD of ÛD̂V̂ >, the final estimates are

X̂i =
(n
p

)1/4

·
(√

D̂1,1 · Ûi,1, . . . ,
√
D̂k,k · Ûi,k

)
, i = 1, . . . , n, (4.5)

Ŷj =
( p
n

)1/4

·
(√

D̂1,1 · V̂j,1, . . . ,
√
D̂k,k · V̂j,k

)
, j = 1, . . . , p. (4.6)

This is the same reparameterization used in (2.1) and (2.2).

Remarks about algorithmic design. We make a few remarks about the design of our algorithm.
Optimizing over X and Y directly raises identifiability issues, since for any orthogonal matrix Q,
Ln(XQ,Y Q>) = Ln(X,Y ). To address this, Ge et al. (2017) append a penalty term

1

8
‖X>X − Y >Y ‖2F ,

while Zhao et al. (2015) use the QR-decomposition between iterations, and we use the LeftSVD(·)
operator. In practice, we found all three choices behave similarly. The factors

√
n and

√
p in

(4.2) and (4.4) are included for theoretical reasons to ensure the spectrum of the Hessian is well-
controlled and to ensure the values do not underflow if n or p are too large empirically. Also, the final
reparameterizations in (4.5) and (4.6) are designed such that the sample second-moment matrices

of X̂ and Ŷ are both equal and diagonal, i.e.,

1

n
X̂>X̂ =

1

p
Ŷ >Ŷ ,

which is important for our statistical analysis later on.
Lastly, to perform the constrained optimization (4.1) and (4.3), we use a first-order method

called Frank-Wolfe (Jaggi, 2013), which we found more stable compared to using projected gradient
descent. While there are theoretical guidelines for choosing step-sizes related to the convexity and
smoothness for this method, we found these choices often led to poor empirical performance.

Example with the curved Gaussian distribution. To make the eSVD’s workings more con-
crete, we demonstrate what the minimization in (4.1) would entail when we set F to be the curved
Gaussian distribution. This will be useful later in this article when we use this distribution to an-
alyze the oligodendrocytes. Specifically, we say the random variable Aij follows a curved Gaussian
distribution with a known parameter τ > 0 if Aij ∼ N(µij , µ

2
ij/τ

2), for an unknown mean parameter

µij > 0 (Efron et al., 1978; Liu and Martin, 2020)2. This sets the standard deviation to be linearly
proportional to the mean. Writing this distribution in exponential-family form (3.2) yields,

p(Aij | θij) =
τ exp(−τ2/2)√

2π
exp

([ τ2Aij
−τ2A2

ij/2

]> [
θij
θ2
ij

]
+ log(θij)

)
, (4.7)

where the relation between the natural parameter θij and the mean parameter µij can be derived
to be µij = 1/θij . Here, the domain of the natural parameters would be R = R+, the positive
half-line. After simple calculations, one can derive the negative log-likelihood and conclude that the
minimization in (4.1) becomes

X(t+1) = argmin
X∈Rn×k

1

np

∑
(i,j)

[
− log

(
X>i Y

(t)

j

)
−
[

τ2Aij
−τ2A2

ij/2

]> [
X>i Y

(t)

j

(X>i Y
(t)

j )2

] ]
.

2We call it a curved Gaussian distribution since this distribution is a curved exponential-family distribution.
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Analogous calculations for other common distributions are shown in Appendix B.
The curved Gaussian distribution is relevant in practice since if τ ≥ 2, this distribution reflects

the phenomenon that genes with larger expression also exhibit larger variance, while most of the
distribution’s mass is still positive. Additionally, in many instances, this distribution can capture
more variability than the Poisson and negative binomial distributions, which can be beneficial when
the single-cell data is intrinsically noisier. In general however, if the researcher wants to use the
eSVD for an arbitrary one-parameter exponential-family distribution F , all she needs to pass into
our implementation is the computation of the loss function (3.3), its gradients, and information
about the domain R.

4.2 Matrix-completion diagnostic and tuning procedure

We provide the following diagnostic to assess the embedding’s quality of fit or to determine which
choice of F is most appropriate for our data, which was used in Figure 2. Inspired by network
cross-validation work such as Li et al. (2020), we use matrix completion to determine the quality
of our model fit. As alluded to in Section 2, to do this, we omit a small percentage of the entries
of A when estimating the embedding and compare these values to their predicted expected value
counterparts. To compute this expected value, recall that for exponential-family distributions (3.2),
g′(·) (the derivative of the log-partition function g(·)) maps the natural parameter to the expected
value. We note that we are able to adopt this matrix completion strategy to tune our method
since our alternating minimization procedure can be adapted to handle missing values. In contrast,
embedding methods like ZINB-WaVE (Risso et al., 2018) and PCMF (Durif et al., 2017) do not
offer an analogous tuning procedure. This procedure is formalized below.

1. For bootstrap trials b ∈ {1, . . . , B}:

(a) Randomly sample m of the entries of A, denoted as O = {(i1, j1), . . . , (im, jm)}, which
will be omitted in the following estimation step. Here, m can be any small number, such
as d0.01 · (np)e.

(b) Estimate the latent vectors by X̂ and Ŷ according to Subsection 4.1 where the loss
function (3.3) omits the entries inO and is parameterized based on the desired distribution
of F .

(c) Compute v1, defined as the leading eigenvector of the matrix formed by the omitted ob-
served values AO = {Ai1,j1 , . . . , Aim,jm} and their predicted expected value counterparts

g′(X̂Ŷ >)O = {g′(X̂>i1 Ŷj1), . . . , g′(X̂>im Ŷjm)}.

(d) Compute model fit quality, q(b) defined as the angle between v1 and the vector (1, 1),
representing the identity function.

2. Average the model fit qualities across all trials, q(1), . . . , q(B).

Observe that we define the quality of fit q(b) above by how much the leading eigenvector v1 deviates
from 45◦. This angle of v1 is what we called the principal angle in Figure 2. Having an eigenvector’s
angle close to 45◦ means that on average, the predicted values correspond closely with the observed
value. The advantage of this quality-of-fit’s definition is that it is easily comparable even across
different distributions F , unlike the negative log-likelihood or MSE.

While we advocate constructing plots such as Figure 2 to obtain a more holistic sense of how well
the embedding fits the data in general, we can also use the above procedure to obtain an automated
model selection method in the following way – if we try the above diagnostic for multiple distribu-
tions for F , the distribution that yields the smallest average of q(1), . . . , q(B) is deemed the most
appropriate model for A. In this way, we can also use this diagnostic as a tuning procedure to select
the dimensionality of the latent space k or nuisance parameters for exponential-family distributions
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such as τ in the curved Gaussian distribution (4.7) in a grid-search fashion. An additional variant
of this tuning procedure is detailed in Appendix B.

5 Statistical theory

In this section, we prove the consistency for the eSVD when applied to the random dot product model
(3.1), which is important to ensure that the eSVD is estimating a well-defined quantity. This result
provides the needed statistical foundation for downstream tasks such as clustering and RNA velocity,
as mentioned in Section 1. Additionally, our theory gives us better insights into the eSVD since our
analysis also reveals the identifiability conditions that formalize to what degree the embedding can
be estimated. While our theorems currently assume the correctly-specified setting (i.e., the eSVD’s
choice of F matches the true generating distribution and k is correctly-specified), we hope these
theorems provide a roadmap for future work to prove analogous statements for broader settings or
for more complex methods like ZINB-WaVE which currently do not exist.

We discuss the additional notation here. For a generic matrix A, let ‖A‖F denote its Frobenius
norm. For two sequences an and bn and two random sequences An and Bn, let an = O(bn) and
An = OP (Bn) denote that an/bn or An/Bn is bounded for large enough n deterministically or in
probability respectively. For all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}, let the the population second
moment matrices of Xi and Yj and the corresponding eigen-decompositions be defined respectively
as

E[XiX
>
i ] = C∗X = Φ∗Λ∗Φ∗>, and E[YjY

>
j ] = C∗Y = Ψ∗Γ∗Ψ∗>.

Our proposition below requires the following assumptions.

Assumption 5.1 (Sub-Gaussian distribution of latent vectors). Assume that Xi for all i ∈ {1, . . . , n}
are i.i.d. sub-Gaussian random vectors. That is, there exists a fixed constant D such that for any
vector v ∈ Rk where ‖v‖2 = 1 and any integer c ≥ 1, (E[|X>i v|c])1/c ≤ Dc1/2, and a similar
assumption holds for Yj for all j ∈ {1, . . . , p} with also the same constant D.

Assumption 5.2 (Second moment properties). First, assume the population second moment ma-
trices C∗X and C∗Y are equal and are both diagonal matrices, where (C∗X)i,i ≥ (C∗X)j,j for any
1 ≤ i < j ≤ k. Second, assume there exists positive numbers c1 ≤ c2 and 1 < α ≤ β such
that for all ` ∈ {1, . . . , k}, the eigenvalues satisfy

c1`
−α ≤ λ∗` ≤ c2`−α, and λ∗` − λ∗`+1 ≥ c1`−β ,

with the convention that λ∗k+1 = 0.

Both assumptions are common in work that study the spectrum associated with random dot
product models (Lei, 2018). Assumption 5.1 assumes G and H are sub-Gaussian distributions,
which enables sharp rates for estimating their second-moment matrices C∗X and C∗Y respectively
(Vershynin, 2012). On the other hand, the second part of Assumption 5.2 enables our estimator
to accurately estimate its eigenvalues and eigenvectors. Importantly however, the first part of
Assumption 5.2 can be interpreted instead as an identifiability condition, which we formalize below.

Proposition 5.1. Given two k-dimensional distributions G and H, each with at least two moments
where the population second moment matrices are full rank, consider two independent random vari-
ables X ′ ∼ G and Y ′ ∼ H. Then there exists a linear and invertible transformation R such that the
population second moment matrices of X = RX ′ and Y = R−>Y ′ are the same, i.e.,

E[XX>] = E[Y Y >].

Furthermore, both population second moment matrices of X and Y are diagonal matrices.
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The proof is in Appendix I, which provides an explicit construction of the matrix R. Note that
since R is invertible, we guarantee that the distribution of the inner product is preserved, i.e.,

P
(
(X ′)>Y ′ ≤ t

)
= P

(
X>Y ≤ t

)
, ∀t ∈ R.

Hence, the first part of Assumption 5.2 can be interpreted as an identifiability condition, since we
can only estimate G and H only up to a linear transformation.

Proposition 5.2. Assume the model in (3.1) where Assumptions 5.1 and 5.2 hold. If the estimator

Θ̂ satisfies ‖Θ − Θ̂‖F ≤ ε conditioned on X and Y , and k = o(min{n, p}), then up to sign,3 eSVD
achieves the rate after reparameterizations (4.5) and (4.6),

1

n
‖X − X̂‖2F = OP

(
max

{ k4β−α+4

min{n, p}
,
k2β−α+2 max(ε2, ε)

np

})
. (5.1)

Discussion of consistency. Assuming k is fixed, the above proposition states that the eSVD
embedding is consistent as long as ε (the rate of convergence for the matrix of natural parameters,

‖Θ − Θ̂‖F ) is faster than OP (
√
np). We formalize this statement in Appendix D, where we add

assumptions common to the literature such as strong convexity and smoothness of the negative
log-likelihood function associated with F . The details are deferred because these assumptions are
technical to describe and detract from the main text. More generally, however, the above propo-
sition addresses the additional source of randomness induced by the random dot product model
mentioned in Section 3 that other theoretical investigations typically do not address. Therefore,
any such estimator equipped with a rate for ‖Θ− Θ̂‖F can be plugged into Proposition 5.2 directly.
Additionally, note that a similar rate (5.1) holds for estimating Y , the embedding of the genes.

Application to curved Gaussian model. While Proposition 5.2 and the results in Appendix D
apply for any generic one-parameter exponential-family distribution F satisfying certain conditions,
we specifically apply these results to the curved Gaussian distribution (4.7) in Appendix E to demon-
strate what the rates are for a particular exponential-family distribution. At a high level, we show
that when n and p grow asymptotically at the same rate and k is fixed,

1

n
‖X − X̂‖2F = OP

( log1/2(n)

n1/2

)
.

6 Numerical study

In this section, we study the performance of the eSVD and other competitive methods based on
synthetic data. Our setup for all the simulations in this section are as follows: based on model (3.1),
we set the dimensionality to k = 2 and sample X1, . . . , Xn i.i.d. uniformly from four connected
linear segments (which we call the “trajectories”) with additive Gaussian noise, as illustrated in
Figure 4. These four segments loosely represent four cell types. We also sample Y1, . . . , Yp i.i.d.
from a mixture of two Gaussians. These sampling procedures represent G and H respectively, up to
identifiability conditions. We enforce XT

i Yj ∈ R for all pairs (i, j). The distribution family F varies
among different simulations. We do not use R packages such as Splatter (Zappia et al., 2017) to
generate our synthetic data because we want to have precise control over the true embedding. The
full details of the simulation setups and usage of various estimators in this section are in Appendix F.

3We use “up to sign” similar to Fan et al. (2018), where each column of X̂ can be multiplied by ±1 since the SVD
is not unique.
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Figure 4: (A) The two-dimensional population density of G, visualized as a heat map with contour lines of
the density along with the true “trajectories” (black lines). The mean vector for each of four cell types are

labeled in a different color (blue, yellow, green, orange). (B to D) The estimated embedding X̂1, . . . , X̂n of
the synthetically-generated A for varying levels of n, (i.e., number of cells or number of rows), colored by
the true cell type, which are labels used only for visual reference and not used during estimation.

Consistency of the estimated embedding. In this first simulation suite, we demonstrate that
the estimated embedding converges towards the true embedding. Specifically, we generate A ∈ Rn×p
where each entry Aij is sampled independently from the negative binomial distribution with a natural
parameter θij = X>i Yj and r = 50, and fit the eSVD using the correctly specified model. Figure 4
is an illustration that demonstrates the asymptotic properties of the eSVD. Specifically, we see that
the distribution of the embedding X̂1, . . . , X̂n approximates G as n increases. We provide details
and additional results that verify the consistency of the eSVD’s embedding in Appendix F.

Comparison of different embedding methods. In our second simulation suite, we demonstrate
that the cells’ latent positions estimated by the eSVD are more accurate in relation to one another
than those estimated by other methods. Here, we fix n = 200 and p = 400. We compare the
eSVD via the negative binomial distribution to nine other methods commonly used to embed single-
cell data: ZINB-WaVE (Risso et al., 2018), pCMF (Durif et al., 2017), SVD, non-negative matrix
factorization (NMF), independent component analysis (ICA), UMAP (Becht et al., 2019), t-SNE
(Maaten and Hinton, 2008), Isomap (Tenenbaum et al., 2000) and diffusion map (Haghverdi et al.,
2015). The first two methods and our tuning procedures are explained in Appendix F. Importantly,
SVD implicitly assumes F is a constant-variance Gaussian distribution as mentioned in Section 3,
while ZINB-WaVE and pCMF assume F is a negative binomial and Poisson distribution respectively.

We simulate data from a negative binomial model in this simulation, which is the distribution
that is most commonly used to model sequencing data (Love et al., 2014). Specifically, we sample
the observed count matrix A conditionally independent on X1, . . . , Xn and Y1, . . . , Yp where Aij ’s
are sampled from a negative binomial distribution with natural parameter X>i Yj and dispersion
parameter r = 50. Then, when we estimate the embedding using eSVD, we use the tuning procedure
mentioned in Section 4 to select the most appropriate value of the dispersion parameter r from the
set {5, 50, 100}.

We find that on average across 100 trials, our method estimates the relative latent positions of
each cell to be more accurate than other methods (Figure 5A). To define our notion of accuracy,
consider each cell i and its Euclidean distance to all other n − 1 cells in the latent space in both
the true and estimated embedding. We then compute the Kendall’s tau correlation between these
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two vectors, which only relies on the ranks of the distances, and then average this value over all
n cells. Hence, a high averaged Kendall’s tau value suggests the latent positions of the n cells are
well-estimated with respect to one another. We call this notion of accuracy the relative embedding
correlation. We define our notion of accuracy in this way to ensure it is insensitive to arbitrary
rotations or constant rescalings of the embedding. Figure 5B compares the different estimated
embeddings to the true embedding as an illustration. Both the eSVD and ZINB-WaVE estimate
embeddings where the four cell types are relatively in the correct configuration, and their accuracy
are quite high. For the other methods, the high variability due to the overdispersion of the negative
binomial seems to dramatically skew the embedding for certain cells. We defer additional simulations
using other distributions F to Appendix F.

Investigation using misspecified models and the effect of k. In our third simulation suite,
we empirically compare the eSVD to other methods when F is misspecified. We also demonstrate
how different values of k can affect the quality of the embedding. While the theorems we developed
in Section 5 do not currently handle such settings, these results help us understand how the eSVD
performs in more realistic and more challenging scenarios. Due to space constraints, we defer these
results to Appendix F, which show that the eSVD can roughly estimate the relative positions of the
cells’ embedding well compared to other methods despite the model misspecification. All-in-all, our
takeaway message is that the eSVD’s flexibility in choosing which exponential-family distribution F
to use and the diagnostics provided in Section 4 allow our method to remain competitive among the
ten methods.

