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Abstract 
 

Health disparity across layers of society involves reasons beyond the healthcare system. 
Socioeconomic status (SES) shapes people’s daily interaction with their social environment, and 
is known to impact various health outcomes. Using generative probabilistic modeling, we 
investigated health satisfaction and complementary indicators of socioeconomic lifestyle in the 
human social brain. In a population cohort of ~10,000 UK Biobank participants, our first analysis 
probed the relationship between health status and subjective social standing (i.e., financial 
satisfaction). We identified volume effects in participants unhappy with their health in regions of 
the higher associative cortex, especially the dorsomedial prefrontal cortex (dmPFC) and bilateral 
temporo-parietal junction (TPJ). Specifically, participants in poor subjective health showed 
deviations in dmPFC and TPJ volume as a function of financial satisfaction. The second analysis 
on health status and objective social standing (i.e., household income) revealed volume deviations 
in regions of the limbic system for individuals feeling unhealthy. In particular, low-SES 
participants dissatisfied with their health showed deviations in volume distributions in the 
amygdala and hippocampus bilaterally. Thus, our population-level evidence speaks to the 
possibility that health status and socioeconomic position have characteristic imprints in social 
brain differentiation. 
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Introduction 
  

Most recently, the COVID-19 pandemic brought inequalities in socioeconomic status 
(SES) into sharp focus. Disproportionately worse health outcomes were reported in low-SES 
individuals (Patel et al. 2020). SES is a multifactorial construct that tracks dimensions of lifestyle, 
habitus, and world view, such as economic resources, occupational prestige and education 
attainment (Farah, 2017; Muscatell, 2018). A variety of studies showed that the “better off” an 
individual is as captured by common SES measures, the lower their risk to incur detrimental mental 
and physical health outcomes (Nancy E. Adler & Newman, 2002; Braveman et al., 2005).  

In general, health disparities may be related to limited access to community resources or 
select lifestyle choices. Compared to high-SES individuals, low-SES individuals tend to have less 
adequate living conditions, higher incidences of smoking, alcohol consumption and obesity, less 
physical lifestyles, or have limited access to sufficient nutrition or health care services (N. E. Adler 
et al., 1994; Gwatkin, 2017; Sapolsky, 2004). Indeed, one study demonstrated systematic 
differences in social distancing behavior during the COVID-19 pandemic based on socioeconomic 
level (Weill et al. 2020). Using mobile device data, the results revealed high-income individuals 
to practice safe social distancing to a greater degree than low-income individuals. Such previous 
studies underscore how differences in one’s socioeconomic standing impact long-term health and 
life outcomes. Regular interaction with other people is also intimately related to our overall well-
being. The experience of social isolation is linked to deteriorated health, and even shortened life 
expectancy (Bzdok & Dunbar, 2020; Cacioppo & Hawkley, 2003). One meta-analytic survey in 
~300,000 individuals reported a shortage of social relationships to contribute to precipitated 
mortality, as well as risk factors including obesity, smoking and lack of exercise (Holt-Lunstad et 
al., 2010).  

One of the earliest investigations on the interplay between health and SES comes from a 
longitudinal social epidemiological study with male British civil servants (Marmot et al., 1978). 
Mortality rates from coronary heart disease were negatively associated with a person’s position in 
the occupational hierarchy. Roughly three decades later, further social epidemiological studies 
reported increased risks of cancer, respiratory and gastrointestinal diseases and injuries among 
low-SES individuals (Mackenbach et al., 2003). In addition to higher mortality rates, low 
socioeconomic standing amplifies the risk for disability and psychiatric disorders such as major 
depressive disorder (Lorant et al., 2003). Low SES has even been linked to lower general 
intelligence (Yang et al., 2016), which in turn is related to poorer decision making of lifestyle 
choices and thus long-term health outcomes. 

In contrast to objective SES measures such as yearly income, subjective or perceived 
indicators of SES reflect a person’s perspective on where they stand in the social hierarchy in 
comparison to others (Muscatell, 2018). The psychosocial nature of subjective SES indicators may 
also pinpoint an individual’s perceived well-being and personal experiences of deprivation better 
than objective SES measures (Brito & Noble, 2014; Singh-Manoux et al., 2007). Subjective SES 
measures have previously been found to be as valuable as objective SES indicators in predicting 
health outcomes (Singh-Manoux et al. 2005). For instance, a longitudinal study compared 
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objective and subjective SES in forecasting health status. Objective SES was measured as one’s 
position in the occupational hierarchy and subjective SES was indexed as one’s perceived 
anchoring on the social ladder of society. The authors found in ~5500 middle-aged adults that over 
time, subjective SES predicted health status and health decline better than objective SES (Singh-
Manoux et al. 2005). Moreover, a population health survey asked ~21,000 participants to identify 
their own anchoring in social network layers by indicating how satisfied they were with their 
finances (Li et al., 2018). The study showed people who self-identified as being in a lower social 
class were nine times more likely to report poor self-rated health than excellent health, compared 
to higher-SES individuals (Li et al., 2018). Thus, objective and subjective measures of SES may 
together capture complementary aspects and provide a clearer understanding of an individual’s 
embedding in the societal hierarchy. 

 Varying levels of SES were shown in neuroimaging studies to reveal different 
manifestations in brain structures important for health. These differences in neural architecture 
have been reported to be detectable as early as the age of ~8 years (Farah, 2017; Hackman & Farah, 
2009). In adults, a structural brain-imaging study observed smaller amygdala and hippocampal 
volumes for participants experiencing financial hardship compared to participants more financially 
stable (Butterworth et al. 2012). These two limbic regions are involved in the physiological 
regulation of stress, and are also known to be neural substrates with important implications for 
social interaction processes (e.g., Bickart et al., 2011).  

The stress of experiencing financial hardship may have downstream consequences on 
influencing limbic grey matter volume via functional alterations in cortisol release through the 
hypothalamic-pituitary-adrenocortical axis (Gianaros et al. 2007; Butterworth et al. 2012). Indeed, 
a previous neuroimaging study investigated the link between socioeconomic disadvantage and 
cortical brain structure in n=~450 middle-aged adults (Gianaros et al. 2017). The authors found 
socioeconomic disparity, indexed by a composite measure of households under the poverty level 
and receiving public assistance, education level, employment status and household income, to be 
closely linked to reduced grey matter volume in regions of the frontal and temporal lobes (Gianaros 
et al., 2017). Notably, some of the brain regions reported by Gianaros and colleagues are also 
known to be implicated in several fundamental social processes such as the dorsomedial prefrontal 
cortex, fusiform gyrus, and temporo-parietal junction (Alcalá-López et al. 2018; Mitchell 2009; 
Pelphrey et al. 2004). Gianaros and colleagues suggest socioeconomic adversity may have 
widespread manifestations in neural architecture through one’s health status. 

Exposure to stressful or negative experiences may explain the observed SES-related 
discrepancies in features of brain architecture. The experience of chronic stress is known to 
increase the neuroendocrine response and thus amplify the risk for stress-related diseases (N. E. 
Adler et al., 1994; Sapolsky, 2004, 2005). In line with this contention, a previous brain imaging 
study found low-SES individuals to show enhanced activity in the dmPFC in response to social 
threat, compared to participants higher up on the social hierarchy (Muscatell et al., 2016). 
Furthermore, neural activity changes in the dmPFC were found to mediate the relationship between 
social status and increases in inflammation, a marker for illness (Muscatell et al., 2016). Thus, 
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these previous studies provide evidence that differences in one’s socioeconomic circumstances 
may ultimately relate to longevity, and hint to neural representations that may underpin SES-health 
gradients. 

Despite the intimate relationship between SES and health, accumulating evidence shows 
that more social ties and tighter connections may act as a buffer against potential illness. For 
example, a population-sized longitudinal study (n=~5000) found that belonging to more social 
groups protected against future depression in healthy participants (Cruwys et al., 2013). Notably, 
the authors also found that being more socially engaged alleviated and prevented relapse of 
existing depression symptoms in depressed participants (Cruwys et al., 2013). Similarly, a 
behavioral study administered flu vaccines to participants in an effort to assess the relationship 
between illness and the strength of social ties (Pressman et al. 2005). The authors found lonely 
individuals with few friends to show the most reduced immune response compared to individuals 
with larger social networks, and those better surrounded (Pressman et al., 2005). Together, these 
studies converge on the contention that cultivating interpersonal relationships may provide 
protective advantages for long-term health.  

 
In summary, earlier findings hint at how different levels of socioeconomic status may 

interfere with long-term health. Previous neurobiological evidence has also revealed SES-related 
manifestations in several brain regions important for health. To complement these aforementioned 
investigations, our study probed the extent to which health satisfaction and two measures of SES 
are reflected in social brain morphology. In contrast to previous neuroimaging studies with small 
sample sizes, we used the uniformly acquired 10,000 participant release from the UK Biobank 
initiative - the world’s largest available biomedical database. For anatomical guidance into the 
human social brain, we employed a recently available social brain atlas. These topographical 
definitions included four brain networks at increasing hierarchical level and their 36 brain regions 
that were consistently implicated in social and affective processes (Alcalá-López et al., 2018). To 
zoom in on variation in social brain morphology, our analyses implemented a probabilistic 
modelling perspective. We purpose-designed a framework that explicitly modelled the extent of 
similarity and divergence between health-specific social brain volume patterns in the context of 
objective (i.e., income) and subjective (i.e., financial satisfaction) markers of SES. In two 
complementary analyses, we thus modelled the 36 social brain regions with their relation to four 
participant subgroups: simultaneously examining participants unsatisfied versus satisfied with 
their health in a low- versus high-SES indicator.  

