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 41 
Key points: 42 
• We provide a novel tissue deconvolution method, namely SSMD, which is specifically designed for 43 

mouse data to handle the variations caused by different mouse strain, genetic and phenotypic 44 
background, and experimental platforms. 45 

• SSMD is capable to detect data set and tissue microenvironment specific cell markers for more than 46 
30 cell types in mouse blood, inflammatory tissue, cancer, and central nervous system. 47 

• SSMD achieve much improved performance in estimating relative proportion of the cell types 48 
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compared with state-of-the-art methods. 49 
• The semi-supervised setting enables the application of SSMD on transcriptomics, DNA methylation 50 

and ATAC-seq data. 51 
• A user friendly R package and a R shiny of SSMD based webserver are also developed.  52 
 53 
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ABSTRACT 57 
Deconvolution of mouse transcriptomic data is challenged by the fact that mouse models 58 

carry various genetic and physiological perturbations, making it questionable to assume fixed cell 59 
types and cell type marker genes for different dataset scenarios. We developed a Semi-Supervised 60 
Mouse data Deconvolution (SSMD) method to study the mouse tissue microenvironment (TME). 61 
SSMD is featured by (i) a novel non-parametric method to discover data set specific cell type 62 
signature genes; (ii) a community detection approach for fixing cell types and their marker genes; 63 
(iii) a constrained matrix decomposition method to solve cell type relative proportions that is 64 
robust to diverse experimental platforms. In summary, SSMD addressed several key challenges in 65 
the deconvolution of mouse tissue data, including: (1) varied cell types and marker genes caused 66 
by highly divergent genotypic and phenotypic conditions of mouse experiment, (2) diverse 67 
experimental platforms of mouse transcriptomics data, (3) small sample size and limited training 68 
data source, and (4) capable to estimate the proportion of 35 cell types in blood, inflammatory, 69 
central nervous or hematopoietic systems. In silico and experimental validation of SSMD 70 
demonstrated its high sensitivity and accuracy in identifying (sub) cell types and predicting cell 71 
proportions comparing to state-of-the-arts methods. A user-friendly R package and a web server 72 
of SSMD are released via https://github.com/xiaoyulu95/SSMD.  73 
 74 
INTRODUCTION 75 

The mouse has long served as the premier model organism for studying human biology 76 
and disease, due to their striking genetic homologies and physiological similarity to humans, as 77 
well as the relatively low cost of maintenance. Currently, thousands of unique inbred strains and 78 
genetically engineered mutants have been made available for a wide array of specific disease types 79 
[1]. Research on mouse models have provided added impetus and indispensable tool for studying 80 
human disease, regarding its initiation, maintenance, progression and response to treatment, as 81 
well as evaluating drug safety and efficacy [2] [3]. Amongst all, the ability to examine 82 
physiological states and interactions between diseased cells and their microenvironment in vivo 83 
represents the most important tool for studying disease dynamics. To this end, numerous omics 84 
data have been collected from mouse that vary in terms of genetic perturbations, cell/tissue types, 85 
and treatment conditions [4-7]. A strong computational capability is needed to study the 86 
interactions of components within the mouse tissue microenvironment subject to different genetic 87 
and physiological perturbations, the knowledge gained from which could be projected to human 88 
disease scenarios and provide invaluable insight and guidance for effective human therapeutic 89 
regimes. 90 

Tissue transcriptomic data display convoluted signals from different cell types [8]. 91 
Deconvoluting cell components and identifying mouse strain-/tissue-/experimental condition-92 
specific cell types and gene expressions are crucial for understanding how experimentally 93 
perturbed conditions are associated with cellular level characteristics and cell-cell interactions [9]. 94 
While multiple deconvolution methods have been developed for investigating the heterogeneous 95 
cell types in human cancer or other tissues data [10-19], they may not be directly applicable to 96 
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mouse tissue data. First of all, the cell type specific genes for human cells differ from mouse cells; 97 
secondly, compared with human, the variations among different mouse tissue samples may be 98 
considerably higher, as they are collected from different strains with varied genetic background 99 
and experimental conditions.  100 

Currently, ImmuCC and its varied versions are the only method specifically focusing on 101 
mouse data deconvolution [20]. The core computational algorithm, which was adapted from 102 
CIBERSORT designed for human [13], assumes fixed cell type and signatures gene expressions 103 
(subject to simple transformations) regardless of experimental conditions of the target data. This 104 
assumption becomes problematic as mouse data, which are collected from different strains, have 105 
varied genetic background, thus, it is expected the tissue compositions are highly adaptable 106 
regarding the existent cell types and their expression profiles [21-23]. Aside from prominent 107 
variability in the appearance of cell types and the expression levels of markers genes, mouse data 108 
deconvolution also suffers from the following challenges: diverse experimental platforms, 109 
prevalently small sample size of mouse experiments, and limited training data sets available for 110 
deriving signature genes of cell types. 111 

To address these challenges, we developed a novel semi-supervised deconvolution method, 112 
namely Semi-Supervised Mouse data Deconvolution (SSMD), to infer data/tissue specific cell type 113 
marker genes and their expression profiles and estimate their relative abundances from 114 
transcriptomics data. SSMD is capable to infer the relative proportion of 35 cell types in the blood, 115 
inflammatory, cancer, central nervous system and hematopoietic system. To the best of our 116 
knowledge, SSMD is the only mouse data deconvolution method considering strain, tissue type 117 
and data specificity of cell type specific gene markers. We demonstrated SSMD achieved a high 118 
sensitivity in identifying the appearance of immune and stromal cell types in inflammatory tissue 119 
and brain cell types in central nervous tissue, and with a high accuracy in estimating their relative 120 
proportion on single cell RNA-seq simulated bulk tissue data sets. We also experimentally 121 
validated that the cell populations inferred by SSMD accurately recapitulates the true cell 122 
proportions measured by fluorescence-activated cell sorting (FACS) on a leukemia bone marrow 123 
data. Applications of SSMD on a large collection of public mouse blood, brain, cancer, and other 124 
inflammatory tissue data suggested that the method achieved a robust performance throughout 125 
diverse types of experimental conditions and platforms including RNA-seq, microarray and 126 
immuno-assay. In addition, the software of SSMD grants users to build in their own tissue/data 127 
specific knowledge of cell type specific markers to reinforce the method. An R package of SSMD 128 
is released through GitHub: https://github.com/xiaoyulu95/SSMD and a R Shiny based web server 129 
of SSMD is available at https://ssmd.ccbb.iupui.edu/. 130 