7 Single-cell analysis

We return to modeling the Marques dataset (Marques et al., 2016), as described in Section 2, to
determine if the embedding based on the curved Gaussian distribution (4.7) is more appropriate than
that based on the constant-variance Gaussian distribution, and if so, investigate how the embedding
affects the downstream trajectory analysis. As alluded to in Section 2, the six major cell types in
Figure 1 have a determined ordering, starting from Pdgfra+ precursors and ending with the mature
oligodendrocytes. Our goal in this analysis is to estimate the trajectories among the cell sub-types
constrained to this ordering. For example, in Marques et al. (2016), after embedding the cells into a
latent space, the authors estimate one developmental trajectory connecting the first five major cell
types starting from the Pdgfra+ precursors, but do not definitively conclude how the six mature
oligodendrocyte cell sub-types differentiate. Instead, they relied on analyzing the percentage of
different cell types across different brain regions to hypothesize that these six sub-types differentiate
into multiple different trajectories.

7.1 Details of estimating cell developmental trajectories

We provide more details on how we estimate the developmental trajectories based on the low-
dimensional embedding X̂1, . . . , X̂n. As alluded in Section 1, these trajectories show how these
different cell sub-types develop from one to another, assuming the latent vectors X̂i gradually change
along the trajectories. Trajectory analyses are an important step in studying the cellular dynamics
from single-cell data, as most single-cell technologies provide only a snapshot of all the cells. This is
because most technologies destroy the cells during the sequencing step, which prevent longitudinal
studies. In this article, we use Slingshot (Street et al., 2018) (with minor modifications) to estimate
these cell developmental trajectories. Roughly speaking, Slingshot is a two-step algorithm that
requires the latent vectors to already be clustered, where we treat each cell sub-type as a cluster.
In the first stage, Slingshot estimates the number of trajectories and ordering of the cell sub-types
based on minimizing the distances between cell sub-type centers via a minimum spanning tree. In
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Figure 5: (A) The density plot of each embedding methods’ accuracy (eSVD, ZINB-WaVE, pCMF, SVD,
NMF, ICA, UMAP, t-SNE, Isomap and diffusion map), based on the relative embedding correlation. The
circles along each method’s x-axis denotes the median accuracy across the 100 trials. Here, both the data-
generating distribution F and the eSVD use the negative binomial distribution. See Appendix F to see
how we tuned the methods. (B) The ten estimated embedding, chosen among the trial with the median
accuracy, noted in each plot’s title in parenthesis. The coloring of the samples persists from Figure 4. The
x- and y-axes represent the coordinate system estimated by the respective embedding methods, reflected in
the dashed grids.

the second stage, Slingshot fits variants of principal curves (Hastie and Stuetzle, 1989) that pass
through the cell sub-type centers in the estimated ordering. These principal curves can be thought
of as smooth curves that pass through high-density regions in the latent space. Throughout our
analysis in this section, we apply Slingshot to the embedding using all latent dimensions, but only
visualize the estimated trajectories with respect to the first three latent dimensions. More details
about Slingshot and our modifications of it are given in Appendix G.

We briefly mention that the original study (Marques et al., 2016) uses the Monocle algorithm
(Trapnell et al., 2014), to estimate the cell developmental trajectories. We use Slingshot instead as
it is the current state-of-the-art method based on extensive benchmarking comparisons in Saelens
et al. (2019).

7.2 Analysis using the constant-variance Gaussian distribution

Building on the analysis in Section 2, we perform a trajectory analysis using the SVD embedding
shown in Figure 1 on the log2-transformed data, which assumes the constant-variance Gaussian
model. Applying Slingshot directly to this embedding results in two trajectories, both heavily
overlapping one another when visualized (Figure 6A). These results are similar to Marques et al.
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Figure 6: (A) Three-dimensional plot of the estimated latent positions via the SVD embedding with the
two estimated cell developmental trajectories laid on top, corresponding to the data shown in the Figure 1.
The thirteen bolded points correspond to the cluster centers of the thirteen cell sub-types, where the color
scheme persists from Figure 1. (B) The uncertainty tube overlaid on top of Figure A.

(2016) in two ways. First, the authors show that all cells develop from Pdgfra+ precursors to
myelin-forming oligodendrocytes in the same way, which we estimate as well. Second, the authors
do not definitively conclude if the mature oligodendrocytes diverge in their development. Our
trajectories themselves also leave this ambiguity unresolved due to the heavy overlap between the
two trajectories. However, we perform the following additional visual diagnostic to quantify if these
two trajectories are well approximated by a single trajectory.

To formalize to what degree the different trajectories are the same, we use a bootstrap resampling
procedure to construct a uniform uncertainty tube around each trajectory. These tubes capture the
variance of each estimated trajectory, and plotting these tubes is a useful descriptive tool. This is
an important tool for our analysis because Slingshot is sensitive to small perturbations in the data
due to its graph-based strategy to estimate the ordering of the cell sub-types. Specifically, small
variations can dramatically change the number of estimated trajectories or ordering of cell sub-types
within those trajectories. Hence, our procedure to construct these uniform uncertainty tubes first
samples with replacement from all embedded cells within each of the thirteen cell sub-types. For each
bootstrap sample, we apply Slingshot to estimate a new set of trajectories. We then compute the `2
distance between the new trajectories and the original trajectories. After applying this procedure
multiple times, the 95% quantile of the `2 distances determines the uniform radius of the uncertainty
tube, centered around the original trajectory. More details of this procedure are in Appendix G.
Based on this construction, both trajectories lie in a single uncertainty tube (Figure 6B); hence,
we conclude there is effectively one trajectory that connects all thirteen cell sub-types. This result
explains why previous work such as Marques et al. (2016) had difficulty explaining how mature
oligodendrocytes differentiate in their trajectory analysis.

7.3 Analysis using the curved Gaussian model

The above conclusions, however, rest on the questionable constant-variance Gaussian distributional
assumption (see Figure 3). As we have seen in Figure 2, our matrix-completion diagnostic suggests
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Figure 7: Diagnostic based on matrix completion to assess the fit using the eSVD embedding via the curved
Gaussian model with k = 5 and τ = 2 for either the observed values that are not omitted (i.e., the “training
set”) (A) or the observed values that are purposefully omitted (i.e., the “testing set”) (B), both verses their
respective predicted values. Both plots are comparable to those in Figure 2. Specifically, the 10th to 90th
quantiles of the curved Gaussian model is marked by the shaded red region.

that this assumption is not suitable for modeling the oligodendrocyte dataset at hand.
This finding motivates us to analyze the data using the eSVD to embed each cell with respect

to the curved Gaussian distribution (4.7), and to re-examine the resulting diagnostics. Following
suggestions from articles like Risso et al. (2018) and Durif et al. (2017), we no longer log2-transform
the entries of A for our eSVD analysis, but rather model the counts in A directly after accounting for
the library size. Based on our tuning procedure, the curved Gaussian distribution with k = 5 and
τ = 2 best fits the data, determined among a grid of candidate values. When we plot the resulting
diagnostic for the eSVD in Figure 7, we obtain results that suggest a much better fit compared to
that of the SVD. Specifically, the variance is appropriately increasing with the mean, unlike the trend
shown in Figure 2. We conclude that the curved Gaussian model (without a log2-transformation)
is more appropriate than the constant-variance Gaussian model (with a log2-transformation) for
modeling our oligodendrocyte dataset.

We visualize the eSVD embedding in Figure 8 alongside its estimated trajectories and uncertainty
tubes, and we see two distinct trajectories that differentiate among the mature oligodendrocytes.
Specifically, when we apply Slingshot to the eSVD embedding, we find that we still retain the
conclusion that all cells from Pdgfra+ precursors to myelin-forming oligodendrocytes develop in
the same way, similar to Marques et al. (2016). However, in contrast to that work, we are now
able to observe substantial differentiation among the mature oligodendrocytes, with two distinct
trajectories supported by the uncertainty tubes. Specifically, within this major cell type, only one
of the six mature oligodendrocytes sub-types is shared between the two trajectories. Among the five
remaining mature oligodendrocytes sub-types, three sub-types branch off in one trajectories while
two sub-types branch into the other trajectory. This is in contrast with the analysis using the SVD
embedding where all the estimated trajectories lay within one uncertainty tube (Figure 6B). We
show additional plots corresponding to these results, as well as follow-up analyses and diagnostics of
the oligodendrocytes using UMAP or ZINB-WaVE as well as plots based on the highly informative
genes in Appendix H.
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Figure 8: (A) Three-dimensional plot of the estimated latent positions via the eSVD embedding with the
curved Gaussian distribution for k = 5 and τ = 2 with the estimated cell developmental trajectory laid on
top. The thirteen bolded points correspond to the cluster centers of the thirteen cell sub-types. The two
estimated cell developmental trajectories are colored in yellow and blue. These correspond with the two of
six mature oligodendrocytes cell sub-types unique to one trajectory (colored in yellow) and three mature
oligodendrocytes cell sub-types unique to the other trajectory (colored in blue). The remaining mature
oligodendrocyte cell sub-type is common to both trajectories, prior to the branching (colored in gray). The
coloring of cells of other cell types persists from Figure 1. (B) The uncertainty tubes overlaid on top of
Figure A. Both plots are comparable to Figure 6.

In summary, from the diagnostic (Figure 7), we conclude that the curved Gaussian distribution is
more appropriate for the Marques data, and using this model we identify two distinct developmental
trajectories (Figure 8). This is an improvement from the analysis in Marques et al. (2016) which
suggested multiple trajectories, but was not able to directly verify this conjecture. Our comparison
of the results obtained using the SVD versus the eSVD embeddings can help explain why previous
scientific findings suggest that oligodendrocytes effectively follow a single developmental trajectory,
while newer analyses based on more flexible statistical models (van Bruggen et al., 2017; Marques
et al., 2018) suggest multiple trajectories.

We include an analysis of the single-cell dataset released in Zeisel et al. (2015) in Appendix H
to demonstrate eSVD’s performance in a different setting. There, the downstream task is to cluster
cells rather than to infer developmental trajectories.

8 Discussion

In this article, we develop an estimator to non-linearly embed the cells in a single-cell RNA-
sequencing dataset into a lower dimensional space with respect to a random dot product model where
the inner product of two latent vectors is the natural parameter of a one-parameter exponential-
family distribution F . This embedding method can greatly improve the estimation of cell develop-
mental trajectories overall because it can handle distributions beyond the constant-variance Gaussian
distribution, both in theory and practice. While the spirit of such embedding is not new, our con-
tribution is two-fold. First, we develop the eSVD, an alternating minimizing estimator which is
computationally efficient and also enables both a tuning procedure based on matrix completion and
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a theoretical investigation of its statistical properties such as identifiability and consistency. Second,
we apply our estimator to analyze the oligodendrocytes in mouse brains, and our results coincide
with recent scientific hypotheses (van Bruggen et al., 2017; Marques et al., 2018).

For future work, we plan to further the eSVD both in its modeling flexibility in practice as well
as its theoretical properties, as we believe embeddings based on the random dot product model are
appealing for single-cell analyses. Specifically, we plan to extend the eSVD to model the dropout
effect, allow different nuisance parameters for each gene, or incorporate the library size directly into
the statistical model directly. These trends occur in work such as Witten (2011), Pierson and Yau
(2015), Townes et al. (2017) and Risso et al. (2018). While the models within these investigations
are more flexible, we reiterate that their corresponding estimators were previously often believed to
be too complicated to analyze from a theoretic perspective. Therefore, we are interested in studying
how flexible our methods can be while still retaining tractability for theoretical analyses or how they
perform in misspecified settings. Additionally, our current theory also does not address the trajec-
tory estimation itself, which we think is another promising direction for theoretical investigation.
On the methodological side, we plan to provide tuning procedures that are less computationally
demanding compared to our current grid-search approach and to work on investigating other down-
stream applications of the eSVD embedding, such as cell clustering, batch correction, imputation,
and RNA velocity (La Manno et al., 2018). Also, while this article focuses trajectory analysis based
solely on the cells’ latent vectors, other downstream applications such as gene clustering and finding
marker genes could be developed based on the genes’ latent vectors.
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A Code and reproducibility

The code for the method, simulation, and data analysis, as well as the original data used, can be
found at https://github.com/linnykos/esvd, in the eSVD, simulation, main and data folders
respectively. The dataset we analyzed was originally collected by Marques et al. (2016), found
at the Gene Expression Omnibus with accession number GSE75330 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE75330).

B Discussion on estimator

B.1 Initialization method

We first define notation needed to describe the initialization method, inspired by Wang et al. (2016).
For a given one-parameter exponential-family distribution, let (g′)−1(·) be the inverse function of the
g′(·), the derivative of the log-partition function for F , which is guaranteed to exist by the convexity
of g(·). Furthermore, for a generic matrix Θ ∈ Rn×p that is rank k, let Ln(Θ) be equivalent to
the loss function Ln(X,Y ) defined in (3.3) for any X ∈ Rn×k and Y ∈ Rp×k such that Θ = XY >.
Lastly, define Πk(·) to be the projection operator (based on alternating between truncating the
singular values and thresholding) to project a given matrix onto the set{

Θ ∈ Rn×p : rank(Θ) ≤ k, and θij ∈ R ∀(i, j)
}
. (B.1)

We initialize our estimate, Θ̂(0), to be (g′)−1(A), where the function (g′)−1(·) is applied entry-
wise. Afterwards, we perform projected gradient descent. That is, for t ∈ {0, . . . , T ′ − 1} iterations,
for a stepsize γ > 0, we iterate,

Θ̂(t+1) = Πk

(
Θ̂(t) − γ · ∇Ln(Θ̂(t))

)
.

Let Θ̂(T ′) = Θ̂′ defined in Subsection 4.1 be the initial estimate of Θ.

Determining γ. In our implementation, we use project gradient steps where within each iteration,
γ is selected within each iteration via binary search to be the largest value such that the objective
function Ln(·) decreases (akin to backtracking line search)

Lack of convergence. Unfortunately, in our experiments, we have found that there are a handful
of instances where the initial projection onto the set (B.1) does not converge empirically. While
there is a rich body of literature studying the projection onto the intersection of many convex sets
(Kundu et al. (2017) and Tibshirani (2017)), the set of all rank-k matrices is nonconvex. In instances
of lack of convergence, we terminate the above alternating projection and instead fit a k-block model
to g−1(Θ) based applying k-means to both the first k left and right singular vectors separately. This
procedure is reminiscent of those used to fit stochastic block models described in various papers such
as Li et al. (2020). We hope to further investigate this projection issue in future work.

We do not use the non-negative matrix factorization (NMF) of g−1(Θ) since the computational
complexity of most non-negative matrix factorization methods is of a similar order to the entire
eSVD method. See Subsection B.4 for additional discussion of how NMF compares to the eSVD.

B.2 Additional variant of tuning procedure

The metric described in Subsection 4.2 uses the angle of the leading eigenvector to assess the quality
of the model fit. While this is a useful metric when comparing among different exponential-family
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distributions F (and generally applicable across a broad range of tuning procedures), when the
specific distribution F is already decided, using the negative log-likelihood can sometimes be another
useful metric to use. Specifically, one can compute the negative log-likelihood on all the entries O
that were omitted during estimation (i.e., the “testing set”), and then choose the model that yields
the smallest negative log-likelihood on average across the B trials. The advantage of this negative log-
likelihood metric over the angle metric described in Subsection 4.2 is that it accounts for the predicted
variance among each entry in O. However, as mentioned in Subsection 4.2, the disadvantage is that
it is hard to compare the negative log-likelihood across different exponential-family distributions F .

B.3 Usage for common one-parameter exponential-family distributions

The eSVD can be applied to any one-parameter exponential-family distribution, so here, we derive
all the necessary ingredients (calculation of the objective function and gradient with respect to X
and Y ) for common one-parameter exponential-family distributions. We explain the pipeline to
derive how to fit a given one-parameter exponential-family distribution F into the eSVD framework.

1. Writing distribution in exponential-family form: For a given one-parameter exponential
distribution F , write the probability density function (or probability mass function) in the form
described in (3.2). That is, determine the functions g(·) (the log-partition function for F ), η(·)
(the natural parameter function) and T (·) (the sufficient statistic function) such that

p(Aij | θij) = h(Aij) exp
(
T (Aij)

>η(θij)− g(θij)
)
.

2. Determine the domain: Next, based on the log-partition function g(·), determine its domain
R.

3. Determining the objective function: Next, with the functions g(·), η(·) and T (·) explicitly
derived, plug them into the objective function,

Ln(X,Y ) =
1

np

∑
(i,j)

[
g(X>i Yj)− T (Aij)

>η(X>i Yj)
]
.

4. Calculating the gradients: Lastly, derive the gradient of the above objective function with
respect to X and Y .

Using the above pipeline, we provide the calculations for the following five distributions as an
example for readers. We only write down the gradients with respect to X, as the gradients with
respect to Y are similar.

