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ABSTRACT 

 The metabolic heterogeneity, and metabolic interplay between cells and their microenvironment have been known 

as significant contributors to disease treatment resistance. Our understanding of the intra-tissue metabolic heterogeneity 

and cooperation phenomena among cell populations is unfortunately quite limited, without a mature single cell 

metabolomics technology. To mitigate this knowledge gap, we developed a novel computational method, namely scFEA 

(single cell Flux Estimation Analysis), to infer single cell fluxome from single cell RNA-sequencing (scRNA-seq) 

data. scFEA is empowered by a comprehensively reorganized human metabolic map as focused metabolic modules, a 

novel probabilistic model to leverage the flux balance constraints on scRNA-seq data, and a novel graph neural network 

based optimization solver. The intricate information cascade from transcriptome to metabolome was captured using 

multi-layer neural networks to fully capitulate the non-linear dependency between enzymatic gene expressions and 

reaction rates. We experimentally validated scFEA by generating an scRNA-seq dataset with matched metabolomics 

data on cells of perturbed oxygen and genetic conditions. Application of scFEA on this dataset demonstrated the 

consistency between predicted flux and metabolic imbalance with the observed variation of metabolites in the matched 

metabolomics data. We also applied scFEA on publicly available single cell melanoma and head and neck cancer 

datasets, and discovered different metabolic landscapes between cancer and stromal cells. The cell-wise fluxome 

predicted by scFEA empowers a series of downstream analysis including identification of metabolic modules or cell 

groups that share common metabolic variations, sensitivity evaluation of enzymes with regards to their impact on the 

whole metabolic flux, and inference of cell-tissue and cell-cell metabolic communications. 
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INTRODUCTION 

 Metabolic dysregulation is a hallmark of many disease types including cancer, diabetes, cardiovascular disease and 

Alzheimer’s disease [1-7]. In cancer, the diseased cells are well understood to rewire their metabolism and energy 

production to support rapid proliferation, sustain viability, and promote acquired drug resistance [8-11]. Here, the 

diseased cells often react differently to the microenvironmental stress, resulting in an increased repertoire of possible 

cellular responses to compromise the efficacy of drug therapies, and synergistic cooperation among the cells that can 

ultimately enhance the survival of the entire population [12, 13]. The metabolome is an excellent indicator of phenotypic 

heterogeneity due to its high dynamics and plasticity [14]: one may expect to see a subset of cancerous cells, such as 

circulating tumor cells, that display abnormally high metabolic rates compared with many others with normal 

metabolism, and rare cells that successfully cope with microenvironmental stress, whereas the others die. Unfortunately, 

single cell metabolomics is still in its infancy, limited by its relatively low throughput and low sensitivity [14-20]. Hence, 

our understanding of metabolic dysregulation of human disease has been immensely limited by our technology to study 

the metabolic landscape at single-cell level and in the context of their tissue microenvironment [21-28].  

 Single cell RNA-Seq (scRNA-seq) data has been widely utilized to characterize cell type specific transcriptional 

states in a complex tissue. Large amount of scRNA-seq data are endowed with the potential to deliver information on a 

cell functioning state and its underlying phenotypic switches [29-38]. Realizing the strong connection between 

transcriptomic and metabolomic profiles, scRNA-Seq has found its application in portraying metabolic variations. Most 

of the existing studies examined single cell metabolic changes using the expression levels of key metabolic genes or 

pathways [29-36], without considering of constraints of metabolic network. On the contrary, the Flux Balance Analysis 

(FBA) describes the potential flux over the topological structure of a metabolic network, with a set of equations 

governing the mass balance at steady state. Studies coupling single cell transcriptomics data and the FBA steady-state 

framework have only recently emerged [37, 38]. It is noteworthy that these models are intended for modeling the whole 

tissue level fluxes, restricted to a small portion of the whole metabolic map, for cells of pre-defined groups. In other 

words, technology to integrate scRNA-seq data with whole metabolomic FBA constraints with single cell resolution is 

yet to be developed. Therefore, it is urgent to design advanced computational tools to empower a reliable estimation of 

cell-wise metabolic flux and states from scRNA-seq data by designing more appropriate and sophisticated model to 

translate single cell transcriptomes to single cell fluxomes [39, 40]. 

 Computational challenges to estimate cell-wise metabolic flux arise from the following aspects: (1) multiple key 

factors determine cells’ metabolic states, including exogeneous nutrients availability in the tissue microenvironment, 

leading to a disjunction of cell type specific markers and metabolic phenotypes, and making conventional single cell 

clustering methods inapplicable; (2) the whole metabolic network is of high complexity, hence a proper computational 

reorganization of the network is needed to reach a balance between resolution of metabolic state characterization and 

computational feasibility; (3) the intricate non-linear dependency between transcripts level and reaction rates calls for a 

more sophisticated model to fully capitulate the relationships; and (4) alternations on different enzymes of a metabolic 

pathway may result in common metabolic phenotypes, however, exactly which enzymes share such common effect to 

the metabolic flux change remains largely unknown. 

 In this study, we developed a novel computational method, namely single-cell Flux Estimation Analysis (scFEA), 

to estimate the relative rate of metabolic flux at single cell resolution from scRNA-Seq data. Specially, scFEA is 

empowered by the following computational innovations that can effectively solve the above challenges: (i) a 

probabilistic model to leverage the flux balance constraint on varied metabolic fluxomes among a large number of single 

cells, (ii) a metabolic map reduction approach based on network topology and gene expression status, (iii) a multi-layer 

neural network model to capture the dependency of metabolic flux on the enzymatic gene expressions, and (iv) a novel 

graph neural network architecture and solution to maximize the overall flux balance of intermediate substrates through 

all cells. To experimentally validate scFEA, we generated an scRNA-seq data of a patient derived pancreatic cancer 

cells under four conditions of perturbed oxygen level and metabolic regulators, and matched tissue level metabolomics 

data and qRT-PCR profiles of key metabolic genes. We validated that the variations of metabolic flux predicted by 

scFEA are highly consistent with the observed metabolomic changes under different conditions. The scFEA predicted 

fluxome suggested the accumulation of glycolytic metabolites and depletion of TCA cycle metabolites, caused by 

suppression of the glycolysis pathway and TCA cycle pathways in both normoxia and hypoxia conditions. We also 

applied scFEA on scRNA-seq data collected from real cancer tumor microenvironment and quantified the level of 

metabolic shifts in cancer and stromal cells. Notably, the fluxome estimated by scFEA enables a series of downstream 

analysis including identification of cell or tissue level metabolic stress, sensitivity evaluation of enzymes to the 

metabolic flux, and inference of cell-tissue and cell-cell metabolic exchanges. 

 

RESULTS 

Problem formulation and analysis pipeline 

 scFEA consists of three major computational components, namely (1) network reorganization, (2) cell-wise 

metabolic flux estimation, and (3) downstream analyses including estimation of metabolic stress, perturbation of 

metabolic genes, and clustering of cells with different metabolic states. In this work, we mainly focus on solving cell-
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wise metabolic flux and states for human cells. The input of scFEA is an scRNA-seq data, with cell labels and sets of 

to be analyzed metabolic reactions as optional information. 