 
Methods 

Data resources 
         The UK Biobank is a prospective epidemiology resource that offers extensive behavioral and 
demographic assessments, medical and cognitive measures, as well as biological samples in a 
cohort of 500,000 participants recruited from across Great Britain (Sudlow et al., 2015). This 
openly accessible population dataset aims to provide multimodal brain-imaging for 100,000 
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individuals to be completed in 2022 (Miller et al., 2016). The present study was based on the data 
release providing brain-imaging from 10,129 individuals to detail population variation in grey-
matter morphology of the social brain as measured by T1-weighted structural magnetic resonance 
imaging (MRI). All participants were scanned at the same assessment center. Improving 
comparability and reproducibility, our study profited from uniform data preprocessing pipelines 
that allow for easier comparability to other and future UKBB population studies (Alfaro-Almagro 
et al., 2018). The population sample included 47.6% males and 52.4% females, aged 40-69 years 
when recruited (mean age of ~55 years, standard deviation (SD) ± 7.5 years). The present analyses 
were conducted under UK Biobank application number 23827. All participants provided informed 
consent to participate (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200).  

For the present population neuroscience study, three health and lifestyle-related summary 
measures from the UKBB were considered: i) health satisfaction, ii) income as an objective 
measure of SES and iii) financial satisfaction as a subjective measure of SES. For the SES measure 
of income (UKBB ID: 738), participants were divided into the high-income subgroup if their 
yearly income exceeded £100,000, while the remaining participants were included in the low-
income group. For the SES measure of financial satisfaction (UKBB ID: 4581), participants were 
asked “In general how satisfied are you with your financial situation?”. Participants who rated 
themselves as extremely or very happy with their financial situation were included in the 
financially satisfied subgroup, while the remaining participants were included in the financially 
unsatisfied subgroup. Lastly, for the health satisfaction measure (UKBB ID: 4548), participants 
were asked "In general how satisfied are you with your health?". Participants who rated themselves 
as extremely or very happy with their health were included in the subgroup of people feeling 
healthy, while the remaining participants were included in the subgroup of people feeling 
unhealthy.  

Brain-imaging preprocessing procedures 
Identical MRI scanners (3T Siemens Skyra) were used at the same imaging site with the 

same acquisition protocols and standard Siemens 32-channel radiofrequency receiver head coils. 
To protect the anonymity of the study participants, brain-imaging data were defaced and any 
sensitive information from the header was removed. Automated processing and quality control 
pipelines were deployed (Miller et al. 2016). To improve homogeneity of the brain-imaging data, 
noise was removed by means of 190 sensitivity features. This approach allowed reliable 
identification and exclusion of problematic brain scans, such as scans with excessive head motion. 

The structural MRI data were acquired as high-resolution T1-weighted images of brain 
anatomy using a 3D MPRAGE sequence at 1 mm isotropic resolution. Preprocessing included 
gradient distortion correction, field of view reduction using the Brain Extraction Tool (Smith, 
2002) and FLIRT (Mark Jenkinson et al., 2002; M. Jenkinson & Smith, 2001), as well as non-
linear registration to MNI152 standard space at 1 mm resolution using FNIRT (Andersson et al., 
2007). To avoid unnecessary interpolation, all image transformations were estimated, combined 
and applied by a single interpolation step. Tissue-type segmentation into cerebrospinal fluid, grey 
matter (GM) and white matter was applied using FAST (FMRIB’s Automated Segmentation Tool, 
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Zhang et al. 2001) to generate full bias-field-corrected images. Analyses in the present study 
capitalized on the ensuing GM maps. In turn, SIENAX (Smith et al., 2002) was used to derive 
volume measures normalized for head sizes. The ensuing adjusted volume measurements 
represented the amount of grey matter corrected for individual brain sizes. 

 

Social brain atlas definition 

Our study benefited from a recent quintessential definition of the social brain in humans. 
This topographical atlas was derived by a large-scale quantitative synthesis of a diversity of 
functional MRI (fMRI) findings from thousands of experimental studies involving 22,712 
individuals (Alcalá-López et al., 2018). 36 volumes of interest were previously identified with 
consistent neural activity increases during a wide assortment of social and affective tasks. The 36 
data-derived target locations were also shown to be connectionally and functionally segregated 
into i) a visual-sensory network, ii) a limbic network, iii) an intermediate network, and iv) a higher-
associative network. This existing knowledge of how the social brain regions relate to major brain 
networks at different hierarchical processing levels was incorporated in our modeling approach 
(cf. below). 

The topographical specificity of our targeted analyses was thus enhanced by guiding brain 
volume extraction by the 36 volumes of interest, each associated with one of four social brain 
networks. Neurobiologically interpretable measures of grey-matter volume were extracted in the 
~10,000 participants by summarizing whole-brain anatomical maps guided by the topographical 
compartments of the social brain (Kernbach et al., 2018; Miller et al., 2016). We applied a 
smoothing filter of 5mm FWHM to the participants’ structural brain maps to homogenize local 
neuroanatomical differences (Kiesow et al. 2020). Local quantities of social brain morphology 
were then extracted as 36 average volume measures per participant. Grey-matter measures were 
averaged in spheres of 5mm diameter around the consensus location from the social brain atlas, 
averaging the preprocessed, tissue-segmented, and brain-size-adjusted MRI signal (cf. above) 
across the voxels belonging to a given target region (cf. Supl. Table 1 for stereotaxic MNI 
coordinates for each of the social brain atlas regions). The grey-matter information from all voxels 
belonging to a particular atlas region were added up and divided by the total number of region 
voxels. These operations returned a single representative measure for the mean grey-matter volume 
in the particular brain region. Note that using a smaller sphere diameter of 2.5mm or bigger spheres 
of 7.5mm yielded virtually identical results. This way of engineering morphological region 
summaries yielded 36 volume brain variables per participant, as many as the total number of social 
brain regions, which were subsequently z-scored by centering to zero mean and unit-variance 
scaled to one. These commonly employed estimates of population brain volume variability 
(Kernbach et al., 2018; Miller et al., 2016) in social brain anatomy served as the basis for all 
subsequent analysis steps. 
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All regions of interest used in this study are available online for transparency and reuse at 
the data-sharing platform NeuroVault (http://neurovault.org/collections/2462/). 

 

Probabilistic hierarchical modeling of volume variation in the social brain 

To jointly model the population distribution of brain volume effects underlying the 
relationship between subjective health and socioeconomic contexts, we designed and carried out a 
Bayesian hierarchical regression analysis (Gelman et al., 2013), building on our previous research 
(Bzdok et al. 2020; Kiesow et al. 2020; Bzdok et al. 2017). Traditionally, classical null-hypothesis-
testing approaches provide p-values against the null hypothesis of no effect in the data. Instead, 
our goal was to equally consider the outcomes of the presence vs. absence of health satisfaction 
and socioeconomic distinctions in human social brain regions in all parts of our modeling 
approach. We thus “let the data speak for themselves” by directly interrogating the population 
uncertainty intervals of volume parameter distributions in their relation to SES and health, rather 
than restricting attention to differences in mean volume alone.  

 The probability model with parameters that vary by network followed the following form: 

𝐿	~	𝑁(𝑦, 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0, 1)) 

𝑦 = 𝑥1 ∗ 𝑟𝑒𝑔𝑖𝑜𝑛_𝑏𝑒𝑡𝑎_1["]	+	. . . +	𝑥36 ∗ 𝑟𝑒𝑔𝑖𝑜𝑛_𝑏𝑒𝑡𝑎_36["] +	𝑐1 ∗ 𝑐𝑜𝑛𝑓𝑜𝑢𝑛𝑑_𝑏𝑒𝑡𝑎_1	+	. ..	 

𝑟𝑒𝑔𝑖𝑜𝑛_𝑏𝑒𝑡𝑎_1["]	~	𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑏𝑒𝑡𝑎_𝑙𝑜𝑤𝑒𝑟["] 

𝑟𝑒𝑔𝑖𝑜𝑛_𝑏𝑒𝑡𝑎_2["]	~	𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑏𝑒𝑡𝑎_𝑙𝑜𝑤𝑒𝑟["] 

⋯ 

𝑟𝑒𝑔𝑖𝑜𝑛_𝑏𝑒𝑡𝑎_7["]	~	𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑏𝑒𝑡𝑎_𝑙𝑖𝑚𝑏𝑖𝑐["] 

𝑟𝑒𝑔𝑖𝑜𝑛_𝑏𝑒𝑡𝑎_8["]	~	𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑏𝑒𝑡𝑎_𝑙𝑖𝑚𝑏𝑖𝑐["] 

⋯ 

𝑟𝑒𝑔𝑖𝑜𝑛_𝑏𝑒𝑡𝑎_15["]	~	𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑏𝑒𝑡𝑎_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒["] 

𝑟𝑒𝑔𝑖𝑜𝑛_𝑏𝑒𝑡𝑎_16["]	~	𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑏𝑒𝑡𝑎_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒["] 

⋯ 

𝑟𝑒𝑔𝑖𝑜𝑛_𝑏𝑒𝑡𝑎_26["]	~	𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑏𝑒𝑡𝑎_ℎ𝑖𝑔ℎ𝑒𝑟["] 

𝑟𝑒𝑔𝑖𝑜𝑛_𝑏𝑒𝑡𝑎_27["]	~	𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑏𝑒𝑡𝑎_ℎ𝑖𝑔ℎ𝑒𝑟["] 

⋯ 

𝑟𝑒𝑔𝑖𝑜𝑛_𝑏𝑒𝑡𝑎_36["]	~	𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑏𝑒𝑡𝑎_ℎ𝑖𝑔ℎ𝑒𝑟["] 
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𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑏𝑒𝑡𝑎_𝑙𝑜𝑤𝑒𝑟 	~	𝑁(0, 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0, 1)) 

𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑏𝑒𝑡𝑎_𝑙𝑖𝑚𝑏𝑖𝑐 	~	𝑁(0, 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0, 1)) 

𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑏𝑒𝑡𝑎_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 	~	𝑁(0, 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0, 1)) 

𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑏𝑒𝑡𝑎_ℎ𝑖𝑔ℎ𝑒𝑟 	~	𝑁(0, 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0, 1)) 

 

where 𝑥$ denote the brain volumes for all 36 brain regions of the social brain atlas (z-scored across 
participants), 𝑦 denotes the age of the participants, Gaussian-distributed hyper-beta coefficients 
underlying network-level volume variation jointly informs beta coefficients at the region level for 
each participant subgroup 𝑔. Variance that could be explained by the nuisance variables 𝑐$ of no 
interest body mass and head size was accounted for as potential confounds (Kernbach et al., 2018; 
Miller et al., 2016). Additionally incorporating height and weight as covariates of no interest in 
the analyses did not change the results and led to the same conclusions. For each analysis, each 
participant was assigned to one of four subgroups 𝑔	that indicated stratification of our population 
sample into two levels of health satisfaction, namely feeling healthy and feeling unhealthy, along 
with the presence of two socioeconomic measures, those with a high or low income and perceived 
financial satisfaction or dissatisfaction. In this way, we could get the most out of our rich sample 
by borrowing statistical strength between clusters of individuals in our population cohort through 
interlocking of their model coefficients. Parameters of the within-subgroup regressions were 
placed at the bottom of the model architecture were modeled themselves by the hyper-parameters 
of the across-subgroup regression to pool information across batches of variance components. We 
could thus provide more detailed quantitative answers to questions about morphological 
differences of the social brain by a joint model estimation profiting from several sources of 
population variation. 