• Gaussian: For a Gaussian with known variance σ2, the density is

p(Aij | θij) =
[ 1√

2πσ2
exp

(−A2
ij

2σ2

)]
· exp

( [
Aij/σ

2
]> [

θij
]
−

θ2
ij

2σ2

)
,

where θij = µij , and the domain of θij is R = R. Hence, we can complete the square to derive
the objective function, yielding

Ln(X,Y ) ∝ 1

np

∑
(i,j)

[( (X>i Yj)√
2σ

− Aij√
2σ

)2]
∝ 1

np

∑
(i,j)

[(
(X>i Yj)−Aij

)2]
.

Then the gradient with respect to X is a n× k matrix where the ith row is

∇XiLn(X,Y ) ∝ 1

np

p∑
j=1

[
2
(

(X>i Yj)−Aij
)
· Yj
]
.
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• Curved Gaussian: For a curved Gaussian with parameter τ (i.e., N(µij , µ
2
ij/τ

2)), we derive
after some algebraic manipulations that the density is,

p(Aij | µij) =
[τ exp(−τ2/2)√

2π

]
· exp

(−τ2A2
ij

2
· 1

µ2
ij

+ τ2Aij ·
1

µij
+ log(1/µij)

)
Hence, replacing θij = 1/µij (meaning E[Aij ] = 1/θij), and the domain of θij is R = (0,∞).
Hence, the objective function becomes

Ln(X,Y ) =
1

np

∑
(i,j)

[
− log

(
X>i Yj

)
−
[

τ2Aij
−τ2A2

ij/2

]> [
X>i Yj

(X>i Yj)
2

] ]
.

Then the gradient with respect to X is a n× k matrix where the ith row is

∇XiLn(X,Y ) =
1

np

p∑
j=1

[(
− 1

X>i Yj
− τ2Aij + τ2A2

ij(X
>
i Yj)

)
· Yj
]
.

• Exponential: The density is

p(Aij | θij) =
[
1
]
· exp

( [
Aij
]> [

θij
]
−
(
− log(−θij)

))
,

where θij = −λij (meaning E[Aij ] = −1/θij), and the domain of θij is R = (−∞, 0). Hence,
the objective function becomes

Ln(X,Y ) =
1

np

∑
(i,j)

[
− log(−X>i Yj)−

[
Aij
]> [

X>i Yj
] ]
.

Then the gradient with respect to X is a n× k matrix where the ith row is

∇Xi
Ln(X,Y ) =

1

np

p∑
j=1

[( −1

X>i Yj
−Aij

)
· Yj
]

• Poisson: The density is

p(Aij | θij) =
[ 1

Aij !

]
· exp

( [
Aij
]> [

θij
]
− exp

(
θij
))
,

where θij = log(λij) (meaning E[Aij ] = exp(θij)), and the domain of θij is R = R. Hence, the
objective function becomes

Ln(X,Y ) =
1

np

∑
(i,j)

[
exp(X>i Yj)−

[
Aij
]> [

X>i Yj
] ]
.

Then the gradient with respect to X is a n× k matrix where the ith row is

∇Xi
Ln(X,Y ) =

1

np

p∑
j=1

[(
exp(X>i Yj)−Aij

)
· Yj
]
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• Negative Binomial: The negative binomial represents the number of successes before a
specified number of failures r occurs. (This is different from the binomial distribution which
represents the number of success among a fixed number of trials.) This parameter r is of-
ten also called the dispersion parameter. For a fixed number of failures r, the density of
Negative Binomial(r, pij) is

p(Aij | θij) =
[(Aij + r − 1

Aij

)]
· exp

( [
Aij
]> [

θij
]
−
(
− r log(1− exp(θij))

))
,

where θij = log(pij) (meaning E[Aij ] = r exp(θij)/(1 − exp(θij)), and the domain of θij is
R = (−∞, 0). Hence, the objective function becomes

Ln(X,Y ) =
1

np

∑
(i,j)

[(
− r log(1− exp(X>i Yj))

)
−
[
Aij
]> [

X>i Yj
] ]
.

Then the gradient with respect to X is a n× k matrix where the ith row is

∇Xi
Ln(X,Y ) =

1

np

p∑
j=1

[( r exp(X>i Yj)

1− exp(X>i Yj)
−Aij

)
· Yj
]

B.4 Additional comparison of eSVD to estimators in the literature

Continuing Section 3, we discuss additional nuances for the eSVD that makes it different from other
methods.

Comparison to alternating gradient descent. The majority of theoretical work that investi-
gate nonconvex estimators to perform matrix factorization use alternating projected gradient descent
to refine the initial estimate where each iteration updates the current estimates with a gradient step
(Wang et al. (2016), Yu et al. (2020), and Chi et al. (2019)). This is in contrast with our choice of
using alternating constrained minimization in the eSVD. While we have found alternating projected
gradient descent is more amendable for theoretical analysis, in practice, we have found it more
numerically unstable due to its sensitivity to the chosen step-sizes.

Comparison to non-negative matrix factorization. There is an extremely rich literature on
non-negative matrix factorization (NMF, Donoho and Stodden (2004), Arora et al. (2016), Gillis
(2017)), and upon first glance, the eSVD seems similar to NMF. However, there are two importance
distinctions. First, the key difference between the eSVD and NMF can be seen in Assumption 3.1.
Specifically, the eSVD only assumes that the inner products between X and Y lie in R, such as the
positive half-line. This is in contrast to NMF, where either each entry in X or Y (or both) lies on
the positive half-line. Intuitively, this means the eSVD’s task is easier than NMF’s task (loosely
speaking), since ensuring that each entry in X and Y lying on the positive half-line implies that
the inner product between each pair of rows in X and Y lies on the positive half-line. Second, the
eSVD’s identifiability assumptions are more tractable than NMF’s identifiability assumptions. The
eSVD’s identifiability assumptions are outlined in Proposition 5.1, which shows that there exists
a linear transformation such that the population second moment matrix for X and Y are equal.
NMF’s identifiability conditions are much more nuanced, and leads to concepts such as simplicial
cones, separability and anchor words as discussed in Donoho and Stodden (2004) and Arora et al.
(2012).
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Comparison to embeddings based on symmetric matrices. There are many embeddings in
the literature that are based on symmetric matrices such as covariance matrices, distance matrices
or adjacency matrices of neighborhood graphs. These are in contrast with the eSVD as well as
other embeddings based on the random dot product model such as ZINB-WaVE (Risso et al.,
2018), pCMF (Durif et al., 2017) and NMF. We discuss the broad merits of these two categories
of embeddings, and contrast the specific embedding methods with eSVD below. Embeddings based
on symmetric matrices can typically be mathematically analyzed in more detail when compared to
those for embeddings based on the random dot product models since the former methods typically
have more tractable identifiability conditions and often rely simply on the eigen-decompositions,
which are mathematically well understood. However, we feel embeddings based on the random dot
product models are generally more appealing for single-cell applications since these methods estimate
latent vectors for each cell and each gene jointly and can often incorporate more modeling aspects
that reflect our understanding of single-cell data. For example, these latter methods can inherently
accommodate downstream tasks like bi-clustering and marker gene detection.

• Comparison to low-rank covariance matrix estimation for exponential families. Liu
et al. (2018) and Zhang et al. (2018) estimate a low-rank covariance matrix where each entry
in the observed matrix A is drawn from an exponential-family distribution. While this task is
non-trivial due to the possible dependency between the mean and covariance (which prevents
naively centering the variables around 0), this is a different task than our goals posited in this
paper since eSVD estimates a low-rank matrix of natural parameters.

• Comparison to other embedding methods. Methods such as kernel PCA, Isomap (Tenen-
baum et al., 2000), t-SNE (Maaten and Hinton, 2008), diffusion maps (Haghverdi et al., 2015),
and UMAP (McInnes et al., 2018) also perform non-linear embeddings. We lump these meth-
ods together as they generally involve constructing an n× n symmetric matrix that captures
which cells is “neighbors” to which cell or how similar a cell is to another cell given some
appropriate notion of similarity. See papers like Lee and Wasserman (2010), Kraemer et al.
(2018) and Sun et al. (2019) and the references within for more details. While some of these
methods also have rigorous statistical theory (Zwald and Blanchard (2006) and Blanchard
et al. (2007)), we have found that in practice, it is hard to assess the quality of fit for these
embeddings, and hence also hard to tune the possible parameters of these embeddings effec-
tively. Nonetheless, since these embeddings are often quite successful in practice for complex
data, we are interested finding ways to incorporating ideas of the eSVD to these method for
future work.

C Formal description of analysis pipeline

C.1 Main analysis pipeline

The following procedure describes how we analyze the data to obtain the eSVD-related results in
Section 7.

1. Screening genes: The dataset starts with 23,556 genes. However, since not all the genes are
informative for our analysis, we use the following two methods to select genes, based loosely
on Zhu et al. (2019).

• Sparse principal component analysis (Witten et al., 2009): This method uses a
tuning parameter that controls the `1-norm of the eigenvectors, of which we try 10 values
spaced exponentially between 0 and log(23, 556). We choose the model such that the first
K = 5 sparse eigenvectors involve more than 500 genes and would capture more than
90% of the variance.
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• DESCEND (Wang et al., 2018): Based on the statistical model developed in Wang et al.
(2018) that fits a cubic spline regressing the Gini index onto the log of the estimated mean
expression of each gene, we find highly variable genes that deviate from the mean by 50
times the normalized difference.

Together, this results in 983 unique genes being selected. In the following parts of the analysis,
we will denote the preprocessed data as A ∈ Rn×p+ where there are n = 5069 cells and p = 983
genes.

2. Rescaling: We normalize each cell by its library size (i.e., divide each row by its sum) and then
multiply the entire matrix by a scalar such that the maximum value is 1000. This is to prevent
small numbers from underflowing our method later on. Note that similar to works like Durif
et al. (2017) and Risso et al. (2018), we choose to not log2-transform our library-normalized
matrix A.

3. Tuning the dimensionality of the embedding k and the nuisance parameter of the
curved Gaussian distribution τ : Omitting four entries per row and per column of A for
each trial of b over a total of B = 3 trials, we use the matrix-completion procedure outlined
in Subsection 4.2 to select the number of latent dimensions k ∈ {3, 5, 10, 20} and nuisance
parameter controlling the relation between the mean and variance τ ∈ {0.5, 1, 2, 4} (for a total
of 16 different parameter settings). We end up selecting k = 5 and τ = 2. Note that it is
important to refit across the different values of k since non-linear embeddings are not typically
nested, as discussed in Durif et al. (2017).

4. Embedding via eSVD: We apply the eSVD where F is the the curved Gaussian distribution
with k = 5 and τ = 2 to minimize the loss function (3.3), as prescribed in Subsection 4.1. The
initialization procedure is described in Appendix B.1.

5. Estimating the cell developmental trajectories and uncertainty tube: Using the
thirteen cell sub-types from Marques et al. (2016) as the cluster labels, we apply our modified
Slingshot and construct the uncertainty tubes, as alluded to in Section 7 and detailed in
Appendix G.

Screening before rescaling. In contrast to our order of Steps 1 and 2 above, most single-cell
preprocessing pipelines, such as ones recommended by Seurat (Butler et al., 2018), often first rescale
the counts for each cell and then screen the genes. However, we found preprocessing the data in
this fashion hindered the effectiveness of the downstream trajectory analysis based on the eSVD
embedding, although the results were qualitatively the same. This is due to the nature of our
dataset, where the library size for older cells are substantially higher than younger cells, as seen in
Figure 9. By screening genes before rescaling the counts, we select more genes that more informative
in distinguishing among the six mature oligodendrocyte cell sub-types. This is critical for our
application, as our goal is to distinguish the lineages among the different mature oligodendrocytes.
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Figure 9: Library size of the raw data across all 5069 cells, split across the six major cell types displayed in
Figure 1.

C.2 Additional details of analysis in Section 2 and SVD-related results
in Section 7

We describe additional details of the analysis used to produce the various figures in Section 2, as
well as the SVD-related results in Subsection 7.2. The pipeline changes slightly from Appendix C.1
when performing the SVD analysis in the following way:

1. Different transformation: As opposed to Step 2’s rescaling, we instead normalize each cell
by its library size, and then transform each entry according to x → log2(10, 000 · x + 1), as
suggested by work such as Seurat (Butler et al., 2018). We call this the log2-transformation
in the main text and elsewhere in this supplement.

2. Different tuning selection: As opposed to Step 3’s tuning via the eSVD, we instead tune
via SoftImpute, a common matrix completion algorithm designed for the constant-variance
Gaussian family. This is detailed below under “Details for Figure 2.”

3. Different embedding: As opposed to Step 4’s embedding via the eSVD, we use the embed-
ding described in the main text at (2.1) and (2.2), which is the embedding the SVD.

We note the results in Section 2 and Subsection 7.2 are qualitatively the same if we did not use
the log2-transformation and only use the SVD on A directly.

Details for Figure 1. The scatter plot is produced by the SVD embedding described in (2.1) and
(2.2), where the coloring of the points is based on the cell-type information provided in Marques
et al. (2016). The contour of the densities estimated based on the MASS::kde2d function (using
the default bandwidth), where the level of the contour is chosen to be the 92.5% quantile of the
estimated density across a grid of points in this two-dimensional space. This quantile level is chosen
solely based on the suitably of the figure, and provides the reader a sense of the density of the points
that is otherwise hard to gauge based on only the scatter plot.

Details for Figure 2. SoftImpute (Mazumder et al., 2010) requires the dimensionality of the
latent space k and a tuning parameter λ to determine the amount of the spectral regularization.
To choose this, we try 50 different value of λ from 1 to the value given in softImpute::lambda0

(a function that computes the smallest value of λ that yields the all-0 estimated matrix), as well
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as k ∈ {5, 10, 20, 50} for a total of 200 different parameter settings. We then choose λ and k based
on the matrix-completion procedure outlined in Subsection 4.2, where F is set to be the Gaussian
distribution with constant variance. Importantly, this results in choosing k = 50, which is used
when fitting the SVD embedding used for downstream analysis in Subsection 7.2. (Note that this is
different from k = 5 used for the eSVD embedding shown in Subsection 7.3.)

Details for Figure 3. For this plot specifically, let A denote the preprocessed single-cell dataset
prior to the log2-transformation. Figure 3A is created by computing the logarithm of the column-
wise (i.e., gene-wise) mean and standard deviation of A, the preprocessed single-cell dataset. The
color of the point is based on the ANOVA p-value that tests if values in a column of A (i.e., the
expression of each gene) is equal in mean across all six major cell types shown in Figure 1, with
blacker points denoting a p-value closer to 0 and more yellow points denoting p-values closer to 1.

Figure 3B is created by first computing the first principal component of A (i.e., the leading
eigenvector of the empirical covariance matrix of A), setting all the negative entries to 0, and then
renormalizing all the entries of the resulting vector to sum to 1. We set all the negative values to 0
so the resulting vector can meaningfully represent a weighted average. We then compute the inner
product between the resulting vector and each row of A, and then create a violin plot based on the
grouping the resulting inner product by the six major cell types shown in in Figure 1.

D Statistical theory for estimation of matrix of natural pa-
rameters

As mentioned in Section 5, an important aspect of interpreting the convergence rate showed in
Proposition 5.2 is knowing under what assumptions can we control the estimation error ‖Θ− Θ̂‖F .
This is the goal of this section, where we operate under the correctly-specified model setting, meaning
the eSVD uses the log-likelihood of F , the true data-generating distribution. Throughout this
section, conditioned on X and Y (the matrix of random latent vectors for each cell and gene that
we are trying to estimate), let the SVD of Θ = XY > be denoted as

Θ = ŨD̃Ṽ >, (D.1)

where we denote the singular values as d̃1 ≥ . . . ≥ d̃k ≥ 0. Also, whenever we put a bar over a
matrix, as in X and Y , we are explicitly requiring such matrices to have spectral norm

√
n and

√
p

respectively.
The following assumptions ensure that the exponential-family distribution F is well-behaved.

We define notation to distinguish between sample and population optimizers, borrowing terminol-

ogy from Balakrishnan et al. (2017). Let MX
n (Y

(t)
) and MY

n (X
(t+1)

) denote X(t+1) and Y (t+1)

respectively in (4.1) and (4.3). In the nonconvex literature, these denote the sample minimization
operators. Likewise, we define the population loss function,

L(X,Y ) =
1

np

∑
(i,j)

[
g(X>i Yj)− E

[
T (Aij)

]>
η(X>i Yj)

]
, (D.2)

and the corresponding population minimization operators,

MX(Y ) = argmin
X∈Rn×k

L(X,Y ) : X>i Y j ∈ R, ∀(i, j), (D.3)

MY (X) = argmin
Y ∈Rp×k

L(X,Y ) : X
>
i Yj ∈ R, ∀(i, j). (D.4)

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.25.313882doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.313882
http://creativecommons.org/licenses/by-nc-nd/4.0/


To handle identifiability issues, let us define the set of matrix pairs,

{X ∗,Y∗} =
{
{X,Y } : Θ = XY >

}
.