 131 
RESULTS 132 
Mathematical consideration and problem formulation 133 

Denote 𝑋"#×%  as a tissue data of 𝑀  genes and 𝑁  samples, a deconvolution analysis 134 
assumes 𝑋"#×% as the following non-negative product form: 135 

𝑋"#(×% = 𝑆+#(×,( ∙ 𝑃",(×% + 𝐸, 𝑆+#(×,( ≥ 0, 𝑃",(×% ≥ 0					(1) 136 
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Here, 𝑋"#(×% represents the observed gene expression matrix of 𝑀8 selected genes (a subset in 𝑀) 137 
in 𝑁 tissue samples, and columns in 𝑆+#(×,(, and rows in 𝑃",(×%, denote the expression signatures, 138 
and the relative proportions of the 𝐾8 cell types respectively. In the conventional formulation of 139 
deconvolution analysis, with fixed 𝑀8 and 𝐾8, 𝑆+#(×,( and 𝑃",(×% are solved to minimize the ℒ; 140 
loss of the above linear equation. Because of the highly varied genetic and phenotypic background 141 
of mouse experiment, 𝑆+#(×,( , 𝑀8  and 𝐾8  are usually varied and unknown, i.e. for each 𝑋"#×% 142 
collected from tissues of certain microenvironment, what cell types are present, what gene markers 143 
each cell type expresses and how much they were expressed, could vary drastically due to the 144 
genetic and physiological perturbations. Correctly specified cell types 𝐾8, and selected cell type 145 
marker genes 𝑀8  can largely increase the prediction accuracy of 𝑃",(×% . Table 1 lists the key 146 
mathematical definitions utilized in this study. 147 
 In this study, we define a cell type 𝑘 is “transcriptomically identifiable” if its ground-truth 148 
proportion 𝑃=×%>  and estimated as 𝑃"=×%>  have high correlation, i.e..	𝑐𝑜𝑟B𝑃=×%> , 𝑃"=×%> C = 1 − 𝜖 and 149 
𝜖 is substantially small, where 𝑃"=×%>  is the 𝑘th row of 𝑃",(×%, and 𝐾8 as the number of “identifiable” 150 
cell types. A strong condition for a cell type to be identifiable is that it has uniquely expressed 151 
genes [24]. Here we provided a comprehensive mathematical derivation of the relationship 152 
between cell type unique expression and identifiability of cell proportion in the Supplementary 153 
Notes. We derived the identity of cell type uniquely expressed gene markers, denoted as the set 154 
𝐺> , is a necessary but non-sufficient condition for the identifiability of cell type 𝑘 : – if 𝑘  is 155 
“transcriptomically identifiable”, 𝑋"GH×I must be a matrix of rank one, for ∀	𝑇 ⊂ {1,… ,𝑁}. This 156 
condition forms the foundation of how SSMD discover cell type marker genes that are not fixed, 157 
but instead specific to each dataset. Fortunately, we do not need to scan for all the local rank-1 158 
matrices within 𝑋"#×% , where 𝑀 is usually to the tens of thousands. In fact, with an effective 159 
knowledge transfer of the gene labels derived from single or bulk cell training data, the genes that 160 
are more likely to be cell type specific markers of identifiable cell types can be detected, which 161 
forms the core algorithm of SSMD pipeline. 162 
 163 
Table1. Definition of mathematical terms 164 

Terminology Mathematical Definition in this study 

Rank-1 matrix 

A matrix with rank = 1, i.e. the matrix is generated by the product of two vectors, 
𝑋 = 𝐴 ∙ 𝐵&. In this study, we consider all transcriptomics data are with error. 
Hence the rank-1 matrix is defined by 𝑋 = 𝐴 ∙ 𝐵& + 𝐸, where the matrix rank of X 
is 1 can be computed by the bi-cross validation (BCV) algorithm detailed in 
Methods. 

Local rank-1 
matrix 

A submatrix with rank = 1, i.e. denoting 𝐼 and 𝐽 as the indices of the submatrix, 
𝑋+×-  is generated by the product of two vectors with error, 𝑋+×- = 𝐴 ∙ 𝐵& + 𝐸. 

Transcriptomicall
y identifiable cell 
type 

The cell type with a high correlation between the true proportion 𝑃/×01  and 
estimated 𝑃2/×01  

Prediction 
accuracy 

Pearson correlation between true proportion and predicted proportion of each 
cell type 
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Detection 
accuracy 

The number of true cell type signature genes were identified as signature genes 
of an identifiable cell type 

Matrix total Rank The total rank of a data matrix that can be tested by the BCV algorithm 

 165 
SSMD Analysis pipeline 166 
 SSMD is a semi-supervised method composed by (1) training a large candidate list of cell 167 
type specific marker genes, (2) evaluating the identifiability of each cell type and confirming their 168 
marker genes for each to-be-deconvolved data, and (3) estimating the proportion of each cell type. 169 
 The training step is to look for genes that are more likely to serve as cell type marker genes 170 
through different tissue types and data sets, named as core marker lists. Specifically, we identified 171 
the genes that are commonly over expressed in one cell type comparing to the others in bulk cell 172 
data and commonly form rank-1 matrices in tissue data, by using a very extensive set of training 173 
data sets collected from different mouse strains and tissue types (see details in Methods). Fig 1A 174 
illustrates the procedure of SSMD to construct cell type core marker lists. On the bulk cell training 175 
data, we adopted a random-walk based approach to detect genes that are significantly expressed in 176 
higher quantities in one or a few cell types, than others (see details in Methods). As a result, a 177 
labeling matrix that annotates cell type specifically expressed genes will be constructed, which 178 
forms the first evidence of the potential marker genes for each cell type. Then on each bulk training 179 
tissue dataset, we further identified marker genes that form rank-1 submatrices with a community 180 
detection approach as detailed in methods. Only those modules, whose genes significantly and 181 
consistently over-represent one and only one cell type across multiple training tissue datasets, are 182 
selected to form the core marker list. Noted, variations caused by different experiment batches, 183 
tissue types and mouse strains were handled by enabling certain errors in the random-walk based 184 
cell type specific marker identification, i.e. identifying the genes overly expressed in the cell type 185 
comparing to the others in a certain proportion of the collected bulk cell data. In addition, data 186 
batch variation was also considered in the bulk data based training step, by identifying the genes 187 
commonly serve as cell type specific marker in more than 50% of analyzed bulk tissue training 188 
data. The goal of this training procedure is to summarize a relatively large list of commonly 189 
observed cell type specific marker genes, which can be used to as semi-supervised information to 190 
identify data set specific cell type marker for a further un-supervised deconvolution analysis. 191 