 

 
Fig 1. The computational framework of scFEA. 
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 Figure 1 illustrated the detailed analysis framework of scFEA. In step (1), scFEA reorganizes the whole metabolic 

network into a factor graph composed by sets of metabolic modules and flux balance constraints, and the network 

reduction is achieved by considering the network topology, the expression status of metabolic genes, and optionally the 

customized network regions. This approach increases the robustness of flux estimation and reduces the computational 

complexity. In step (2), metabolic flux of each module will be modeled as a non-linear function of the expression levels 

of the enzymes in the module, and the non-linearity relationship is captured by a neural network with 2-4 layers. We 

assume that each cell is under metabolic steady state. To solve for the neural network parameter, scFEA introduced a 

flux balance constraint among the modules of all the single cells in the tissue based on a probabilistic model. Specially, 

scFEA optimizes an objective function that approximates the overall flux imbalance of the whole tissue, which assumes 

that the metabolic flux through all cells should reach such levels that would minimize the overall imbalance of the in-

/out-flux of intermediate module substrates. In step (3), scFEA conducts downstream analysis to (i) detect the 

metabolites or pathways with high imbalance in certain cell group, (ii) assess the impact of metabolic genes on the 

current metabolic flux, and (iii) identify cell groups with distinct variations with regards to certain metabolic fluxes. 

 

Reorganization of metabolic map 

 A metabolic network consists of reactions that fall under four major types, namely import, metabolism, biosynthesis, 

and export. For reactions in metabolisms, we collected the human metabolic pathways from KEGG database [41]; for 

import and export reactions, we collected the transporters from transporter classification database [42], for biosynthesis 

reactions, we collected the biosynthesis pathways from KEGG database and literatures (see details in Supplementary 

Methods). The collected metabolic map covers the metabolism, transport and biosynthesis of mono-/poly-saccharides, 

glycan, amino acids, fatty acids, and nucleic acids in human, including 727 genes of 541 enzymes, 1880 reactions, 8027 

metabolites, and 116 transporter genes of 35 metabolites. Completes gene and reaction lists of the collected human 

metabolic map is given in Supplementary Table S1. 

 We first reorganize the metabolic network based on its topological structure. The compounds commonly involved 

in multiple reactions were excluded from further analysis, such as H2O, ATP, NADH, or other co-factors 

(Supplementary Table S1). Connected reactions will be coerced into a module if (1) the reactions could be linearized to 

have only one input and one output, and (2) the set of reactions has included all the reactions with in-flux or out-flux of 

all the intermediate compounds. Figure 2C illustrates several examples of how network motifs in the input metabolic 

network is transformed into metabolic modules. Specially, adjacent reactions without significant in-/out-flux other than 

the module input and output will be merged into one module. Such a network reduction approach will enable a more 

robust flux estimation by estimating the flux of one module instead of individual reactions, and a more efficient 

computation over a simplified network topological structure. 

 We reorganized the collected human metabolic map into a network of reaction modules, consisting 175 modules 

of 21 super module classes, 125 metabolites, out of which 84 are intermediate substrates, and 727 genes, as detailed in 

Table 1 and Supplementary Table S1. Figure 2A illustrates the functional group and complete topological structure of 

the collected metabolic modules and super modules. It is noteworthy the topology of the reorganized modules naturally 

forms a factor graph, in which each module and metabolite can be treated as a variable and factor node, respectively.  

Figure 2B shows the reorganized factor graph for human metabolic map, which is utilized in further flux estimation. 

 When reorganizing the metabolic map, scFEA also takes into consideration: (1) the user selected metabolic network 

and (2) the context specific expression levels of genes in the given dataset. For (2), the modules that are known a priori 

to carry little or no flux will be excluded from further analysis. Specifically, for a given scRNA-seq data, scFEA will 

first determine for all the genes whether they have an active expression state using our in-house Left Truncated Mixture 

Gaussian model [43] (see details in Methods). The default setting of scFEA considers a module is blocked, if the module 

becomes disconnected after removing the reactions whose associated genes do not have significantly non-zero 

expressions throughout all the cell,. The blocked modules will be removed before further analysis. On account of the 

common drop-out events in scRNA-Seq data, scFEA also enables a more conservative assumption to remove a module 

only if none of the genes involved in all reactions of this module has significantly active expressions. The genes, input 

and output metabolites, and topological structure of the filtered modules will be utilized for further flux estimation.  
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Figure 2. Reorganized human metabolic map. (A) Collected human metabolic modules and super module classes. 

(B) Factor graph representation of the reorganized human metabolic map, in which the modules and metabolites were 

colored by green and pink, respectively. (C) Examples of how the network motifs in the metabolic map are simplified 

into metabolic modules, where the reactions and metabolites are represented by black and blue rectangular, and modules 

and metabolites are colored by green and pink. Chain-like reactions can be directly simplified; a complicate module 

connected by multiple branches can be shrunk into one point linked with the multiple branches; and complicated 

intersections cannot be simplified. 
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Table 1: Super metabolic module information 

SM ID Super Module class #Modules #Genes 

1 Glycolysis + TCA cycle 14 83 

2 Serine Metabolism 18 114 

3 Pentose phosphate 1 28 

4 Fatty Acids Metabolism/Synthesis 2 81 

5 Aspartate Metabolism 5 35 

6 Beta-Alanine Metabolism 5 48 

7 Propionyl-CoA Metabolism 2 25 

8 Glutamate Metabolism 5 13 

9 Leucine + Valine + Isoleucine 8 99 

10 Urea Cycle 8 30 

11 Spermine Metabolism 2 7 

12 Transporters 35 80 

13 Hyaluronic acid synthesis 9 26 

14 Glycogen synthesis 1 4 

15 Glycosaminoglycan synthesis 3 14 

16 N-linked glycan synthesis 13 88 

17 O-linked glycan synthesis 5 17 

18 Sialic acid synthesis 4 12 

19 Glycan synthesis 1 5 

20 Purine synthesis 17 67 

21 Pyrimidine synthesis 17 49 

 

Mathematical consideration and formulation of metabolic flux in individual cells 

 We developed a novel graph neural network architecture to model cell-wise metabolic flux of each module by using 

their gene expression levels in each individual cell. For a clear model setup, we formulate the metabolic network as a 

factor graph, where each module represents a variable and each compound a factor node carrying a likelihood function 

describing the flux balance among modules (Figure 2B). The computational consideration is that the flux shift of a 

metabolic module generally impacts its neighboring modules, which can be characterized by aggregating the expression 

variations of the genes in its neighborhood over the metabolic network. We also hypothesize the metabolic flux through 

all cells should minimize the overall imbalance of the in-/out-flux of intermediate substrates, i.e. maintaining the 

maximal flux balance of intermediate substrates on the whole tissue level. 

 We denote 𝐹𝐺(𝐶1×𝐾, 𝑅𝑀1×𝑀, 𝐸 =  {𝐸𝐶→𝑅, 𝐸𝑅→𝐶}) as the factor graph, where 𝐶1×𝐾 = {𝐶𝑘, 𝑘 = 1, … , 𝐾} is the 

set of 𝐾 compounds, 𝑅𝑀1×𝑀 = {𝑅𝑚, 𝑚 = 1, … , 𝑀} is the set of 𝑀 metabolic modules, 𝐸𝐶→𝑅 and 𝐸𝑅→𝐶 represent 

direct edges from module 𝑅𝑚 to compound 𝐶𝑘 and from compound 𝐶𝑘 to module 𝑅𝑚, respectively. For the 𝑘-th 

compound 𝐶𝑘, we define the set of reactions consuming and producing 𝐶𝑘 as 𝐹𝑖𝑛
𝐶𝑘 = {𝑅𝑚|(𝑅𝑚 → 𝐶𝑘) ∈ 𝐸𝐶→𝑅} and 