By the SVD of Θ in (D.1), we can see that the set X ∗ represents all matrices that are equal to√
n · Ũ up to rotation. Similarly, we can define the pair of spaces {X ∗,Y∗}. Observe that by the

above definitions,
MX(Y ) = X, and MY (X) = Y, (D.5)

for pairs of matrices {X,Y } ∈ {X ∗,Y∗} and {X,Y } ∈ {X ∗,Y∗}.
We now lay down the key assumptions needed to prove the estimation of Θ. While we call these

“assumptions,” Assumptions D.1-D.4 should be thought of more as general conditions restricting
what kind of random dot product model is allowable. The technical requirements relating all the
four assumptions below are stated in Proposition D.1 to come.

Assumption D.1 (Strong convexity and gradient Lipschitz). Assume that the population loss func-
tion L(·, ·) is µ-strongly convex and its gradient is L-Lipschitz for L ≥ µ > 0 after fixing one of the
input matrices. Specifically, for any matrices X,X ′ ∈ Rn×k and Y ∈ Rp×k satisfying Assumption
3.1,

µ

2
‖X −X ′‖2F ≤ L(X ′, Y )− L(X,Y )−

〈
X ′ −X,∇XL(X,Y )

〉
≤ L

2
‖X −X ′‖2F ,

and a similar assumption holds for any matrices Y, Y ′ ∈ Rp×k and X ∈ Rn×k.

For the below assumptions, let

BF (ω;Y∗) =
{
Y ′ ∈ Rp×k : there exists Y

∗ ∈ Y∗ such that ‖Y ′ − Y ∗‖F ≤ ω
}
,

in other words, the union of Frobenius balls of matrices around any matrix in Y∗ with radius some
determined radius ω. We invoke a similar definition for BF (ω;X ∗).

Assumption D.2 (Gradient Lipschitz with respect to alternating variable). Assume that there

exists a S > 0 such that for any pairs {X∗, Y ∗} ∈ {X ∗,Y∗} and {X∗, Y ∗} ∈ {X ∗,Y∗} and any

rescaled orthonormal matrices Y ∈ BF (ω;Y∗) and X ∈ BF (ω;X ∗) with spectral norm
√
p and

√
n

respectively,

‖∇XL(X∗, Y )−∇XL(X∗, Y
∗
)‖F ≤ S‖Y − Y

∗‖F ,

‖∇Y L(X,Y ∗)−∇Y L(X
∗
, Y ∗)‖F ≤ S‖X −X

∗‖F .

Assumption D.3 (Uniform statistical error). Conditioned on X and Y , assume that with probability
at least 1− c/min{n, p} for some universal constant c that

sup
Y ′∈BF (ω; Y∗)

‖MX(Y ′)−MX
n (Y ′)‖F ≤ εunif(n, p),

sup
X′∈BF (ω; X∗)

‖MY (X ′)−MY
n (X ′)‖F ≤ εunif(n, p),

where εunif(n, p) is some function of n and p (and possibly other quantities).

In Assumptions D.1 and D.2, the strongly convexity and smoothness enable fast convergence.
These assumptions are common in work that study matrix factorization such as Wang et al. (2016)
and Yu et al. (2020). Likewise, Assumption D.3 ensures the sample optimizer does not deviate too
far from the population optimizer, commonly used in work such as Balakrishnan et al. (2017).
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Assumption D.4 (Initialization condition). Conditioned on X and Y , assume that for some pair

of matrices Y
∗ ∈ Y∗, the initial estimate Y

(0)
satisfies

‖Y ∗ − Y (0)‖F ≤ ω.

Assumption D.4 is an initialization condition similar to Wang et al. (2016) and Yu et al. (2020)

that ensures the alternating minimization steps can allow Θ̂(T ) to converge towards Θ. This is
described in the following proposition.

Proposition D.1. Conditioned on X and Y , for an appropriate choice of ω under Assumptions
3.1 and D.1-D.4 such that

8(np)1/2

d̃k
< 1, and S/µ < 1 and εunif(n, p) ≤ (1− S/µ)ω,

then for the number of iterations T large enough, with probability at least 1 − 2c/min{n, p}, eSVD
described in (4.1)-(4.4) achieves the rate

‖Θ− Θ̂(T )‖F = C ·
(max{n1/2, d̃1/n

1/2} · (np)1/2

d̃k − 8(np)1/2S/µ
· εunif(n, p)

)
,

for some universal constants c and C.

In short, the above proposition shows that εunif(n, p) is the term that is mainly responsible
for driving the rate. To apply Proposition D.1 to a particular model, one needs to compute the
terms µ, L, S, and εunif(n, p) for an ω that satisfies the conditions in Proposition D.1. This often
requires positing assumptions in the context of the particular model that imply Assumptions D.1-
D.3. We demonstrate this in the next section with minor modifications to both the estimator and
the assumptions.

E Application of propositions to the curved Gaussian model

In this section, we detail the assumptions needed to apply Proposition D.1 to the curved Gaussian
model (4.7). This entails introducing assumptions to help determine the values of µ, L, and S used
in Assumptions D.1 and D.2. We introduce some notation beforehand. First, observe that we can
rescale the normalization constants in (4.1) and (4.3). Hence, we redefine the sample loss functions
to be

L(X)
n (X,Y ) =

1

p

∑
(i,j)

[
− log(X>i Yj)−

[
τ2Aij
−τ2A2

ij/2

]> [
X>i Yj

(X>i Yj)
2

] ]
, (E.1)

L(Y )
n (X,Y ) =

1

n

∑
(i,j)

[
− log(X>i Yj)−

[
τ2Aij
−τ2A2

ij/2

]> [
X>i Yj

(X>i Yj)
2

] ]
, (E.2)

Their corresponding population loss functions that we analyze in this section are

L(X)(X,Y ) =
1

p

∑
(i,j)

[
− log(X>i Yj)−

[
τ2E[Aij ]
−τ2E[A2

ij ]/2

]> [
X>i Yj

(X>i Yj)
2

] ]
, (E.3)

L(Y )(X,Y ) =
1

n

∑
(i,j)

[
− log(X>i Yj)−

[
τ2E[Aij ]
−τ2E[A2

ij ]/2

]> [
X>i Yj

(X>i Yj)
2

] ]
, (E.4)
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where Aij follows the distribution (4.7), and the above expectations are understood to be conditioned
on Θ. The change from 1/(np) in (4.1) and (4.3) to 1/p and 1/n is for simplicity and facilitates to
control the spectrum of the Hessian appropriately. We define the minimization operators we will
use in this section as

MX
n (Y ) = argmin

X∈Rn×k

L(X)
n (X,Y ) : X>i Y j ∈ R, ∀(i, j)

MY
n (X) = argmin

Y ∈Rp×k

L(Y )
n (X,Y ) : (Xi)

>Yj ∈ R, ∀(i, j)

MX(Y ) = argmin
X∈Rn×k

L(X)(X,Y ) : X>i Y j ∈ R, ∀(i, j)

MY (X) = argmin
Y ∈Rp×k

L(Y )(X,Y ) : (Xi)
>Yj ∈ R, ∀(i, j).

While we state results for both L(X)(·, ·) and L(Y )(·, ·) in this section, we prove only statements for
L(X)(·, ·) since the proofs for both loss functions are identical.

Assumptions. The following three assumptions are needed to analyze the curved Gaussian setting.

Assumption E.1 (Refinement of domain). Assume for the curved Gaussian distribution (4.7), let
R = [1/r, r] defined in Assumption 3.1, where there exists a fixed constant r > 1.

Assumption E.2 (Inner product error). For a universal constant c, conditioned on X and Y ,

assume there exists {X∗, Y ∗} ∈ {X ∗,Y∗} such that the initialization Y
(0)

satisfies for all (i, j) ∈
{1, . . . , n} × {1, . . . , p}

|(X∗i )>(Y
(0)

j − Y
∗
j )| ≤ c ·

1

log(min{n, p})
|(X∗i )>Y

∗
j |. (E.5)

In addition, conditioned on X and Y , assume for each iterations t ∈ {1, . . . , T} throughout the

algorithm, there exists {X∗, Y ∗} ∈ {X ∗,Y∗} and {X∗, Y ∗} ∈ {X ∗, Y ∗} where Θ = X∗(Y
∗
)> =

X
∗
(Y ∗)> such that for all (i, j) ∈ {1, . . . , n} × {1, . . . , p}

|(X∗i )>(Y
(t)

j − Y
∗
j )| ≤ c ·

1

log(min{n, p})
|(X∗i )>Y

∗
j |, (E.6)

|(X(t)

i −X
∗
i )
>Y ∗j | ≤ c ·

1

log(min{n, p})
|(X∗i )>Y ∗j |. (E.7)

Assumption E.1 effectively ensures R is bounded away from 0, a condition to ensure the Hessian
is well-controlled. Assumption E.2 imposes an additional requirement on the original initialization
condition in Assumption D.4, and is similar to the incoherence assumption in Ma et al. (2018) and
Chi et al. (2019). There, the authors prove that spectral initialization ensures the requirement
analogous to (E.5) is met with high probability, and each iteration retains properties analogous to
(E.6) and (E.7).

Assumption E.3 (Fixed statistical error). Conditioned on X and Y , for any matrices X ′ ∈ Rn×k
or Y ′ ∈ Rp×k, with probability at least 1− c/min{n, p} for some universal constant c that

max
{
‖MX(Y ′)−MX

n (Y ′)‖F , ‖MY (X ′)−MY
n (X ′)‖F

}
≤ εfixed(n, p),

where εfixed(n, p) is some function of n and p (and possibly other quantities).
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As mentioned in Appendix D, Assumption E.3 is different from Assumption D.3 but enables a
simpler analysis. The reason we impose this new assumption is that minimizing objective functions
such as (E.1) does not have a closed-form solution, so uniformly bounding the error is difficult
for the curved Gaussian model. This simplifying assumption has been used in other work such as
Wang et al. (2015). By imposing Assumption E.3 instead of Assumption D.3, eSVD now requires
resampling, i.e., a fresh batch of samples every iteration, for all T iterations. While this yields
a different algorithm that is not practical to use, we believe the theoretical properties we prove
also roughly hold for the curved Gaussian model without resampling. We derive the appropriate
magnitude of εfixed(n, p) below in Lemma E.3.

Controlling µ, L, S and εfixed(n, p). The following lemma implies that L(X)(·, ·) is µ = (2 +
τ2)/r2-strongly convex and its gradient is L = (2 + τ2)r2-Lipschitz.

Lemma E.1 (Spectrum of Hessian). For the loss function (E.3) and (E.4) where Aij follows
the distribution (4.7), under Assumption E.1, the eigenvalues of the Hessian ∇2

XL(X)(X,Y ) and
∇2
Y L(Y )(X,Y ) are bounded between (2 + τ2)/r2 and (2 + τ2)r2.

The following lemma analyzes the gradient smoothness of L(X)(·, ·) with respect to the alternating
variable, assessing the magnitude of S.

Lemma E.2 (Gradient smoothness with respect to alternating variable). Conditioned on X and Y ,
for the loss function (E.3) and (E.4) where Aij follows the distribution (4.7), under Assumptions E.1

and E.2 consider any pairs {X∗, Y ∗} ∈ {X ∗,Y∗} and {X∗, Y ∗} ∈ {X ∗,Y∗}. Then, for min{n, p}
large enough, any rescaled orthonormal matrices Y and X with spectral norm

√
p and

√
n respectively

satisfy

‖∇XL(X)(X∗, Y
∗
)−∇XL(X)(X∗, Y )‖F ≤ cτ2r2 ·

( (np)1/2

p · log(min{n, p})
+
d̃1

p

)
‖Y ∗ − Y ‖F ,

and

‖∇Y L(Y )(X
∗
, Y ∗)−∇Y L(Y )(X

(t)
, Y ∗)‖F ≤ cτ2r2 ·

( (np)1/2

n · log(min{n, p})
+
d̃1

n

)
‖X∗ −X(t)‖F ,

for some universal constant c.

We now analyze the difference between the minimizers in (E.3) and (E.1) (or between (E.4) and
(E.2)), assessing the magnitude of εfixed(n, p).

Lemma E.3. Conditioned on X and Y , let Aij follow the curved Gaussian distribution (4.7). For
a fixed Y , under the assumptions in Lemma E.1, for p large enough, with probability at least 1−6/p,

1

n
‖MX(Y )−MX

n (Y )‖F ≤ c
( log1/4(np)

n1/2p1/4

)
,

where c is a constant that depends only on k, τ and r. Similarly, for a fixed X, under Assumption
E.1, for n lrage enough, with probability at least 1− 6/n,

1

p
‖MY (X)−MY

n (X)‖F ≤ c
( log1/4(np)

n1/4p1/2

)
,

The above corollary means that

εfixed(n, p) = c
(

max
{n1/2

p1/4
,
p1/2

n1/4

}
· log1/4(np)

)
,

where c is a constant that depends only on k, τ and r. Given the ingredients Lemma E.1 through
Lemma E.3, we can derive the following result.
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Corollary E.4 (Application of Proposition D.1 to curved Gaussian model). Consider the curved
Gaussian model (4.7) where k, τ , and r are constant, and Assumptions E.1-E.3 hold conditioned

on X and Y . Assuming n = O(p) and p = O(n) are large enough such that 8(np)1/2/d̃k < 1,

S/µ < 1 and the initialization satisfies ‖Y ∗ − Y (0‖F ≤ εfixed(n, p)/(1 − S/µ), then for the number
of iterations T large enough, the eSVD described in (4.1)-(4.4) where each iteration resamples the
observed matrix A achieves the rate

‖Θ− Θ̂‖F = OP

(
n3/4 log1/4(n)

)
.

For future work, we believe techniques in Eldridge et al. (2018) and Chi et al. (2019) can help
improve our theoretical analysis and simplify the assumptions in the above proposition, as it is not
immediately clear yet from a theoretical perspective how often an initialization can satisfy these
assumptions. Nonetheless, the following corollary is proved immediately after combining Corollary
E.4 with Proposition 5.2.

Corollary E.5 (Application of Proposition 5.2 to curved Gaussian model). Assume all the setting
and assumptions in Corollary E.4. Then, the eSVD (after reparameterizations (4.5) and (4.6))
achieves the rate

1

n
‖X − X̂‖2F = OP

( log1/2(n)

n1/2

)
.

F Additional simulation details/results

Throughout this section, we use the following notation to parameterize different distributions. The
negative binomial and Bernoulli distributions are parameterized by Negative Binomial(r, p) and
Bernoulli(p) respectively where r is the number of failures (i.e, the dispersion parameter) and p
is the probability of success. The Gamma distribution is parameterized by Gamma(a, b) where a
and b are the shape and rate parameters respectively. The Poisson distribution is parameterized by
Poisson(λ) where the mean is λ. (Observe that here, the distributions are parameterized by their
canonical parameters, not their natural parameters.)

F.1 Simulation setup

Generation of natural parameters. To sample from G (prior to identifiability conditions), we
uniformly sample an equal number of points along 4 connected line segments, where the line seg-
ments collectively have endpoints at {(4, 10), (25, 100), (60, 80), (40, 10), (100, 25)} in the Cartesian
coordinate system. We then add Gaussian noise with σ = 5 to each of the points. This generates
X̃1, . . . , X̃n (prior to identifiability conditions).

To sample from H (prior to identifiability conditions), we similarly uniformly sample an equal
number of points along 2 disconnected line segments. One line segment goes from (1, 4.5) to (1.25, 5)
while the other goes from (4.5, 1) to (5, 1.25) in the Cartesian coordinate system. We then also add

Gaussian noise to each of the points. This generates Ỹ1, . . . , Ỹp (prior to identifiability conditions). In

generating either X̃1, . . . , X̃n or Ỹ1, . . . , Ỹp, we threshold the values to ensure all entries are positive.

We then compute Θ = X̃Ỹ >/c, where c is a fixed constant chosen beforehand to ensure that the
resulting values we generate reasonably lie between 0 and 1000 (depending on which distribution F
is chosen). Letting the SVD of this matrix be Θ = UDV >, we then output the target embedding we
wish to estimate, X = (n/p)1/4 ·U ·

√
D and Y = (p/n)1/4 · V ·

√
D, where the square root function

is interpreted to be entry-wise.
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Other methods. While SVD, NMF, ICA, UMAP, t-SNE, Isomap and diffusion maps are more
common methods in statistical and genomic analyses, ZINB-WaVE and pCMF are methods more
specific to single-cell analyses that we briefly overview here.

• ZINB-WaVE: ZINB-WaVE relies on the negative binomial distribution. Similar to our
model, Xi represents the fixed lower-dimensional latent vector for each cell, and Yj and Wj

represent two sets of fixed lower-dimensional latent vectors for each gene. Let rj denote the
dispersion parameter for gene j. The generative model is, for any (i, j) ∈ {1, . . . , n}×{1, . . . , p},

Zij ∼ Negative Binomial
(
rj ,

exp(X>i Yj)

exp(X>i Yj) + rj

)
,

Dij ∼ Bernoulli
(
1/(1 + exp(−X>i Wj))

)
Aij = Zij ·Dij , (F.1)

where all the latent variables are independent of one another and Aij ’s are all conditionally in-
dependent4. ZINB-WaVE estimates the parameters X, Y and W via an alternating minimiza-
tion scheme based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method.
We note that the ZINB-WaVE model is able to handle additional covariate information about
each cell or gene.

