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Abstract 

 In the somatosensory system, hedonic information is coded by mechanoreceptors at the 

point of contact. Pleasure and pain signals travel along peripheral nerve pathways distinct from 

those for discriminative touch. Yet it remains unknown whether the central nervous system 

represents tactile hedonic information in sensory cortices as another dimension of exteroceptive 

information, similar to discriminative touch signals, or if tactile hedonic information is 

instantiated in regions mediating internal interoceptive states. Employing representational 

similarity analysis with a new approach of pattern component modeling, we decomposed 

multivoxel patterns to demonstrate that signals of painful but not pleasurable touch are 

represented in primary somatosensory cortices. By contrast, all hedonic touch representations 

were identified in regions associated with affect and interoception. This suggests that touch 

should be divided into external-exteroceptive and internal-interoceptive dimensions, with 

hedonic touch represented as an internal state, even though evoked by external stimulation.  
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Introduction 

Sensory experiences, such as embrace of a loved one or the pain of a stubbed toe, can be 

broken down into two central components: discrimination of the sensory information, and the 

associated hedonic response. The information processed by our sensory systems is typically 

viewed as objective, forming representations of a tangible external environment. In contrast, 

hedonic appraisal is regarded as a subjective centrally mediated process (Rolls, 2019; Todd et al., 

2020), dependent on allocation of a mental common currency (McFarland and Sibly, 1975; 

Rolls, 2000) to estimate and compare affective value. However, there is evidence that hedonic 

valence (good vs bad) is coded by the peripheral afferents of the somatosensory system (Iggo, 

1959, 1960; Vallbo et al., 1999) suggesting that aspects of tactile sensation are valenced from the 

point of contact (Miskovic and Anderson, 2018). It has been proposed that such valence 

discrimination in peripheral receptors contributes to internal representations of homeostatic 

threat and social safety (Craig, 2011, 2015). If these hedonic afferents reflect the internal 

physiological condition of the body more than external sensory events, then this would provide 

evidence for a unique dual role of our proximal senses. Consistent with Sherrington’s classic 

distinction between exteroception and interoception (Sherrington, 1906) – sensation of an object 

in the external environment vs. the body itself as object – there may be unique and dissociable 

anatomical pathways underlying each, derived from stimulation of distinct tactile receptors 

(Kryklywy et al., 2020). To examine a neural dissociation between touch as an external object 

from the internal material self, we assessed whether tactile valence (pressure pain and social 

caress) is represented distinctly from discriminative touch, potentially reflecting distinct affective 

labelled lines residing outside of the traditional somatosensory cortices.  

The somatosensory system contains multiple functional subsystems, with specific 

peripheral nerves serving as labeled-lines for information traveling into the central nervous 

system (McGlone and Reilly, 2010; McGlone et al., 2014). Fast large-diameter myelinated 

afferent fibers (A-fibers) support sensory discrimination. These fibers predominantly convey 

information about the timing and location of cutaneous sensory stimulation (McGlone and 

Reilly, 2010) with some fibers specialized for nociception (Nagi et al., 2019). Additional small-

diameter unmyelinated afferent pathways (C-Fibers; Qiu et al., 2006) support the hedonic 

response to touch. These convey information about affective aspects of aversive touch and 

nociception. At the cortical level, primary somatosensory cortex (S1) remains the dominant entry 
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point for information carried along myelinated cutaneous pathways, with projections forming the 

sensory homunculus along the postcentral gyrus. There is evidence that integration of hedonic 

information into discriminatory touch representations in these early sensory structures occurs 

through centrally-mediated appraisal of pain and pleasure (Bushnell et al., 1999; Gazzola et al., 

2012). This observation is consistent with the conventional view (Pessoa and Adolphs, 2010; 

Rolls, 2019) that affective modulation of sensory cortices results from feedback from central 

regions sensitive to hedonic value, including amygdala, prefrontal cortex (PFC) , anterior 

cingulate cortex (ACC) and insula (Ins). Yet, evidence for peripheral labeling of affective 

information suggests not all affective modulation of sensory signals is the result of central 

feedback (Qiu et al., 2006). Interestingly, while recent evidence has demonstrated that signals of 

hedonic and discriminative touch are integrated as early as the dorsal horn of the spinal cord 

(Abraira et al., 2017; Marshall and McGlone, 2020; Neubarth et al., 2020), the cortical 

instantiation of these signals does not appear to depend on this integration. For example, in 

patients lacking peripheral pathways for discriminatory touch (Aβ fiber), modulation of cortical 

activity by hedonic tactile signals (carried by C-fiber) is still observed in frontotemporal affect-

related structures (Olausson et al., 2002; McGlone et al., 2014). It remains unknown the extent to 

which affective information from peripheral nociceptive receptors is represented in cortex as 

integrated with, versus dissociable from, non-hedonic tactile experience. 

Anatomical projection studies in primates indicate information carried along 

unmyelinated C-fiber pathways does not project to the entirety of S1, as observed for A-fibers, 

but rather solely to an extreme anterior region of S1 (insula-adjacent area 3a; Whitsel et al., 

2009; Vierck et al., 2013), with additional projections to Ins, ACC, and PFC (Baumgartner et al., 

2006; Qiu et al., 2006). A meta-analysis of human neuroimaging studies identified a 

generalizable representation of physical pain (heat, mechanical, or visceral) in the ACC (Kragel 

et al., 2018). This pain signal is integrated with non-valenced sensory representations in the 

anterior Ins and ventromedial (vm) PFC (Visser et al., 2013). These data suggest that, despite the 

co-localization of A and C-fiber afferents in the skin, there are distinct brain regions that 

represent information carried by each. Determining the role of hedonic-labeled sensory signals 

for representing the environment necessitates further understanding of how they are represented 

in specific brain regions. The Ins (Craig, 2011, 2015) and ACC (Pollatos et al., 2016; Strigo and 

Craig, 2016), both cortical regions demonstrating sensitivity to hedonic-labeled information, are 
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often implicated in interoceptive sensation of the self, rather than exteroceptive experience of the 

external environment, whereas vmPFC acts to guide context-sensitive value-based decision 

making through the appraisal of affective signals and intrinsic motivations (Dixon et al., 2017; 

Hiser and Koenigs, 2018). Thus, if peripherally coded hedonic signals are not processed in the 

same manner as discriminatory touch — contributing to experiential discrimination of the 

external environment with predominant early projections to S1 — they may be processed as 

indicators of internal wellbeing, informative of homeostatic threat, to allow for prioritized 

responding to tactile harm. 

 Current views of the somatosensory representation of valenced information from the 

sensory surface are mostly based on examination of pain alone. While considerable research 

supports the neural bases of pain-coding in the periphery (McGlone and Reilly, 2010; Nagi et al., 

2019), recent evidence indicates parallel C-tactile (CT) sensory fibers for caress or pleasant 

touch (Loken et al., 2009; Marshall et al., 2019). In this system, mechanoreceptors are found 

only in hairy skin and not on the glabrous (i.e., hairless) skin of the palms, where previous 

research had focused (McGlone and Reilly, 2010; McGlone et al., 2014; Marshall et al., 2019). 