𝐹𝑜𝑢𝑡
𝐶𝑘 = {𝑅𝑚|(𝐶𝑘 → 𝑅𝑚) ∈ 𝐸𝑅→𝐶  }. For a scRNA-seq data set with 𝑁 samples, we denote 𝐹𝑙𝑢𝑥𝑚,𝑗 as the flux of the 

𝑚𝑡ℎ module in the sample 𝑗, 𝑗 = 1 … 𝑁, and 𝐹𝑗 = {𝐹𝑙𝑢𝑥1,𝑗, … , 𝐹𝑙𝑢𝑥𝑀,𝑗} as the whole set of the reaction fluxes. Our 

computational hypothesis for the whole tissue system is that flux imbalance of the intermediate metabolites at the whole 

tissue level should be minimized. Noting the tissue level flux balance can be reflected as the total flux balance of all 

measured cells, the likelihood function of the tissue level flux can be written as:  

𝜙(𝐶, 𝐹) = ∏ ∏ 𝜙(𝐶𝑘,𝑗|𝐹𝑗)

𝐾

𝑘=1

𝜙(𝐹𝑗)

𝑁

𝑗=1

 

, where 𝜙(𝐶𝑘,𝑗|𝐹𝑗) = 𝜙(𝐶𝑘,𝑗|𝐹𝑖𝑛
𝐶𝑘 , 𝐹𝑜𝑢𝑡

𝐶𝑘 ) ∝ 𝑒−

𝛽(∑ 𝐹𝑙𝑢𝑥𝑚,𝑗
𝑚∈𝐹

𝑖𝑛
𝐶𝑘

−∑ 𝐹𝑙𝑢𝑥𝑚′,𝑗
𝑚′∈𝐹𝑜𝑢𝑡

𝐶𝑘
)

2

2  and 𝜙(𝐹𝑗) ∝ 𝑒−
𝛾(∑ 𝐹𝑙𝑢𝑥𝑚,𝑗

𝑀
𝑚=1 −𝑇𝐴𝑗)

2

2 , 𝛽 

and 𝛾 are hyperparameters, and 𝑇𝐴𝑗 is a surrogate for total metabolic activity level of cell 𝑗, which can be assigned 

as a constant or total expression of metabolic genes in 𝑗. Here we introduce 𝜙(𝐹𝑗) and 𝑇𝐴𝑗 to avoid a trivial solution 

of 𝐹𝑙𝑢𝑥𝑚,𝑗 ≡ 0. 

 scFEA models the flux of reach reaction, namely 𝐹𝑙𝑢𝑥𝑚,𝑗, as a nonlinear function of the expression changes of the 

genes associated with the module. This hypothesis can be supported by many existing studies that reveal the high 
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explainability of transcriptomic levels for the protein level of enzymes [24, 44, 45]. Denote 𝑮𝒎 = {𝐺1
𝑚, … , 𝐺𝑖𝑚

𝑚 } as the 

genes associated with the reactions in 𝑅𝑚, and 𝑮𝒋
𝒎 = {𝐺𝑖1,𝑗

𝑚 , … , 𝐺𝑖𝑚,𝑗
𝑚 } as their expressions in sample 𝑗, where 𝑖𝑚 

stands for the number of genes in 𝑅𝑚. We model 𝐹𝑙𝑢𝑥𝑚,𝑗 = 𝑓𝑛𝑛
𝑚(𝑮𝒋

𝒎| 𝜽𝒎) as a multi-layer fully connected neural 

network with the input 𝑮𝒋
𝒎, where 𝜽𝒎 denotes the parameters of the neural network (Figure 3). Then the 𝜽𝒎 and 

cell-wise flux 𝐹𝑙𝑢𝑥𝑚,𝑗  can be solved by minimizing the following loss function L , where 𝜆 ~ 
𝛾

𝛽
 serves as a 

hyperparameter: 

L = − log(𝜙(𝐶, 𝐹)) = ∑ ∑ ( ∑ 𝐹𝑙𝑢𝑥𝑚,𝑗

𝑚∈𝐹𝑖𝑛

𝐶𝑘

− ∑ 𝐹𝑙𝑢𝑥𝑚′,𝑗

𝑚′∈𝐹𝑜𝑢𝑡
𝐶𝑘

)

2
𝐾

𝑘=1

𝑁

𝑗=1

+ 𝜆 ∑ ( ∑ 𝐹𝑙𝑢𝑥𝑚,𝑗

𝑀

𝑚=1

− 𝑇𝐴𝑗)

𝑁

𝑗=1

2

 

 It is noteworthy that the above formulation defines a new graph neural network architecture for flux estimation 

over a factor graph, where each variable is defined as a neural network of biologically meaningful attributes, i.e. the 

genes participating in each metabolic module, and the information aggregation between adjacent variables is constrained 

by the balance of chemical mass of the in- and out- flux of each intermediate metabolites. Noted, the number of 

intermediate constraints (𝐾) and large sample size (𝑁) of scRNA-seq data ensures the identifiability of 𝜽𝒎 for the 𝑓𝑛𝑛
𝑚 

at a certain complexity level (see details in Methods). 

 The challenges to minimize the objective function include the following: (1) the flux of each module affects the 

balance of its input and output and multiple modules are involved in the balance of one intermediate substrate, hence 

perturbing one single flux at each step may not converge, and on the other hand (2) the direction for simultaneously 

updating a large group of fluxes cannot be theoretically derived. The two challenges prohibit a direct utilization of back 

propagation or gradient descending methods. We developed an effective optimization strategy for L by adopting the 

idea of information transfer in belief propagation, which has been commonly utilized in analyzing cyclic networks such 

as Markov random field [46]. Specifically, L  is minimized by iteratively minimizing the flux balance of each 

intermediate metabolite 𝐶𝑘 and the weighted sum of the flux balance of the Hop-2 neighbors of 𝐶𝑘 in the factor graph, 

as the 𝐿𝑘
∗  defined below: 

𝐿𝑘
∗ = ∑ ( ∑ 𝐹𝑙𝑢𝑥𝑚,𝑗

𝑚∈𝐹𝑖𝑛

𝐶𝑘

− ∑ 𝐹𝑙𝑢𝑥𝑚′,𝑗

𝑚′∈𝐹𝑜𝑢𝑡
𝐶𝑘

)

2
𝑁

𝑗=1

+ ∑ 𝑊𝑘’ ∑ ( ∑ 𝐹𝑙𝑢𝑥𝑚,𝑗

𝑚∈𝐹𝑖𝑛

𝐶𝑘‘

− ∑ 𝐹𝑙𝑢𝑥𝑚′,𝑗

𝑚′∈𝐹𝑜𝑢𝑡
𝐶𝑘’

)

2
𝑁

𝑗=1𝑘’

 

, where 𝐶𝑘’ are the Hop-2 neighbors of 𝐶𝑘, 𝑊𝑘’ is proportional to the current total imbalance of all the Hop-2 neighbors 

of 𝐶𝑘’ except for 𝐶𝑘 itself (see more details in Methods). Such a regional perturbation strategy over the whole graph 

can effectively leverage the search of global minimum and computational feasibility.  

 The output of scFEA includes 𝑓𝑛𝑛
𝑚, 𝜽𝒎 for each module and predicted cell-wise metabolic flux 𝐹𝑙𝑢𝑥𝑚,𝑗. 

 
Figure 3. A toy model of the factor graph of metabolic modules, flux balance conditions, and the flux model for the 

module 𝑅2 (top-right). In the factor graph, each metabolite (C) corresponds to one flux balance condition and serves 

as a factor, and each reaction (R) is a variable. Import and export/degradation reactions are considered as having no 

input or output substrates. 