Note, compared to the eSVD model, the ZINB-WaVE model is similar since X>i Yj represents
the natural parameter of a negative binomial distribution in both models. The key differences
are that ZINB-WaVE allows for each gene to have a different dispersion parameter and also
models dropout. However, due to the nature of the fitting procedure, ZINB-WaVE does not
have a matrix-completion diagnostic to assess the quality of fit (which we developed for the
eSVD in Subsection 4.2), and is limited to only modeling the negative binomial distribution.

• pCMF: pCMF relies on the Poisson distribution. Similar to our model, Xi represents the
lower-dimensional latent vector for each cell, and Yj represents the lower-dimensional latent
vector for each gene, but explicit distributions for G and H are used to facilitate a Bayesian
approach. Let πj denote the unknown gene-specific dropout rate. The generative model is,

Xi` ∼ Gamma(α`,1, α`,2), for (i, `) ∈ {1, . . . , n} × {1, . . . , k}
Yj` ∼ Gamma(β`,1, β`,2), for (i, `) ∈ {1, . . . , n} × {1, . . . , k}
Zij ∼ Poisson(X>i Yj), for (i, j) ∈ {1, . . . , n} × {1, . . . , p}
Dij ∼ Bernoulli(πj), for (i, j) ∈ {1, . . . , n} × {1, . . . , p}
Aij = Zij ·Dij , (F.2)

where all the latent variables are independent of one another and Aij ’s are all conditionally
independent. pCMF estimates the parameters via a variational EM algorithm.

Note, compared to the eSVD model, the pCMF model sets X>i Yj to be the canonical parameter
for the Poisson distribution (i.e., the mean), unlike the eSVD which sets X>i Yj to be the natural
parameter. Additionally, pCMF also models dropout. However, similar to the disadvantages of
ZINB-WaVE mentioned above, pCMF does not have a matrix-completion diagnostic to assess
the quality of fit and is limited to only modeling the Poisson distribution.

We list the R packages used for comparisons with other methods. We use the zinbwave package
for ZINB-WaVE, and set the K parameter to 2, the maxiter.optimize parameter to 100, the

4Their paper actually parameterizes the negative binomial distribution by its mean and inverse dispersion param-
eter, but is equivalent to the one we describe.
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normalizedValues parameter to False, and commondispersion parameter to False. We use the
pCMF package for pCMF and set the K parameter to 2 and the sparsity parameter to False.

For the remaining methods, we use the dimRed package for Isomap, ICA (which invokes the
fastICA package), and NMF (which invokes the NMF package), and use the density package for
diffusion maps, all of which use the default parameters to estimate a two-dimensional embedding.
Lastly, for UMAP and t-SNE, we tune the methods’ respective parameters in an oracle-fashion in
order to maximize the relative embedding correlation described in Section 6. That is, this tuning
requires knowing the true embedding, which is unrealistic in practice but demonstrates the perfor-
mance of these methods under the most favorable conditions. Specifically, we use the Rtsne package
for t-SNE, and set the k parameter to 2 and tune the perplexity parameter in an oracle fashion
among 10 values between 2 and 50. We use the umap package for UMAP, and set the n components

parameter to 2 as well as init to random. Additionally, we tune the n neighbors and min dist pa-
rameters in an oracle fashion among the values {2, 3, 5, 15, 30, 50} and {10−5, 10−3, 0.1, 0.3, 0.5, 0.9}
respectively (for a total of 36 different parameter settings).

F.2 First simulation suite: Verification of convergence to G

Based on the first simulation suite described in Section 6, we plot the empirical performance of the
eSVD when loss function is set to the negative log-likelihood of the negative binomial distribution
with r = 50, which is correctly-specified model. We plot ‖X − X̂‖2F /n verses n in Figure 10.

Figure 10: ‖X − X̂‖2F /n verses n, where the solid points represent the median performance over 200 trials
and the error bars represent the 25th to 75th quantile.

F.3 Second simulation suite: Additional comparison of performance un-
der exponential-family models

In this second simulation suite described in Section 6, we compare the eSVD’s performance against
the nine other embedding methods where we change both the data-generating distribution and
the distribution used by the eSVD simultaneously to be either the Poisson or curved Gaussian
distribution. These simulations give us a more holistic understanding of how the data-generating
distribution impacts the other nine embedding methods, and also allows us to demonstrate the
versatility of the eSVD.

In Figure 11, we see that the eSVD and ZINB-WaVE both perform well in the Poisson simulation,
similar to Figure 5. Specifically, despite ZINB-WaVE assuming a negative binomial distribution, it
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still performs well in this Poisson setting. While it might be surprising that pCMF does not perform
well in this setting, as we noted in Appendix F.1, pCMF assumes that X>i Yj is the canonical
parameter of the Poisson distribution (i.e., the mean) while our data-generating model here assumes
that X>i Yj is the natural parameter of the Poisson distribution (i.e., the mean is exp(X>i Yj), as
described in Appendix B.3). This extra exponentiation skews the embedding of the cells outside of
the eSVD and ZINB-WaVE, which both operate on the natural-parameter scale.

Figure 11: Results for the simulation setting where both the data-generating distribution F and the eSVD
use the Poisson distribution. The layout of these plots are comparable to those in Figure 5.

In Figure 12, we see that only the eSVD performs well in the curved Gaussian simulation.
Here, the true data-generating distribution uses α = 2, while the eSVD uses the tuning procedure
mentioned in Section 4 to select the most appropriate value of the tuning parameter α from the set
{1, 2, 4}. We believe the poor performance of the other nine embedding methods is due to the extra
variability in the data – the curved Gaussian with α = 2 has more variability than the negative
binomial distribution or Poisson distribution demonstrated in Figure 5 and Figure 11 respectively.
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Figure 12: Results for the simulation setting where both the data-generating distribution F and the eSVD
use the curved Gaussian distribution. The layout of these plots are comparable to those in Figure 5.

F.4 Third simulation suite: Comparison of performance under misspeci-
fied models

We present the additional simulations alluded to as the third simulation suite in Section 6. In this
section, we generate models implicitly assumed in ZINB-WaVE or pCMF (see (F.1) or (F.2) respec-
tively). While it is natural to expect that ZINB-WaVE and pCMF will perform the best in their
respective simulations, we are additionally interested to see the eSVD can nonetheless be compet-
itive. If so, this gives us empirical evidence that the eSVD’s flexibility and tuning diagnostic are
sufficient to capture most of the data’s nuances assumed in these models, despite being misspecified.

ZINB-WaVE model. In this simulation setting, we build on top of the negative binomial model
descried in Section 6, but include additional complexities that make the simulation more realistic ac-
cording to the generative model for ZINB-WaVE shown in (F.1). Specifically, using the ZINB-WaVE
model (F.1), we vary the dispersion parameter so 25% of the genes have a dispersion parameter of
r = 80, another 25% have a parameter of r = 120, and the remaining 50% have a parameter of
r = 600. Additionally, a dropout term is now included based on a logistic model, unlike the model
described in Section 6. Both of these changes ensure that the negative binomial model that the eSVD
fits is sufficiently misspecified. As our simulations reassuringly shows though, the eSVD nonetheless
estimates the embedding relatively well when compared to other methods aside from ZINB-WaVE
itself.

When we fit the eSVD via a negative binomial model, we use the tuning procedure mentioned in
Subsection 4.2 to search for a global dispersion parameter of r ∈ {50, 100, 500, 1000} and set k = 3.
Notice that we are using one dispersion parameter to model the simulated dataset, although our
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true generative model uses three different dispersion parameters. Also, we increase the latent space
to k = 3 since we found empirically, the addition of the dropout factor can be reasonably captured
by an extra latent dimension.

We demonstrate our results in Figure 13. We see that ZINB-WaVE performs the best according
to the relative embedding correlation metric, but this is unsurprising as our generative model is
correctly specified for ZINB-WaVE. However, even though it is misspecified for the eSVD using the
negative binomial distribution, the eSVD’s performance is still quite competitive according to our
relative embedding criterion, compared among the nine remaining methods. Hence, we believe that
the eSVD using the negative binomial distribution, with our tuning procedure, is comparable in
performance to ZINB-WaVE in practice. As we mentioned in the main text however, the benefits of
using the eSVD is that the eSVD has a solid theoretical foundation, can be easily extended to other
one-parameter exponential-family distributions, and can handle missing values to assess model fit.

Figure 13: Results for the misspecified simulation setting where the data-generating distribution F is
generated according to the assumed model by ZINB-WaVE (F.1) and the eSVD use the negative binomial
distribution. The layout of these plots are comparable to those in Figure 5.

Effect of k and appropriateness of tuning procedure. To demonstrate the appropriateness
of choosing k = 3 in the above simulation under the ZINB-WaVE model, we empirically compare
how different k can effect the quality of the model fit. (We have found this investigation more
meaningful under the misspecified model since the effect of varying k was not apparent under any of
the settings in the second simulation suite.) Specifically, while there is no “correct” value of k due
to the model misspecification, we are interested if our tuning procedure can select the k that yields
the most accurate embedding and assess how choosing k poorly can impact the embedding.

For this simulation, we retain the ZINB-WaVE model above and use the eSVD with the negative
binomial distribution. However, we now use the tuning procedure mentioned in Subsection 4.2 to
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search for a global dispersion parameter of r ∈ {50, 100, 500} as well as k ∈ {2, 3, 10}, where the
quality of the model fit is computed using the negative log-likelihood as described in Appendix B.2.
We use this metric as opposed to the principal angle in this particular simulation since we have
already fixed the eSVD to use the negative binomial distribution.

The results in Figure 14 demonstrate that our tuning procedure selects k = 3 92% of the time
(among all 100 trials), which also yields the embedding with the highest relative embedding cor-
relation on average, and selects k = 2 among the remaining trials. Specifically, in Figure 14, the
selected pair of parameters (r, k) based on the negative log-likelihood also often has a high relative
embedding correlation. All-in-all, Figure 14 demonstrates why we chose k = 3 for the eSVD when
producing Figure 13, and demonstrates how our tuning procedure can select k that can yield the
best-performing embedding despite the model misspecification.

Figure 14: (A) The relative embedding correlation plotted against the negative log-likelihood of the testing
set, where each point represents one of 100 trials fitting the eSVD using a different pair of parameters (r, k)
among {50, 100, 500}× {2, 3, 10}, for a total of 900 points shown. Among each of the 100 trials, the selected
(r, k) parameter pair’s corresponding point is highlighted in color, blue for if k is chosen to be 3, and orange
if k is chosen to be 2. (B to D) The embedding for k = 2, k = 3 and k = 10 respectively, trial with the
median accuracy, and r = 50 (the selected value of r according to our tuning procedure). The layout of
these plots are comparable to those in Figure 5.

pCMF model. In this simulation setting, we make the simulation more realistic according to the
generative model for pCMF shown in (F.2). Specifically, we set πj = 0.3 for all j ∈ {1, . . . , p} and
use the same way to generate X1, . . . , Xn and Y1, . . . , Yp as previously described in Appendix F.1,
instead of generating the latent vectors from the prescribed prior distribution. While we set the
eSVD to estimate the embedding according the Poisson setting in this simulation, there are two
important aspects that makes this a misspecified setting. First, pCMF assumes that the mean
of the Poisson distribution is X>i Yj , while the eSVD under the Poisson model assumes that the
mean of the Poisson distribution is exp(X>i Yj). Second, a dropout term is now included. Both of
these changes ensures that the Poisson model that the eSVD fits is sufficiently misspecified. As our
simulations reassuringly shows though, the eSVD nonetheless estimates the embedding relatively
well when compared to other methods aside from ZINB-WaVE itself. Similar to in the ZINB-WaVE
simulation above, when we fit the eSVD via a Poisson model, we set k = 3, where we found that the
extra latent dimension helps to capture the dropout effect.

We demonstrate our results in Figure 15. Similar to before, we see that pCMF performs the
best, but this is unsurprising. However, more surprisingly, we see that many embedding methods
actually work well in this simulation setting, since the Poisson distribution has a small variance when
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compared to the negative binomial or curved Gaussian distribution. Hence, the additional variability
in the data is insufficient from dramatically distorting many embedding methods, including SVD,
NMF, ICA and UMAP. While the eSVD does not rank among the best-performing methods in terms
of the relative embedding correlation metric here (Figure 15A), we see that the eSVD’s estimated
embedding visually resembles the true layout of latent vectors (Figure 15B, compared to Figure 4).
Hence, given this particular simulation as well as all the simulations presented beforehand, we feel
the flexibility of the eSVD makes it a competitive embedding method overall.

Figure 15: Results for the misspecified simulation setting where the data-generating distribution F is
generated according to the assumed model by pCMF (F.2) and the eSVD use the Poisson distribution. The
layout of these plots are comparable to those in Figure 5.

G Details on Slingshot and uncertainty tube

G.1 Modifications to Slingshot

Our implementation of Slingshot differs from its original implementation in Street et al. (2018) in
a few aspects. The first two modifications is related to how the lineages (i.e., what the different
branches are and the ordering of the cell sub-types) are estimated, and the last modification is
related to how the trajectories are estimated given the lineages (i.e., what is the numeric curve that
interpolates the points in the latent space).

• Respecting natural order: Our implementation respects the order among the major cell
types (i.e., Pdgfra+ precursor, oligodendrocyte precursor cells, differentiation-committed oligo-
dendrocyte precursors, newly formed oligodendrocytes, myelin-forming oligodendrocytes, and
mature oligodendrocytes), but allows the lineage to arbitrarily order or split the cell sub-types
within the same cell type.
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• Construction of lineage: Our implementation determines the lineage via a shortest path tree
from the starting cluster, where the distance is determined by the multivariate Hotelling’s t-test
for unequal covariances. This is in contrast with the original Slingshot that uses a minimum
spanning tree, where the distance is determined by the multivariate Hotelling’s t-test for equal
covariances.

• Enable upsampling: The original Slingshot does not weight clusters, so the lineage curves
naturally gravitated towards the larger clusters. To compensate for this phenomenon, we
upsampled the cells in each cluster via sampling with replacement so each cluster has the same
number of cells. This effectively adds larger weights to these smaller clusters so each cluster
is treated equally regardless of its original size. A similar modification is done in Herman and
Grün (2018).

G.2 Construction of uncertainty tube

We construct the uncertainty tubes via a bootstrap-based approach to determine if the different cell
developmental trajectories are substantially different. This is done via the following procedure.

1. Bootstrapping: For a specific trial, sample with replacement the low-dimensional embedding
X̂1, . . . , X̂n among each cell sub-type. This generates a new dataset with the same proportion
of cell sub-types. Run Slingshot on this new dataset, having fixed the order of the cell sub-types
in each lineage, to obtain a new set of trajectories.

2. Computing the quantile of `2 distance between lineage curves: Let T̂ be one of the
estimated trajectories based on the original estimated embedding X̂1, . . . , X̂n. For each esti-
mated trajectory Tb from the newly generated dataset that matches T̂ based on the order of
cell sub-types, compute the pointwise `2 distance between the two respective curves. Specif-
ically, letting {Tb,1, . . . , Tb,N} and {T̂1, . . . , T̂M} denote the N and M discrete k-dimensional

points in order that represent the trajectory Tb and T̂ respectively, this pointwise `2 distance
is computed as the 95% quantile of the following set{

min
j∈{1,...,M}

‖Tb,i − T̂j‖2, ∀i ∈ {1, . . . , N}
}
.

After computing this distance for each of the bootstrapped trajectories, let σ(T̂ ) be the the
95th quantile `2 distance among all the bootstrapped trajectories, denoting the “margin of
error” for a particular original estimated trajectory T̂ . Let σ be the 95th quantile of such
values among all the original estimated trajectories, representing the width of the uncertainty
tubes.

3. Computing the lineage tube: For each lineage in the original dataset, construct a “tube”
of radius σ around the lineage curve.
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H Additional analysis results

H.1 Additional plots of results

In Figure 16 and Figure 17, we show the two-dimensional and three-dimensional plots of the esti-
mated embeddings to provide more clarity to Figure 1 and Figure 6 in the main text.

Figure 16: Two-dimensional plots of the SVD embedding, which corresponds to the three-dimensional plots
shown in Figure 6. Each cell is color coded using the same color scheme from the aforementioned figure, the
large dots represent the cluster centers for each of the thirteen cell sub-types, and the estimated trajectories
are overlaid on top, which correspond to the same trajectories in the aforementioned figure. The three plots
correspond to the three pairs of latent dimensions, one of the plots being the same as Figure 1.
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Figure 17: Three-dimensional plots of the estimated latent positions via the SVD embedding, without and
with the uncertainy tube overlaid ontop. This plot is of the same estimated embedding as shown in Figure 6
but shown from a different perspective (each perspective represented by a different row).