These CT-fiber afferents respond more to pleasant soft brushes than neutral stimulation, and 

show the highest firing rates for stroking in speeds that are subjectively perceived as caress and 

are rated as most pleasant (Olausson et al., 2002; Loken et al., 2009; Croy et al., 2016). Thus, in 

the cutaneous system there are parallel dedicated receptors and labeled lines for aversive and 

appetitive forms of touch, reinforcing the notion that valence may be coded from the point of 

contact. As with C-fibers for aversive touch, information from dedicated pathways for pleasant 

touch modulates neural activity in the Ins and orbitofrontal cortices (OFC; Olausson et al., 2002; 

Rolls et al., 2003), as well as S1 (Gazzola et al., 2012); however, it is not known what specific 

contributions these regions make to the representation of pleasure.  

Existing evidence from functional Magnetic Resonance Imaging (fMRI) indicating neural 

substrates of affective-tactile processing is based predominantly on study designs aimed at 

investigating either C- or CT-fiber pathways, but not both. These studies have also relied 

predominantly on univariate statistical approaches (Olausson et al., 2002; Loken et al., 2009; 

McGlone et al., 2014). The independent study of C- and CT-fibers does not allow for the 

dissociation between these two distinct systems and is unable to discriminate valence-specific 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.24.310383doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.24.310383
http://creativecommons.org/licenses/by-nc-nd/4.0/


from general tactile salience and arousal. Relying on activation magnitude alone may miss 

important information that may distinguish tactile from hedonic features, especially if this 

information is represented by a population code in the somatosensory cortices (Chikazoe et al., 

2014; Todd et al., 2020). Representational similarity analysis (RSA) allows examination of the 

similarity/dissimilarity of relationships between experimental conditions in an abstract and 

multidimensional representational space. By further decomposing patterns of neural activation 

into potential distinct representations of experience, one can examine neural activity as an 

integration of multiple heterogeneous sets of overlapping neural representations — as has been 

done recently to discriminate taste type from taste valence (Chikazoe et al., 2019). In the present 

study, we implemented an innovative analytic approach, pattern component modelling (PCM), 

which fits multiple theoretical similarity matrices characterizing perfect neural representation of 

information vectors, called here information pattern components (IPCs) to observed 

representational patterns extracted from a series of predefined regions of interest (ROIs).  

Functional neuroimaging data was collected while participants received painful or pleasant 

tactile stimulation (Figure 1A) and viewed images of faces with neutral expressions. During this 

time, participants were instructed to focus on the visual stimuli rather than the tactile stimulation. 

RSA conducted on the BOLD signal identified the similarity/dissimilarity of tactile conditions 

that putatively stimulate distinct fiber pathways (Figure 1B). IPCs were created for task-relevant 

information constructs and included specific aspects of tactile experience (e.g., specific and non-

specific touch, hedonic touch, etc.), and emotional experience (e.g., general trial valence, trial 

saliency etc.). Bayesian information criterion (BIC) analyses were then performed to characterize 

the combination of IPCs that best predicted observed similarity patterns of neural activity in each 

ROI. This allowed us to identify and weigh dissociable representations of discriminative and 

hedonic tactile signals, revealing potential C-fiber and CT-fiber pathways projection targets (See 

supplementary figure SF1 for a detailed schematic on PCM).  

We predicted representation of the hedonic components of the tactile stimulation in 

frontotemporal cortices, including vmPFC, ACC and Ins, with little to no representation in 

sensory cortices. This would demonstrate the dual functionality of somatosensation and indicate 

that hedonic afferents genuinely reflect internal states rather than external sensory events. In 

addition, we expected that dissociable representational patterns for painful vs. pleasant tactile 

stimulation would be identified in the vmPFC and Ins, as prior neuroimaging analyses have 
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suggested that these regions may receive unprocessed information from hedonic-labeled lines. 

Patterns observed in the ACC were predicted to be most heavily weighted towards representation 

of aversive touch, consistent with this region’s preferential activation in response to modality-

general pain (Corradi-Dell'Acqua et al., 2016).  

 

 

 

 

Figure 1. A) Experimental time course. Participants completed tactile visual conditioning tasks. 

Only data collected during CS-US paired blocked will be presented. B) Representational similarity 

analyses (RSA). RSA was conducted correlating all experimental trials independently. Resultant Pearson 

correlation coefficients were averaged across conditions (removing autocorrelation) to create a 6 x 6 

condition similarity matrix comparing all conditions of interest.  

Results 

Results presented here focus on novel methodological approaches allowing for 

identification and weighting of independent sources of information represented in individual 

brain regions (i.e., PCM). For a visualization of traditional measures of representational distance 

between conditions, see Supplementary figure SF2. 

IPC identification and weighting 

 Thirteen IPCs were constructed representing ideal categories of task-relevant 

information. As an example of the differences between these models, consider ‘Specific touch 

[ST],’ ‘Non-specific touch [nST]’ and ‘Touch valence [TV]’ (Table 1). Significant fit of an ST 

IPC would indicate that a region displayed a unique pattern of voxel-wise BOLD activation for 

each tactile experience encountered (i.e., appetitive touch, aversive touch and the absence of 
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both), while significant fit of nST would indicate that both salient tactile manipulations (i,e., 

appetitive and aversive touch) were being represented with high similarity to themselves and 

each other. Contrasting both these examples, model fit of TV would involve high 

representational similarity within appetitive and aversive trials, but dissimilarity between these 

two conditions, specifically placing the tactile valence on an opposing linear spectrum (Chikazoe 

et al., 2014). For a description of all thirteen IPCs, see Table 1 and for an extended description 

see Supplementary material S1.  

To determine the IPC combinations that best explained the observed correlations in the 

data for each ROI, an uninformed greedy best-first search (GBFS) algorithm was used with 

Bayesian Information Criterion (BIC) analyses. The total number of paths required for a given 

search is defined as the n-path. This approach allowed for the decomposition of observed 

representational patterns into multiple unique contributing sources of information. Importantly, 

identified IPC combinations displayed better fit (i.e., lower BIC scores) to experimental data than 

of either a baseline model (predictor matrix of 1s) or the inclusion of all IPCs for all ROIs. For 

expanded detail on GBFS chains identified as most predictive for individual ROIs, see 

Supplementary Table ST1. To assess each IPC’s independent contribution to the overall 

observed representational pattern for each ROI, multiple regressions were performed fitting the 

best performing combinations of IPCs (identified by the BIC analyses) as predictors to the 

observed data. The resultant regression coefficients (βs) indicated the proportional strength of 

each contributing IPC to the activational pattern observed in the ROIs. For complete summary, 

see Table ST2.  

Analyses were conducted on nine non-overlapping ROIs; primary somatosensory cortex 

(S1) ; secondary somatosensory cortex (S2); primary/secondary visual cortex (combined as V1 

hereafter); ventral visual structures (VVS); Amygdalae; ventromedial prefrontal cortex (vmPFC; 

Mackey and Petrides, 2014), anterior cingulate cortex (ACC) and separate anterior/posterior 

insular cortex (Ins) subdivisions (for rationale behind multiple insular ROIs, see Cauda et al., 

2012). For additional details on defining our ROI see Supplementary Table ST2. 