 Approximate posterior inference was achieved by Markov Chain Monte Carlo (MCMC) 
using PyMC3 in Python (https://github.com/pymc-devs/pymc3), which sampled in a random walk 
towards the target posterior distribution. In 5,000 draws, the approximate parameter distributions 
were improved at each step in the sense of converging to the target distribution. At each step of 
the MCMC chain, the entire set of parameter values were estimated to be jointly credible given 
the data. A range of explanations for the relation between health status and SES level were browsed 
through by obtaining multiple plausible settings of model parameters that could have led to the 
observed data. We searched through configurations of parameters as an efficient way of exploring 
the important part of the parameter space, and then averaged the resulting models according to 
their quality. In particular, we dropped the 4,000 first samples from the chain because 1) the chain 
had probably not yet reached stationarity and 2) this step reduced dependence on the starting 
parameter values. After tuning the sampler for 4,000 steps, we drew 1,000 samples from the joint 
posterior distribution over the full set of parameters in the model for analysis. Proper convergence 
was assessed by ensuring Rhat measures (Gelman et al. 2013) stayed below 1.02. 
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The present modeling strategy has at least three advantages (Gelman et al., 2013). First, we 
could directly quantify how the tail area uncertainty the region volumes of social brain vary as a 
function of socioeconomic traits and health outcome. Additionally, the usual problem of multiple 
comparisons is automatically addressed because hierarchical modeling can find large differences 
as a byproduct of searching through many parameter constellations (Gelman et al., 2013; 
Kruschke, 2011). Second, our probabilistic hierarchical regression was aware of the meaningful 
stratification in our dataset by simultaneously estimating within-subgroup variation and between-
subgroup variation from the behavioral and brain data simultaneously. Third, appreciating the 
existing hierarchical structure in our data is known to stabilize posterior estimation and guard 
against overfitting to noise. 

Scientific computing implementation 
 Python was selected as the scientific computing engine. Capitalizing on its open-source 
ecosystem helps enhance replicability, reusability, and provenance tracking. The scikit-learn 
package (Pedregosa et al., 2011) provided efficient, unit-tested implementations of state-of-the-art 
machine learning algorithms (http://scikit-learn.org). This general-purpose machine-learning 
library was interfaced with the nilearn library (Abraham et al., 2014) for design and efficient 
execution of neuroimaging data analysis workflows (http://github.com/nilearn/nilearn). 3D 
visualization of brain maps was performed using PySurfer (https://pysurfer.github.io/), and data 
plots were generated by Seaborn (https://seaborn.pydata.org/). Probabilistic hierarchical modeling 
and MCMC sampling was implemented as symbolic computation graphs in the PyMC3 framework 
(https://github.com/pymc-devs/pymc3). All analysis scripts that reproduce the results of the 
present study are readily accessible to and open for reuse by the reader 
(http://github.com/banilo/to_be_added_later). 

 

Results 

The present population neuroscience study explored the intricate relationship between 
health disparity and socioeconomic environments in the context of social brain morphology. To 
probe the relationship between SES and health indicators, we estimated two probabilistic 
hierarchical models. One analysis focused on health satisfaction and subjective SES (i.e., financial 
satisfaction), while the other one focused on health satisfaction and objective SES (i.e., income). 
We designed these fully probabilistic, generative models to simultaneously estimate divergences 
in regional grey matter volume between subgroups at the hierarchical network level and at the 
region level. Thus, each quantitative analysis investigated health satisfaction and a different 
measure of SES in ~10,000 UK Biobank participants to directly estimate posterior probability 
distributions of social brain volume at the population-level.  

For each analysis, the participants were divided into four subgroups as combinations of 
SES and health levels. In the first analysis, subgroups were as follows: i) low health satisfaction 
and low financial satisfaction, ii) low health satisfaction and high financial satisfaction, iii) high 
health satisfaction and low financial satisfaction, and iv) high health satisfaction and high financial 
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satisfaction. Analogously, in the second analysis, subgroups were as follows: i) low health 
satisfaction and low income, ii) low health satisfaction and high income, iii) high health 
satisfaction and low income, and iv) high health satisfaction and high income. Henceforth, the 
term “volume effect” refers to parameter distributions of the probabilistic model that reflect effects 
in grey matter volume variation in a population neuroscience context (cf. Materials and Methods). 
In this way, we were able to ask “How certain are we that the grey matter volume of an individual 
social brain region and its brain network are similar or divergent among subpopulations of different 
health status and socioeconomic standing?”.  

Overall, at the network-level of the modeling results, participants with a higher quality of 
health showed similar volume divergences in regions of the visual-sensory network and higher 
associative network. However, regions of the limbic network showed diverging results in our 
analyses involving the two SES measures. For instance, in the context of income, we identified 
population volume effects in the limbic network predominantly in the subgroups of participants 
unhappy with their health condition. Conversely, we found individuals satisfied with their health 
to show volume parameter dispersions in the limbic network as a function of financial satisfaction. 
Intermediate-network-wide volume effects were detected with respect to household income mostly 
for the subset of individuals with a better perceived quality of health. However, volume effects 
were observed in the intermediate network for individuals with a lower perceived health standing, 
in relation to financial satisfaction.  

 
 

Health satisfaction and financial satisfaction in social brain structure 
 

At the highest level of hierarchical networks in the social brain atlas, we observed strong 
volume effects among the participant subgroups with a lower perceived quality of health. Notably, 
individuals expressing dissatisfaction with their financial situation showed volume effects in the 
dmPFC, TPJ_R and MTG_L that deviated from the population volume distributions of participants 
more satisfied with their finances (Fig. 1; see Supl. Table 1 for abbreviations). In contrast, among 
the subgroups of participants happy with their health, individuals also content with their finances 
showed a divergent trend in volume variation in the PCC, Prec and pMCC compared to those with 
a lower perceived SES (see Supl. Table 2 for full results regarding the mean of the posterior 
distribution and highest posterior density interval (HPDI) covering 95% uncertainty). However, 
interindividual variation of grey matter volume in relation to health- and financial satisfaction was 
reflected in participants in different ways in the TPJ_L and bilateral TP (Fig. 1). Specifically, in 
the TPJ_L, a pronounced volume effect was observed for individuals with poor perceived health 
quality and low financial satisfaction, compared to participants with the same health status but 
feeling more satisfied with their finances. We observed in the TPJ_L an additional volume effect 
among the subgroups of participants with good health status. Specifically, those satisfied with their 
finances deviated in volume from participants with a lower level of financial satisfaction. 
Conversely, in the bilateral TP, in higher health satisfaction, individuals happy with their finances 
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showed divergent volume distributions compared to participants less satisfied with their finances. 
Likewise, we detected evidence for anatomical divergence in the bilateral TP among participants 
with poor health in the context of perceived SES. In summary, pronounced grey matter volume 
effects in regions of the higher associative network were observed among both the healthy and 
unhealthy subgroups, where deviations in volume were most apparent for different levels of 
financial satisfaction. 

In the intermediate network, volume effects related to financial satisfaction were observed 
especially among participants feeling unsatisfied with their health. Specifically, in the AI_R and 
SMA_R, strong volume effects were observed for the subset of UKBB participants unhappy with 
their finances compared to those more satisfied with their financial situation (Fig. 2). This pattern 
in population volume variation was associated with largely overlapping parameter distributions in 
the AI_R and SMA_R among the subgroups of participants feeling more fulfilled with their health. 
However among the subgroups of participants with a high health rating, individuals with low 
financial satisfaction showed incongruent volume distributions in the SMG_R and Cereb_L 
compared to participants with a better financial situation (Fig. 2). This pattern in population 
volume variation in these intermediate network regions was not observed among the subgroup of 
participants with low health satisfaction. To summarize findings in the intermediate network, grey 
matter volume effects were most pronounced for individuals with a lower financial satisfaction, in 
both contexts of good and poor health. 

In regions of the limbic network, volume effects dependent on financial satisfaction 
became apparent among the subgroups of UKBB participants content with their health. Among 
the examined participants who expressed satisfaction with their health, those unhappy with their 
finances showed stronger volume effects especially in the AM_R and bilateral NAC compared to 
individuals satisfied with their financial situation (Fig. 3). In contrast to the observed volume 
effects linked to higher subjective physical well-being, we found volume effects in the limbic 
HC_L and vmPFC for those in poor subjective health (Fig. 3). Among these participants 
unsatisfied with their health, those with low financial satisfaction showed population parameter 
distributions that were incongruent from participants more satisfied with their level of SES. As 
such, the volume effects observed in the limbic network showed the most substantial deviations in 
the reward-related NAC and emotion-related AM.  