In Figure 18 and Figure 20, we show the two-dimensional and three-dimensional plots of the
estimated embeddings to provide more clarity to plots shown in Figure 8 in the main text.
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Figure 18: Two-dimensional plots of the eSVD embedding using the curved Gaussian distribution with
k = 5 and τ = 2, which corresponds to the three-dimensional plots shown in Figure 8. Each cell is color
coded using the same color scheme from the aforementioned figure, the large dots represent the cluster
centers for each of the thirteen cell sub-types, and the estimated trajectories are overlaid on top, which
correspond to the same trajectories in the aforementioned figure.

Figure 19: Two-dimensional plot of the eSVD embedding, similar to that shown in Figure 18, but with
high-density regions denoted for the mature oligodendrocytes shared between the two trajectories (gray
points), and the mature oligodendrocytes unique to each of the estimated trajectories (either blue or yellow
points). This plot is directly comparable to Figure 1.

Additionally, Figure 21 shows the same plot as Figure 7, except zoomed in to display the behavior
of points near zero. We see that the same trends persists from Figure 7 (mainly, the variance
increasing with the mean).
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Figure 20: Three-dimensional plots of the estimated latent positions via the eSVD embedding, without
and with the uncertainy tubes overlaid ontop. This plot is of the same estimated embedding as shown in
Figure 8 but shown from a different perspective (each perspective represented by a different row).

Figure 21: Diagnostic plot showing the same results as in Figure 7, except zoomed in to display values
between 0 and 50. (A) The diagnostic plot on the “training set.” (B) The diagnostic plot on the “testing
set.”
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H.2 Additional result for the highly informative genes

To supplement the results in Section 7, we find high informative genes across the different six major
cell types which also demonstrate the smooth continuum of gene expression along the two estimated
trajectories. This is visualized in Figure 22, where heatmaps of this form are common in work that
study the gene expression continuum along trajectories (Marques et al. (2016), Haghverdi et al.
(2016) and Bergen et al. (2020)). These heatmaps are sometimes referred to as cascade plots. Here,
we see that when we order the cells from youngest to oldest based on the estimated pseudotime,
there is an ordering of genes such that different genes are highly expressed at different pseudotimes.
Additionally, we see that when the two trajectories diverge around the rescaled pseudotime of 0.49,
there are genes that are highly expressed for mature oligodendrocytes in one trajectory but not the
other.

We briefly describe the procedure to select the genes shown in Figure 22. First, we remove
cells that do not easily conform to the estimated trajectories, as by the nature of Slingshot, certain
cells belonging to both trajectories might have two distinctly different estimated pseudotimes. We
have 4449 cells remaining afterwards, which are used to find highly informative genes from the 983
genes in our analysis. We then order the cells based on their pseudotimes and which trajectories
they belong to. This results in two different data matrices, one matrix for the cells shared between
both trajectories and the cells unique to the first trajectory, and another matrix for the cells shared
between both trajectories and the cells unique to the second trajectory. For each data matrix, we
smooth the gene expression across each gene using a univariate kernel nonparametric regression via
the function np::npreg. Then, for each gene j, we use a variant of circular binary segmentation
(Olshen et al., 2004) to find a region of cells along either data matrix that represents cells which have
high expression for gene j. After all this is done, we find the genes that show the highest change
in expression (based on circular binary segmentation on the smoothed gene expression) along each
value of the pseudotime for both trajectories. This informs us about which genes are informative
for the shared trajectory, only the first trajectory, or only the second trajectory. We additionally
include marker genes published in Zhang et al. (2014) for reference, which are originally used in the
dataset we are investigating Marques et al. (2016).
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Figure 22: Cascade plot showing the gene expression (rescaled, smoothed) across the cells ordered by the
estimated pseudotime. Here, each row denotes a different gene and each column denotes a different cell,
where the cell type of each of the corresponding 4449 columns is shown in the top horizontal bar, where the
colors correspond to the coloring used in Figure 8. Within this heatmap, yellow denotes high intensity of
expression, while dark green denotes low intensity, both relative to all the other cells for a particular gene.
The cells prior to a (rescaled) pseudotime of 0.49 are shared between both trajectories, while the cells start
to diverge after that pseudotime. The marker genes published in Zhang et al. (2014) for OPCs, NFOLs, and
MOLs are explicitly marked in their respective rows for reference.
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H.3 Analysis via eSVD using the negative binomial distribution

For completeness, we include the diagnostic plots on the quality of fit of using the negative binomial
distribution to fit the eSVD embedding on the oligodendrocyte data. We tune the negative binomial
from a grid of parameters as well, where we choose among the k ∈ {3, 5, 10} and dispersion parameter
r ∈ {500, 2500, 104}. After using our tuning procedure described in Subsection 4.2, we select k = 5
and r = 104. Analogous to Figure 7, we show the resulting plots on the training and testing set
in Figure 23. As we can see, compared to analogous plots for the curved Gaussian distribution
(Figure 7), the 10th to 90th quantile of the negative binomial model, denoted by the shaded red
polygon, are not wide enough to capture as much of the variability in the data in the testing set.

Figure 23: Diagnostic plots analogous to those in Figure 7, except displaying the results of fitting the eSVD
embedding with the negative binomial distribution distribution where, after applying the tuning procedure,
the number of failures is set to be r = 10000 and the latent dimension space is k = 5. (A) The diagnostic
plot on the “training set.” (B) The diagnostic plot on the “testing set.”

H.4 Analysis via UMAP and ZINB-WaVE

As mentioned in the main text, two common embedding methods used in the literature are UMAP
(McInnes et al., 2018) and ZINB-WaVE (Risso et al., 2018). For completeness, we present these
resulting embeddings derived from these methods for comparison against the eSVD embedding with
the curved Gaussian distribution. Our goal here is to convey that using any of these embedding
results all qualitatively conclude that the mature oligodendrocytes unique to the first estimated
trajectory lie opposite to the mature oligodendrocytes unique to the second estimated trajectory.

In Figure 24, we present the results using the UMAP embedding. Here, we use the umap R package,
where we set n neighbors to be 30. Analogous to Figure 8, we color the mature oligodendrocytes as
gray, yellow or dark blue, depending on whether the cell belongs to the mature oligodendrocyte cell
sub-type that is shared between the two estimated trajectories, is exclusively in one of the estimated
trajectories, or exclusively in the other estimated trajectory respectively. This UMAP embedding
is calculated based on the same dataset used to estimate the eSVD embedding shown in Section 7
(i.e., not log2-transformed). Since the UMAP embedding does not rely on a statistical model and
does have known statistical consistency, we avoid applying Slingshot on top of this embedding.
Nonetheless, we qualitatively see in Figure 24 that the gray points lie between the dark blue and
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yellow points, suggesting a similar phenomenon to our results in Section 7 where we observe two
distinct trajectories that split at the mature oligodendrocytes.

Figure 24: Two-dimensional plot of the UMAP embedding applied to the preprocessed dataset with 5069
cells and 983 genes, (i.e., Steps 1 and 2 as described in Appendix C.1), where the cell types are colored accord-
ing to Figure 18. (A) UMAP embedding shown alongside the 13 cell cluster centers. (B) UMAP embedding
shown alongside with estimated densities to visualize high-density regions (analogous to Figure 19).

Similarly, we present the results using the ZINB-WaVE embedding. This model and its usage
is summarized in Appendix F.1. We fit the model using the count data (i.e., n × p matrix with
non-negative integer values) that has undergone only the gene screening step (i.e., preprocessing the
data using only Step 1 described in Appendix C.1) and the arguments K=5, maxiter.optimize=100,
normalizedValues=T and commondispersion=F. Similar results in Section 7, the ZINB-WaVE em-
bedding shown in Figure 25 show the gray points lie between the dark blue points and yellow points.
This is most visibly seen in the scatter plot between the first two latent dimensions. Hence, these
results also suggest a similar phenomenon to our results in Section 7 where we observe two distinct
trajectories that split at the mature oligodendrocytes.
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Figure 25: Two-dimensional plots of the ZINB-WaVE embedding applied to the preprocessed count dataset
with 5069 cells and 983 genes, (i.e., Step 1 as described in Appendix C.1). The cell types and 13 cell cluster
centers are shown to be analogous to those in Figure 18.

H.5 Additional analysis on a separate dataset

Here, we apply the eSVD to a second dataset to demonstrate its performance on other single-cell
datasets outside of the oligodendrocyte dataset studied in the main text. For this, we investigate
the eSVD applied to the Zeisel dataset, which is commonly used as a benchmark dataset in other
studies (Lun et al., 2016; Zappia et al., 2017; McCarthy et al., 2017; Kiselev et al., 2017; Li and
Li, 2018). This dataset studies cells in mice’s nervous systems, and contains 3005 cells across
seven different primary cell types (astrocytes ependymal, endothelial mural, interneurons, microglia,
oligodendrocytes, pyramidal CA1, and pyramidal SS), of which the least represented cell type has
98 cells. The goal in this particular analysis is to determine if cells of the same cell type are “well-
clustered” after embedding each cell into the latent space.

Our analysis strategy proceeds similarly to the one described in Appendix B. Specifically, we first
screen the cells in a similar fashion, with exception that now we normalize each cell by its library size
prior to screening for genes. After screening, there are 1628 genes remaining. Then, we compare two
analyses, comparable to those described in the main text. In the first analysis, we log2-transform all
the entries of the preprocessed single-cell data and then embed each cell via the SVD. In the second
analysis, we do not log2-transform the entries, but instead rescale the data uniformly so the maximum
value is 1000 and embed each cell via the eSVD with a negative binomial distribution. Our choice of
analyzing the Zeisel dataset via the negative binomial distribution here is to demonstrate the eSVD’s
versatility in how it can be usefully applied to one-parameter exponential-family distributions other
than the curved Gaussian distribution used in Section 7, and we also empirically observe that this
data has less noise compared to the oligodendrocyte dataset studied in the main text. We tune
the latent dimensionality of both embeddings (among k ∈ {10, 20, 50}) and the nuisance parameter
for the negative binomial distribution (among r ∈ {250, 500, 1000, 10000, 50000}) via the tuning
procedure described in Subsection 4.2. For the SVD embedding, this resulted in selecting k = 50,
and for the eSVD embedding, this resulted in selecting k = 20 and r = 10000.

To assess how well the cells are clustered within each embedding, we derive a “purity” statistic
based on the the shortest path between cells of the same cell type in the nearest-neighbor graph. We
do not use statistics based on K-means clustering or other clustering methods since we wish to not
confound the quality of the embedding with the appropriateness of the clustering method as much as
possible. To describe this statistic, first construct the nearest-neighbor graph by representing each
of the 3005 cells as a vertex, and connecting each vertex to its m nearest neighbors (for example,
m = 3). Then, let cell i and j be of the same cell type t (for example, interneurons), and consider
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the shortest path between vertices i and j. We measure the purity statistic between vertices i and
j by the percentage of vertices in this shortest path that correspond to cells of the same cell type
t, excluding cells i and j themselves. This statistic is in [0, 1] and a larger value is more desirable,
as it suggests that more cells of the same cell type are “between” cells i and j. If there are multiple
shortest paths, we pick the one that maximizes this statistic. For each of the seven different cell
types, wee sample 5000 random pairs of cells i and j to measure this purity statistic. This results
in 35000 values that describe the quality of the embedding.

Using the purity statistic, we see that the eSVD embedding (without the log2-transform) pre-
serves the clustering structure among the seven cell types better than the SVD embedding (with the
log2-transform). Specifically, if we were to construct a nearest-neighbor graph based on m = 3, then
the average (mean) purity statistics across all 35000 values for the eSVD embedding and the SVD
embedding are 0.93 and 0.91 respectively. However, this statistic is already equal to 1 at the 25th
quantile among the 35000 values for either embedding. When we focus on values between the 0th
and 25th quantile only, the average (mean) purity statistic for the eSVD embedding and the SVD
embedding are 0.73 and 0.65 respectively. When we try different values of m from m = 3 to m = 5,
we observe a similar result regardless of how we construct the nearest-neighbor graph (Figure 26).
This suggests that our analysis results are robust to the value of m. Choosing m to be smaller than
3 results in a nearest-neighbor graph that is not connected.

Figure 26: Quantiles of the purity score among the 35000 values for both embeddings when applied to the
Zeisel dataset, from the 0th to 25th quantile, across m = 3 to m = 5.

I Proofs

In Appendix I.1, we prove Proposition 5.1. In Appendix I.2, we prove Proposition 5.2 and its related
lemmas. In Appendix I.3, we prove Proposition D.1 and its related lemmas. In Appendix I.4, we
prove the results shown in Appendix E.

Throughout these proofs, for generic matrices A and B, let ‖A‖op denote the spectral norm, i.e.,
the largest singular value. If A is a square matrix, let tr(A) denote the trace of A, i.e., the sum of
its diagonal elements. We write A⊗B to denote the Kronecker product of A and B, and if A and B
are of the same dimensions, we write A � B if B −A is positive semidefinite. For two deterministic
sequences an and bn, let an = o(bn) denote that an/bn → 0. For two random sequences An and
Bn, let An = Ωp(Bn) denote Bn/An is bounded in probability for large enough n. Also, let Ik
denote the identity matrix of size k×k and 1n×p represent the n×p matrix of all ones. Throughout
these proofs, we implicitly use different equivalent definitions of strong convexity and functions with
Lipschitz gradients as stated in Zhou (2018).
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I.1 Proof for Proposition 5.1

Proof of Proposition 5.1. Define the eigendecompositions of the second moment matrices for all
i ∈ {1, . . . , n} and j ∈ {1, . . . , p},

C∗X = E[X ′iX
′>
i ] = ΦΛΦ>, and C∗Y = E[Y ′jY

′>
j ] = ΨΓΨ>, (I.1)

where Φ and Ψ are both k×k unitary matrices. Our construction of the invertible matrix R ∈ Rk×k
will be done in two steps. In the first step, we first construct an invertible matrix R̃ ∈ Rk×k such
that

R̃C∗XR̃
> = R̃−>C∗Y R̃

−1. (I.2)

This would yield a transformation matrix to ensure E[XiX
>
i ] = E[YiY

>
i ]. In the second step, we

adjust R̃ into the desired matrix R in order to ensure that both E[XiX
>
i ] and E[YiY

>
i ] are diagonal.

Step 1: Based on the definition (I.1) and the desired goal shown in (I.2), an equivalent goal is
to show that

R̃>R̃C∗XR̃
>R̃ = ΨΓΨ>. (I.3)

Let Q ∈ Rk×k denote any unitary matrix, to be specified later. Since the matrices on both sides
of the above display are symmetric, in order to show (I.3), we can instead we can find an Q and R̃
such that,

QΛ1/2Φ>R̃>R̃ = Γ1/2Ψ>.

Rearranging the above display, we have

R̃>R̃ = ΦΛ−1/2Q>Γ1/2Ψ>︸ ︷︷ ︸
B

.

Hence, we are done once we construct a unitary matrix Q that makes B symmetric. Observe that
if the matrix

Q>Γ1/2Ψ>ΦΛ1/2

were symmetric, then B would be symmetric. (This can be seen by multiplying the above matrix
on the left by E = ΦΛ−1/2 and on the right by E>.) Observe that Γ1/2Ψ>Λ−1/2Φ is guaranteed
to be full rank (by assumption of C∗X and C∗Y being full rank), so Γ1/2Ψ>Λ−1/2Φ admits a rank-k
SVD of UDV >. Since the product of two unitary matrices is still unitary, we set Q = UV >. Hence,
we finished our construction of R̃.

Step 2: Suppose R̃C∗XR̃
> (or equivalently, R̃−TC∗Y R̃

−1 based on (I.2)) has eigenvectorsW1, . . . ,Wk.
Let W be the unitary matrix formed by concatenating these k eigenvectors column-wise. By di-
agonalization, we know W>(R̃C∗XR̃

>)W is diagonal. This implies that our final construction is

R = W>R̃.

I.2 Proof for Proposition 5.2

We first introduce some notation. Let the SVD of X and Y be denoted as

X =
√
nUΛ1/2Φ>, and Y =

√
pV Γ1/2Ψ>,

Using this definition, the empirical second moment matrices are

CX = X>X/n = Φ>ΛΦ, and CY = Y >Y/p = Ψ>ΓΨ.

Prior to the proof, we offer a high-level description of the proof strategy. Similar to the proof in Lei

(2018), we introduce two levels of approximation. Let us focus on estimating X
(C)
1 , . . . , X

(C)
n , the

latent variables that are oriented based on the population covariance matrix C∗X . Formally,

X(C) = XΦ∗.
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(Recall by Assumption 5.2, since C∗X is diagonal, the columns of Φ∗ are the standard basis vectors.)

To approximate this, we consider X
(S)
1 , . . . , X

(S)
n , the latent variables rotated by their own right

singular vectors,
X(S) = XΦ =

√
nUΛ1/2.

This approximation is driven by CX being close to ĈX . This is in turn estimated by X
(Θ)
1 , . . . , X

(Θ)
n

based on the SVD of Θ,

X(Θ) =
(n
p

)1/4

ŨD̃1/2.

This approximation is driven by C∗X being equal to C∗Y . Finally, this is approximated by a quantity

we can actually compute from data, our estimates X̂1, . . . , X̂n as in (4.5),

X̂ =
(n
p

)1/4

ÛD̂1/2,

where Û and D̂ are obtained by an SVD of our estimate Θ̂ (recalling that we denote the SVD of

Θ̂ as Θ̂ = ÛD̂V̂ >). This approximation is driven by Θ̂ being close to Θ (i.e., our assumption that

‖Θ− Θ̂‖F < ε).