Somatosensory Cortices (S1): In S1, first level BIC analysis identified nST as the best 

individual fit to the S1 representational pattern. This fit was improved with the subsequent 

inclusion of ‘Experimental task [ET]’ and ST to the predictive model. IPC weighting identified 
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nST as the most strongly represented IPC in S1 (βnST = 0.129) followed by ET (βET = 0.056) and 

ST (βST = 0.039). The three predictors explained 24.7 % of the variance (R2 = .247, F (3,1403) = 

154.39, p < .001; Figure 2A). This ROI required two unique search paths to determine the best 

fitting IPC combination (n-pathS1 = 2; see Supplementary Table ST3). This pattern indicates a 

representation of discriminative tactile experience rather than hedonic value in S1. In line of the 

dominant contralateral input to S1, and the lateralized tactile stimulation across tasks, two 

additional S1 PCM analyses were conducted in unilateral S1 ROIs. For full details on unilateral 

S1 analyses, see Supplementary materials S2. Interestingly, division of S1 into right and left 

hemispheric representational patterns suggests that the absence of hedonic information in S1 may 

be limited to positively valenced information carried along CT-fibre pathways. While right S1 

represented the left lateralized specific touch experience (i.e., appetitive brushing and scanner-

generic touch as distinct states), representational patterns in left S1 predicted by AP, lacking 

representation for right lateralized specific touch.   

For S2, initial best fit was observed for nST. This fit was improved with additional 

inclusion of AP, ET and PE respectively. IPC weighting identified a similar pattern of 

representation, with nST the most strongly represented IPC S1 (βnST = 0.183) followed by AP 

(βAP = 0.101), ET (βET = 0.040) and PE (βPE = 0.030). Together, these predictors accounted for 

40.3 % of the variance (R2 = .403, F (3,1402) = 238.00, p < .001; Figure 2B). This suggests that S2 

may receive hedonic signals that are not represented in S1. 

Visual Cortices: Best model fits for both V1 and VVS representational patterns were 

found for the IPC ET. These fits did not improve with the inclusion of any additional IPCs. For 

V1, 2.1 % of the variance (R2 = .021, F (1,1405) = 31.83, p < .001) was explained by ET (βET = 

0.059; Figure 2C), while in ventral visual structures, 2.6% of the variance (R2 = .026, F (2,1278) = 

38.83, p < .001) was explained by this IPC (βET = 0.061; Figure 2D). This demonstrates that 

representational patterns in visual cortices are relatively uninformative of non-visual 

information, irrespective of its hedonic value. 

Amygdalae: A combination of three IPCs best fit the representational pattern of bilateral 

amygdalae. These were, in order of identification, TV, nST, and ET. This combination of IPCs 

accounted for 12.0 % of the observed variance in the amygdalae (R2 = .120, F (3,1403) = 64.97, p < 

.001), with representational weights of βTV = 0.020, βnST = 0.045, and βET = 0.033 respectively 
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(Figure 3A). Notably, this is the only ROI to identify representation of valence on a linear 

spectrum, suggesting integration of positive and negative tactile signals prior to processing here. 

 

 

Figure 2. Information pattern component in sensory cortices. A) Representational similarity in primary 

somatosensory cortex (S1) was characterized by IPCs indicating representations of discriminatory touch, 

including non-specific tactile salience (nST), and specific tactile experience (ST). B) Representation of 

both hedonic and discriminative tactile signals were observed in S2, with strongest representation of 

nST and aversive pressure (AP). C/D) Similarity of representations in primary visual cortex (V1) and 

ventral visual structures (VVS) were characterized by intra-task similarity, consistent with the 

conservation of visual stimuli within experimental tasks. 
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Ventromedial Prefrontal Cortex: The vmPFC representational pattern was best fit to a 

combination of the IPCs ‘Aversive pressure [AP]’ and ‘Appetitive brush [AB]’ with weightings 

of βAP = 0.075 and βAB = 0.052. Total variance accounted for by these models was 7.5 % (R2 = 

.075, F (3,1404) = 57.82, p < .001). This demonstrates that vmPFC activity contains information 

about the hedonic value of the tactile stimulation, representing positive and negative value as 

distinctly independent signals (Figure 3B). 

Anterior Cingulate Cortex: AP was identified as the initial IPC that best fit the ACC data 

with subsequent fit improvement from the sequential inclusion of nST and ET. Together, these 

predicted 18.4 % of the variance in this region (R2 = .184, F (3,1403) = 106.70, p < .001; Figure 

3C). Specific strength of representations was found to be βAP = 0.062, βnST = 0.058, and βET = 

0.037 respectively. This suggests that ACC represents general tactile information but is 

particularly sensitive to tactile information associated with pain. 

Insula: The insula was anatomically subdivided at the anterior commissure into distinct 

non-overlapping anterior/posterior regions. Representational patterns in the anterior Insula (aIns) 

were best fit to a combination of four IPCs. In order of IPC identification, these were AP, nST, 

ET and NE. The pattern of activation in aIns was most heavily weighted by representation of AP 

(βAP = 0.12.6), followed by nST (βnST = 0.044), and ET (βET = 0.028). These explained 14.7 % of 

the variance (R2 = .147, F (4,1402) = 61.33, p < .001; Figure 3D). 

 A similar combination of IPCs best fit posterior Insula (pIns) representational patterns, 

though the order of identification, search requirement (n-pathpIns = 3 vs. n-pathaIns = 1; see 

Supplementary table ST3 for additional pIns paths), and presence of NE differed between 

regions. The order of IPC identification in pIns was nST, followed by ET then AP. This 

combination of IPCs was fitted to the observed data in pIns (R2 = .360, F (3,1403) = 260.10, p < 

.001; Figure 3E). The strongest IPC component in this region was nST (βnST = 0.112), followed 

by AP (βAP = 0.070), then ET (βET = 0.047). This shows that while the types of information 

processed in the insula may be similar across the anterior and posterior sections, the nature and 

weighting of these representations differ drastically. 
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Figure 3. Information pattern components in frontotemporal cortices. A) Amygdalae displayed patterns 

of activation consistent with representations of a unidimensional hedonic-tactile spectrum (TV), as well 

as tactile saliency and general task effects. B) Activation patterns in vmPFC were unique, with 

representation of tactile pain and pleasure as dissociable contributing components. C/D/E) Anterior and 

posterior insula and ACC all displayed patterns of activation consistent with representation of tactile 

salience and painful sensation, though the specific biases for these types of information varied between 

the structures. 
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Cross-validation of results across brains 

To ensure that regression fits were not a product of overfitting, we performed Monte-

Carlo cross validation (CV) of our PCM on a randomly selected sample of participants 

(‘random-sample’, RS = 60), then fit these results as a predictor for held-out participants (the 

‘hold-out’: HO = 7). Specific outputs of interest included the proportion of CV iterations (i = 

1000) in which an IPC was identified as a contributing component of the experimental data in the 

RS, and the model fit of the reconstructed data to the HO (Supplementary figure SF3). 