Based on the cell type core markers, the deconvolution of any given bulk tissue dataset is 192 
composed by the steps as illustrated in Fig 1B. SSMD first identifies all the rank-1 modules on the 193 
target dataset by an iterative hierarchical clustering and bi-cross validation approach. Then SSMD 194 
selects the rank-1 modules that are likely to be markers of a certain cell type for this data set, if 195 
genes in the modules largely overlap with the core marker list of one and only one cell type. 196 
Modules that are highly co-linear will be merged. Consequently, genes in each module is called 197 
gene markers of one cell type, that satisfy the necessary condition for “transcriptomically 198 
identifiable”. Notably, two modules may represent the same cell type, and they are treated as 199 
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marker genes of different subtypes of the cell type. Here, the total number of modules is an estimate 200 
of the number of “identifiable” cell types, i.e., 𝐾8. Importantly, SSMD is an “semi-supervised” 201 
approach, because the cell marker genes do not solely depend on the training data, but also the co-202 
expression patterns of the marker genes in the target dataset. In other words, SSMD addresses the 203 
variability issue of signature genes from one dataset to another, and has the potential to discover 204 
cell types not pre-defined. Algorithms of each computational step are detailed in Materials and 205 
Methods. Complete flow chart of the SSMD pipeline is provided in Supplementary Fig S1. 206 

The prediction of the cell type proportions is conducted using a constrained Non-negative 207 
Matrix Factorization (NMF) method by solving the following optimization problem:  208 

min
S+T(×U(,V"U(×W

XY𝑋"#(×% − 𝑆+#(×,( ∙ 𝑃",(×%YZ
; + 𝜆 ∙ trace a𝑆+#(×,(

b ∙ (𝟏d8𝟏e(
b − C#(×,()gh			(2) 209 

, where C#(×,([𝑖, 𝑗] = 1 if gene 𝑖 is marker of the cell type 𝑗, and 0 otherwise. 𝟏n denotes 210 
an all-1 column vector of length 𝑑, 𝜆 is a hyperparameter selected by cross validation, and other 211 
annotations follow equation (1). The constraint matrix C#(×,( is enforced upon the regular NMF 212 
to guarantee similarity of the solved signature matrix 𝑆+#(×,( and constraint C#(×,(, namely, in 213 
the 𝑘th column of 𝑆+#(×,(, it should have higher expressions for genes that are markers of cell type 214 
𝑘. The solution to (2) is by alternative update where each time one of 𝑆+#(×,(, 𝑃",(×% is held fixed, 215 
and the other is updated. 𝜆 can be tuned by using simulated tissue data with known cell proportion. 216 
In this study, we tuned 𝜆 and empirically select 𝜆 as 10 when 𝑋"#(×% is log normalized microarray 217 
data or log(X+1) normalized FPKM/CPM/TPM RNA-seq data. 218 

Following these procedures, and on a large collection of mouse bulk cell and tissue training 219 
data, we generated core marker gene lists for different tissue microenvironments: (1) for mouse 220 
blood, solid cancer and inflammatory tissues, 980 genes of 12 cell types namely T cell, B cell, NK 221 
cell, hematopoietic stem cell, monocyte, macrophage, neutrophil, mast cell, adipocytes, fibroblast, 222 
dendritic cell, and endothelial cell were discovered (Fig 1C); (2) for mouse hematopoietic system, 223 
2877 genes of 14 cell types namely hematopoietic stem cell, common lymphoid progenitor, 224 
granulocyte-macrophage progenitors, megakaryocyte lineage-committed progenitor, erythroid cell, 225 
megakaryocyte-erythrocyte progenitors, multipotent progenitors, early myeloid progenitor, mature 226 
myeloid cell, pre colony forming unit erythroid, pre-megakaryocytic/erythroid progenitor, B cell, 227 
CD4+ T and CD8+ T cell were discovered (Supplementary Table S1), and (3) for mouse central 228 
nervous system tissue, 1570 genes of nine cell types namely ependymal cell, general glial cell, 229 
oligodendrocyte, stromal-like cell, Schwann cell, microglial, neuron, and astrocyte were 230 
discovered (Fig 1D). Complete lists of the core marker genes are given in Supplementary Table 231 
S1. It is noteworthy that the size of core marker list ranges from 27 to 547 for different cell types. 232 
However, our analysis suggested that more than 5 marker genes that form a rank-1 matrix is 233 
sufficient for an accurate estimation of cell proportion. Note that, compared with conventional 234 
regression based deconvolution analysis, SSMD only uses labels of the core markers as the semi-235 
supervised information and identifies data set specific cell type markers for a further unsupervised 236 
estimation of cell types, which grants a flexibility and robustness to handle the variation of cell 237 
type specific marker genes and their expression scale through different mouse strains, tissue types 238 
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and experimental platforms. In addition, the semi-supervised formulation of SSMD enables the 239 
inference of identifiability of each cell type and identification of rare or sub cell types. 240 

 241 
 242 

 243 
 244 
 245 
Fig 1. Analysis pipeline of SSMD and core cell type specific markers. (A) Analysis pipeline of 246 
the core marker training procedure. (B) Analysis pipeline of the deconvolution procedure. In (A) 247 
and (B), input data including training and target data, computational procedure and key 248 
intermediate outputs were colored by orange, green and blue, respectively. (C) Core markers of 12 249 
cell types in blood, solid cancer, and inflammatory tissue. An edge between two genes means the 250 
two genes are co-identified as markers of one cell type in more than 50% of the training data sets. 251 
(D) Core markers of 9 cell types in central nervous system. Noted, core markers for the endothelial 252 
cell in the inflammatory tissue and central nervous system were separately trained by comparing 253 
with other cell types in the same tissue system. 254 
 255 
 256 
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Benchmarking based on artificial tissue data simulated by using single cell RNAseq data 257 
We first benchmarked SSMD on a set of artificial tissue data simulated from four single 258 

cell RNAseq (scRNA-seq) datasets of mouse lung, pancreas, small intestine and melanoma. For 259 
each data set, we simulated 100 tissue samples by randomly drawing and mixing cells of different 260 
types whose proportions follow random Dirichlet distributions. Prediction accuracy of each cell 261 
type was assessed by the Pearson correlation coefficients between its known mixing cell 262 
proportions and the predicted relative proportion. We compared SSMD with three state-of-arts 263 
deconvolution methods of mouse data, namely ImmuCC (ICC), tissue-ImmuCC (TICC) and EPIC 264 
[11]. Our analysis suggested that SSMD achieved 93.2% prediction accuracy on average in the 265 
four simulated data sets and 23 out of the 28 cell types (82.1%) are with higher than 0.9 prediction 266 
accuracy (Fig 2A-D). In contrast, EPIC, ICC and TICC achieved 69.7%, 45.2% and 48.5% 267 
averaged prediction accuracy on the cell types covered by these methods, and the proportion of 268 
cell types with higher than 0.9 prediction accuracy are 32.2% (9/28), 0% (0/28) and 7.2% (1/14), 269 
respectively. We also tested the popular human data deconvolution methods such as CIBERSORT 270 
(CIBERSORTx) and TIMER [9, 13], by using the known human and mouse homolog genes. Non-271 
surprisingly, predictions made by CIBERSORT and TIMER on the mouse are less accurate than 272 
SSMD. TIMER and CIBERSORT achieved 49.25% and 47.5% averaged prediction accuracy, and 273 
the proportion of cell types with higher than 0.9 prediction accuracy are 17.9% (5/28) and 3.6% 274 
(1/28) (Supplementary Table S4).  275 