 

Method validation on a scRNA-seq data with perturbed metabolic conditions and matched metabolomics data 

 To validate the cell-wise flux estimated by scFEA, we generated an scRNA-seq dataset consisting of 162 patient-
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derived pancreatic cancer cells (Pa03c cell) under two crossed experimental conditions: APEX-1 knockdown (APEX-1 

KD) or control, and under hypoxia or normoxia conditions (see detailed experimental procedure and data processing in 

Methods). Metabolomics profiling of 14 metabolites, namely glucose, glucose-1 phosphate, glucose-6 phosphate, 

pyruvate, and lactate in the glycolysis pathway, citrate, 2-oxoglutarate, succinate, fumarate, malate in the TCA cycle, 

and amino acids glutamate, glutamine, serine, and ornithine were collected on bulk wildtype Pa03c cells and APEX-1 

inhibition cells under the normoxia conditions, each with three replicates (Supplementary Table S2). We utilized the 

Smart-seq2-fluidigm protocol for single cell RNA sequencing for saturated gene detection of each single cell, to enable 

a more accurate modeling of metabolic flux. APEX1 is a multifunctional protein that interacts with multiple 

transcriptional factors (TFs) to regulate cellular responses to hypoxia and oxidative stress [47]. Our previous studies 

identified significant roles of APEX1 in the regulation of Pa03c cells’ response to metabolic environment changes [48, 

49]. 

 To the best of our knowledge, scFEA is the first computational tool to estimate metabolic flux at single cell level. 

Without baseline methods for comparisons, we validate scFEA by examining the consistency between the metabolic 

flux variation predicted by scFEA and experimental observations. We identified 126 up- and 443 down- regulated genes 

in APEX-1 KD vs Control under the normoxia condition, and 260 up- and 1496 down- regulated genes under hypoxia 

condition. Pathway enrichment analysis showed that the TCA cycle pathway (normoxia: p=0.003, hypoxia: p=1.12e-07) 

and oxidative phosphorylation (normoxia: p=3.17e-4, hypoxia: p=1.77e-08,) are significantly enriched by down 

regulated genes, under both normoxia and hypoxia conditions. This suggests that the knock down of APEX-1 may lead 

to inhibited cellular aerobic respiration. In addition, genes regulated by HIF1A (hypoxia-inducible factor 1-alpha), 

including glycolysis and TCA cycle genes, were observed to be up- and down-regulated respectively, in comparing the 

hypoxia vs normoxia conditions in the control Pa03c cells. This is consistent to the common knowledge of hypoxia 

response. Our of the 14 metabolites, we have seen an increase in glucose, glucose-1 phosphate, glucose-6 phosphate, 

and lactate, and a decrease in 2-oxoglutarate, succinate, fumarate, and malate in APEX1-KD vs control cells under the 

normoxia condition. In summary, analysis of the single cell gene expression and bulk cell metabolomic data revealed 

that knockdown of APEX1 affects the cells’ glucose metabolism and inhibits the cells’ TCA cycle pathway, under both 

normoxia and hypoxia condition. Figure 4A illustrates the variation of genes and metabolites involved in glycolysis, 

pentose phosphorylation, TCA cycle, glutaminolysis and aspartate metabolism pathways in APEX1-KD vs control under 

normoxia condition. Complete list of differentially expressed genes and pathway enrichment results were provided in 

Supplementary Table S3. 

 

Consistency between the scFEA predicted flux variation and the metabolomics data. We applied scFEA to the 

aforementioned scRNA-seq data of the four conditions. We first focus on the normoxia conditions where matched single 

cell expression and metabolomics data are available. scFEA predicted decreased metabolic flux for the modules in 

glycolysis and TCA cycle in APEX1-KD vs control, i.e. glucose → glyceraldhyde-3P (G3P) → pyruvate → citrate 

→ succinate → oxaloacetate (OAA), where particularly, the reactions in the downstream of the reaction chain is more 

suppressed in APEX1-KD (Figure 4B). We examined the correlation between the predicted flux change with the 

observed metabolomic change of intermediate metabolites in glycolysis and TCA cycle pathways, and observed a 

Pearson Correlation Coefficient (PCC) of 0.86 (p=0.006) (Figure 4B), suggesting the high consistency between 

predicted flux variation with the metabolic changes. Using metabolomics data, we observed increase of production for 

glucose, G1P, G3P and lactate, and decrease of production for 2OG, succinate, fumarate, and malate in APEX1-KD vs 

control (Figure 4C). We also correlated the metabolomic change with the averaged expression change of the enzymes 

catalyzing the reactions involving the metabolomics. However, no significant correlation was observed (PCC=-0.03, 

p=0.943, Figure 4C), suggesting that single cell gene expression itself, without considering the constraints from the 

intricate metabolic network as in scFEA, doesn’t produce a good estimate of single cell metabolic landscape. scFEA 

leveraged the non-linear relationships between gene expression and enzymatic reaction rate, and the flux balance 

constraints of the metabolites, and hence its predicted metabolic flux is more consistent to the true metabolomics changes.  

 

High consistency of the predicted metabolic stress with experimentally observed metabolomic changes. scFEA predicted 

in and out flux for each metabolite allows us to investigate the cell-wise metabolic stress, which was defined as the 
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imbalance of the in-/out-fluxes of each intermediate metabolites in each cell. Figure 4D shows that the G1P, G6P and 

lactate were accumulating while 2OG, succinate, succinyl-CoA, and fumarate were depleted in APEX1-KD vs control. 

A PCC of 0.67 (p=0.024) was observed between the predicted metabolic stress and the true metabolic change, 

demonstrating a high accuracy of the predicted metabolic stress level. Detailed predicted and observed metabolic 

imbalance were provided in Supplementary Table S2. Figure 4E shows the predicted cell-wise fluxome of the glycolysis 

and TCA cycle modules for cells of the four conditions. Here each column represents the flux between two metabolites, 

shown on the x-axis, for all the cells, shown on the y-axis. For two neighboring fluxes, the product of the reaction on 

the left is the substrate of the reaction on the right, and in a perfectly balanced flux condition, the two neighboring fluxes 

should be equal. We observed, in general, higher flux of the glycolytic modules than the TCA cycle modules, with the 

largest average flux gap seen on Pyruvate →  Acetyl-CoA and Acetyl-CoA →  Citrate. In addition, the flux of the 

downstream reactions (citrate → 2OG → succinyl-CoA → succinate) of the TCA cycle is lower than the upstream 

reactions (succinate → fumarate → malate → OAA). A possible explanation for the leaky metabolic flux is that some 

of the intermediate substrates flow to other branches, majorly for biosynthesis of amino acids. Among the four conditions, 

we identified that the hypoxia control group has the highest flux rate of glycolysis and TCA cycle modules. Clearly, the 

inhibition of APE1-X significantly decreased the metabolism rate of glucose. Combined with the accumulations of 

glycolytic substrates and depletions of TCA cycle substrates identified by the metabolic stress and metabolomics data 

analysis, our speculate that the knock-down of APE1-X may directly impact the downstream part of glycolysis, the 

whole TCA cycle and further oxidative phosphorylation, leading to accumulation of G1P and G6P as a result of the 

blockage. Up regulation of glucose transporters was also observed in APE1-X KD vs control, further suggesting the 

accumulation of glycolytic substrates. 