Proof of Proposition 5.2. Step 1: (Decomposition of error). By the triangle inequality, the rate is
dictated by the term,

1

n
max

{
‖X(C) −X(S)‖2F , ‖X(S) −X(Θ)‖2F , ‖X(Θ) − X̂‖2F

}
.

In the following three steps, we bound each term individually, of which the maximum of all three
terms concludes the proof.

Step 2: (Approximation from X(C) to X(S)). First, we deduce the relations of the eigenvalue
λj and eigenvectors Φj . By applying Lemma J.1, we obtain

‖C∗X − CX‖op = OP ((k/n)1/2). (I.4)

By using Weyl’s inequality and the Davis-Kahan theorem along with Assumption 5.2, this immedi-
ately implies

‖Φ∗j − Φj‖2 = OP (jβ(k/n)1/2), ∀j ∈ {1, . . . , k}, (I.5)

|λ∗j − λj | = OP ((k/n)1/2), ∀j ∈ {1, . . . , k}. (I.6)

Since k = o(min{n, p}) by assumption, this implies

λj = OP (j−α), ∀j ∈ {1, . . . , k}. (I.7)

Thus, using the trace function,

1

n
‖X(S) −X(C)‖2F =

1

n
‖X(Φ∗ − Φ)‖2F

= tr
{

(Φ∗ − Φ)>CX(Φ∗ − Φ)
}

= tr
{

(Φ∗ − Φ)>(CX − C∗X)(Φ∗ − Φ)
}

+

tr
{

(Φ∗ − Φ)>C∗X(Φ∗ − Φ)
}
.
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For the first term, ∣∣∣ tr{(Φ∗ − Φ)>(CX − C∗X)(Φ∗ − Φ)
}∣∣∣

≤
k∑
j=1

∣∣∣(Φ∗j − Φj)
>(CX − C∗X)(Φ∗j − Φj)

∣∣∣
≤

k∑
j=1

‖CX − C∗X‖op‖Φ∗j − Φj‖22 = OP (k2β+5/2/n3/2).

For the second term, recalling that α ≤ β and Parseval’s identity,

tr
{

(Φ∗ − Φ)>CX(Φ∗ − Φ)
}

=
k∑
i=1

(Φ∗i − Φi)
>
[ k∑
j=1

λ∗jΦ
∗
jΦ
∗>
j

]
(Φ∗i − Φi)

=
k∑
j=1

λ∗j

{ k∑
i=1

[
(Φ∗i − Φi)

>Φ∗j

]2}

=
k∑
j=1

λ∗j

{[
(Φ∗j − Φj)

>Φ∗j

]2
+

∑
i 6=j,i≤k

[
(Φ∗i − Φi)

>Φ∗j

]2}

=

k∑
j=1

λ∗j

{[
(Φ∗j − Φj)

>Φ∗j

]2
+

∑
p6=j,i≤k

[
(Φ∗j − Φj)

>Φi

]2}

≤ 2

k∑
j=1

λ∗j‖Φ∗j − Φj‖22 = OP (k2β−α+2/n).

Step 3: (Approximation fromX(S) toX(Θ)). First, observe that Θ = XY > =
√
npUΛ1/2Φ>ΨΓ1/2V >,

and we would like show it is close to the matrix
√
npUΛ1/2Γ1/2V >, which has an an SVD of

U(
√
npΛ1/2Γ1/2)V >. Specifically,

‖√npUΛ1/2Γ1/2V > −√npUΛ1/2Φ>ΨΓ1/2V >‖op ≤ (I.8)
√
np‖Λ1/2‖op‖Γ1/2‖op‖Ik − Φ>Ψ‖op,

where we can bound the last term by using the submultiplicative property of the spectral norm and
C∗X = C∗Y ,

‖Ik − Φ>Ψ‖op = ‖Φ>(Φ−Ψ)‖op ≤ ‖Φ− Φ∗‖op + ‖Ψ∗ −Ψ‖op = OP

( kβ+3/2

(min{n, p})1/2

)
.

where the last inequality is due to Davis-Kahan. Hence, plugging the above display into (I.8),

‖√npUΛ1/2Γ1/2V > −√npUΛ1/2Φ>ΨΓ1/2V >‖op = OP

( (np)1/2 · kβ+3/2

(min{n, p})1/2

)
. (I.9)

First, we derive the difference in eigenvalues based on (I.9). We apply Weyl’s inequality to the above
display to conclude

|(npλjγj)1/2 − d̃j | = OP

( (np)1/2 · kβ+3/2

(min{n, p})1/2

)
, ∀j ∈ {1, . . . , k}, (I.10)
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recalling that d̃j is the jth singular value of Θ. Note from (I.6) that we also have for all j ∈ {1, . . . , k},

|λj − γj | ≤ |λj − λ∗j |+ |γ∗j − γj | = OP (k1/2/min{n, p}1/2). (I.11)

Hence, combining (I.10) and (I.11), noting that max{|λj −λ1/2
j γ

1/2
j |, |γj −λ

1/2
j γ

1/2
j |} ≤ |λj −γj |, we

derive

|nλj − (n/p)1/2d̃j | = OP

( n · kβ+3/2

(min{n, p})1/2

)
, ∀j ∈ {1, . . . , k}. (I.12)

Combining the above display with Assumption 5.2 and (I.7) and given k = o(min{n, p}), this implies

d̃j = OP ((np)1/2j−α), ∀j ∈ {1, . . . , k}. (I.13)

Second, we derive the difference in eigenvectors based on (I.9). Observe that based on (I.6) and

k = o(min{n, p}), we can derive that |(λ∗j )1/2(γ∗j )1/2 − λ1/2
j γ

1/2
j | is dominated by ΩP (j−β). Hence,

we can derive the spacing of the singular values of
√
npUΛ1/2Γ1/2V >,

(np)1/2
(
|λ1/2γ1/2 − λ1/2

j+1γ
1/2
j+1|

)
= ΩP ((np)1/2j−β), ∀j ∈ {1, . . . , k − 1}.

Hence, using the Davis-Kahan theorem by combining (I.9) with the above display, we conclude

‖Uj − Ũj‖2 = OP

( jβkβ+3/2

(min{n, p})1/2

)
, ∀k ∈ {1, . . . , k}. (I.14)

Using (I.7), (I.12), and (I.14), along with Lemma J.3,

1

n
‖X(S) −X(Θ)‖2F =

1

n

k∑
j=1

‖(nλj)1/2Uj − (n/p)1/4d̃
1/2
j Ũj‖22,

≤ 2

n

k∑
j=1

‖(nλj)1/2(Uj − Ũj)‖22 + ‖(nλj)1/2 − (n/p)1/4d̃
1/2
j )Ũj‖22,

≤ 2

n

k∑
j=1

nλj‖Uj − Ũj‖22 +O
(( |nλj − (n/p)1/2d̃j |

(nλj)1/2

)2)
= OP (k4β−α+4/min{n, p}).

Step 4: (Approximation from X(Θ) to X̂). By assumption, we have

‖Θ− Θ̂‖F ≤ ε. (I.15)

This implies ‖Θ− Θ̂‖op ≤ (2k)1/2ε. By Weyl’s inequality, we conclude

|(n/p)1/2d̃j − (n/p)1/2d̂j | = OP ((kn)1/2ε/p1/2), ∀j ∈ {1, . . . , k}. (I.16)

In addition, following a similar logic as above, using the Davis-Kahan theorem along with (I.12)
to control the spacing of the eigenvalues, we can derive

‖Ũj − Ûj‖2 = OP (jβk1/2ε/(np)1/2), ∀j ∈ {1, . . . , k}. (I.17)
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Hence, analogous to the derivation above, using (I.13), (I.16), and (I.17), along with Lemma J.3,

1

n
‖X(Θ) − X̂‖2F =

1

n

k∑
j=1

‖(n/p)1/4d̃
1/2
j Ũj − (n/p)1/4d̂

1/2
j Ûj‖22

≤ 2

n

k∑
j=1

‖(n/p)1/4d̃
1/2
j (Ũj − Ûj)‖22 + ‖(n/p)1/4(d̃

1/2
j − d̂1/2

j )Ûj‖22

≤ 2

n

k∑
j=1

(n/p)1/2d̃j‖Ũj − Ûj‖22 +O
(( |(n/p)1/2d̃j − (n/p)1/2d̂j |

(n/p)1/4d̃
1/2
j

)2)
= OP (k2β−α+2 max(ε2, ε)/(np)).

I.3 Proofs for Proposition D.1

Similar to Balakrishnan et al. (2017), we first analyze the behavior of an iteration of eSVD when
using the population loss function L(·, ·). Then, by leveraging Assumption D.3, we can analyze the
behavior of eSVD when applied on the sample loss function Ln(·, ·).

Lemma I.1. Assume the population loss function L(·, ·) satisfies Assumptions D.1 and D.2. Condi-

tioned on X and Y , then for any iteration t ∈ {1, . . . , T}, there exists matrices {X∗, Y ∗} ∈ {X ∗,Y∗}
and {X∗, Y ∗} ∈ {X ∗,Y∗} such that

‖X∗ −MX(Y
(t)

)‖F ≤
S

µ
‖Y ∗ − Y (t)‖F ,

‖Y ∗ −MY (X
(t)

)‖F ≤
S

µ
‖X∗ −X(t)‖F .

Proof. Observe that by the first-order optimality conditions, for any Y
∗ ∈ Y∗, we have〈

∇XL(MX(Y
∗
), Y

∗
), X ′ −MX(Y

∗
)
〉
≥ 0, for all X ′ such that (X ′i)

>Y
∗
j ∈ R ∀(i, j)

and similarly,〈
∇XL(MX(Y

(t)
), Y

(t)
), X ′ −MX(Y

(t)
)
〉
≥ 0, for all X ′ such that (X ′i)

>Y
(t)

j ∈ R ∀(i, j)

By combining the two inequalities by setting X ′ = MX(Y
(t)

) in the first display and X ′ = MX(Y
∗
)

in the second display with some algebra, we get〈
∇XL(MX(Y

(t)
), Y

(t)
)−∇XL(MX(Y

∗
), Y

(t)
), MX(Y

(t)
)−MX(Y

∗
)
〉

≤
〈
∇XL(MX(Y

∗
), Y

∗
)−∇XL(MX(Y

∗
), Y

(t)
), MX(Y

(t)
)−MX(Y

∗
)
〉
. (I.18)

By manipulating the properties of strong convexity assumed in Assumption D.1, we can lower
bound the left-hand term in (I.18) by〈

∇XL(MX(Y
(t)

), Y
(t)

)−∇XL(MX(Y
∗
), Y

(t)
), MX(Y

(t)
)−MX(Y

∗
)
〉

≥ µ‖MX(Y
∗
)−MX(Y

(t)
)‖2F = µ‖X∗ −X(t+1)‖2F , (I.19)
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where we plugged in the definition of X∗ ∈ X ∗ and X(t+1) in the last display (see (D.5)).
Similarly, by the Lipschitz smoothness assumed in Assumption D.1 with Cauchy-Schwarz in-

equality, we can upper bound the right-hand term in (I.18) by〈
∇XL(MX(Y

∗
), Y

∗
)−∇XL(MX(Y

∗
), Y

(t)
), MX(Y

(t)
)−MX(Y

∗
)
〉

≤ S‖X∗ −X(t+1)‖F ‖Y
∗ − Y (t)‖F . (I.20)

Combining (I.19) and (I.20) into the original equation (I.18) yields

µ‖X∗ −X(t+1)‖2F ≤ S‖X∗ −X(t+1)‖F ‖Y
∗ − Y (t)‖F ,

which completes the proof after simple rearrangements.

Similar to Zhao et al. (2015), we now prove Proposition D.1 using the above lemma in conjunction
with Lemma J.2 which describes the effect of the LeftSVD operator.

Proof of Proposition D.1 . For simplicity, let κ = S/µ. By triangle inequality and Lemma I.1,

we have that there exists some {X∗(t), Y ∗(t)} ∈ {X ∗,Y∗} and {X∗(t), Y ∗(t)} ∈ {X ∗,Y∗} for all
t ∈ {0, . . . , T},

‖X∗(t) −MY
n (Y

(t)
)‖F ≤ ‖X∗(t) −MX(Y

(t)
)‖F + ‖MX(Y

(t)
)−MX

n (Y
(t)

)‖F

≤ κ‖Y ∗ − Y (t)‖F + εunif(n, p). (I.21)

Applying Lemma J.2 and recalling that the smallest non-zero singular value of X∗(t) is d̃k/p
1/2, we

obtain

‖X∗(t+1) −X(t+1)‖F ≤
8(np)1/2

d̃k

(
εunif(n, p) + κ‖Y ∗(t) − Y (t)‖F

)
. (I.22)

Similarly,

‖Y ∗(t) − Y (t)‖F ≤
8(np)1/2

d̃k

(
εunif(n, p) + κ‖X∗(t) −X(t)‖F

)
. (I.23)

Hence, observe that by the conditions of Proposition D.1, we are ensured that if ‖Y ∗(0)−Y (0)‖F ≤ ω
(Assumption D.4), then by iteratively applying (I.21) through (I.23), then max{‖X∗(t)−X(t)‖F , ‖Y

∗(t)−
Y

(t)‖F } ≤ ω for all t ∈ {1, . . . , T}. Therefore, by infinite geometric summation,

‖X∗(T ) −X(T )‖F ≤
8(np)1/2

d̃k

(
εunif(n, p) + κ‖Y ∗(T−1) − Y (T−1)‖F

)
≤ 8(np)1/2

d̃k

(
εunif(n, p) + κ · 8(np)1/2

d̃k

(
εunif(n, p) + κ‖X∗(T−1) −X(T−1)‖F

))
≤ . . . ≤ 8(np)1/2

d̃k − 8(np)1/2κ
εunif(n, p) +

(8(np)1/2κ

d̃k

)(2T−1)

‖Y ∗(0) − Y (0)‖F .

Once again, by the conditions of Proposition D.1, we are ensured that

8(np)1/2

d̃k − 8(np)1/2κ
< 1, and lim

T→∞

(8(np)1/2κ

d̃k

)(2T−1)

= 0.
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Therefore, for large enough T , we conclude for some universal constant C,

‖Θ− Θ̂‖F = ‖X∗(T )
(Y ∗(T ))> −X(T )

(Y (T ))>‖F

= ‖X∗(T )
(Y ∗(T ))> −X(T )

(Y ∗(T ))> +X
(T )

(Y ∗(T ))> −X(T )
(Y (T ))>‖F

≤ ‖Y ∗(T )‖2︸ ︷︷ ︸
d̃1/n1/2

‖X∗(T ) −X(T )‖F + ‖X(T )‖2︸ ︷︷ ︸
n1/2

‖Y ∗(T ) − Y (T )‖F

= C ·
(max{n1/2, d̃1/n

1/2} · (np)1/2

d̃k − 8 max{n, p}1/2κ
· εunif(n, p)

)
.

I.4 Proofs for Lemma E.1 through Corollary E.5

Useful facts It is useful to have the following forms of the gradients and Heissan written down.

• The gradient ∇XL(X)(X,Y ) ∈ Rn×k has the ith row equal to, for i ∈ {1, . . . , n},

1

p

p∑
j=1

(
− 1

X>i Y j
− τ2E[Aij ] + τ2E[A2

ij ](X
>
i Y j)

)
Y j .

• Let ∇Y [∇XL(X)(X,Y )] ∈ R(nk)×(pk) denote the gradient of above function with respect to
Y . If we focus on a particular block of k rows corresponding to a specific Xi and a particular
block of k columns corresponding to a specific Y j , we have

1

p

[(
− 1

X>i Y j
+ τ2E[Aij ]− τ2E[A2

ij ](X
>
i Y j)

)
Ik +

( 1

(X>i Y j)
2

+ τ2E[A2
ij ]
)
XiY

>
j

]
.

• The Hessian matrix ∇2
XL(X)(X,Y ) ∈ R(nk)×(nk) is all 0, except for n k × k blocks along the

diagonal. The ith block is equal to, for i ∈ {1, . . . , n},

1

p

p∑
j=1

( 1

(X>i Y j)
2

+ τ2E[A2
ij ]
)
Y j(Y j)

>.

We list properties about the curved Gaussian distribution assumed in (3.1) that will be needed.
Recall that Aij ∼ N(µij , µ

2
ij/τ

2), where µij = −1/θij .

• (First and second moment):

E[Aij ] = 1/θij , and E[A2
ij ] =

( 1

τ2
+ 1
) 1

θ2
ij

. (I.24)

• (Squared random variable):

A2
ij

d
=

1

(τθij)2
Zij , where Zij ∼ χ2

(
k = 1, λ = τ2

)
.