 276 

 277 
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Fig 2. Method evaluation on scRNA-seq simulated tissue data. (A-D) Correlation between true 278 
and predicted cell proportions in the simulated Lung (A), Pancreas (B), Small Intestine (C), and 279 
Mouse Melanoma (D) tissue data. The x-axis represents cell type and y axis represents prediction 280 
accuracy. Predictions made by SSMD, EPIC, ImmuCC and tissue-ImmuCC were dark blue, green, 281 
yellow and orange colored, respectively. The red dash line represents the 0.9 correlation cutoff. 282 
(E-F) Correlation between true and predicted cell proportions in the two simulated brain tissue 283 
data. (G) The total rank of the gene expression profile of selected marker genes in the six simulated 284 
tissue data (grey), and the total number of cell types identified by SSMD in each data set or 285 
assumed in other methods (left three grey bars). 286 
 287 

It is noteworthy that the SSMD enables the detection of sub cell types defined as 288 
transcriptomically identifiable. SSMD successfully identified two sub populations of fibroblast 289 
cells in the melanoma data and different subtypes of neutrophils in lung and small intestine data. 290 
In contrast, ICC, TICC and EPIC are not capable of providing cell subtype predictions due to their 291 
fixed cell type assumption.  292 

We also benchmarked SSMD on simulated brain tissue data using two scRNA-seq data of 293 
central nervous systems. SSMD achieved more than 0.9 correlation in predicting the cell types 294 
microglial, stromal-like, and ependymal subtypes in the simulated tissue data (Fig 2E-F). To the 295 
best of our knowledge, SSMD is the first of its kind method to specifically target mouse central 296 
nervous system decomposition. To benchmark SSMD, we selected MUSIC as the state-of-the-art 297 
method, which requires an additional input of an scRNA-seq data to train context specific gene 298 
signatures [25]. Here we first utilized the same scRNA-seq data for tissue data simulation and 299 
signature training in MUSIC. Non-surprisingly, MUSIC achieved consistently good predictions 300 
(averaged cor=0.99), and the predictions made by SSMD are very close to MUSIC with slightly 301 
lower correlations compared with MUSIC under this ideal setup. In sight the possible disparity 302 
caused by tissue, strain, and experimental platform variations between the target tissue data and 303 
available scRNA-seq data for training cell markers, we also conducted a robustness test of MUSIC 304 
and SSMD (see details in Supplementary Notes). Our analysis suggested that MUSIC highly 305 
depends on the consistency of cell type specific marker genes and their expression scale between 306 
the target tissue and the training scRNA-seq data. In contrast, the de novo data set specific marker 307 
identification by SSMD enables a broader application to the tissue data without matched scRNA-308 
seq data. Because EPIC, ImmuCC and tissue-ImmuCC cannot analyze brain tissue data and the 309 
melanoma and pancreas tissue were not covered by tissue-ImmuCC, we did not include the 310 
comparison with these methods on the brain tissue data. 311 

To further validate the specificity of SSMD, we tested the total rank of the identified marker 312 
genes and compared with the number identified cell types (TIMER and CIBERSORT achieved 313 
49.25% and 47.5% averaged prediction accuracy. and the proportion of cell types with higher than 314 
0.9 prediction accuracy are 17.9% (5/28), and 3.6% (1/28).). We also compare the total matrix 315 
rank of the marker genes used in other methods and the number of cell types assumed in those 316 
methods. Comparing to the fixed number of cell types in other methods, the number of cell types 317 
predicted by SSMD better matches the total rank of the expression profile of identified marker 318 
genes. Our observation suggested SSMD can correctly estimate the number of cell types and select 319 
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proper markers for cell type proportion estimation. It is noteworthy the predicted number of cell 320 
types may not exactly match the total rank of selected markers because possible co-linearity among 321 
the true proportion of the cell types. 322 
 323 
Experimental validation of SSMD by using matched RNA-seq and cell sorting data 324 
 We generated a tissue RNA-seq data of 11 mouse bone marrow tissue samples with 325 
matched cell counting using Fluorescence activated cell sorting (FACS) (see details in Methods). 326 
Application of SSMD on the RNA-seq data identified hematopoietic stem cell (HSC), general 327 
myeloid progenitor (GMP), mature myeloid cell and Pre-B cells, and their cell type specific 328 
markers. We also observed that the correlation between SSMD predicted and FACS measured 329 
amount of HSC, GMP, mature myeloid cell and B cells are 0.92, 0.8, 0.86, and 0.97, respectively, 330 
suggesting a high prediction accuracy of SSMD. Fig 3A-D shows the correlation between the 331 
SSMD predicted cell proportion and the FACS measured cell proportion of the four cell types. Fig 332 
3E-H illustrate the FACS based cell counting of the four cell types. Complete cell type specific 333 
markers, cell proportions counted by FACS and predicted by SSMD were given in 334 
Supplementary Table S2. It is noteworthy that SSMD is not compared with other methods as 335 
none of the existing method is capable of predicting proportions of hematopoietic cell types.  336 
 337 