 

Perturbation analysis of flux deterministic genes. We also conducted a perturbation analysis to tease out the key genes 

with high impact on each metabolic module (see details in Methods). The following genes were identified to have the 

highest impact on metabolic flux: HK1 and HK2 (Glucose→G6P), ALDOA and GPI (G6P→G3P), GAPDH and PGK1 

(G3P → 3PD, ENO1, PGAM1, and PKM (3PD → Pyruvate), PDHA2 (Pyruvate → Acetyl-Coa), LDHA 

(Pyruvate→Lactate), ACLY (Acetyl-CoA+OAA→Citrate), IDH1 (Citrate→2OG), DLD and OGDH (2OG→Succinyl-

CoA), SUCLG1 (Succinyl-CoA → Succinate), SDHB (Succinate → Fumarate), FH (Fumarate → Malate), MDH1 

(Malate→OAA). A qRT-PCR experiment was conducted to confirm the down regulation of the above key metabolic 

genes (see details in Methods). We also conducted a module level perturbation analysis by increasing or decreasing the 

expression of genes in a certain module (see details in Methods). Non-surprisingly, a decrease of expression on genes 

of the downstream part of glycolysis pathway in the control cells will lower the flux of the TCA cycle, causing the 

accumulation of glycolytic intermediate substrates and depletion of TCA cycle metabolites, which is consistent to our 

experimental observations. 

 

Detecting groups of metabolic modules with similar variations and cells with distinct metabolic states. We also applied 

scFEA to a larger metabolic map, with 11 metabolic super modules and transporters, and then examined the high-level 

organization of the modules. Based on only the metabolic network connectivity, Figure 4F illustrated classes of 

metabolic modules derived using a spectral clustering method (see Methods), in which glycolysis, TCA cycle and acetyl-

coA related modules, serine metabolism, urea cycle, and other amino acids metabolism form distinct module classes. To 

examine the high level structure based on the flow of flux, we further conducted a clustering analysis of the metabolic 

modules by considering both the network connectivity and flux similarity. The distance between two modules 𝑅𝑖 and 

𝑅𝑗   is defined as 𝛼𝑑(𝑅𝑖 , 𝑅𝑗) + (1 − 𝛼)𝑑𝐹(𝑅𝑖, 𝑅𝑗) , where 𝑑(𝑅𝑖, 𝑅𝑗)  is their normalized spectral distance, and 

𝑑𝐹(𝑅𝑖 , 𝑅𝑗) is their normalized similarity in estimated flux through different cells. Here 𝛼 = 0.3 is used in the analysis. 

Figure 4G shows the metabolic module clusters by integrating topological and flux distance information. Three distinct 

clusters were identified, including (1) glycolysis and fatty acids metabolism, (2) TCA cycle and pyruvate metabolism, 

and (3) metabolism of amino acids and other metabolites, which correspond to the modules with (i) decreased flux and 

accumulated substrates, (ii) decreased flux and depleted substrates, and (iii) unchanged flux and metabolites, supported 

by scFEA prediction and metabolomic observations, respectively. This observation further validated the rationale of 

scFEA predicted fluxomes. 
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 We also conducted cell clustering based on the metabolomic modules with varied flux (Methods). Non-surprisingly, 

the cells clusters were aligned with experimental conditions, forming four group of cells with high, intermediate, low, 

and extremely low metabolic rates (Supplementary Table S2). 

 

Figure 4. Application of scFEA on matched scRNA-seq and metabolomics data of Pa03C cells. (A) Gene expression 

and metabolomic variations of the glycolysis, pentose phosphate, TCA cycle, glutamine, and aspartate metabolic 

pathways in APEX1-KD vs control under normoxia condition. Genes/metabolites were shown in rectangular boxes with 

black/blue borders, up/down regulated genes were colored in red/green, increased and decreased metabolites were 

colored in yellow/blue, respectively. The darker color suggests a higher variation. (B) Predicted flux change (left, x-axis: 

metabolic module, y-axis: predicted flux change) in control vs APEX1-KD, and correlation between predicted flux 

change and observed metabolite change (right, x-axis: fold change of predicted flux, y-axis: fold change of observed 

metabolite abundance, each data point is one metabolite). (C) Observed metabolite change (left, x-axis: metabolites, y-

axis: observed abundance difference) in control vs APEX1-KD, and correlation between expression change of the genes 

of each reaction and observed metabolomics change (right, x-axis: averaged fold change of the expression of the genes 

involved in each reaction, y-axis: fold change of observed metabolote abundance, each data point is one metabolite). 
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(D) Predicted metabolic stress (left, x-axis: metabolites, y-axis: predicted abundance change) in control vs APEX1-KD 

and correlation between predicted flux imbalance and metabolite variation (right, x-axis: predicted imbalance of the in-

/out- flux of each metabolite, y-axis: difference of observed metabolomic abundance, each data point is one metabolite). 

In (B-D) all comparisons were made by comparing control vs APEX1-KD under normoxia. The green and red dash-

blocks represents the accumulated (green) and depleted (red) metabolites in control vs APEX1-KD. (E) Profile of the 

predicted fluxome of 13 glycolytic and TCA cycle modules (x-axis: metabolic modules, y-axis: experimental conditions). 

(F) Clusters of metabolic modules inferred by using the network connectivity structure only. (G) Clusters of metabolic 

modules inferred by using the network topological structure (weight of 0.3) combined with predicted fluxome (weight 

of 0.7). 

 

Application on scRNA-seq data of tumor microenvironment revealed distinct metabolic stress, exchange and varied 

metabolic states in cancer and stromal cells. 

 We also applied scFEA on two publicly available scRNA-seq datasets collected from the microenvironment of 

melanoma (GSE72056) and head and neck cancer (GSE103322) (see detailed data information in Methods). All the 

metabolomic modules across the whole metabolomic network was used. Due to the lack of matched metabolomic 

information, we focused on demonstrating the capability of scFEA in inferring metabolic stress, exchange of metabolic 

flows and metabolic modules and cells with distinct variations, for both cancer and stromal cells.  

 In both data sets, we identified that the malignant cells have the highest metabolic stresses, i.e. the total imbalance 

of intermediate substrates, followed by fibroblast and endothelial cells, and then immune cells. Specially, the malignant 

cells have the highest metabolic rates in most metabolic reactions comparing to other cell types in both melanoma and 

head and neck cancer, especially for the glucose and amino acids metabolic modules. On average, the estimated flux of 

TCA cycle and lactate production account for 43.4% and 52.5% of the glycolysis flux in head and neck cancer and 65.3% 

and 46.1% of the glycolysis flux (with additional carbon flow from other metabolites such as glutaminolysis) in 

melanoma, respectively, while the ratio of lactate production is much lower in other cell types. Our observation clearly 

suggested the Warburg effect and metabolic shift in cancer cells, which is consistent to our previously findings of high 

lactate production in melanoma [50]. Similar to the pancreatic cancer cell line data, we identified that both cancer and 

stromal cells in both cancer types tend to have depleted glucose, G1P and G6P. In addition, cancer cells tend to suffer 

from a high depletion level of acetyl-coA. On the other hand, TCA cycle intermediates and amino acids tend to be 

accumulated in cancer cells. These observations are consistent to the quantitative metabolomics data collected from 

solid cancer [51]. 

 Interestingly, we noticed that the direction of imbalance for most intermediate metabolites seem to be the same 

throughout different cell types, though the imbalance level is much lower in stromal cells comparing to cancer cells. A 

possible explanation is that these cells were collected in a focused region of the same microenvironment, subject to 

similar microenvironmental stresses, such as hypoxia and altered pH level, which causes a similar impact on the 

metabolic landscape of cells of different types. This suggests that to better see the metabolomic heterogeneity, it is better 

to use spatial scRNA-Seq data, where the cells are more scattered away. Cell clusters with distinct metabolic states were 

identified in both data sets. Cancer cells and fibroblast cells form more similar metabolic characteristics comparing to 

immune cells while fibroblast cells show distinct fluxome profile of biosynthesis. 