Proportion of iterations for IPC identification were compared to chance identification for each 

ROI (i.e., # of IPCs identified / total # of IPCs).  

Overall, the similarity of IPC estimates generated from the Monte-Carlo CV to the whole 

sample data suggest a highly conserved pattern of representation across participants. 

Specifically, identical sets of IPCs to the full sample data were identified at a rate significantly 

above chance through Monte-Carlo CV for eight of the nine ROIs in RSs. The notable exception 

to this consistency was found in vmPFC: In addition to contributing IPCs identified in the full 

sample analyses (AP and AB), ET, nST and TA were also identified at a rate greater than chance. 

This suggests that while our PCM did accurately detect information consistently represented in 

vmPFC during our experimental paradigm - AP and AB representations were consistent - it may 

not reflect the extent of inter-participant variability of processing in this region. RS based on the 

specific participants in the HO resulted in the identification of three additional IPCs at a rate 

greater than chance suggesting that other information may be, but is not always, represented in 

this area. Furthermore, reconstructed models generated from the Monte-Carlo CV-identified 

IPCs in the RS were found to be significant predictors of the HO in seven of nine ROIs, with a 

minimum of β = 0.934. Reconstructed data from V1 and VVS failed to significantly predict the 

HO, indicating that these regions are less driven by information modeled in the current theorized 

pattern components. For complete summary of the cross-validation results, see Table 3.  

To assess the robustness of IPC contributions, a one-way ANOVA was conducted on the 

average n-path data across iterations which identified a significant main effect of region (F (8,7992) 

= 195.507, p < .001). A follow-up series of independent sample t-tests (all reported p-values are 

Bonferroni-corrected) identified four distinct clusters of ROIs characterized by their n-path. A 
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lower search path likely indicates either a poor fit of the IPC models (if only a single model is 

frequently identified; e.g., V1/VVS), or robust representations for a specific subset of models (if 

identified IPC > 1; e.g. vmPFC). By contrast, a higher n-path likely indicates more overlapping 

representational space (e.g., insular subdivisions). Visual areas assessed required expansion of 

fewer paths than required by any other area (all p < .001), yet they did not differ significantly 

from each other (p = 1.0). Ventromedial PFC had more branching than either V1 or VVS but less 

than all other ROIs (all p < 0.001). ACC, amygdala, and S2 did not significantly differ from each 

other, yet required less expansion of search paths than S1 or either insular ROI. (all ps < .001). 

Finally, while aIns did not significantly differ from either pIns or S1 these other regions (both ps 

= 1), pIns displayed greater branching than S1 (p < .001). The greater n-path in these regions 

suggests that there is likely less distinct representational space for the IPC modeled in the current 

experiment. 

 

Discussion 

In this study we used pattern component modeling with representational similarity 

analysis to dissociate how discriminatory vs. hedonic tactile information, carried by A- and C-

/CT-fibers respectively, contributes to population code representations in the human brain. 

Distinct representations of hedonic information were observed in frontal and temporal structures, 

including ventromedial prefrontal cortex (vmPFC), insula (Ins) and anterior cingulate cortex 

(ACC), as well as in secondary somatosensory cortex (S2). Importantly, primary somatosensory 

cortex (S1) did not represent all tactile information coded by peripheral receptors. No 

representation of positive hedonic touch signals carried by CT-fiber afferents was found. Visual 

areas, including primary/secondary visual cortex (V1) and ventral visual structures (VVS), 

displayed no representation of either affective, or discriminative touch information. By contrast, 

negative hedonic information made a minor contribution to representational patterns in S1 

contralateral to the tactile stimulation (see Supplementary material S2), indicating that some 

nociceptive information may reach this area independent of frontotemporal processing. With 

respect to representational patterns in visual areas, it should be noted that while a single IPC 

(ET) was found to best fit similarity patterns in both visual areas, there were no consistently 

significant predictors identified in the MCCV analyses. This suggests that none of the modeled 

IPCs accurately described the signals generating the representations patterns observed in visual 
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areas; ET is the most predictive of the IPCs fitted, but likely not a true representation pattern in 

this area.  

Together, the findings support the hypothesis that sensations carried by hedonic-labeled 

tactile signals - particularly those carried by CT-fiber pathways - may not be represented as 

discriminable signals in S1. Rather, this information is represented predominantly in 

frontotemporal structures more typically implicated in interoception (Craig, 2011; Pollatos et al., 

2016; Strigo and Craig, 2016) and the central mediation of emotional relevance (McFarland and 

Sibly, 1975; Rolls, 2000; Todd et al., 2020). These findings indicate that hedonic tactile 

information for the most part does not contribute to representation of the external environment in 

the same fashion as discriminative touch information carried along A-fiber pathways. Of note, 

however, representation of aversive pressure in S1 contralateral to the tactile manipulation 

indicates that some nociceptive information does reach this area, though this representation 

likely includes both discriminatory and hedonic signals. This effect is consistent with evidence of 

pre-cortical integration of signals carried along A and C-fiber pathways at the dorsal horn 

(Abraira et al., 2017; Marshall and McGlone, 2020; Neubarth et al., 2020). Interestingly, similar 

integration and representation of signals carried along CT-fiber afferents is not observed, 

suggesting divergent projections for C and CT-fiber pathways. By demonstrating that hedonic 

signals of positive and negative tactile experience are represented as independent signals in 

frontotemporal structures yet mostly lack distinct representation in early sensory cortices, we 

provide a potential mechanism for the prioritized incorporation of this information into 

emotionally-guided cognitive processes. 

Dissociable cortical representations for tactile information 

 Activation in S1 displayed representational patterns that discriminated different types of 

tactile experience, as well as non-valence specific components of tactile manipulations. The 

identification of representations for specific touch experiences (IPC: ST) in this area 

substantiates its traditional role in processing discriminatory tactile information as carried by out 

A-fiber afferents (McGlone and Reilly, 2010; McGlone et al., 2014). Note that nST is defined as 

containing a representational space for trials with no tactile manipulation (i.e., the tactile 

experience of lying in a scanner) of equal strength to those of the tactile manipulation. Thus, its 

manifestation cannot be generated by peripheral hedonic signalling, as these signals would not 
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inform this particular experience. Additionally, S1 strongly represented non-specific touch (IPC: 

nST). Though representations of nST may include information carried by C- and C-tactile fibers 

– this IPC includes perfect correlations for trials within both affective conditions – the defined 

similarity between the affective conditions in this IPC indicates that this information is unlikely 

to be in an unprocessed form. The two peripheral distinct signals are represented by overlapping 

activation patterns, potentially mediated by re-entrant projections of tactile salience from other 

frontotemporal structures (Vuilleumier, 2005; Pessoa and Adolphs, 2010). nST representation is 

likely either a discriminatory representation of body location (i.e., arm; not dependent on C- or 

CT- fiber activation) or general tactile salience (may or may not integrate information from C- 

and CT-fiber activation; i.e., hedonic salience). In support of the latter interpretation, there is 

evidence that S1 likely integrates re-entrant hedonic signals from multisensory emotion-related 

regions (Orenius et al., 2017).  