 338 
Fig 3. Method evaluation on scRNA-seq simulated tissue data on hematopoietic tissue data. 339 
(A-D) Correlation between SSMD predicted (x-axis) and FACS identified (y-axis) cell proportions 340 
of HSC, GMP, mature myeloid cell and preB cell. (E-H) marker proteins utilized to identify the 341 
four cell types by using FACS. The x- and y- axis of the plots represent the level of cell type 342 
markers. The black block in (E), the green block in (F), the upper-right block in (G) and the block 343 
in (H) are the sorted HSC, GMP, Myeloid and Pre-B cell, respectively. 344 
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Application of SSMD to real mouse tissue transcriptomics data 345 
We applied SSMD to nine cancer and eight central nervous system tissue data of four 346 

different experimental platforms, including one data set measured by immune-assay. On average, 347 
SSMD identified more than seven cell types in each of the cancer data, and the number of identified 348 
cell types is highly consistent with the total rank of the expression profile of the detected cell type 349 
specific marker genes (Fig 4A). This indicates that SSMD is capable of capturing the latent 350 
structure of the data. We further examined the explanation score (E-score), defined as the averaged 351 
absolute residual of the non-negative linear regression of each marker gene’s expression on the 352 
predicted cell proportion, i.e. the average measure of how the predicted proportions could explain 353 
all the marker genes’ expression levels. A high E-score is a necessary condition for an accurate 354 
cell proportion prediction. On average, the data set specific markers genes of each cell type 355 
identified by SSMD achieved 0.73 E-score while the average E-score of the marker genes used by 356 
EPIC and ImmuCC is 0.45 and 0.3 (Fig 4B). Similarly, application of SSMD on eight central 357 
nervous system tissue data identified more than seven cell types on average. The number of 358 
identified cell types is highly consistent with the total rank of the gene expression profile of the 359 
marker genes (Fig 4C). And the marker genes identified by SSMD achieved averaged 0.77 E-360 
score for the cell types in central nervous system (Fig 4D). It is noteworthy that multiple marker 361 
sets of fibroblasts, myeloid or microglial cells that forming distinct rank-1 bases were identified in 362 
numerous data sets, suggesting the possible sub types of these cell types identified by SSMD. 363 

 364 

 365 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.309278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.309278


 366 
Fig 4. Prediction of SSMD on real tissue data. (A, C) The total rank of the gene expression 367 
profile of selected marker genes (grey) in different (A) cancer tissue and (C) brain data, and the 368 
total number of cell types identified by SSMD in each data set (colored). (B, D) E-Score for 369 
different cell types identified by SSMD (blue) in (B) cancer and (D) brain data set or assumed in 370 
other methods (EPIC: red, ImmuCC: Yellow). 371 
 372 
Robustness analysis  373 
 We first evaluated the variation of cell type specific markers through different mouse 374 
strains on one transcriptomic dataset of mouse liver tissue samples collected from 31 different 375 
mouse strains [26]. To the best of our knowledge, this is the only dataset in the public domain that 376 
systematically measured gene expression profiles of the same tissue type for different mouse 377 
strains by using the same experimental platform. SSMD was applied to the data of each mouse 378 
strain respectively. 9 cell and their sub types were commonly identified in the liver tissue of most 379 
strains. The identifiability of the cell types and the detected cell type markers among different 380 
strains were compared (Fig 5). We analyzed all the identified marker genes that form rank-1 381 
modules, i.e. the necessary condition for gene markers of identifiable cell types, and noticed that 382 
only 9.1% of the identified marker genes are shared in more than 50% strains, while 58.4% of the 383 
identified marker genes only served as a cell type marker in less than 20% of the analyzed strains, 384 
suggesting a high variation of cell type specific markers among different mouse strains, and the 385 
necessity to consider strain or data set specificity in deconvolution analysis. 386 

  387 

 388 
Fig 5. Correlation between expression level of strain specific cell type marker genes and 389 
predicted cell proportion. High correlation is a necessary but non-sufficient condition for the 390 
genes to serve as marker genes of the cell types in corresponding mouse strain. In the heatmap, x- 391 
and y-axis represent genes and mouse strains, respectively. Genes in the core marker list of four 392 
selected cell types, namely Neutrophil, Nature Kill (NK), Macrophage, and Monocyte, were 393 
colored on the column side bar. 394 
 395 

We further examined the robustness of SSMD by evaluating its (1) sensitivity and (2) 396 
specificity in identifying cell types specific marker genes and its (3) accuracy in assessing of cell 397 
proportions, on the data of different sample sizes. Previous studies revealed that the robustness of 398 
the computation of co-expression correlation will decrease when the sample size is below 25. To 399 
comprehensively evaluate the method’s robustness, we selected five data sets, namely GSE76095, 400 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.309278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.309278


GSE67186, GSE90885, GSE94574, and GSE126279, with sample size ranging from 15 to 30 and 401 
randomly drew samples from each data set to build testing data sets of different sample size. We 402 
assumed the cell type markers and cell proportion inferred from whole data as “true” markers and 403 
proportions, and evaluated the consistency between the “true” ones and the ones predicted from 404 
small sub data sets. Accuracy in cell proportion prediction was assessed by the Pearson correlation 405 
between proportions predicted from small data and the “true” proportion on overlapped samples.  406 

 407 

 408 
 409 
Fig 6. Performance evaluation of different sample size. (A) Prediction accuracy (y-axis) in 410 
different sample size (x-axis) using all core markers. Accuracy is the Pearson correlation between 411 
predicted proportion using only selected small sample and using all samples. (B) Prediction 412 
accuracy (y-axis) in different sample size (x-axis) using selected stringent markers. (C) True 413 
positive rate (y-axis) of the cell type specific markers identified by using the stringent markers 414 
(blue) and core markers (green) with respect to different sample size (x-axis). (D) E-Score for 415 
using co-expression modules consisting of all core markers and only selected stringent markers. 416 
From top to bottom, the statistics were derived from GSE76095, GSE67186, GSE90885, 417 
GSE94574, and GSE126279. 418 

 419 
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On average, all of the marker genes of the “true” cell types were also identified when 420 
sample size is low (Fig 6A). In addition, the cell proportion of 92.3%, 94.6% and 98.9% of the 421 
correctly identified cell types were with more than 0.9 correlation with their “true” proportions 422 
when the sample size is 6, 12 and above 20 (Fig 6A). Our analysis suggested a high robustness of 423 
the sensitivity and prediction accuracy of SSMD when sample size is as small as 6, i.e. the 424 
commonly used sample size in two-condition-comparison experiment (3 samples vs 3 samples). 425 
However, as a trade-off, there is a high false discovery rate of cell type specific modules when 426 
sample size is small, due to the low specificity of gene co-express analysis. To control the false 427 
discoveries on small data sets, we further derived a more “stringent” set of 341 cell type specific 428 
marker genes among the core marker set (see details in Methods). Our method validation 429 
demonstrated a slight drop of the sensitivity and prediction accuracy when using the stringent 430 
marker set on small data set (Fig 6B), while the specificity of the identified cell type specific 431 
markers increased to from 54.4% to 72.6% when sample size is above 12 (Fig 6C). Fig 6D 432 
illustrates the E-score of the cell type specific marker genes identified by using the core and the 433 
more stringent marker set with respect to different sample size. The E-score of the cell types 434 
marker genes identified by using the more stringent marker set were significantly higher than the 435 
ones identified by using the general core marker sets when sample size is below 10, also 436 
demonstrating the stringent core marker sets can effectively increase the analysis specificity when 437 
sample size is small. 438 
 439 
DISCUSSION 440 