Lastly, regarding social brain regions closest to sensory input processing, population 
parameter distributions of our model indicated volume effects in the majority of visual-sensory 
regions. These effects were especially apparent among the subgroups of participants expressing 
satisfaction with their health. Specifically, for participants in good perceived health, participants 
feeling unfulfilled with their finances predominantly showed volume deviations in the FG_R, 
bilateral pSTS, and MT/V5_L, compared to participants with high financial satisfaction (Fig. 4). 
In contrast, in participants with poor perceived health, different satisfaction levels with one’s 
finances were associated with more overlapping volume parameter distributions in these visual-
sensory social brain regions. However, in the context of low health satisfaction, participants 
happier with their financial situation showed a pronounced volume effect in the MT/V5_R, 
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compared to the examined participants unsatisfied with their SES level. In sum, interindividual 
variability in region volumes of the visual-sensory network was most pronounced for individuals 
with high health satisfaction, but unhappy with their financial situation. 

 
In summary, we show health satisfaction and a subjective measure of SES to show 

pronounced volume effects in all four hierarchical networks. Overall, regions of the higher 
associative network, limbic, and visual-sensory network showed particularly strong volume effects 
compared to regions of the intermediate network. Notably, divergences in social brain volume 
were typically observed for participants who were satisfied with their health.  
 
 
Health satisfaction and income in social brain structure 

 
Regarding our analysis based on an objective measure of SES, in the higher-associative 

network of the social brain, pronounced volume effects became evident among participants with a 
higher perceived quality of health. Large population volume effects were observed in the Prec, 
MTG_R, TP_L, PCC and pMCC for individuals earning a high, as opposed to low, income (Fig. 
1). However, for participants with low health satisfaction, different income levels were associated 
with more overlapping volume parameter distributions in these higher associative regions (see 
Supl. Table 3 for full results regarding the mean of the posterior distribution and highest posterior 
density interval covering 95% uncertainty). However, our model showed evidence for income-
related structural divergences in the MTG_L and TP_R in the context of low health satisfaction 
(Fig. 1). In these two higher-associative regions, participants with poor subjective health and a low 
income deviated in grey matter volume from participants of the same perceived health status, but 
with a higher income. Similarly, we linked interindividual differences in both health and SES to 
pronounced volume effects in the dmPFC. Specifically, among UKBB participants with a lower 
health satisfaction, those also earning a low yearly wage showed population volume effects, 
compared to participants with a higher income. Similarly, for participants with good health, those 
earning a lower wage showed a divergent trend in dmPFC volume compared to participants with 
a higher wage. In summary, interindividual variation in grey matter volume was mostly evident in 
regions of the higher-associative network for the subset of healthy participants earning a higher 
income.  

Parallelling the grey matter volume findings observed in the higher associative network, 
we also observed salient volume effects in the intermediate network among the subgroups of 
UKBB participants with a high health rating. Notably, incongruent volume dispersions were 
observed in healthy participants with high versus low income in the AI_R, SMG_R and Cereb_L 
(Fig. 2). This pattern of income-related volume effects was not observed among UKBB 
participants with low health satisfaction. However, in low-health participants, we observed a 
divergent trend in income-dependent volume distributions in the aMCC and AI_L as a function of 
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yearly income (Fig. 2). As such, interindividual differences in income related to a variety of 
volume effects in the intermediate network.  

A degree of income-related volume effects also became apparent in several regions of the 
limbic network, especially among participants expressing inadequate health in the bilateral AM, 
rACC and HC_R (Fig. 3). UKBB participants with a lower perceived quality of health and with a 
low income showed population parameter distributions in these limbic regions that were 
incongruent with higher income participants of the same poor health status. In contrast, in the 
context of high health satisfaction, different income levels were associated with overlapping 
posterior population distributions. However, among participants who felt in better shape, volume 
effects in the NAC_L were observed for high-income, as compared to low-income participants 
(Fig. 3). However, health- and income levels were expressed differently in grey matter volume 
variation in the HC_L. Specifically, low-health participants with low income showed the larger 
volume deviation in the HC_L compared to high-income participants. Conversely, participants 
with high health satisfaction, high-income participants showed volume deviations in the HC_L 
compared to low-income participants. Together, we observed morphological divergences in 
regions of the limbic system mostly in participants with a lower perceived health as a function of 
household income. 

In the visual-sensory network in turn, several prominent volume effects related to income 
were observed in these brain regions of the lowest tier of the processing hierarchy. In particular, 
high-health participants revealed volume effects linked to income in the pSTS_R and bilateral 
MT/V5 (Fig. 4). In these regions, healthy individuals with a higher SES status showed population 
volume effects that diverged from the subset of UKBB participants with a lower SES status, but 
with the same perceived quality of health. For the groups of participants with a lower health status, 
overlapping volume distributions were mostly observed in these regions. Together, interindividual 
variation in regions of the visual-sensory network were mostly evident among participants with a 
higher health status.  

 
Summarizing region effects related to our objective measure of SES, we observed the most 

frequent income-related divergences in population parameter distributions in the subgroups of 
individuals happier with their health. Specifically, within the subgroup of people with high health 
satisfaction, income-level related divergences in volume effects were shown to be similar in 
regions of the higher associative, intermediate and visual-sensory networks. Whereas in the limbic 
network, volume effects were most apparent among individuals unsatisfied with their health.  
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Figure 1. Good health status and high subjective socioeconomic standing are linked to higher 
associative regions related to perspective taking. Marginal posterior population distributions as 
depicted in the boxplots reveal the extent to which SES measures and health satisfaction vary for 
a particular subgroup for each higher associative region (y-axis). The top panel depicts volume 
effects as a function of health satisfaction and financial satisfaction. The bottom panel shows the 
results for health satisfaction and household income. These population-level findings suggest a 
degree of health-specific sensitivity among most higher associative social brain regions as a 
function of socioeconomic standing. For abbreviations see Supplementary Table 1. 
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Figure 2. Good health status is linked to intermediate network regions in participants with 
low  socioeconomic standing. Marginal posterior population distributions as depicted in the 
boxplots reveal the extent to which SES measures and health satisfaction vary for a particular 
subgroup for each higher associative region (y-axis). For each intermediate social brain region, a 
given set of volume effects represent a subgroup combination of low- or high-SES level and low 
or high health status. The top panel depicts the population results for health satisfaction and 
financial satisfaction. The bottom panel shows the results for health satisfaction and household 
income. These results highlight similar volume effects among participants expressing satisfaction 
with their health in both contexts of subjective financial satisfaction and reported yearly income. 
For abbreviations see Supplementary Table 1. 
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Figure 3. Low financial satisfaction is related to limbic regions for participants in good 
health. Marginal posterior population distributions as depicted in the boxplots reveal the extent to 
which SES measures and health satisfaction vary for a particular subgroup for each higher 
associative region (y-axis). For each limbic social brain region, a given set of volume effects 
represent a subgroup combination of low- or high-SES level and low or high health status. The top 
panel depicts the population results for health satisfaction and financial satisfaction. The bottom 
panel shows the results for health satisfaction and household income. These results reveal 
interindividual differentiation in limbic grey matter volume in the context of objective and 
subjective social standing and health disparity. For abbreviations see Supplementary Table 1. 
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Figure 4. Good health status is linked to sensory network regions as a function of income and 
financial satisfaction. Marginal posterior population distributions as depicted in the boxplots 
reveal the extent to which SES measures and health satisfaction vary for a particular subgroup for 
each higher associative region (y-axis). For each intermediate social brain region, a given set of 
volume effects represent a subgroup combination of low- or high-SES level and low or high health 
status. The top panel depicts the population results for health satisfaction and financial satisfaction. 
The bottom panel shows the results for health satisfaction and household income. These results 
suggest health-specific sensitivity among most visual-sensory social brain regions as a function of 
differing objective and subjective socioeconomic environments. For abbreviations see 
Supplementary Table 1.  
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Network-wide effects of health satisfaction and socioeconomic standing 
To reiterate, our social brain atlas also contains four target brain networks that encompass 

the 36 target social brain regions (Fig. 5). In addition to modeling region-specific volume effects, 
our probabilistic framework simultaneously quantified brain network-wide volume effects as a 
function of health and SES. Income-related volume effects were observed in the two highest tiers 
of the social brain network hierarchy for individuals with high health status. In the higher 
associative network, participants earning a high yearly income deviated in population network 
volume compared to those of the same health status, but earning a lower yearly wage (Fig. 5). The 
volume effect in the higher associative network was paralleled by our results in the intermediate 
network. Individuals happy with their health and earning a high income showed volume deviations, 
compared with participants of the same high health status but earning a lower income. Among the 
subgroups with a low health status, participants with low and high incomes were more congruent 
in posterior parameter distributions that captured volume effects in the entire intermediate network. 
In contrast, in the context of subjective SES, we observed a network volume effect in the lowest 
tier of the processing hierarchy among the subgroups of participants expressing contentment with 
their health. Participants discontent with their finances showed incongruent visual-sensory 
network volume effects relative to participants with a better financial situation. Such coherent 
patterns of network-wide divergence were not observed in the other networks of our social brain 
atlas in the context of financial satisfaction. 
 

 
 

 
Figure 5. Network-wide health-related effects highlight the intermediate and visual-sensory 
systems. In addition to the within-network volume effects (Figs. 1-4), our hierarchical analysis 
framework explicitly modeled and identified network-wide volume effects as indicated by the 
inferred marginal posterior parameter distributions for the visual-sensory (red), intermediate 
(yellow), limbic (blue) and higher associative network (purple). Together, network-wide structural 
variation was most apparent in the intermediate network among participants content with their 
health, but of differing SES levels. In contrast, the visual-sensory network revealed income-related 
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anatomical divergences among participants satisfied with their health. For abbreviations see 
Supplementary Table 1. 
 