Notably, IPCs indicating unprocessed projections of hedonic-labeled afferent pathways 

(i.e., IPCs Aversive pressure and Appetitive brush) were absent in bilateral representational 

patterns observed in this region, suggesting that these hedonic signals may not be instantiated in 

traditional somatosensory processing structures despite originating as external cutaneous 

sensation. Interestingly, unilateral investigation of left S1 did identify a representation pattern 

associated with aversive pressure (see Supplementary material S1), though this was observed in 

the absence of specific tactile discriminability (i.e., ST or rST). This suggests either that 

discriminative and nociceptive information are integrated prior to reaching S1 (for candidate 

regions, see Abraira et al., 2017; Marshall and McGlone, 2020; Neubarth et al., 2020), or 

alternatively, that sustained changes in tonic firing of rates of slow adapting mechanoreceptors 

(for review, see Knibestol, 1975; Abraham and Mathew, 2019) in response to the strong pressure 

manipulation (right hand) result in a tactile representation state in left S1 during CS- trials 

(pressure task) that is unique from the representation of scanner generic sensation (right hand) 

experienced during the brush manipulation (which was applied to the left hand). With 

substantive evidence to support both interpretations, it is likely that the observed IPC 

contributions reflect a combination of these processes. Importantly, however, there remains no 

evidence of unique representational patterns in S1 for signals of appetitive hedonic information 

carried by CT-fiber pathways. 
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 Amongst all regions investigated, only vmPFC displayed independent representation of 

both appetitive and aversive touch (IPCs: AB/AP). This suggests that this region either A) 

receives information carried along C- and C-tactile fiber afferents as distinct signals prior to their 

integration with each other, or with other tactile information, or B) has decomposed an integrated 

hedonic representation back into distinct signals of positive and negative value to inform 

situation specific behaviours and decision. This dissociation is a striking contrast to recent 

observation of modality-general representations of hedonic valence in orbitofrontal cortices 

(OFC), which code valence along a unidimensional vector from pleasant to unpleasant (Miskovic 

and Anderson, 2018). One likely explanation for this divergent result is differences between 

studies in the definition of vmPFC ROIs. In the current study, we defined a mask that excluded 

the dorsal-most OFC structures (Brodmann area: BA 10). The choice to exclude this area was 

founded in cytoarchitectural differences between BA 10 and the rest of the vmPFC (Mackey and 

Petrides, 2014) — specifically, a substantial increase in granularity of its neurons (Barbas, 2015). 

Interestingly, activation in this region in response to pain stimuli has been demonstrated to 

involve high-level processing of the pain experience (Peng et al., 2018) and is proposed to create 

multimodal summaries of hedonic signals (Winecoff et al., 2013; Barrett, 2017). In contrast, 

agranular ventral prefrontal structures (conserved between OFC and the current vmPFC ROI) 

also  display more category specific representation of experience (Miskovic and Anderson, 2018) 

and more direct autonomic control (Euston et al., 2012). Considering the critical role these 

ventral structures play in appraising emotional salience to guide value-based decision making 

(Euston et al., 2012; Dixon et al., 2017; Hiser and Koenigs, 2018), dissociable hedonic-labeled 

tactile representation in these regions may act as a mechanism to prioritize integration of action-

outcomes into value appraisal to guide future decision-making processes.  

 Though distinct representation of appetitive touch was identified only in the vmPFC, 

distinct representations of aversive pressure were identified within the ACC as well as the 

anterior and posterior Ins. Notably, both of these regions are heavily implicated in the 

representation of painful experience (Corradi-Dell'Acqua et al., 2016; Kragel et al., 2018) and 

are postulated to underlie awareness of one’s own internal homeostatic balance (Craig, 2011, 

2015; Pollatos et al., 2016; Strigo and Craig, 2016), characterized as the interoceptive self  

(Craig, 2015). One potential explanation for this pattern of results is that hedonic-labeled 

peripheral afferents are not processed as tactile signals in the traditional view of sensation (Pinel 
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and Barnes, 2018; Gazzaniga et al., 2019). That is, they may not be instantiated in neocortex as 

representing the experience of contact with external objects in the environment. Rather, 

information carried along these pathways indicates internal concerns about homeostatic threat or 

social safety (Craig, 2011, 2015) and manifest cognitively as emotional feelings congruent with 

these states. Such patterns of representation demonstrate a potential dual function of proximal 

senses, consistent with Sherrington’s classic distinction between exteroception and interoception: 

they represent not signals of the external world, but instead of the body itself, Sherrington’s 

material “me” (Sherrington, 1906). 

The utility of tactile receptors and peripheral afferents for interoceptive processes is 

potentially due to the proximal nature of tactile sensation. This is supported by recent work 

positing gustation an additional sensory contributor to interoceptive processing (Liman et al., 

2014; Chikazoe et al., 2019), which offers another exemplar of a proximal sense with peripheral 

labelling of hedonic value (Liman et al., 2014).When an object is in direct contact with the 

senses, aversive sensation is likely informative of both the external environment and the 

organism’s internal state (Craig, 2015). Information about the internal state acts as an immediate 

mechanism for motivating response independent of additional hedonic appraisal.  

Mixed cortical representation of tactile information 

Multiple structures displayed patterns of activity that indicated representation of C- and 

CT-fiber afferent information, though not in a mutually exclusive manner. Rather, 

representational patterns showed distinct similarity/dissimilarity between hedonic conditions, 

indicative of prior processing of this information. Specifically, in the ACC as well as the anterior 

and posterior Ins, patterns of neural activity were found to represent non-specific touch (IPC: 

nST) in addition to aversive pressure pain (IPC: AP). While the representation of nST is possibly 

dependent on information integrating both types of unmyelinated hedonic tactile afferents, the 

similarity of representation between the two valence manipulations indicate it is unlikely to be in 

an unprocessed form. The absence of distinct representation for pleasurable tactile signals in both 

the anterior and posterior Ins is particularly notable, as these regions have been highlighted as 

potential cortical recipients of C-tactile fiber information (Olausson et al., 2002; Rolls et al., 

2003). While this may be due to variability in response to the appetitive touch manipulation used 

in the current design, the identification of a clear appetitive brush pattern component in the 
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vmPFC indicated that this is unlikely. Instead, this absence likely reflects the role of these 

regions in guiding both interoceptive and stimulus-guided attention (Han et al., 2019; Wang et 

al., 2019). Pain may be the more salient tactile signal for indicating the well-being of an 

organism, and thus given greater priority of resources. Furthermore, much of the prior work 

identifying modulation of Ins activity by pleasurable touch has been performed either 

independent of aversive touch (Olausson et al., 2002), or treating the two signals orthogonally 

without direct comparison (Rolls et al., 2003). This leaves open the possibility that results were 

driven by general affective salience of the tactile cue as observed currently, rather than the 

pleasurable sensation alone.  