Hence, the variance of A2
ij is upper-bounded by

κ =
2(1 + 2τ2) · r4

τ4
. (I.25)
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Proof of Lemma E.1. We start with the lower bound. Observe that minimum eigenvalue of one of
the n k × k blocks will be the minimum eigenvalue of the overall Hessian matrix ∇2

XL(X)(X,Y ).
Hence, inspecting one particular block for a specific i ∈ {1, . . . , n}, observe that

1

p

p∑
j=1

( 1

(X>i Y j)
2

+ τ2E[A2
ij ]
)
Y j(Y j)

> � 2 + τ2

r2
· 1

p

p∑
j=1

Y j(Y j)
>,

where
∑
j Y j(Y j)

> = pIk since the columns of Y are orthogonal. For the upper bound, we apply
the same logic.

Proof of Lemma E.2. Recall by the multivariate Taylor expansion (Feng et al., 2013), we have

∇XL(X)(X∗, Y
∗
)−∇XL(X)(X∗, Y ) =

∫ 1

0

∇Y [∇XL(X∗, Y
∗

+ tu)]du · t,

where t = Y
∗ − Y . This leads to the following inequality,

‖∇XL(X)(X∗, Y )−∇XL(X)(X∗, Y
∗
)‖F ≤ sup

u∈[0,1]

∥∥∥∇Y [∇XL(X∗, Y
∗

+ tu)]︸ ︷︷ ︸
B(u)

∥∥∥
op
‖Y ∗ − Y ‖F .

Observe we can split the matrix B(u) into two matrices, one sparse matrix and one dense matrix.
That is, B(u) = B1(u) + B2(u), all matrices of dimension (nk) × (pk). The (i, j)th k × k block of
B1(u) has entries equal to

1

p

(
− 1

(X∗i )>(Y
∗
j + u(Y j − Y

∗
j ))
− τ2E[Aij ] + τ2E[A2

ij ]
(
(X∗i )>(Y

∗
j + u(Y j − Y

∗
j )
))
Ik,

while the (i, j)th k × k block of B2(u) has entries equal to

1

p

( 1

((X∗i )>(Y
∗
j + u(Y j − Y

∗
j ))

2
+ τ2E[A2

ij ]
)
X∗i (Y

∗
j + u(Y j − Y

∗
j ))
>. (I.26)

We first analyze B1(u). Plugging in (I.24), we obtain

1

p

(
− 1

(X∗i )>(Y
∗
j + u(Y j − Y

∗
j ))
− τ2

(X∗i )>Y
∗
j

+ (τ2 + 1) ·
(X∗i )>(Y

∗
j + u(Y j − Y

∗
j ))(

(X∗i )>Y
∗
j

)2︸ ︷︷ ︸
C1

)
Ik,

To analyze C1 in the perspective of Assumption E.2, we analyze

max
t

∣∣∣− r

(1 + t)
− τ2 · r + (τ2 + 1)(1 + t) · r

∣∣∣ : t ∈
[
− 1

log(min{n, p})
,

1

log(min{n, p})

]
.

By analyzing the Lagrangian of the above display, we see that for min{n, p} large enough,

C1 ≤ c ·
τ2r

log(min{n, p})

for some universal constant c. Hence, we derive that

B1(u) � cτ2r · 1

p · log(min{n, p})
· Ik ⊗ 1n×p.
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Therefore,

‖B1(u)‖op ≤ cτ2r · (np)1/2

p · log(min{n, p})
. (I.27)

We next analyze B2(u). Plugging in (I.24), we obtain

1

p

( 1

((X∗i )>(Y
∗
j + u(Y j − Y

∗
j ))

2
+

τ2 + 1(
(X∗i )>Y

∗
j

)2︸ ︷︷ ︸
C2

)
X∗i (Y

∗
j + u(Y j − Y

∗
j ))
>.

By analyzing C2 similar to how we analyzed C1, we derive that for min{n, p} large enough,

B2(u) � (τ2 + 2)r2 · 1

p
·X∗ ⊗

(
Y
∗

+ u(Y − Y ∗)
)>
.

Therefore,

‖B2(u)‖op ≤ (τ2 + 2)r2 · 2d̃1

p
. (I.28)

We conclude by combining (I.27) and (I.28) by a triangle inequality.

Proof of Lemma E.3 Prior to proving Lemma E.3, we need the following set of concentration
bounds. Recall that κ upper-bounds the variance of A2

ij under the curved Gaussian model (see
(I.25)).

Lemma I.2. Conditioned on Θ, let Aij follow the distribution (4.7). Let κ = (2(1 + 2τ2))r4/τ4.
Under Assumption E.1, for a fixed i ∈ {1, . . . , n}, for some universal constant c, for fixed matrices
X and Y , each of the following four inequalities hold separately.

P
(∣∣∣1
p

p∑
j=1

−τ2X>i Y j(Aij − E[Aij ])
∣∣∣ ≥ t) ≤ e exp

[ −ct2
κ2τ4r2

· p
]
, (I.29)

P
(∥∥∥1

p

p∑
j=1

−τ2Y j(Aij − E[Aij ])
∥∥∥

2
≥ t
)
≤ ke exp

[−ct2
κ2τ4

· p
k2

]
, (I.30)

P
(∣∣∣1
p

p∑
j=1

τ2(X>i Y j)
2

2
(A2

ij − E[A2
ij ])
∣∣∣ ≥ t) ≤ 2 exp

[
− cmin

( 4t2

κ2τ4r4
,

2t

κτ2r2

)
· p
]
, (I.31)

P
(∥∥∥1

p

p∑
j=1

(
τ2(X>i Y j)(A

2
ij − E[A2

ij ])
)
Y j

∥∥∥
2
≥ t
)
≤ 2k exp

[
− cmin

( t2

κ2τ4r2
,

t

κτ2r

)
· p
k2

]
. (I.32)

Proof. (I.29) and (I.31) are direct applications of Hoeffding’s and Bernstein’s inequality (Vershynin
(2010), Proposition 5.10 and 5.16) since X>i Y j ≤ r. To show (I.30), observe that for a particular
coordinate ` = 1, . . . , k, we can apply Hoeffding’s inequality to show

P
(∣∣∣1
p

p∑
j=1

−τ2Y j`(Aij − E[Aij ])
∣∣∣ ≥ t) ≤ e exp

(−ct2
κ2τ4

· p
)
,

since the `2-norm of any column of Y is
√
p. Applying a maximal inequality and then summing over

all k dimensions, we have

P
(∥∥∥1

p

p∑
j=1

−τ2Y j(Aij − E[Aij ])
∥∥∥

1
≥ t
)
≤ ke exp

(−ct2
κ2τ4

· p
k2

)
,
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which upper-bounds the RHS of (I.30). The same technique using Bernstein’s inequality can be
used to show (I.32).

With these concentration statements, we are ready to proceed with the analysis of εfixed(n, p)
row-wise.

Lemma I.3. Assume the conditions in Lemma E.1. Let

Λ̂ = argmin
Λ∈Rk

1

p

p∑
j=1

[
− log(Λ>Y j)−

[
τ2Aij
−τ2A2

ij/2

]> [
Λ>Y j

(Λ>Y j)
2

] ]
, (I.33)

and

Λ∗ = argmin
Λ∈Rk

1

p

p∑
j=1

[
− log(Λ>Y j)−

[
τ2E[Aij ]
−τ2E[A2

ij/2]

]> [
Λ>Y j

(Λ>Y j)
2

] ]
. (I.34)

Then, conditioned on X and Y , with probability at least 1− 6/(np),

‖Λ∗ − Λ̂‖2 ≤ c
( log(np)

p

)1/4

,

where c is a constant that depends only on k, µ, L, τ and r.

Proof. Step 1: (Setup). Our proof is inspired by Lemma 4 of Candès et al. (2020). The proof
is fairly straightforward and relies mainly on the convexity properties of L and the concentration
statements established in Lemma I.2.

Throughout this proof, we let c1, c2, . . . denote constants depend on quantities that we will
explicitly state, but their explicit form can change from line to line. Let Ln(·) and L(·) denote
functions being minimized in (I.33) and (I.34) respectively throughout this proof only. Since L is
µ-strongly convex, we have

L(Λ) ≥ L(Λ∗) +
1

2µ
‖Λ∗ − Λ‖22.

Define ‖Λ∗ − Λ‖2 = c1v and h = v2/(6c21µ) for some constant c1 that depends on quantity defined
later in the proof. Using these definitions, the above display equals

L(Λ) ≥ L(Λ∗) + 3h. (I.35)

Next, consider the sphere centered at Λ∗ with radius v, Bv(Λ∗) = {Λ : ‖Λ∗−Λ‖2 = v}. Consider
the event E defined as

inf
Λ∈B(Λ∗)

Ln(Λ) > L(Λ∗) + h and Ln(Λ∗) < L(Λ∗) + h. (I.36)

Note that when event E occurs, by convexity of Ln, Λ̂ (the minimizer of Ln) must lie within the

sphere B(Λ∗), so hence, ‖Λ̂− Λ∗‖2 ≤ v.
Step 2: (Decomposition of E). Let Λ1, . . . ,ΛM be M points on B(Λ∗), to be specified in the

next step. We decompose E in the above display into three separate events that we will control
individually. Let the event E1 be defined as

max
i∈{1,...,M}

|L(Λi)− Ln(Λi)| ≤ h. (I.37)

and the event E2 be defined as

inf
Λ∈Bv(Λ∗)

Ln(Λ) ≥ Ln(Λi)− h. (I.38)
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Starting from the event E1, we have the following line of implications

max
i∈{1,...,M}

|L(Λi)− Ln(Λi)| < h =⇒ ∀i ∈ {1, . . . ,M}, Ln(Λi) ≥ L(Λi)− h

=⇒ ∀i ∈ {1, . . . ,M}, Ln(Λi)− h > L(Λ∗) + h,

=⇒ inf
Λ∈Bv(Λ∗)

Ln(Λ) > L(Λ∗) + h,

where the second implication follows from the definition of h in (I.35), and the last implication holds
under the event E2. Hence, together E1 and E2 would imply the first part of E in (I.36).

Observe that the following event E3, defined as,

|L(Λ∗)− Ln(Λ∗)| ≤ h (I.39)

would imply the second part of E in (I.36). Hence, since the event E1 ∩ E2 ∩ E3 implies event E,
we have by union bound

P(Ec) ≤ P(Ec1) + P(Ec2) + P(Ec3).

Therefore, the remainder of the proof shows that for a rate of v, the summation of the probability
of the complementary events is small.

Step 3: (Analysis of E1). We can construct an γ-net of the sphere B(Λ∗). Specifically, by Lemma
9.5 of Ledoux and Talagrand (2013), we require at most most M = (3/γ)k matrices, denoted as
Λ1, . . . ,ΛM , that satisfies,

for any Λ ∈ B(Λ∗), min
i∈{1,...,M}

‖Λ− Λi‖2 ≤ γ.

For the rest of the proof, we will set

γ = (log(np)/p)1/4. (I.40)

We analyze E1 in (I.37), the event that Ln(Λi) and L(Λi) are close along the γ-net. Using a
union bound along with concentration bounds shown in Lemma I.2, for p large enough, we have
with probability at least 1− 2/(np) that event E1 occurs,

max
i∈{1,...,M}

|L(Λi)− Ln(Λi)| ≤ c2
( log(np) + k log(3/γ)

p

)1/2

,

where c2 depends on τ and r. Observe that with our choice of γ in (I.40), log(np) dominates
k log(3/γ) for n large enough. Hence, treating k as a constant, to set the left-hand side of the above
display to be equal to h, we need

v = c3
(

log(np)/p
)1/4

, (I.41)

where c3 depends on k, µ, τ , and r.
Step 4: (Analysis of E2). Next, we analyze E2 in (I.38). By convexity, letting Λi be the closest

vector to Λ in `2 distance,

Ln(Λ) ≥ Ln(Λi) + 〈∇Ln(Λi),Λ− Λi〉 ≥ Ln(Λi)− ‖∇Ln(Λi)‖2‖Λ− Λi‖2. (I.42)

We know ‖Λ− Λi‖2 ≤ γ by construction. To bound ‖∇Ln(Λi)‖2, using a union bound and Lemma
I.2 once again, we have with probability at least 1− 2/(np) for p large enough, event E′2 occurs,

max
i∈{1,...,M}

‖∇L(Λi)−∇Ln(Λi)‖2 ≤ c2k
( log(np) + k log(3/γ)

p

)1/2

. (I.43)
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Furthermore, we know that since ∇L(Λ∗) = 0 and the gradient of L is L-Lipschitz smooth, using
the definition of v in (I.41), we have

‖∇L(Λi)−∇L(Λ∗)‖2 ≤ L‖Λi − Λ∗‖2 = Lv = Lc3

( log(np)

p

)1/4

. (I.44)

Therefore, combining (I.43) and (I.44), that on event E′2,

max
i∈{1,...,M}

‖∇Ln(Λi)‖2‖Λi − Λ̂‖2 ≤
(
c2

( log(np)

p

)1/2

+ Lc3

( log(np)

p

)1/4)
· γ.

Recalling the rate of γ set in (I.40) and plugging the above inequality back into (I.42), we have on
event E2,

Ln(Λ) ≥ Ln(Λi)− c4
( log(np)

p

)1/2

= Ln(Λi)− h, (I.45)

where c4 depends on L, k, µ, τ , and r. This shows E2.
Step 5: (Analysis of E3 and conclusion). From similar calculations above based on Lemma I.2,

we can show that for p large enough, we have with probability at least 1 − 2/(np) that event E3

occurs,
|L(Λ∗)− Ln(Λ∗)| ≤ h.

Hence, we conclude the proof, where c1 initially stated is a constant that depends on L, k, µ, τ , and
r. By Lemma E.1, we know L and µ are constants that depend on only τ and r.

We are now ready to prove Lemma E.3.

Proof of Lemma E.3. Let X̂ = Mn(Y ) and X∗ = M(Y ). By Lemma I.3, we have with probability
6/(np), for any i ∈ {1, . . . , n},

‖X∗i − X̂i‖22 ≥ c
( log(np)

p

)1/2

.

Hence, applying a union bound over all i ∈ {1, . . . , n}, we have with probability 6/p,

max
i∈{1,...,n}

‖X∗i − X̂i‖22 ≥ c
( log(np)

p

)1/2

.

This event implies that,

‖X∗ − X̂‖2F ≥ cn
( log(np)

p

)1/2

.

Proof of Corollary E.4. The proof mainly follows from the proof of Proposition D.1 above, where
we replace the term εunif(n, p) with εfixed(n, p), which requires us to take a union bound over all T
iterations.

Due to our invocation of Assumptions 5.1 and 5.2, we have shown already in (I.10) that d̃j scales
with (npλjγj)

1/2 asymptotically, completing the proof.
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J Auxiliary results and proofs

The first result is a restatement of Proposition 2.1 of Vershynin (2012), which helps us establish the
concentration of the estimated second moment matrix.

Lemma J.1 (Probability bound of operator norm of a covariance matrix). Let X1, . . . , Xn be i.i.d.
k-dimensional random variables that satisfies Assumption 5.1 with a fixed constant D (also known
as the sub-Gaussian norm). Then, for any δ,

P
(∥∥∥E[XiX

>
i ]− 1

n

n∑
i=1

XiX
>
i

∥∥∥
op
≥ C

(√k

n

))
≤ 1− δ,

for n sufficiently large enough, and where C is a constant that depends only D and δ.

The following perturbation result can be derived using the perturbation results stated in Theorem
2 of Yu et al. (2014) with Hermatian dilation (see, e.g. Tropp (2012)) along with related notions
of distance among orthonormal matrices stated in Lemma 1 of Cai et al. (2018), which helps us
establish the concentration of the left singular vectors given concentration of the second moment
matrices.

Lemma J.2 (Davis-Kahan theorem for singular vectors). For any two n × p symmetric matrices

Θ and Θ̂ where m = min{n, p}, let σ1 > . . . > σm and σ̂1 > . . . > σ̂m denote the singular values

of each matrix respectively, and U1, . . . , Uk and Û1, . . . , Ûm denote their corresponding left singular
vectors. Fix d ∈ {1, . . . ,m} and let U = [U1, . . . , Ud] and Û = [Û1, . . . , Ûd] denote the concatenated
matrix of left singular vectors. Then, letting Od,d denote the set of d× d unitary matrices,

inf
Q∈Od,d

‖U − ÛQ‖F ≤
4 min

{
d1/2‖Θ− Θ̂‖op, 2

1/2‖Θ− Θ̂‖F
}

σd − σd+1
,

where we use the convention that σm+1 = 0.

We note that when we apply the above lemma in our proofs throughout Appendix I, the unique-
ness of the eigenvalues and the spacing of the eigenvalues assumed in Assumption 5.2 absolves us
from needing to worry about the above unitary matrix Q. Instead, we simply need to worry “up to
sign” as alluded to Proposition 5.2, where we need to possibly multiply the columns of Û by ±1.

The next result on random sequences can be easily verified by direct calculation.

Lemma J.3. For two positive deterministic sequences an and bn, consider a random sequence
Xn = OP (an) and a random positive sequence Yn = ΩP (bn). If an = o(bn), then

(Yn +Xn)1/2 − Y 1/2
n = OP (anb

−1/2
n ).
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