 The predicted cell type specific fluxome and imbalance level of metabolites were given in Supplementary Table 

S4. In this study, we majorly focused on validating the computational concept and model of scFEA. Detailed analysis 

procedure and a comprehensive discussion of the cell-wise fluxome of the two data sets were available in the Github 

link: https://github.com/changwn/scFEA. 

 

DISCUSSION 

 Despite a plethora of knowledge we have gained on metabolic dysregulation for many disease types, there are still 

major gaps in our understanding of the integrated behavior and metabolic heterogeneity of cells in the context of their 

microenvironment. Essentially, the metabolic behavior can vary dramatically from cell to cell due to their high plasticity, 

driven by the need to cope with various dynamic metabolic requirements. Considering single cell metabolomics 

technique is still in its infancy, large amount of transcriptomics data obtained by scRNA-seq has proven to be endowed 

with the potential to deliver information on a cell functioning state and its underlying phenotypic switches. Hence, 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.09.23.310656doi: bioRxiv preprint 

https://github.com/changwn/scFEA
https://doi.org/10.1101/2020.09.23.310656
http://creativecommons.org/licenses/by-nc-nd/4.0/


advanced computational tools are in pressing need to empower reliable prediction of cell-wise metabolic flux and states 

from scRNA-seq data. In this study, we developed a novel computational concept and method to predict metabolic flux 

at single cell resolution from single cell transcriptomics data, and the ultimate goal is to accurately construct and portray 

a compendium of metabolic states for different cell types and tissue contexts, and their relevance to various disease 

phenotypes. 

 The scFEA model has the following advantages: (1) the model characterizes true biological flux by leveraging the 

metabolic networks, and it is generally applicable as it requires only the input of scRNA-seq data; (2) the number of 

constraints, i.e. the number of flux balance conditions multiplied by the single cell number, is larger than the number of 

parameters, avoiding possible overfitting; and (3) The neural network based flux estimation can well handle the non-

linear dependency between enzymatic gene expression and reaction rates. The scFEA model can also be extended to 

estimate activity level of functional modules in a general biological network such as signaling pathways. The expression 

level of a signaling path reflects its capacity and the signaling molecules can be viewed as intermediates.  

 The neural network based optimization framework of scFEA could enable a seamless integration of metabolomics 

data, kinetic parameters, spatial information, or other prior knowledge of metabolic imbalance, to better characterize 

cell and tissue level metabolic shifts of the target system. Specifically, metabolomics data, kinetic parameters or other 

prior knowledge can be utilized to better design the first layer of the neural network in modeling the flux of each module. 

Spatial information can be utilized to preselect group of cells for training spatially dependent model. A potential future 

direction is to implement the current flux estimation analysis in spatial transcriptomics to infer (1) metabolic shifts 

specific to spatial patterns and (2) metabolic exchange between adjacent cells. This application to spatial transcriptomics 

data will be particularly interesting for cancer tissue, to reveal how the metabolism and macromolecule biosynthesis in 

stromal cells such as cancer associated fibroblast affect the adjacent cancer cells. 

 scFEA seeks for a constrained optimization of flux balance, where each flux was modeled as a non-linear function 

of the relevant enzymatic gene expression levels. The flux of each module is currently constrained to be similar to the 

cell-wise total metabolic activity, 𝑇𝐴𝑗, to avoid trivia solution. However, our analysis suggested one 𝑇𝐴𝑗 for each cell 

may lead to similar metabolic flux distribution for different cells. Although our current setting has been validated by our 

matched scRNA-seq and metabolomics data, applications on publicly available cancer data suggested a similar 

metabolic imbalance trend among different cell types. We speculate that setting 𝑇𝐴𝑚𝑗  for each super module 𝑚 in 

cell 𝑗 may increase the flexibility of cell specific metabolic imbalance, but at the price of possible over-fitting. A more 

sensitive approach is to train a specific model for each pre-defined cell group. The biological rationale is that the neural 

network parameters contains the information of “kinetic parameters” that link gene expression with metabolic rate, 

which differ among distant cell types, or cells under different conditions. Hence it is rationale to assume cell type specific 

parameters.  

 Overall, scFEA can efficiently delineate the sophisticated metabolic flux and imbalance specific to certain cell 

groups. We anticipate it has the potential to decipher metabolomic heterogeneity, and teasing out the metabolomic 

susceptibility to certain drugs, and ultimately warrant novel mechanistic and therapeutic insights of a diseased biological 

system at an unprecedented resolution. 

 

METHODS 

Collection and reorganization of human metabolic map 

 We consider the human metabolic network as composed of different reaction types including metabolism, transport 

(including uptake and export), and biosynthesis. As detailed in Results, the reorganized network consists of 21 super 

module classes of 175 modules. All reactions related to metabolism were collected from the Kyoto Encyclopedia of 

Genes and Genomes database (KEGG) (61). In total, 11 metabolism related super modules were manually summarized, 

which is comprised of glycolysis, TCA cycle, pentose phosphate, fatty acids metabolism and synthesis, metabolism of 

amino acids namely serine, aspartate, beta-alanine, glutamate, leucine/valine/isoleucine and urea cycle, propionyl-CoA 

and spermidine metabolism [52]. The 11 metabolism super modules contain 1388 reactions, 317 enzymes, which 

corresponds to 3508 genes. 

 Transporters enable the trafficking of molecules in and out of cell membranes. We collected the human transporter 

proteins, their corresponding genes and metabolite substrates from the Transporter Classification Database [53, 54]. In 

total, 116 transporter genes, and 35 related metabolites were collected. 
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 An essential part of metabolic map is the biosynthesis pathways. KEGG database and literature [7, 55-64] are the 

main information sources used for building biosynthesis modules. We collected 69 biosynthesis modules forming 9 

super modules, namely biosynthesis of hyaluronic acid, glycogen, glycosaminoglycan, N-linked glycan, O-linked 

glycan, Sialic acid, Glycan, Purine and Pyrimidine. Overall, the biosynthesis modules include 142 enzymes catalyzing 

280 reactions. 

 More details of the collection and reorganization of human metabolic map were provided in Supplementary 

Methods. 

 

Selecting genes of significant expression. 

 We applied our inhouse method, LTMG, to determine the expression status of each genes in each single cell. LTMG 

considers the multi-modality of the expression profile of each gene throughout all the single cells, by assuming that the 

gene’s expression follows a mixture of suppressed state and activated states, as represented by the following likelihood 

function [49]. 

∏ (∑ 𝑎𝑖𝑝𝑖(𝑥𝑗|𝑢𝑖 , 𝜎𝑖)

𝐾

𝑖=1

+ 𝑎𝐾+1𝑝𝐾+1(𝑥𝑗|𝑢𝐾+1, 𝜎𝐾+1))

𝑁

𝑗=1

 

, where 𝑥𝑗 , 𝑗 = 1 … 𝑁 are the expression profile of gene 𝑥 in 𝑁 cells, the index 1 … 𝐾 are the 𝐾 active expression 

states and 𝐾 + 1  is the suppressed expression state, 𝑎𝑖  is the proportion of each state with 𝑎1 + ⋯ + 𝑎𝐾+1 = 1 , 

𝑎1…𝐾 > 0  and 𝑎𝐾+1 ≥ 0 , 𝑝𝑖 , 𝑢𝑖 , and 𝜎𝑖  are the pdf, mean and standard deviation of each expression state. 