Interestingly, none of the anterior or posterior Ins, ACC, or vmPFC were found to display 

opposing representations of hedonic valence. However, in the amygdala, a clear representation of 

the hedonic experience of touch valence (IPC: TV) was observed. TV was represented as a single 

linear vector, with representations of appetitive brush anti-correlated to aversive pressure pain; 

the hedonic conditions represented as polar ends to a single valence spectrum: pleasure on one 

side and pain on the other. Thus, prior to its representation in the amygdala, tactile information 

once carried as unique signals along non-overlapping sensory afferents must be integrated into 

the same representational space. This is consistent with recent work in the olfactory domain 

demonstrating patterns of voxel-wise neural activity in this region as coding valence along a 

unidimensional vector from pleasant to unpleasant (Jin et al., 2015). Interestingly, however, 

corresponding bipolar representations have not been observed for either gustatory or visual 

hedonic information (Chikazoe et al., 2014, 2019). In light of this absence, the unidimensional 

valence spectrums observed previously in the olfactory domain, as well as in the current study, 

are likely indicating modality-specific hedonic processing rather than a centralized a-modal 

representation of emotional state (Miskovic and Anderson, 2018). In the current work in 

particular, this unidimensional hedonic vector may be related to the association of the tactile 

sensation with the concurrent visual stimuli rather than with the raw tactile signals in isolation, as 

multiple studies in both humans and non-human primates have implicated this region in guiding 

affect-biased attention (Todd et al., 2020) and emotional learning in vision (Morris et al., 1998; 

Everitt et al., 2003). 
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Conclusion 

Somatosensation contains more information about the environment than traditionally 

believed. Beyond discriminative information pertaining to the identity of objects contiguous to 

ourselves, this system also signals the value of an object for our wellbeing; that is, the pain and 

pleasure of contact with it. In the current study, we use multivariate pattern component modeling 

to demonstrate that this hedonic tactile information is not processed in the same fashion as non-

hedonic tactile information. The full spectrum of hedonic tactile information is not uniquely 

represented in primary somatosensory cortices but is represented in frontotemporal structures. 

Notably, representations of hedonic tactile information are observed in brain areas proposed to 

underlie the emergence of an interoceptive self. Thus, we propose that somatonsensory signals, 

originating from cutaneous mechanoreceptors through contact with the external world are not 

only critical for our exteroception – feeling about the world around us – but also interoception – 

feelings about the world inside. 

 

Methods 

Participants 

 Four-hundred and eighty-eight participants were recruited from Cornell University to 

complete an initial behavioural pilot assessment of affiliative responding to tactile stimulation. 

Of these, 107 participants (x̄age = 21.1, sd = 2.8; 41F) were recruited to complete the current 

study. We were unable to complete preprocessing of data for 40 participants: 27 participants had 

raw data corrupted related to server-transfer errors prior to preprocessing, for five we were 

unable to obtain convergence during the multi-echo independent component analysis (ICA), five 

did not have correct stimulus timing information, and three were excluded due to motion 

artifacts. Results from the remaining 67 participants are reported. All participants gave written, 

informed consent and had normal or corrected-to-normal vision. Participants were pre-screened 

for a history of anxiety and depression as well as other psychopathology, epilepsy and brain 

surgery. Pre-screening was followed up in person by an additional interview to ensure inclusion 

criteria were met. As this study was conducted as part of larger research program, all participants 

provided saliva samples for genotyping, and fecal sample for microbiome analyses. The 
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experiment was performed in accordance with the Institutional Review Board for Human 

Participants at Cornell University. 

Stimuli and Apparatus 

  Three male and three female faces with neutral expressions were chosen from the 

Karolinska directed emotional faces picture set (Goeleven et al., 2008). These faces were used as 

conditioned stimuli (CS) in a classical conditioning paradigm. Unconditioned stimuli (US) 

consisted of either unpleasant, aversive pressure delivered to the right thumb, or a pleasurable, 

appetitive brush stroke to the participant’s left forearm. These tactile manipulations were aimed 

to maximally activate C- and C-tactile somatosensory afferent respectively. Pressure-pain stimuli 

were delivered using a custom designed hydraulic device (Giesecke et al., 2004; Lopez-Sola et 

al., 2010) capable of transmitting controlled pressure to 1 cm2 surface placed on the subjects’ 

right thumbnail. Applied pressure levels were individually calibrated for each participant prior to 

the experiment to ensure that the pressure intensity was experienced as aversive but not 

excessively painful. Light appetitive brush strokes lasting ~4 s were manually applied to the left 

forearm by a trained experimenter to maximally activate CT-fiber pathways (McGlone et al., 

2014). Individual subjective responses to brush stimuli were recorded in a separate session prior 

to scanning. Only participants from the initial behavioral experiment who had previously 

responded positively to the brush manipulation were invited to participant in the scanning 

session. 

Procedure 

 While undergoing functional MR scanning, participants completed two separate 

conditioning tasks (appetitive conditioning and aversive conditioning), each involving a series of 

tactile and visual pairings (Figure 1A) (Visser et al., 2015). In each task, participants completed 

seven CS-only blocks interleaved with six CS-US paired blocks. Single blocks of either the CS-

only or the CS-US pairing contained one presentation of each facial stimulus (i.e., 3 face stimuli 

per block of each conditioning task). Individual trials consisted of an initial fixation period 

(19500 ms) followed by the presentation of a face (4000 ms). A fixed and long interstimulus 

interval (19500 ms) was included in the experimental design to reduce intrinsic noise 

correlations and enable trial by trial analyses by means of RSA (Visser et al., 2013; Visser et al., 

2016). During CS-only trials, all faces were presented without tactile stimulation. During CS-US 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.24.310383doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.24.310383
http://creativecommons.org/licenses/by-nc-nd/4.0/


paired trials, two of three facial stimuli presentations overlapped with tactile stimulation, thus 

creating two CS+ and one CS-. The US was delivered from the midpoint of the face presentation 

(2000 ms post-onset), remained for the rest of the time the face was visible (2000 ms) and 

persisted following the offset (2000 ms; total US = 4000 ms). The order of face presentation was 

randomized within each CS-US paired block. Participants completed two experimental tasks 

(one for each US, order counterbalanced across participants), totaling 26 blocks (6 CS-US paired 

and 7 CS only blocks for each US type).  

MRI Acquisition and Preprocessing 

MR scanning was conducted on a 3 Tesla GE Discovery MR scanner using a 32-channel 

head coil. For each subject, a T1-weighted MPRAGE sequence was used to obtain high-

resolution anatomical images (TR = 7 ms, TE = 3.42 ms, field of view (FOV) 256 x 256 mm, 

slice thickness 1 mm, 176 slices). Functional tasks were acquired with the following multi-echo 

(ME) EPI sequence: TR = 2000 ms, TE1 = 11.7 ms, TE2 = 24.2 ms and TE3 = 37.1 ms, flip 

angle 77°; FOV 240 x 240 mm. These parameters are consistent with recent work demonstrating 

improved effect-size estimation and statistical power for multi-echo acquisition parameters 

(Lombardo et al., 2016). Specifically, the multi-echo sequence was chosen due to its enhanced 

capacity for differentiating BOLD and non-BOLD signal (Kundu et al., 2012; Kundu et al., 

2014), as well as its sensitivity for discrimination of small nuclei in areas susceptible to high 

signal dropout (Markello et al., 2018). A total of 102 slices was acquired with a voxel size of 3 x 

3 x 3 mm. Pulse and respiration data were acquired with scanner-integrated devices.  