Over the years, research using well-established mouse models to mimic human conditions 441 
have provided extensive insight into the mechanisms underlying many human diseases. We 442 
developed SSMD to study mouse tissue microenvironment of complex traits, to mine the 443 
interactions of cell components in the microenvironment, which will feed back to studying human 444 
microenvironment. In order to have a robust prediction of cell component abundance in mouse 445 
tissue, SSMD detects a subset of the genes and identifiable cell types that are the most 446 
representative to the tissues to be analyzed, instead of using fixed gene signatures and cell types 447 
as in classic deconvolution schemes. The limitation in expression profiling and the intrinsic and 448 
mysterious variability in microenvironments excludes the possibility to have a unified set of cell 449 
type specific genes that have absolutely constant expression across all conditions. The way SSMD 450 
flexibly defines cell type marker genes mitigates the impact of variable marker genes due to 451 
experimental platforms and microenvironment alterations. This strategy allows our model to fully 452 
recapitulate the disparity of cell types and their marker genes across different microenvironment 453 
and data-generating platforms. In addition, the semi-supervised formulation enables the detection 454 
of sub cell types, which has been validated on scRNA-seq data simulated tissue data. Hence, a 455 
relatively coarse standard for categorizing the cell types was used in training the core marker list, 456 
which enabled a high robustness of the core markers. The unsupervised constrained-NMF or SVD-457 
based deconvolution on the selected marker genes further excludes the adversarial batch effects.  458 

It is noteworthy a successful identification of the rank-1 modules depends on a relatively 459 
large samples (>25) sharing cell types and marker genes. Currently, SSMD cannot be applied to 460 
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the data with a single or small sample size. However, we consider such a tradeoff between sample 461 
size and prediction robustness is highly worthwhile, especially considering using SSMD as an 462 
exploratory tool in large scale publicly available mouse transcriptomics data. After all, the 463 
predicted proportions are often to be associated with other biological and clinical features, which 464 
will be severely underpowered with a small sample size. 465 

We released a R package of SSMD via https://github.com/xiaoyulu95/SSMD and a web 466 
server via https://ssmd.ccbb.iupui.edu/. As illustrated in Supplementary Fig S2A, the input data 467 
is a mouse tissue transcriptomics data and user selected tissue specific cell type core marker sets. 468 
Currently, SSMD offers general core and stringent marker sets of 6 cell types in blood system, 12 469 
cell types in normal, inflammatory and cancer tissue, 9 cell types in central nerve systems, and 14 470 
cell types in hematopoietic systems. Supplementary Fig S2B illustrates a practical guide for using 471 
SSMD of different tissues and sample size. The input of SSMD is a mouse tissue expression data 472 
set and user selected tissue environment category. The output of SSMD includes the identified 473 
data set specific cell type markers and the estimated sample-wise relative proportion of each 474 
identifiable cell type. We consider the currently included cell types are comprehensive enough to 475 
cover major cell types in mouse. However, the tissue specific cell types (for example, liver cells 476 
in liver tissue, colon cells in colon tissue, etc) were not included in our training scope. As forming 477 
rank-1 pattern among marker genes is a necessary but non-sufficient condition of identifiable cell 478 
types, SSMD R package can also output rank-1 modules that do not enrich the core markers of any 479 
cell type, which could possibly be markers of rare cell types. The user could further investigate 480 
whether the gene module corresponds to a real cell type or not. Another key feature of the 481 
webserver is that users are welcome to contribute their data to reinforce the training of cell type 482 
specific marker genes.  483 

Potential future directions of SSMD include (1) enabling identification of cell type specific 484 
varied functions, which is not generally available for tissue data analysis in the public domain, (2) 485 
identifying data set specific cell type markers forming rank-1 submatrix in a subset of samples, i.e. 486 
local rank-1 submatrix, which can benefit from state-of-the-arts subspace clustering methods [27-487 
29] and (3) extending and implementing the semi-supervised framework of SSMD with other state-488 
of-the-arts deconvolution methods by refining data set specific cell marker genes. We anticipate 489 
that our computational concept, which is to identify data set specific and computationally 490 
“identifiable” cell types and their marker genes, can provide high robustness in deconvolution 491 
analysis, by which the predicted cell proportions can be reliably correlated with experimental 492 
features to provide biologically meaningful interpretation of the roles of microenvironmental 493 
changes in different disease tissues. 494 

 495 
 496 

MATERIALS AND METHODS 497 
Random walk based identification of cell type specifically expressed genes from tissue data 498 

We applied a non-parametric random walk based approach to screen genes with higher 499 
expression in certain cell types comparing to others, using bulk cell training data. On the combined 500 
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expression matrix containing M genes for N samples of K cell types, we first calculated the 501 
expected frequency of each cell type, i.e. dividing the total number of samples for the cell type 502 
(𝑁>, 𝑘 = 1,… , 𝐾) by the total number of samples N, denoted as 𝐸> = 𝑁>/𝑁	, 𝑘 = 1,… , 𝐾. For a 503 
given gene 𝑔	, denote 𝒙 and 𝒙> as vectors of expression profile for cells of all types and type 𝑘. 504 
Denote 𝑂t> as the percentage of values in 𝒙> that are no less than the jth largest value in vector 𝒙. 505 
A random walk vector 𝒅=×% that describes the non-negative discrepancy between the observed 506 

and expected cell type frequency of the gene was defined as 𝑑t = ∑ B𝑂t> − 𝐸>C
;,

>y= , 𝑗 = 1,… ,𝑁, 507 
which attains a minimum value of zero at N. A higher peak of the random walk 𝒅=×% suggests 508 
gene g is more enriched in certain cell types than the others. Denote 𝑚  as the index of the 509 
maximum of 𝒅=×%, i.e. m = argmax	(𝒅=×%), and the cell type frequency at 𝑚 as 𝑒>~ = 𝑂~> − 𝐸>. 510 
Cell types were further ordered by 𝑒>~ decreasingly, and a labeling matrix 𝐿 was built such that 511 
𝐿�,� = 0, 𝑖𝑓	𝑒>~ ≤ 0; otherwise, 𝐿�,� =