Specifically, LTMG considers the distribution of each mixing component, 𝑝𝑖 , as a left truncated Gaussian distribution, 

to account for the noise of drop out events. In this work, LTMG was used to fit to each gene’s expression and a gene 

was determined to have significant expression if ∑ 𝑎𝑖
𝐾
𝑖=1 ≥ 0.1, i.e. the gene has active expression states in at least 10% 

cells. 

 

Pre-filtering of active modules based on gene expression. 

 Each metabolic module contains an input, an output, and a number of enzymes catalyzing the reactions. A reaction 

is considered as disconnected if none of the genes encoding its catalyzing enzymes is significantly expressed. A 

metabolic module is considered as blocked if there is no connected path from the input to the output. Considering the 

common drop-out events in scRNA-Seq data, especially for the drop-seq data, we adopted a conservative approach to 

pre-trim the metabolic modules: essentially, a module will be removed from further analysis if none of the genes 

involved in all reactions of this module has significantly active expressions. 

 

scFEA model setup and a belief propagation based solution of the flux model 

 Model Setup. We developed a novel optimization strategy to minimize L similar to the idea of belief propagation 

[65]. Specifically, the flux balance of each metabolite 𝐶𝑘, 𝐿𝐾 ≜ ∑ (∑ 𝐹𝑙𝑢𝑥𝑚,𝑗𝑚∈𝐹𝑖𝑛

𝐶𝑘 − ∑ 𝐹𝑙𝑢𝑥𝑚′,𝑗𝑚′∈𝐹𝑜𝑢𝑡
𝐶𝑘 )

2
𝑁
𝑗=1 , will 

be iteratively optimized, by taking into account all the Hop-2 neighbors in the factor graph (metabolites), denoted as 

𝑁𝑒(𝐶𝑘), and Hop-4 neighbors (metabolites), i.e., 𝑁𝑒2(𝐶𝑘) ≔ {𝐶𝑘′|𝐶𝑘′ ∈ 𝑁𝑒(𝑁𝑒(𝐶𝑘))\𝐶𝑘  }. Specifically, for a more 

efficient optimization, we adopt the idea of belief propagation by minimizing a reweighted flux imbalance: 𝐿𝐾
∗ ≜ 𝐿𝐾 +

∑ 𝑊𝑘′𝐿𝑘′  𝐶𝑘′∈𝑁𝑒2(𝐶𝑘) at each iteration, where 𝑊𝑘′ is a weight value in (0,1] representing the reliability of the current 

flux balance of 𝐶𝑘′ . We set 𝑊𝑘′ = 𝑒𝑥𝑝 (−
∑ 𝐿

𝑘′′𝐶
𝑘′′∈𝑁𝑒(𝑁𝑒(𝐶

𝑘′))\{𝐶
𝑘′,𝐶𝑘}

|𝑁𝑒2(𝐶𝑘′)\{𝐶𝑘′ ,𝐶𝑘}|
)  as an exponential function of the negative 

averaged imbalance level of 2-hop neighbors (metabolite) of 𝐶𝑘′  excluding 𝐶𝑘 , with higher 𝑊𝑘′  denoting lower 

imbalance of the metabolites. The underlying idea is that the more reliable the current flux is estimated for the modules 

involving 𝐶𝑘′, which is reflected by the averaged imbalance level of its 2-hop neighbors, a higher weight 𝑊𝑘′ should 

be given to 𝐶𝑘′, such that when minimizing 𝐿𝐾 , a disruption of the flux balance of 𝐶𝑘′ will be more heavily penalized. 

 Neural network model setup. For each module, a neural network is used to represent the non-linear dependency 

between gene expressions and reaction rates. Each neural network has 𝑎1 hidden layers each with 𝑎2 hidden nodes, 
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and one output node. In this study, we took 𝑎1 = 3  and 𝑎2 = 8 . A Hyperbolic Tangent activation function, 

𝑇𝑎𝑛ℎ𝑠ℎ𝑟𝑖𝑛𝑘(𝑥) = 𝑥 − tanh (𝑥), is used.  

 

Clustering analysis of cells with distinct metabolic states 

 scFEA adopts an attributed graph clustering approach to identify the group of cells and metabolic modules forming 

a distinct metabolic state. Three clustering approaches were provided to the results of scFEA for different tasks, namely 

clustering of (1) metabolic modules, (2) cells share a common state on the overall metabolic map, and (3) cells share a 

common state on selected metabolic modules. 

 

Clustering of metabolic modules. Denote the adjacency matrix of the context specific metabolic map as 𝐴𝑀×𝑀  and 

predicted metabolic flux as 𝐹𝑙𝑢𝑥𝑀×𝑁, where 𝐹𝑙𝑢𝑥𝑚,𝑗 represents the predicted flux rate of the module 𝑚 in cell 𝑗, a 

two-stage spectral clustering was applied to cluster the metabolic modules based on 𝐴𝑀×𝑀 and predicted 𝐹𝑙𝑢𝑥𝑀×𝑁. 

It is noteworthy here the 𝐹𝑙𝑢𝑥𝑀×𝑁 is usually much denser than the input scRNA-seq data since the metabolic modules 

without significant expression were excluded before the analysis. Specifically, denote 𝐴𝐹,𝑀×𝑀
  as the Euclidean 

distance of the 𝑀  modules in 𝐹𝑙𝑢𝑥𝑀×𝑁 , and 𝐷𝑀×𝑀  and 𝐷𝐹,𝑀×𝑀
  as the two diagonal matrices, in which 𝐷𝑖𝑖 =

∑ 𝐴𝑖𝑗
𝑀
𝑗=1   and 𝐷𝑖𝑖

𝐹 = ∑ 𝐴𝑖𝑗
𝐹𝑀

𝑗=1  . The normalized graph Laplacian matrices for the network topology and attributes 

similarity were defined as 𝐿 = 𝐼 − 𝐷−
1

2𝐴𝐷−
1

2 and 𝐿𝐹 = 𝐼 − 𝐷𝐹−
1

2𝐴𝐹𝐷𝐹−
1

2. The normalized graph Laplacian matrices 

scale the topology and attributes similarity into the same scale. Denote 𝑑(𝑅𝑖 , 𝑅𝑗) and 𝑑𝐹(𝑅𝑖, 𝑅𝑗) as the Euclidean 

distance between the metabolic modules 𝑅𝑖  and 𝑅𝑗   of the smallest 𝑃1  eigenvectors of 𝐿  and the smallest 𝑃2 

eigenvectors of 𝐿𝐹, the modules were clusters by the K-mean method with using the following distance 

𝛼𝑑(𝑅𝑖 , 𝑅𝑗) + (1 − 𝑎)𝑑𝐹(𝑅𝑖 , 𝑅𝑗) 

, here 𝛼, 𝑃1 and 𝑃2, and the number of clusters are hyperparameters. Our empirical analysis suggested a default setting 

as 𝛼 = 0.3, which assigns a higher weight to the similarity of the predict flux; 𝑃1 = max {3, 𝑓𝑙𝑜𝑜𝑟(
#𝑆𝑀

2
) }, where #𝑆𝑀 

is the number super-modules in the current metabolic map; and 𝑃2 =  max {3, 𝑓𝑙𝑜𝑜𝑟(
#𝑀

17
) }, where #𝑀 is the number 

of non-zero modules in the current metabolic map. The number of clusters should be pre-given by users, which depends 

on the number of cells, cell types, and metabolic modules. 