 
 
Discussion 
  

We investigated social brain variation in ~10,000 UK Biobank participants in an effort to 
understand how SES and health disparities may be reflected in grey matter volume. We tailored a 
Bayesian hierarchical modelling framework to capture coherent population-level correlates of 
health status and socioeconomic position. The two models separately analyzed the relationship 
between health satisfaction and SES in social brain structure: one model focused on income as an 
objective measure and the other model focused on financial satisfaction as a subjective measure. 
The identified brain-behavior associations showed region-specific and network-wide volume 
effects for all networks of the social brain atlas (Alcalá-López et al. 2018).  

Interindividual differences in SES have previously been reported to influence health 
outcomes (Adler et al. 1994), and have also been linked to brain architecture (Gianaros et al. 2017). 
Our results thus confirm and extend these previous findings by providing neurobiological evidence 
in 10,000 individuals that discrepancies in health and SES markers can show diverging 
manifestations in social brain volume. As such, we observed volume effects both when measuring 
subjective and objective SES to show differentiation in grey matter volume in regions of the 
higher-associative network among individuals with a high health rating. Conversely, participants 
with a lower perceived quality of health showed distinct volume effects in regions of the limbic 
network as a function of household income. However, participants in good perceived health show 
selective income- and financial satisfaction-related deviations in grey matter volume mostly in 
visual-sensory network regions.  

 
Our findings notably demonstrate the pervasiveness of SES-health disparities in social 

brain structure both at the single region and network level, as observed in both examined SES 
measures. Part of the higher associative network of the social brain, the dmPFC is known for its 
role in Theory-of-Mind (ToM) processes (e.g., Mitchell 2009). Such perspective-taking capacities 
are essential for moderating social interaction behavior by understanding the internal motivation, 
emotions, thoughts and beliefs of others (Carruthers and Smith 1996). A previous fMRI study 
investigated the neural mechanisms of social status, a construct that requires understanding the 
minds of others. The authors found that low-SES individuals may spontaneously consider the 
thoughts and feelings of others more often than high status individuals, as observed in higher 
dmPFC activation (Muscatell et al. 2012). The authors suggest the noted SES-based differences in 
dmPFC activation may be related to discrepancies in social perception. Indeed, a behavioral study 
found low-SES individuals to exhibit better empathic accuracy than individuals higher up on the 
social ladder (Kraus et al. 2010). As such, low-SES individuals may possess better skills than high-
SES individuals at inferring the mental and emotional states of others (Muscatell et al. 2012). 
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Detailing these previous findings, we detected evidence for anatomical divergence in the dmPFC 
for individuals feeling unhealthy and unsatisfied with their financial situation compared to 
participants also feeling unhealthy, but happier with their finances. This deviation in dmPFC 
volume was also observed in the context of objective SES. Specifically, low-income participants 
showed the larger dmPFC volume effect, in both contexts of good and poor health status.  

Furthermore, dmPFC involvement in complex social interaction behavior has been shown 
to have an impact on threat-related physiological responses (Eisenberger & Cole, 2012), which 
may bear relation with the dmPFC findings in our analyses. As previously evaluated by 
Eisenberger and colleagues, dmPFC activity may relate to alterations in cortisol activity from 
certain social stressors such as social exclusion (Eisenberger et al., 2007, 2011). In turn, these 
social stressors may be experienced as a threat to survival, and may affect downstream health by 
processes such as increasing the inflammatory response (Eisenberger & Cole, 2012). Together, 
our dmPFC findings in both indicators of socioeconomic lifestyle complement these studies that 
suggest lower SES individuals may read the minds of others better than higher-SES individuals, 
and may show sensitivity to negative social events.  

Thinking about other individuals in the social environment also involves the TPJ, another 
brain region of our higher-associative network. Similar to the dmPFC, the TPJ is also linked to 
neurocognitive processes related to perspective-taking. In a previous fMRI study, the TPJ was 
repeatedly linked to perspective-taking during a series of false-belief stories tasks (Saxe and 
Kanwisher 2003). In our population-level results, dispersions in volume distributions were 
observed in the bilateral TPJ, especially for individuals in poor subjective health and dissatisfied 
with their finances. Lower-SES individuals have been noted to be more accurate at judging the 
emotions of others (Kraus et al. 2010). Kraus and colleagues speculate that low-SES individuals 
may focus more on external social situations to navigate and understand their life circumstances, 
compared to high-SES individuals. Hence, low-SES individuals may gravitate to others in their 
social surroundings for information, thus showing a SES-related pattern in perceiving and 
interacting with the social environment (Kraus et al. 2010).  

In line with this contention, a structural MRI study assessed the relationship between 
exposure to socioeconomic disadvantage and brain structure (Gianaros et al. 2017). The authors 
found low SES, a composite measure of household poverty level, public assistance, education 
level, employment status and household income to be linked to reductions in grey matter volume 
in frontal and temporal regions extending into the TPJ and dmPFC (Gianaros et al. 2017). These 
reported reductions in cortical grey matter volume were also associated with poor health (Gianaros 
et al. 2017). In our population-level results, we observed participants with a lower perceived 
quality of health and unhappy with their financial situation to show the biggest volume effects in 
the TPJ, compared to the other subgroups in this model. Taken together, the identifid population 
volume deviations in the dmPFC and TPJ extend these previous findings by showing that neural 
manifestations of SES-health disparities are evident in regions of the social brain, which are 
commonly associated with perspective-taking. 
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Navigating the social environment also requires implicitly conforming to or explicitly 
knowing one’s place in society. A previous neuroimaging study investigated the neural processing 
of social hierarchies (Zink et al. 2008). The authors found activation in the somatosensory parts of 
the AI, a brain region belonging to our immediate network. In particular, AI activation was 
observed when high-status participants performed worse than an inferior player in an interactive 
game involving monetary reward (Zink et al. 2008). Neural activity changes in the AI also 
correlated with positive feelings associated with being of high social rank (Zink et al. 2008).  

In human and non-human primates, social rank has been speculated to be deeply connected 
to long-term health outcomes, including consequences from stress (Sapolsky 2005). The 
connection between social rank and health has notably been observed in societies where instability 
exists in the social ordering of individuals, as reported from social hierarchies in monkeys 
(Sapolsky 2005). Our analyses in humans highlighted the AI to show select volume variation not 
only among participants with a lower health rating and low financial satisfaction, but also for 
participants of the same low health status, but earning a higher income. These variations in 
parameter volume distributions offer support for a link between low health status and AI volume, 
as a function of both objective and subjective SES. Indeed, Zink and colleagues attribute their 
findings in the AI to suggest a neural system that is pivotal for health-related risks associated with 
one’s anchoring in the hierarchical layers of society (Zink et al. 2008). Taken together, our results 
invite the speculation that the AI may be a neural correlate for social hierarchy processes, and may 
have volume adaptations related to social situations that can potentially threaten health outcomes. 

 Experiences in the social environment may not be the same at different positions in the 
social ladder of society. For example, factors that may influence the health status for low-SES 
individuals may not have the same impact for high-SES individuals, such as living conditions or 
adequate nutrition (Adler et al. 1994). Part of the intermediate network, SMG structure was found 
to be altered after nine months of cognitive mental training on tasks related to mindfulness, 
perspective-taking, and emotion (Valk et al., 2017). These structural plasticity findings in the SMG 
suggest sensitivity to changes in one’s social experience. In our study, we observed select volume 
effects in the SMG for participants with the same high health status, but in different socioeconomic 
milieus. Specifically, participants with high subjective health, but low financial satisfaction 
showed the larger volume effect compared to participants happier with their finances. However, 
high-income participants with high health satisfaction showed the larger volume effect compared 
to low-income participants also feeling healthy.  

Despite participants having the same high health status, the observed SMG volume effects 
involving different SES levels may be related to one’s subjective experience in the social 
environment (Muscatell 2018). For example, recent evidence revealed a SES-based difference in 
social distancing behavior during the COVID-19 pandemic (Weill et al. 2020). In this mobile-data 
tracking study, social distancing varied as a function of neighborhood income level, with high-
income neighborhoods being the most mobile before the pandemic compared to low-income 
neighborhoods. However, this trend reversed after the start of the pandemic, with low-income 
neighborhoods practicing less social distancing compared to high-income neighborhoods (Weill 
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et al. 2020). The authors note that their findings provide support for the unequal distribution of 
SES-based disparities in health. Together with our present population results, these considerations 
hint at SMG involvement in SES-based subjective experiences in life circumstances.  

Subjective social experiences such as feelings of subordination have also been shown to 
deteriorate one’s health (Sapolsky 2004). In our population results, the emotion-related AM 
showed strong objective and subjective SES-related volume effects, notably among the subgroups 
of participants expressing dissatisfaction with their health. At the heart of the limbic network of 
the social brain (Alcalá-López et al. 2018), the AM has previously been involved in responding to 
social threats, such as when viewing unpleasant facial expressions (Inagaki et al. 2012). In a 
previous fMRI study, participants were injected with a low dose of endotoxin, which induced a 
temporary physiological inflammatory response (Inagaki et al. 2012). Participants administered 
the endotoxin were found to show greater activation in the AM to images perceived as socially 
threatening compared to socially non-threatening images. This finding was not observed among 
participants administered the placebo.  

Moreover, Muscatell and colleagues also observed activation in the AM from low-SES 
individuals in response to threatening faces during a social threat task (Muscatell et al. 2012). The 
activation to social threat in both of these brain-imaging studies suggests AM involvement in 
perceiving negative social situations in the social environment, especially for individuals low in 
socioeconomic standing or poor in health. Detailing these previous neuroimaging findings, we 
observed distinct volume variation in the AM in the context of low income and low financial 
satisfaction for the subgroups of participants with a low health rating. Taken together, our 
population-level findings suggest that the AM has a differentiated relation to varying levels of 
social standing and health status. 