=
�
, 𝑖𝑓	𝒙> has the pth largest mean among 𝒙=, … , 𝒙,. 512 

It is noteworthy the approach can be directly applied to scRNA-seq data for marker training. 513 
In this study, due to the relatively limited availability of existing scRNA-seq data, especially the 514 
mouse strain and tissue type coverage, we generate core marker list purely by using bulk cell data. 515 
 516 
Identification of rank-1 cell type uniquely expressed gene modules 517 

To screen genes that form tight rank-1 modules on various tissue training datasets, SSMD 518 
performs a community detection method among the genes specifically expressed in each cell type 519 
as stored the labeling matrix. A correlation matrix was first built among cell type specifically 520 
expressed genes, and the significance cutoff of correlation was determined by random matrix 521 
theory. Random matrix theory (RMT) has been widely used to understand the low rank structure 522 
encoded in biological data. In this study, an RMT based approached developed by Luo et al was 523 
used to determine the threshold of significant correlation for each dataset[30]. rm.get.threshold 524 
functions in the RMThreshold R package was utilized. Specifically, RMT indicated that the nearest 525 
neighbor spacing distribution of eigenvalues will have a characteristic change when the threshold 526 
properly separates signal from noise. By removing all the below-threshold correlation elements, 527 
the co-expression modules can be more robustly unraveled. Then, hierarchical clustering was 528 
performed using the correlation matrix as similarity measure.  529 

Specifically, SSMD gradually increases the height of the hierarchical clustering at which 530 
the tree is cut. At each height, the number of genes, the average correlation among the genes, and 531 
the rank of the matrix composed of the genes in each of the cluster, is calculated. Here, matrix rank 532 
is determined by a modified bi-cross validation (BCV) algorithm. SSMD stops scanning the  533 
hierarchical tree if all the clusters contain less than 𝑞8 genes, or the three following criterior is met 534 
for all the clusters:  (1) with at least 𝑞8 genes, (2) the average correlation among the genes is above 535 
the threshold determined by RMT, and (3) the rank of the expression matrix profile of the genes 536 
in the cluster is 1. In this study, 𝑞8=7 is used. Such an iterative approach will eventually select the 537 
clusters with at least 𝑞8 genes, each of which is considered as possible cell specific marker genes 538 
specific to this data set. SSMD merges modules until the canonical correlation between any pair 539 
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of module is lower than a cutoff 𝑐𝑜𝑟��� or the number of current modules is not larger than the 540 
total rank of the gene expression profile of the selected data set specific markers genes. In this 541 
study, we utilized 𝑐𝑜𝑟��� = 0.9. 542 

A modified Bi-cross validation rank test: Bi-cross validation (BCV) has been developed to 543 
estimate the matrix rank for singular value decomposition (SVD) and Non-negative Matrix 544 
Factorization (NMF) , which requires a prefixed low dimension 𝐾 and two low rank matrices for 545 
the approximation 𝑋#×% = 𝑊#×, ∙ 𝐻,×%. The error distribution of gene expression data is usually 546 
non-identical/independent, mostly because a gene’s expression can be affected by its major 547 
transcriptional regulators, other biological pathways and experimental bias. Hence undesired 548 
biological characteristics and experimental bias may form significant dimensions in a gene 549 
expression data [31]. In sight of this, we developed a modified BCV rank test (Algorithm 1) to 550 
minimize the effect of the non-i.i.d errors in assessing the matrix rank of a gene expression data. 551 
 552 
 553 
 554 
 555 
 556 
Algorithm 1: Modified Bi-cross validation matrix rank test 557 

 558 
 After running the rank-1 module detection on all the training bulk tissue datasets, those 559 
genes commonly identified in the rank-1 modules in more than 40% (70%) data sets were selected 560 
as core (stringent) markers. The list of stringent marker sets was derived with more stringent 561 
criterion, which is particularly useful for the analysis of small sample sized target data. Core 562 
markers of cells in central nervous systems were identified by a similar approach on the brain 563 
training tissue datasets.  Due to the limitation of hematopoietic system tissue training data, its core 564 
markers were selected as the genes specifically over expressed in each hematopoietic cell type, by 565 
using the criteria: the gene’s expression level is above 10% quantile in one cell type and below 566 

Input: Matrix 𝑋3×0, parameters 𝑀4, 𝑁4, 𝑅,𝑚𝑠𝑝. 
For r=1…R 
 𝑆𝑎𝑚𝑝𝑙𝑒	row	index	set	𝐼5 = �i/, i6, … , i3!|𝑖7 ∈ {1…𝑀}�, 𝐼5� = {1…𝑀}\𝐼5 
 𝑆𝑎𝑚𝑝𝑙𝑒	column	index	set	𝐽5 = �j/, j6, … , j0!|𝑗7 ∈ {1…𝑁}�, 𝐽5� = {1…𝑁}\𝐽5 

 𝑆𝑝𝑙𝑖𝑡	𝑋	into	four	submatrices ¤𝐴5 𝐵5
𝐶5 𝐷5

¤ , 𝑤ℎ𝑒𝑟𝑒	𝐴5 = 𝑋[𝐼5 , 𝐽5], 𝐵5 = 𝑋[𝐼5 , 𝐽5�],	 

 𝐶5 = 𝑋[𝐼5�, 𝐽5], 𝐷5 = 𝑋[𝐼5�, 𝐽5�] 
 𝐹𝑜𝑟	𝑘 = 1…min(𝑀4, 𝑁4) 

  BCV(𝑘, 𝑟) = ∑ ∑ ®𝐴5 −𝐵5𝐷5̄
(1):𝐶5®

;

6
0!
<=/

3!
>=/ 	(∗)   

 End 
End 
Rank? ← 0 
𝐹𝑜𝑟	k = 1…min(𝑀4, 𝑁4) 
 𝐷𝑜	t	test	between	{BCV(𝑘, 𝑟)|𝑟 = 1…𝑅}	and	{𝐵𝐶𝑉(𝑘 + 1, 𝑟)|𝑟 = 1…𝑅} 
 𝑖𝑓	(p. value < 0.01	&	mean	BBCV(𝑘 + 1, 𝑟)C −mean	BBCV(𝑘, 𝑟)C > msp) 
  Rank? ← 𝑘 
End 
𝑅𝑒𝑡𝑢𝑟𝑛	Rank? 
(∗)	Denote	the	SVD	of	a	matrix	𝐷	as	𝐷 = 𝑈𝛴𝑉@, and	Moore–Penrose	inverse	of	𝐷	 
as	𝐷:, 𝐷: = 𝑉@𝛴:𝑈,where	𝛴:	is	a	diganol	matrix	diagB𝜎/:, 𝜎6:, …𝜎7:C	with 𝜎/: ≥	 
𝜎6: ≥ ⋯ ≥ 𝜎7: ≥ 0. Define	𝐷Ä(1)