 Preprocessing and analysis of the fMRI data was conducted using Analysis of Functional 

NeuroImages software (AFNI; Cox, 1996) and the associated toolbox meica.py (Kundu et al., 

2014; Kundu et al., 2017). For maximal sensitivity during multivariate pattern detection, no 

spatial smoothing was performed on the data (Haynes, 2015). Preprocessing of multi-echo 

imaging data followed the procedural steps outlined by Kundu et al. (Kundu et al., 2012; Kundu 

et al., 2013). An optimally combined (OC) dataset was generated from the functional multi-echo 

data by taking a weighted summation of the three echoes, using an exponential T2* weighting 

approach (Posse et al., 1999). Multi-echo principal components analysis (PCA) was first applied 

to the OC dataset to reduce the data dimensionality. Spatial independent components analysis 

(ICA) was then applied and the independent component time-series were fit to the pre-processed 
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time-series from each of the three echoes to generate ICA weights for each echo. These weights 

were subsequently fitted to the linear TE-dependence and TE-independence models to generate 

F-statistics and component-level κ and ρ values, which respectively indicate BOLD and non-

BOLD weightings. The κ and ρ metrics were then used to identify non-BOLD-like components 

to be regressed out of the OC dataset as noise regressors. Regressor files of interest were 

generated for all individual trials across the experiment, modelling the time course of each 

stimulus presentation during each run (36 total events: 2 tasks X 6 CS-US blocks X 3 CS). The 

relevant hemodynamic response function was fit to each regressor for linear regression 

modeling. This resulted in a β coefficient and t value for each voxel and regressor. To facilitate 

group analysis, each individual’s data were transformed into the standard brain space of the 

Montreal Neurological Institute (MNI). 

fMRI Analyses: Structural Regions of Interest 

 To assess tactile (pressure and caress and non-specific touch) and hedonic (pressure vs. 

caress) representations in neural patterns, nine bilateral regions of interest (ROIs) were generated 

from the standard anatomical atlas (MNIa_caez_ml_18) implemented with AFNI. Selected ROIS 

were: Primary somatosensory cortex (S1), secondary somatosensory cortex (S2), 

primary/secondary visual cortex (V1), ventral visual structures (VVS), amygdala, ventromedial 

prefrontal cortex (vmPFC; Mackey and Petrides, 2014), anterior cingulate cortex (ACC) and 

separate posterior/anterior insula (Ins) divisions (consistent with its functional and histological 

divisions; for review, see Nieuwenhuys, 2012). S1 and V1 were selected as the primary sites of 

tactile and visual information respectively. VVS were chosen due to their role in visual 

classification (Kanwisher et al., 1997; Kravitz et al., 2013). Amygdala, vmPFC, ACC and 

posterior/anterior Ins divisions were selected for their hypothesized roles in affect (Anderson and 

Phelps, 2002; Chikazoe et al., 2014) and pain representations (Orenius et al., 2017; Kragel et al., 

2018). 

fMRI Analyses: RSA and Ideal Model Specification 

 In order to identify and compare the representational pattern elicited by the experimental 

conditions, representational similarity analysis (RSA; Mur et al., 2009; Kriegeskorte and Kievit, 

2013; Figure 1B) was performed using the PyMVPA Python package (Hanke et al., 2009). For 

each participant, a vector was created containing the spatial patterns derived from β coefficients 
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from each voxel related to each particular event in each ROI. Pairwise Pearson coefficients were 

calculated between all vectors of a single ROI, thus resulting in a similarity matrix containing 

correlations for all trials for each participant (i.e., how closely the pattern of voxel activation 

elicited in one trial resembles the patterns of voxel activation observed in all other trials). Fisher 

transformations were performed on all similarity matrices to allow comparisons between 

participants. Correlation matrix transformations were performed using Matlab (The MathWorks, 

Natick, Massachusetts, USA) and BIC analyses were conducted in R (RCoreTeam, 2013). 

Pattern component modelling (PCM; Kriegeskorte and Kievit, 2013; Diedrichsen et al., 

2018) was performed using thirteen models of potential information pattern component (IPCs). 

These were generated to represent similarity matrices that would be observed in the experimental 

data if it were to contain perfect representation of distinct sources of information (see 

Supplementary material S1 for details). IPCs were constructed for 1) Experimental task, 2) Non-

specific touch, 3) Specific touch, 4) Appetitive brush 5) Aversive pressure, 6) Touch valence, 7) 

Positive events, 8) Negative events, 9) All valence, 10) Salience, 11) Face Stimulus, 12) 

Violation of expectation, and 13) Temporal adjacency.  

To determine the IPC combinations that best explained the observed correlations in the 

data for each ROI, we conducted Bayesian Information Criterion (BIC) analyses. As the IPCs 

identified in the current experiment contained some overlapping information, a regression of all 

potential IPCs would be insufficient to identify those most informative. To address this, a an 

uninformed greedy best-first search (GBFS) algorithm (Doran and Michie, 1966) was 

implemented to identify the best fitting IPC combination in a step wise manner (Supplementary 

figure SF1A). Initial model testing was conducted for each fitting of each independent IPC to the 

observed similarity for a given ROI (Level 1). Upon identification of the best fitting IPC (IPCB1), 

model fitting was conducted on each remaining IPC in combination with IPCB (Level 2). The IPC 

combination (i.e., IPCB1 + IPCB2) that provided the best fit to the ROI data would be held as a 

constant for model fitting in Level 3. This process was repeated iteratively until no addition of 

remaining IPCs led to an improved fit to the ROI. A ΔBIC > 2 was defined as indicative of an 

improved fit (Fabozzi, 2014). Following similar equivalency criteria, all IPC combinations at a 

given search level with ΔBIC scores < 2 to the best fitting combination were also extended to 

path completion (Fabozzi, 2014).  
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fMRI Analyses: Cross-validation 

Monte-Carlo cross-validation (CV; Picard and Cook, 1984) parameters were chosen to maximize 

CV performance by minimizing CV-variance while maximizing model selection accuracy (Arlot 

and Celisse, 2010). These analyses identified IPCs contributing to representational patterns for 

each ROI in the RS. Beta coefficients and intercepts, determined by fitting these IPCs as 

predictors to the experimental data, were used to create a reconstructed and averaged dataset. 

Model-improvement criterion and IPC-equivalency were handled in a manner identical to that 

described for the full-sample analyses. The reconstructed dataset was then fitted as a predictor to 

the HO, with each iteration approximating a single fold of a 10-fold validation.   
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Table 1: IPC Glossary 

Name Abbr. Description Visual Representation* 

    

Experimental Task ET r = 1 for all comparisons between all trials in each conditioning task. 