In addition to AM involvement in stressful social experiences, the HC, another region of 
the limbic system, has also been found to respond to threat and stress (Butterworth et al. 2012). 
Butterworth and colleagues suggest that experiencing chronic, stressful situations such as poor 
health and socioeconomic disadvantages may affect grey matter volume. This proposed 
association between stress and grey matter volume may relate to our observed volume effects in 
the HC among the subgroups of participants with a lower perceived health status. Indeed, 
Butterworth and colleagues found both HC and AM grey matter size to be smaller for participants 
who were more likely to experience socioeconomic hardships compared to participants with a 
better financial situation (Butterworth et al. 2012). Furthermore, the authors found financial 
hardship to also relate to depression and poor cognitive functioning (Butterworth et al. 2012). In 
relation to our population-level findings, we observed large volume effects in the HC among the 
subgroups of participants with a poor health rating in both contexts of subjective and objective 
SES. Thus, our results showing greater volume variation that is reliably associated with 
participants in poor health and experiencing socioeconomic disadvantage may have volume 
adaptations in the limbic AM and HC.  

Moreover, our analysis highlighted financial satisfaction-related volume effects in the 
limbic NAC region among participants reporting high health satisfaction. Particularly, healthy 
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participants expressing dissatisfaction with their finances showed the larger NAC volume effect 
compared to participants happier with their finances. As a major component of the ventral striatum, 
the NAC has previously been associated with monetary reward (Kable and Glimcher 2007), as 
well as social rewards (Rademacher et al. 2014). The NAC volume effects observed among our 
healthy subgroups may be closely linked to social status evaluation. For instance, a previous fMRI 
study showed NAC activation for both monetary rewards and acknowledgement of having a good 
reputation, thereby raising the possibility that monetary and social rewards share similar neural 
processes (Izuma et al. 2008). The authors suggest healthy individuals are motivated to seek social 
approval from others, and that a positive reputation may be a conditioned reward related to 
monetary gains.  

Indeed, a previous fMRI study investigating the neural correlates of social hierarchy found 
NAC activation when participants viewed a socially superior individual during an interactive game 
compared to when viewing a socially inferior individual (Zink et al. 2008). This process may have 
downstream relations to long-term health, since high-SES individuals have been found to enjoy 
more positive health outcomes than low-SES individuals (Sapolsky 2004). Our findings thus invite 
the speculation that among our healthy subgroups, those who are unsatisfied with their finances 
may view themselves as inferior in status, which may have volume adaptations in the reward-
related limbic NAC.  

The subjective feeling of subordination may involve neural processes in regions at the 
lowest tier of the processing hierarchy. In brain regions of the visual-sensory network most known 
for social cue processing, our population results presented volume effects especially for the 
subgroups of participants satisfied with their health, in both SES measures. Notably, among these 
participants in good health, large structural deviations were observed in the pSTS, MT/V5 and FG 
regions in the context of both subjective and objective SES. Indeed, learning information about 
another person’s social status may be achieved through nonverbal cues in the social environment, 
such as through shifts in eye gaze (Pelphrey et al., 2004). A previous fMRI study found STS, FG 
and MT/V5 activation in a virtual reality eye gaze paradigm, where individuals either made eye 
contact with an approaching stranger or the stranger averted his eye gaze as he approached 
(Pelphrey et al., 2004). Notably, neural activity in the STS was most responsive when participants 
made eye contact with the approaching stranger than when he averted his gaze. The authors 
attribute this finding to the role of these visual-sensory regions in processing social information 
from biological motion, and highlight the sensitivity of the STS to nonverbal social cues.  

In our visual-sensory network region findings, we observed the strongest volume effects in 
the bilateral pSTS among participants feeling healthy, notably in the context of financial 
satisfaction. In line with this finding, a previous fMRI study found greater pSTS and mPFC 
activation when participants made judgments about another individual’s status compared to 
judgments about another person’s physical appearance (Mason et al. 2014). The authors suggest 
that these regions are implicated in mentalizing about other individuals, and even more so when 
assessing their social status (Mason et al. 2014). Furthermore, humans avert their gaze from others 
they perceive to be dominant, thus signaling submission (Holland et al. 2017). Together, our results 
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offer support for these previous neuroimaging findings that humans in good health may be able to 
detect differences in social status in brain regions at the lowest tier of the processing hierarchy.  
 
Conclusion 
 

The link between socioeconomic status and health disparity is deeply rooted in human 
societies. Previous research has coalesced in the conclusion that the “well off” typically experience 
fewer detrimental health outcomes compared to individuals with lower position on the social 
ladder (Adler et al. 1994). Using a fully probabilistic modelling strategy in a population cohort of 
10,000 individuals, we uncovered patterns of similarity and divergence between health and two 
measures of SES in the social brain, especially in regions of the visual-sensory and higher 
associative networks. In this way, we provide a population-level perspective into the brain 
association of health disparity experienced at different subjective and objective socioeconomic 
levels. Our observations contribute to further disentangling the complex interplay of health 
disparities and socioeconomic standing at the neurobiological level.  
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Supplementary Material 
  

Social brain region Abbreviation MNI coordinates 
x     y   z 

Network 

left anterior insula AI_L -34 19 0 intermediate 

right anterior insula AI_R 38 18 -3 intermediate 

left amygdala AM_L -21 -4 -18 limbic 

right amygdala AM_R 23 -3 -18 limbic 

anterior mid-cingulate 
cortex 

aMCC 1 25 30 intermediate 

left cerebellum Cereb_L -21 -66 -35 intermediate 

right cerebellum Cereb_R 28 -70 -30 intermediate 

dorsomedial prefrontal 
cortex 

dmPFC -4 53 31 higher associative 

left fusiform gyrus FG_L -42 -62 -16 visual-sensory 

right fusiform gyrus FG_R 43 -57 -19 visual-sensory 

medial frontal pole FP 1 58 10 higher associative 

left hippocampus HC_L -24 -18 -17 limbic 

right hippocampus HC_R 25 -19 -15 limbic 

left inferior frontal 
gyrus 

IFG_L -45 27 -3 intermediate 

right inferior frontal 
gyrus 

IFG_R 48 24 2 intermediate 

left middle temporal 
gyrus 

MTG_L -56 -14 -13 higher associative 

right middle temporal 
gyrus 

MTG_R 56 -10 -17 higher associative 

left middle temporal 
V5 area 

MT/V5_L -50 -66 5 visual-sensory 

right middle temporal 
V5 area 

MT/V5_R 50 -66 6 visual-sensory 

left nucleus accumbens NAC_L -13 11 -8 limbic 
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right nucleus 
accumbens 

NAC_R 11 10 -7 limbic 

posterior cingulate 
cortex 

PCC -1 -54 23 higher associative 

posterior mid-cingulate 
cortex 

pMCC -3 -29 32 higher associative 

precuneus Prec -1 -59 41 higher associative 

left posterior superior 
temporal sulcus 

pSTS_L -56 -39 2 visual-sensory 

right posterior superior 
temporal sulcus 

pSTS_R 54 -39 0 visual-sensory 

rostral anterior 
cingulate cortex 

rACC -3 41 4 limbic 

left supplementary 
motor area 

SMA_L -41 6 45 intermediate 

right supplementary 
motor area 

SMA_R 48 6 35 intermediate 

left supramarginal 
gyrus 

SMG_L -41 -41 42 intermediate 

right supramarginal 
gyrus 

SMG_R 54 -30 38 intermediate 

left temporal pole TP_L -48 8 -36 higher associative 

right temporal pole TP_R 53 7 -26 higher associative 

left temporo-parietal 
junction  

TPJ_L -49 -61 27 higher associative 

right temporo-parietal 
junction 

TPJ_R 54 -55 20 higher associative 

ventromedial 
prefrontal cortex 

vmPFC 2 45 -15 limbic 

Supplementary Table 1. Social brain atlas regions and their MNI coordinates. Social brain 
regions and their respective functional network as depicted in (Alcalá-López et al., 2018).  
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Health satisfaction + financial satisfaction 

subgroup higher_HPDI lower_HPDI posterior_mean roi 

Unhappy health + unhappy financially 0.163 -0.064 0.048 FG_L 

Unhappy health + happy financially 0.147 -0.106 0.005 FG_L 

Happy health + unhappy financially 0.191 -0.163 0.000 FG_L 

Happy health + happy financially 0.108 -0.106 -0.008 FG_L 

Unhappy health + unhappy financially -0.019 -0.223 -0.110 FG_R 

Unhappy health + happy financially -0.021 -0.272 -0.130 FG_R 

Happy health + unhappy financially -0.092 -0.364 -0.220 FG_R 

Happy health + happy financially 0.079 -0.128 -0.032 FG_R 

Unhappy health + unhappy financially 0.012 -0.157 -0.069 pSTS_L 

Unhappy health + happy financially -0.005 -0.226 -0.109 pSTS_L 

Happy health + unhappy financially -0.122 -0.408 -0.259 pSTS_L 

Happy health + happy financially -0.012 -0.214 -0.105 pSTS_L 

Unhappy health + unhappy financially 0.021 -0.167 -0.072 pSTS_R 

Unhappy health + happy financially -0.019 -0.237 -0.115 pSTS_R 

Happy health + unhappy financially -0.122 -0.375 -0.242 pSTS_R 

Happy health + happy financially 0.034 -0.180 -0.074 pSTS_R 

Unhappy health + unhappy financially 0.032 -0.141 -0.058 MTV5_L 

Unhappy health + happy financially 0.072 -0.137 -0.040 MTV5_L 

Happy health + unhappy financially -0.040 -0.250 -0.147 MTV5_L 

Happy health + happy financially 0.122 -0.064 0.024 MTV5_L 

Unhappy health + unhappy financially -0.024 -0.185 -0.101 MTV5_R 
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Unhappy health + happy financially 0.090 -0.112 -0.018 MTV5_R 