Clustering of cells. For a given metabolic map or a predefined group of metabolic modules, such an identified module 

cluster, scFEA conducts cell clustering analysis by using the spectral cl 

ustering approach based on the 𝐿𝐹 and 𝑑𝐹 as defined above. 

 

Analysis of cell group specific metabolic stress and metabolic exchanges among cell groups. 

 The cell-wise metabolic flux estimated by scFEA enables the analysis of metabolic stress. For a pre-defined cell 

group such as cells of the same type, the total imbalance of each compound will be computed and ranked. One-way t-

test was applied to test if the imbalance is significantly different to 0. The metabolic exchange among different cell 

groups from one tissue sample were identified as the metabolites with different sign of metabolic imbalance in different 

cell groups, such as accumulation and depletion, or exporting or importing. Tissue level metabolic stress is computed as 

the total imbalance throughout multiple cells.  

 

Perturbation analysis 

 scFEA encodes a perturbation analysis to evaluate the impact of the change of each gene on the whole metabolic 

map. The perturbation analysis includes three components: (1) the direct impact of each gene 𝐺𝑖
𝑚 to the flux module 

𝑚 can be directly computed by its derivative 
𝑑𝑓𝑛𝑛

𝑚

𝑑𝐺𝑖
𝑚 for all the modules containing 𝐺𝑖

𝑚; (2) the impact of the flux change 

of one module 𝐴 on other modules and flux balance of metabolites can be computed as the difference of flux of other 

modules estimated by scFEA while fixing the flux of module 𝐴  at different values; (3) the impact of each gene’s 

expression to the flux of distant modules and the flux balance was evaluated by integrating the approach of (1) and (2), 
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i.e. first computing the flux change of the modules containing the gene and then evaluating the change of other modules 

and flux balance of other metabolites. 

 

Patient-derived cell line models of pancreatic cancer 

 Pa03C cells were obtained from Dr. Anirban Maitra’s lab at The Johns Hopkins University[66]. All cells were 

maintained at 37°C in 5% CO2 and grown in DMEM (Invitrogen; Carlsbad, CA) with 10% Serum (Hyclone; Logan, 

UT). Cell line identity was confirmed by DNA fingerprint analysis (IDEXX BioResearch, Columbia, MO) for species 

and baseline short-tandem repeat analysis testing in February 2017. All cell lines were 100% human and a nine-marker 

short tandem repeat analysis is on file. They were also confirmed to be mycoplasma free. 

 

ScRNA-seq experiment  

 Cells were transfected with either Scrambled (SCR) (5′ CCAUGAGGUCAGCAUGGUCUG 3′, 5′ 

GACCAUGCUGACCUCAUGGAA 3′) or siAPE1 (5′ GUCUGGUACGACUGGAGUACC 3′, 5′ 

UACUCCAGUCGUACCAGACCU 3′ siRNA). Briefly, 1×105 cells are plated per well of a 6-well plate and allowed to 

attach overnight. The next day, Lipofectamine RNAiMAX reagent (Invitrogen, Carlsbad, CA) was used to transfect in 

the APE1 and SCR siRNA at 20 nM following the manufacturer’s indicated protocol. Opti-MEM, siRNA, and 

Lipofectamine was left on the cells for 16 h and then regular DMEM media with 10% Serum was added. 

Three days post-transfection, SCR/siAPE1 cells were collected and loaded into 96-well microfluidic C1 

Fluidigm array (Fluidigm, South San Francisco, CA, USA). All chambers were visually assessed and any chamber 

containing dead or multiple cells was excluded. The SMARTer system (Clontech, Mountain View, CA) was used to 

generate cDNA from captured single cells. The dscDNA quantity and quality was assessed using an Agilent Bioanalyzer 

(Agilent Technologies, Santa Clara, CA, USA) with the High Sensitivity DNA Chip. The Purdue Genomics Facility 

prepared libraries using a Nextera kit (Illumina, San Diego, CA).  Unstrained 2x100 bp reads were sequenced using 

the HiSeq2500 on rapid run mode in one lane. 

 

ScRNA-seq data processing and analysis 

FastQC was applied to evaluate the quality of the single cell RNA sequencing data. Counts were called for each 

cell sample by using STAR alignment pipeline against human GRCh38 reference genome. Cells with less than 250 or 

more than 10000 non-zero expressed genes were excluded from the analysis. Cells with more than 15% counts mapped 

to the mitochondrial genome were excluded as low quality cells, resulting 40 APEX-1 KD and 48 Control cells under 

hypoxia condition and 27 APEX-1 KD and 46 Control cells under normoxia condition for further analysis. 

We utilized our in-house developed left truncated mixture Gaussian model to identify differentially expressed 

genes [49]. Pathway enrichment analysis of the genes in the identified bi-clusters are computed using hypergeometric 

test against the 1329 canonical pathway in MsigDB database [67], with p<0.001 as a significance cutoff. 

 

qRT-PCR 

 qRT-PCR was used to measure the mRNA expression levels of the various genes identified from the scRNA-seq 

analysis. Following transfection, total RNA was extracted from cells using the Qiagen RNeasy Mini kit (Qiagen, 

Valencia, CA) according to the manufacturer’s instructions. First-strand cDNA was obtained from RNA using random 

hexamers and MultiScribe reverse transcriptase (Applied Biosystems, Foster City, CA). Quantitative PCR was 

performed using SYBR Green Real Time PCR master mix (Applied Biosystems, Foster City, CA) in a CFX96 Real 

Time detection system (Bio-Rad, Hercules, CA). The relative quantitative mRNA level was determined using the 

comparative Ct method using ribosomal protein L6 (RPL6) as the reference gene. Experiments were performed in 

triplicate for each sample. Statistical analysis performed using the 2−ΔΔCT method and analysis of covariance 

(ANCOVA) models, as previously published [68]. 

 

Metabolomics experiment and data analysis 

 We utilized the MitoPlates Assay from BiOLOG to measure relative abundance of 14 metabolites in central 

metabolic pathways, namely glucose, glucose-1 phosphate, glucose-6 phosphate, pyruvate, and lactate in the glycolysis 
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pathway, citrate, 2-oxoglutarate, succinate, fumarate, malate in the TCA cycle, and amino acids glutamate, glutamine, 

serine, and ornithine. See details in [69]. Metabolomics profiling of the 14 metabolites were collected from three 

replicates of bulk cell samples of wildtype Pa03c cells and APEX-1 inhibition under the normoxia condition. 

 

ScRNA-seq data of head and neck cancer microenvironment 

 We collected melanoma and head and neck cancer scRNA-seq data from Gene Expression Omnibus (GEO) 

database, with accession ID GSE72056 and GSE103322. Basic QC for SC using the Seurat default parameter to filter 

out cells with high expressions of MT-coding genes. The cell type label and sample information provided in the original 

work were directly utilized. The GSE72056 data is collected on human melanoma tissues. The original paper provided 

cell classification and annotations including B cells, cancer-associated fibroblast (CAF) cells, endothelial cells, 

macrophage cells, malignant cells, NK cells, T cells, and unknown cells. The GSE103322 data is collected on head and 

neck cancer tissues. The original paper provided cell classification and annotations including B cells, dendritic cells, 

endothelial cells, fibroblast cells, macrophage cells, malignant cells, mast cells, myocyte cells, and T cells. Notably, as 

indicated by the original work, malignant cells have high intertumoral heterogeneity. 

 

DATA ACCESS 

 The single cell sequencing data with matched metabolomic data collected on the Pa03C cells is being submitted to 

Gene Expression Omnibus, and is currently accessible via https://github.com/changwn/scFEA. 
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