• i.e., within conditioning tasks, CS+ has shared representation with CS- 

 
    

    

Non-Specific Touch nST r = 1 for all comparisons between all trials where a tactile manipulation 

occurred. 

• i.e., shared representation both within and between *APCS+ and 

**AVCS+.  
    

    

Specific-Touch ST r = 1 for all comparisons between all trials where an identical tactile 

experience occurred. 

• i.e., shared representation within, but not between APCS+, AVCS+ and 

CS- trials  
    

    

Appetitive Brush AB r = 1 for all comparisons between all trials that involved the delivery of an 

appetitive brush stroke to the participant’s arm. 

 
    

    

Aversive Pressure AP r = 1 for all comparisons between all trials that involved the delivery of 

aversive pressure to the participant’s thumb. 

 
    

    

Touch Valence TV r = 1 for all comparisons between CS+ trials within each conditioning task. 

r = -1 for all comparisons between CS+ trials between conditioning tasks. 

NOTE: This reflects a linear representation of hedonic tactile 

information.  
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Positive Events PE r = 1 for all comparisons between all trials experienced as positively valenced 

relative to its experimental task.  

• i.e., APCS+ has shared representation with AVCS-. 

 
    

    

Negative Events NE r = 1 for all comparisons between all trials experienced as negatively valenced 

relative to its experimental task.  

• i.e., AVCS+ has shared representation with APCS-. 

 
    

    

All Valence AV r = 1 for all comparisons between trials containing positive events and 

between trials containing negative events. 

r = -1 for all comparisons between trials of positive events and negative 

events. 

*NOTE: This reflects a linear representation of all hedonic 

information. 
 

    

    

Salience Sa r = 1 for all comparisons between all trial with highly tactile salience. 

• shared representation both within and between APCS+ and AVCS+. 

r = 1 for all comparisons between all trial with minimal tactile salience 

• shared representation both within and between APCS- and AVCS-  

r = -1 for all correlation between highly and minimally salient trials  
 

    

    

Facial Stimulus FS r = 1 for all comparisons between trials where the visual stimulus presented 

(i.e., the face) was identical 

• i.e., distinct representation for each of the 6 CS (3CS X 2 Tasks) 

 
    

    

Violation of Expectation VE r = 1 for all comparisons correlation between all trials involving the less 

probable CS-US paired outcome 

NOTE: As there were two CS+ compared to one CS- for each 

experimental task, the less probable outcome was always the CS- trials   
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Temporal Adjacency TA r = 1 for all comparisons between all comparisons that included trials that 

were temporally contained within the same block (i.e., temporally adjacent 

exposures). 

NOTE: Due to the removal of autocorrelation from within condition 

averaging, these did not contain temporally adjacent trials   

    

 

*AV = Aversive conditioning task; CS+ indicates trials with painful pressure applied to the right thumbnail. 

**AP = Appetitive conditioning task; CS+ indicates trials with gentle caress applied to the left forearm. 

 

*NOTE: General matrix structure can be found in Figure 1B; red represents r = 1, blue represents r = -1 and yellow represents r = 0. 
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Table 2: IPC coefficient weights: Full sample 

 Regression Information Pattern Component weighting – β Coefficients 

ROI R2 P value ET nST ST AB AP TV PE NE AV S FS VE TA 

                

S1 .247 2.8e-50 0.056 0.128 0.039 - - - - - - - - - - 

S2 .403 9.1e-88 0.040 0.183 - - 0.101 - -0.030 - - - - - - 

V1 .021 2.0e-8 0.059 - - - - - - - - - - - - 

VVS .026 6.1e-10 0.061 - - - - - - - - - - - - 

Amy .120 .00036 0.033 0.046 - - - 0.020 - - - - - - - 

vmPFC .075 8.9e-21 - - - 0.052 0.075 - - - - - - - - 

ACC .184 1.1e-10 0.037 0.058 - - 0.062 - - - - - - - - 

aIns .147 8.2e-13 0.028 0.044 - - 0.126 - - -0.036 - - - - - 

pIns .356 6.0e-66 0.047 0.112 - - 0.070 - - - - - - - - 
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Table 3: Cross Validation – Average values 

 

 

average βs are presented only for IPCs identified at a level significantly greater than chance (i.e., proportion of simulations IPC is identified > (Average # of 

contributing IPCs / Total IPCs)) 

 
Av. n-path 

Information Pattern Component identification – % of Simulations (mean contributing β*; n = 55) HO Fit (n = 6, df = 1,124) 

ROI ET nST ST AB AP TV PE NE AV S FS VE TA R2 P value Recon.  β   

                  

S1 1.934 
100 

(0.055) 

100 

(0.129) 

60.2 

(0.025) 

0 

- 

19.9 

- 

18.8 

- 

7.8 

- 

0 

- 

4.5 

- 

0 

- 

0 

- 

0 

- 

0 

- 
.248 4.1e-5 0.978 

                  

                  

S2 1.607 
96.8 

(0.041) 

100 

(0.185) 

0 

- 

1.2 

- 

98.8 

(0.094) 

3.3 

- 

54.8 

(0.002) 

5.8 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 
.411 1.5e-7 1.005 

                  

                  

V1 1.212 
100 

(0.059) 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 
.021 0.10 1.018 

                  

                  

VVS 1.183 
100 

(0.061) 

0 

- 

0 

- 

0 

- 

0.1 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 
.028 0.07 1.022 

                  

                  

Amy 1.539 
85.0 

(0.011) 

83.4 

(0.019) 

0 

- 

20.9 

- 

22.1 

- 

75.2 

(0.014) 

0 

- 

0.5 

- 

0.3 

- 

1.3 

- 

0 

- 

0 

- 

4.7 

- 
.116 0.0049 0.988 

                  

                  

vmPFC 1.327 
28.6 

(0.011) 

34.9 

(0.015) 

0 

- 

65.2 

(0.033) 

65.7 

(0.050) 

6.3 

- 

0 

- 

0.8 

- 

0 

- 

0 

- 

0 

- 

0 

- 

23.1 

(0.005) 
.074 0.023 0.934 

                  

                  

ACC 1.547 
94.4 

(0.034) 

94.4 

(0.055) 

0 

- 

5.6 

- 

100 

(0.067) 

0 

- 

0 

- 

0.1 

- 

5.5 

- 

0 

- 

0 

- 

0 

- 

0 

- 
.191 0.00033 0.991 

                  

                  

aIns 1.935 
91.0 

(0.029) 

99.8 

(0.050) 

0 

- 

0.2 

- 

100 

(0.107) 

0 

- 

0 

- 

42.2 

(0.16) 

0 

- 

0 

- 

0 

- 

0 

- 

4.5 

- 
.153 0.0023 0.969 

                  

                  

pIns 2.043 
100 

(0.043) 

100 

(0.102) 

0 

- 

16.9 

- 

83.1 

(0.059) 

32.6 

(0.009) 

11.7 

- 

2.6 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 
.363 4.5e-6 0.991 
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