Happy health + unhappy financially -0.062 -0.283 -0.170 MTV5_R 

Happy health + happy financially -0.042 -0.231 -0.132 MTV5_R 

Unhappy health + unhappy financially 0.346 0.036 0.189 AM_L 

Unhappy health + happy financially 0.345 -0.075 0.132 AM_L 

Happy health + unhappy financially 0.112 -0.331 -0.112 AM_L 

Happy health + happy financially 0.147 -0.192 -0.016 AM_L 

Unhappy health + unhappy financially 0.620 0.173 0.387 AM_R 

Unhappy health + happy financially 1.073 0.377 0.721 AM_R 

Happy health + unhappy financially 1.412 0.676 1.036 AM_R 

Happy health + happy financially 0.578 0.067 0.306 AM_R 

Unhappy health + unhappy financially 0.468 0.043 0.258 HC_L 

Unhappy health + happy financially 0.661 0.136 0.397 HC_L 

Happy health + unhappy financially 0.567 -0.019 0.269 HC_L 

Happy health + happy financially 0.413 -0.033 0.188 HC_L 

Unhappy health + unhappy financially -0.085 -0.436 -0.256 HC_R 

Unhappy health + happy financially 0.008 -0.458 -0.229 HC_R 

Happy health + unhappy financially 0.203 -0.297 -0.047 HC_R 

Happy health + happy financially 0.256 -0.152 0.061 HC_R 

Unhappy health + unhappy financially 0.119 -0.099 0.006 vmPFC 

Unhappy health + happy financially 0.082 -0.201 -0.060 vmPFC 

Happy health + unhappy financially 0.136 -0.199 -0.028 vmPFC 

Happy health + happy financially 0.046 -0.189 -0.072 vmPFC 
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Unhappy health + unhappy financially -0.276 -0.495 -0.389 NAC_L 

Unhappy health + happy financially -0.260 -0.558 -0.413 NAC_L 

Happy health + unhappy financially -0.015 -0.328 -0.172 NAC_L 

Happy health + happy financially -0.255 -0.495 -0.376 NAC_L 

Unhappy health + unhappy financially 0.151 -0.114 0.028 NAC_R 

Unhappy health + happy financially 0.232 -0.132 0.048 NAC_R 

Happy health + unhappy financially -0.073 -0.429 -0.252 NAC_R 

Happy health + happy financially 0.160 -0.130 0.013 NAC_R 

Unhappy health + unhappy financially 0.092 -0.115 -0.014 rACC 

Unhappy health + happy financially 0.086 -0.169 -0.040 rACC 

Happy health + unhappy financially 0.028 -0.240 -0.103 rACC 

Happy health + happy financially 0.035 -0.175 -0.067 rACC 

Unhappy health + unhappy financially -0.029 -0.243 -0.128 aMCC 

Unhappy health + happy financially -0.031 -0.268 -0.134 aMCC 

Happy health + unhappy financially 0.048 -0.181 -0.065 aMCC 

Happy health + happy financially 0.024 -0.141 -0.051 aMCC 

Unhappy health + unhappy financially 0.026 -0.184 -0.079 AI_L 

Unhappy health + happy financially 0.023 -0.189 -0.075 AI_L 

Happy health + unhappy financially 0.102 -0.142 -0.024 AI_L 

Happy health + happy financially 0.096 -0.105 -0.014 AI_L 

Unhappy health + unhappy financially 0.279 -0.012 0.122 AI_R 

Unhappy health + happy financially 0.143 -0.108 -0.006 AI_R 

Happy health + unhappy financially 0.171 -0.101 0.026 AI_R 
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Happy health + happy financially 0.182 -0.064 0.036 AI_R 

Unhappy health + unhappy financially 0.074 -0.065 0.002 SMG_L 

Unhappy health + happy financially 0.043 -0.116 -0.039 SMG_L 

Happy health + unhappy financially 0.089 -0.095 -0.003 SMG_L 

Happy health + happy financially 0.056 -0.092 -0.023 SMG_L 

Unhappy health + unhappy financially 0.057 -0.087 -0.015 SMG_R 

Unhappy health + happy financially 0.105 -0.071 0.009 SMG_R 

Happy health + unhappy financially 0.176 -0.032 0.065 SMG_R 

Happy health + happy financially 0.076 -0.081 -0.007 SMG_R 

Unhappy health + unhappy financially 0.033 -0.130 -0.049 SMA_L 

Unhappy health + happy financially 0.068 -0.137 -0.043 SMA_L 

Happy health + unhappy financially 0.018 -0.195 -0.085 SMA_L 

Happy health + happy financially -0.008 -0.182 -0.088 SMA_L 

Unhappy health + unhappy financially 0.075 -0.104 -0.018 SMA_R 

Unhappy health + happy financially 0.011 -0.180 -0.079 SMA_R 

Happy health + unhappy financially 0.041 -0.165 -0.057 SMA_R 

Happy health + happy financially 0.021 -0.145 -0.057 SMA_R 

Unhappy health + unhappy financially 0.007 -0.166 -0.080 IFG_L 

Unhappy health + happy financially 0.044 -0.147 -0.052 IFG_L 

Happy health + unhappy financially 0.007 -0.218 -0.098 IFG_L 

Happy health + happy financially -0.008 -0.193 -0.090 IFG_L 

Unhappy health + unhappy financially -0.013 -0.185 -0.095 IFG_R 

Unhappy health + happy financially 0.016 -0.164 -0.070 IFG_R 
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Happy health + unhappy financially 0.031 -0.206 -0.074 IFG_R 

Happy health + happy financially 0.039 -0.123 -0.039 IFG_R 

Unhappy health + unhappy financially 0.084 -0.129 -0.022 Cereb_L 

Unhappy health + happy financially 0.073 -0.149 -0.036 Cereb_L 

Happy health + unhappy financially 0.268 -0.033 0.105 Cereb_L 

Happy health + happy financially 0.142 -0.075 0.012 Cereb_L 

Unhappy health + unhappy financially 0.122 -0.091 0.009 Cereb_R 

Unhappy health + happy financially 0.118 -0.106 -0.004 Cereb_R 

Happy health + unhappy financially 0.076 -0.196 -0.043 Cereb_R 

Happy health + happy financially 0.070 -0.119 -0.019 Cereb_R 

Unhappy health + unhappy financially 0.024 -0.122 -0.046 FP 

Unhappy health + happy financially -0.002 -0.187 -0.090 FP 

Happy health + unhappy financially 0.034 -0.146 -0.050 FP 

Happy health + happy financially -0.002 -0.178 -0.092 FP 

Unhappy health + unhappy financially 0.008 -0.144 -0.067 dmPFC 

Unhappy health + happy financially 0.131 -0.063 0.030 dmPFC 

Happy health + unhappy financially 0.091 -0.096 -0.004 dmPFC 

Happy health + happy financially 0.150 -0.033 0.058 dmPFC 

Unhappy health + unhappy financially 0.123 -0.134 -0.001 PCC 

Unhappy health + happy financially 0.056 -0.243 -0.085 PCC 

Happy health + unhappy financially 0.252 -0.047 0.069 PCC 

Happy health + happy financially 0.052 -0.233 -0.081 PCC 

Unhappy health + unhappy financially -0.089 -0.258 -0.173 TPJ_L 
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Unhappy health + happy financially 0.015 -0.179 -0.081 TPJ_L 

Happy health + unhappy financially 0.044 -0.155 -0.050 TPJ_L 

Happy health + happy financially -0.070 -0.260 -0.166 TPJ_L 

Unhappy health + unhappy financially -0.045 -0.221 -0.135 TPJ_R 

Unhappy health + happy financially 0.069 -0.148 -0.041 TPJ_R 

Happy health + unhappy financially 0.057 -0.129 -0.033 TPJ_R 

Happy health + happy financially 0.091 -0.114 -0.012 TPJ_R 

Unhappy health + unhappy financially 0.029 -0.151 -0.057 Prec 

Unhappy health + happy financially 0.028 -0.179 -0.075 Prec 

Happy health + unhappy financially 0.079 -0.122 -0.018 Prec 

Happy health + happy financially 0.154 -0.045 0.056 Prec 

Unhappy health + unhappy financially -0.004 -0.175 -0.085 MTG_L 

Unhappy health + happy financially 0.076 -0.131 -0.023 MTG_L 

Happy health + unhappy financially 0.049 -0.154 -0.040 MTG_L 

Happy health + happy financially 0.055 -0.161 -0.053 MTG_L 

Unhappy health + unhappy financially -0.021 -0.220 -0.119 MTG_R 

Unhappy health + happy financially 0.032 -0.204 -0.078 MTG_R 

Happy health + unhappy financially 0.088 -0.105 -0.011 MTG_R 

Happy health + happy financially 0.033 -0.199 -0.080 MTG_R 

Unhappy health + unhappy financially 0.302 0.057 0.176 TP_L 

Unhappy health + happy financially 0.211 -0.061 0.064 TP_L 

Happy health + unhappy financially 0.183 -0.071 0.040 TP_L 

Happy health + happy financially 0.288 0.036 0.159 TP_L 
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Unhappy health + unhappy financially 0.207 0.003 0.105 TP_R 

Unhappy health + happy financially 0.150 -0.078 0.034 TP_R 

Happy health + unhappy financially 0.072 -0.146 -0.033 TP_R 

Happy health + happy financially 0.159 -0.065 0.043 TP_R 

Unhappy health + unhappy financially 0.362 0.102 0.230 pMCC 

Unhappy health + happy financially 0.350 -0.010 0.153 pMCC 

Happy health + unhappy financially 0.245 -0.048 0.066 pMCC 

Happy health + happy financially 0.487 0.168 0.322 pMCC 

Supplementary Table 2. HPDI and posterior mean parameter values for health satisfaction 
and financial satisfaction. 
 

Health satisfaction + income 

group higher_HPDI lower_HPDI posterior_mean roi 

Unhappy health + low income 0.232 -0.164 -0.001 FG_L 

Unhappy health + high income 0.339 -0.220 0.027 FG_L 

Happy health + low income 0.114 -0.244 -0.079 FG_L 

Happy health + high income 0.305 -0.372 -0.034 FG_L 

Unhappy health + low income 0.218 -0.162 0.004 FG_R 

Unhappy health + high income 0.249 -0.345 -0.029 FG_R 

Happy health + low income 0.112 -0.253 -0.086 FG_R 

Happy health + high income 0.390 -0.377 0.006 FG_R 

Unhappy health + low income 0.019 -0.309 -0.126 pSTS_L 

Unhappy health + high income 0.251 -0.323 -0.024 pSTS_L 

Happy health + low income 0.090 -0.245 -0.092 pSTS_L 
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Happy health + high income 0.146 -0.672 -0.212 pSTS_L 

Unhappy health + low income 0.062 -0.252 -0.087 pSTS_R 

Unhappy health + high income 0.249 -0.262 -0.016 pSTS_R 

Happy health + low income 0.006 -0.372 -0.163 pSTS_R 

Happy health + high income 0.485 -0.311 0.058 pSTS_R 

Unhappy health + low income 0.087 -0.202 -0.063 MTV5_L 

Unhappy health + high income 0.278 -0.196 0.014 MTV5_L 

Happy health + low income 0.061 -0.251 -0.090 MTV5_L 

Happy health + high income 0.432 -0.117 0.152 MTV5_L 

Unhappy health + low income -0.020 -0.308 -0.157 MTV5_R 

Unhappy health + high income 0.115 -0.402 -0.106 MTV5_R 

Happy health + low income -0.013 -0.328 -0.155 MTV5_R 

Happy health + high income 0.315 -0.283 0.018 MTV5_R 

Unhappy health + low income 0.268 -0.430 -0.071 AM_L 

Unhappy health + high income 0.665 -0.186 0.186 AM_L 

Happy health + low income 0.148 -0.413 -0.124 AM_L 

Happy health + high income 0.203 -0.882 -0.270 AM_L 

Unhappy health + low income 1.329 0.212 0.751 AM_R 

Unhappy health + high income 1.057 -0.325 0.311 AM_R 

Happy health + low income 0.636 -0.196 0.173 AM_R 

Happy health + high income 0.862 -0.368 0.202 AM_R 

Unhappy health + low income 0.260 -0.478 -0.110 HC_L 

Unhappy health + high income 1.109 -0.250 0.326 HC_L 
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Happy health + low income 0.515 -0.247 0.104 HC_L 

Happy health + high income 1.525 -0.046 0.642 HC_L 

Unhappy health + low income 0.376 -0.278 0.054 HC_R 

Unhappy health + high income 0.207 -1.290 -0.408 HC_R 

Happy health + low income 0.287 -0.386 -0.042 HC_R 

Happy health + high income 0.658 -0.581 0.057 HC_R 

Unhappy health + low income 0.186 -0.265 -0.041 vmPFC 

Unhappy health + high income 0.448 -0.394 0.059 vmPFC 

Happy health + low income 0.148 -0.367 -0.109 vmPFC 

Happy health + high income 0.401 -0.463 -0.037 vmPFC 

Unhappy health + low income -0.133 -0.562 -0.348 NAC_L 

Unhappy health + high income -0.056 -1.410 -0.605 NAC_L 

Happy health + low income -0.107 -0.634 -0.364 NAC_L 

Happy health + high income 0.232 -0.559 -0.157 NAC_L 

Unhappy health + low income 0.324 -0.142 0.091 NAC_R 

Unhappy health + high income 0.779 -0.365 0.136 NAC_R 

Happy health + low income 0.103 -0.458 -0.182 NAC_R 

Happy health + high income 0.314 -0.622 -0.135 NAC_R 

Unhappy health + low income 0.187 -0.177 0.010 rACC 

Unhappy health + high income 0.572 -0.109 0.214 rACC 

Happy health + low income 0.151 -0.290 -0.072 rACC 

Happy health + high income 0.327 -0.289 0.012 rACC 

Unhappy health + low income 0.135 -0.137 -0.007 aMCC 
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Unhappy health + high income 0.154 -0.564 -0.161 aMCC 

Happy health + low income 0.221 -0.149 0.033 aMCC 

Happy health + high income 0.155 -0.273 -0.064 aMCC 

Unhappy health + low income 0.157 -0.161 -0.010 AI_L 

Unhappy health + high income 0.070 -0.701 -0.255 AI_L 

Happy health + low income 0.224 -0.215 0.018 AI_L 

Happy health + high income 0.219 -0.254 -0.051 AI_L 

Unhappy health + low income 0.188 -0.141 0.006 AI_R 

Unhappy health + high income 0.432 -0.318 0.034 AI_R 

Happy health + low income 0.459 -0.025 0.182 AI_R 

Happy health + high income 0.139 -0.349 -0.084 AI_R 

Unhappy health + low income 0.208 -0.076 0.046 SMG_L 

Unhappy health + high income 0.430 -0.096 0.147 SMG_L 

Happy health + low income 0.190 -0.127 0.033 SMG_L 

Happy health + high income 0.206 -0.184 -0.017 SMG_L 

Unhappy health + low income 0.158 -0.097 0.023 SMG_R 

Unhappy health + high income 0.341 -0.130 0.094 SMG_R 

Happy health + low income 0.275 -0.065 0.096 SMG_R 

Happy health + high income 0.054 -0.320 -0.105 SMG_R 

Unhappy health + low income 0.113 -0.148 -0.015 SMA_L 

Unhappy health + high income 0.278 -0.280 -0.008 SMA_L 

Happy health + low income 0.081 -0.349 -0.109 SMA_L 

Happy health + high income 0.148 -0.240 -0.059 SMA_L 
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Unhappy health + low income 0.022 -0.315 -0.120 SMA_R 

Unhappy health + high income 0.135 -0.493 -0.151 SMA_R 

Happy health + low income 0.133 -0.202 -0.019 SMA_R 

Happy health + high income 0.128 -0.268 -0.065 SMA_R 

Unhappy health + low income 0.069 -0.203 -0.055 IFG_L 

Unhappy health + high income 0.223 -0.298 -0.032 IFG_L 

Happy health + low income 0.114 -0.274 -0.062 IFG_L 

Happy health + high income 0.104 -0.307 -0.082 IFG_L 

Unhappy health + low income 0.051 -0.202 -0.064 IFG_R 

Unhappy health + high income 0.278 -0.283 -0.014 IFG_R 

Happy health + low income 0.156 -0.228 -0.028 IFG_R 

Happy health + high income 0.108 -0.346 -0.087 IFG_R 

Unhappy health + low income 0.142 -0.147 -0.010 Cereb_L 

Unhappy health + high income 0.229 -0.525 -0.108 Cereb_L 

Happy health + low income 0.391 -0.024 0.151 Cereb_L 

Happy health + high income 0.128 -0.250 -0.059 Cereb_L 

Unhappy health + low income 0.105 -0.170 -0.032 Cereb_R 

Unhappy health + high income 0.357 -0.343 -0.005 Cereb_R 

Happy health + low income 0.241 -0.133 0.055 Cereb_R 

Happy health + high income 0.223 -0.205 -0.025 Cereb_R 

Unhappy health + low income 0.068 -0.209 -0.071 FP 

Unhappy health + high income 0.196 -0.297 -0.047 FP 

Happy health + low income 0.047 -0.363 -0.143 FP 
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Happy health + high income 0.096 -0.330 -0.103 FP 

Unhappy health + low income 0.025 -0.273 -0.120 dmPFC 

Unhappy health + high income 0.260 -0.243 -0.003 dmPFC 

Happy health + low income 0.294 -0.079 0.097 dmPFC 

Happy health + high income 0.238 -0.222 -0.013 dmPFC 

Unhappy health + low income 0.218 -0.206 0.003 PCC 

Unhappy health + high income 0.349 -0.286 0.009 PCC 

Happy health + low income 0.316 -0.170 0.072 PCC 

Happy health + high income 0.251 -0.317 -0.056 PCC 

Unhappy health + low income 0.032 -0.278 -0.118 TPJ_L 

Unhappy health + high income 0.098 -0.412 -0.134 TPJ_L 

Happy health + low income 0.061 -0.343 -0.133 TPJ_L 

Happy health + high income 0.116 -0.349 -0.100 TPJ_L 

Unhappy health + low income 0.036 -0.270 -0.114 TPJ_R 

Unhappy health + high income 0.057 -0.550 -0.193 TPJ_R 

Happy health + low income 0.194 -0.176 0.010 TPJ_R 

Happy health + high income 0.176 -0.294 -0.052 TPJ_R 

Unhappy health + low income 0.147 -0.164 -0.011 Prec 

Unhappy health + high income 0.141 -0.449 -0.107 Prec 

Happy health + low income 0.282 -0.128 0.074 Prec 

Happy health + high income 0.216 -0.231 -0.029 Prec 

Unhappy health + low income 0.075 -0.238 -0.073 MTG_L 

Unhappy health + high income 0.353 -0.246 0.032 MTG_L 
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Happy health + low income 0.221 -0.178 0.030 MTG_L 

Happy health + high income 0.213 -0.240 -0.033 MTG_L 

Unhappy health + low income 0.088 -0.264 -0.079 MTG_R 

Unhappy health + high income 0.262 -0.338 -0.032 MTG_R 

Happy health + low income 0.273 -0.186 0.050 MTG_R 

Happy health + high income 0.061 -0.464 -0.153 MTG_R 

Unhappy health + low income 0.326 -0.091 0.095 TP_L 

Unhappy health + high income 0.328 -0.281 0.024 TP_L 

Happy health + low income 0.325 -0.122 0.097 TP_L 

Happy health + high income 0.191 -0.302 -0.055 TP_L 

Unhappy health + low income 0.116 -0.223 -0.050 TP_R 

Unhappy health + high income 0.494 -0.123 0.141 TP_R 

Happy health + low income 0.212 -0.216 0.006 TP_R 

Happy health + high income 0.164 -0.333 -0.075 TP_R 

Unhappy health + low income 0.484 -0.061 0.197 pMCC 

Unhappy health + high income 0.548 -0.176 0.114 pMCC 

Happy health + low income 0.566 0.014 0.256 pMCC 

Happy health + high income 0.232 -0.281 -0.035 pMCC 

Supplementary Table 3. HPDI and posterior mean parameter values for income and health 
satisfaction.  
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