:
= ∑ 𝜎>:𝑣>1

>=/ 𝑢> 
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50% in the other cell types. Complete lists of selected core and stringent marker sets were given 567 
in Supplementary Table S1. 568 
 569 
Estimation of cell proportion 570 

Two methods were utilized to estimate cell proportion: (1) SVD based computation. With 571 
cell type specific markers derived, the first row base of the gene expression profile of the marker 572 
genes is directly utilized as an estimation of the cell proportion, which can be directly computed 573 
by SVD. (2) Constraint NMF based computation. With the number of identifiable cell types and 574 
cell type specific markers identified, the signature matrix 𝑆+#(×,( and proportion matrix 𝑃",(×% can 575 
be estimated by minimizing the following objective function: 576 

min
S+T(×U(,V"U(×W

XY𝑋"#(×% − 𝑆+#(×,( ∙ 𝑃",(×%YZ
; + 𝜆 ∙ trace a𝑆+#(×,(

b ∙ (𝟏d8𝟏e(
b − C#(×,()gh 577 

, where C#(×,([𝑖, 𝑗] = 1 if gene 𝑖 is marker of the cell type 𝑗, and 0 otherwise. 𝜆 is the hyper 578 
parameter. In this study, we tuned 𝜆  by using single cell data simulated tissue data. 𝜆=10 is 579 
empirically utilized in the analysis. 580 
 581 
Explanation score and Comparison with state-of-the-arts methods 582 
An explanation score (ES) was utilized to evaluate the goodness that each marker gene’s 583 
expression is fitted by the predicted cell proportions: 584 

𝐸𝑆𝑐𝑜𝑟𝑒(𝑥) = 1 − ∑ (𝑥t∗ − 𝑥Çt);%
ty= /∑ (𝑥t∗);%

ty= , 𝑥ÈÉ = ∑ 𝛽>Ë𝑝t>
>Ì
>y= , 𝛽>Ë ≥ 0 585 

where 𝑥t∗ is the observed expression of marker gene 𝑥 in sample 𝑗, 𝑥Çt is the explainable expression 586 
by cell proportions, obtained by a non-negative regression 𝑥 on the predicted proportion 𝑝t>, 𝑘 =587 
1…𝑘Ë. Here, 𝑘Ë represents the number of cell types that express 𝑥, and 𝛽>Ë are the non-negative 588 
regression parameters. Intuitively, with correctly selected marker genes, the marker gene’s 589 
expression can be well explained by the predicted proportions of the cell types that express the 590 
gene.  Hence, a high ES score is a necessary but not sufficient condition for correctly selected 591 
marker genes and predicted cell proportion. 592 
 593 
Data used in this study  594 

Bulk cell training data sets: for mouse blood, solid cancer and inflammatory tissue 595 
microenvironment, we retrieved 116 datasets of sorted mouse cells of 12 selected cell types, 596 
totaling 1106 samples from GEO database. For mouse brain tissue microenvironment, we collected 597 
2130 bulk cell samples of the nine selected cell types in central nerve systems. For mouse 598 
hematopoietic microenvironment, two datasets were available that cover 14 hematopoietic cell 599 
types. All the bulk cell training data were generated by the Affymetrix GeneChip Mouse Genome 600 
430 2.0 Array platform and normalized with MAS5 method [32]. Samples of the same cell type 601 
were further merged together with batch effect removed using Combat [33].  602 

Single Cell RNA-sequencing data: One mouse melanoma scRNAseq data set (6638, 9) was 603 
acquired from the Human Cell Atlas database [34]. Three scRNA-seq datasets of lung (4485, 12), 604 
pancreas (4405, 8), and small intestine (4764, 10) and two sets of brain tissue (3679, 7 and 1099, 605 
6) were accessed from Mouse Cell Atlas (MCA) data portal [35]. The two numbers in the 606 
parenthesis indicate the number of cell samples and cell types of each data set. We specifically 607 
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selected the cells with UMI more than 500 to exclude low quality cells. Cell labels were either 608 
provided in the original data or curated using Seurat v3 with cell type specific genes [36, 37]. 609 

Training tissue data from cancer and blood: 33 cancer tissue datasets of 9 cancer types 610 
generated by four popular experimental platforms were collected, namely Illumina HiSeq 2000 611 
Mus musculus, Affymetrix Mouse Genome 430 2.0 Array, Illumina HiSeq 2500 Mus musculus 612 
and Affymetrix Mouse Genome 430A 2.0 Array from GEO database. Each data set has at least 15 613 
samples. We didn’t consider datasets from immunodeficient mouse, mouse cell lines, and PDX 614 
models, as only real cancer or blood micro-environment is considered. A data set of liver tissue 615 
collected from 31 mouse strains (GSE55489) were utilized to evaluate the variation of cell type 616 
specific markers through different mouse strains [26]. 617 

Brain tissue data: 14 datasets of mouse brain tissues generated by two experimental 618 
platforms, namely Illumina HiSeq 2500 Mus musculus and Affymetrix Mouse Genome 430 2.0 619 
Array were collected from Gene Expression Omnibus. Datasets were split into sub data sets of 620 
different brain regions. Each data set has at least 40 samples. The complete training data 621 
information are available in Supplementary Table S3. 622 

Hematopoietic System tissue and FACS data: We generated a RNA-seq data set with 623 
matched FACS data of bone marrow cells isolated from the hind limbs of C57BL/6, Tet2-/-624 
Flt3ITD , DNMT3A-/-Flt3ITD , and DNMT3A-/-Tet2-/-Flt3ITD mice (n=3 for each group). RNA 625 
(600 ng/ sample) was used to prepare single indexed strand specific cDNA library using TruSeq 626 
stranded mRNA library prep kit (Illumina). The library prep was assessed for quantity and size 627 
distribution using Qubit and Agilent 2100 Bioanalyzer. The pooled libraries were sequenced with 628 
75bp single-end configuration on NextSeq500 (Illumina) using NextSeq 500/550 high output kit. 629 
The quality of sequencing was confirmed using a Phred quality score. The sequencing data was 630 
next assessed using FastQC (Babraham Bioinfomatics, Cambridge, UK) and then mapped to the 631 
mouse genome (UCSC mm10) using STAR RNA-seq aligner [38], and uniquely mapped 632 
sequencing reads were assigned by featureCounts. The data were normalized to RPKM. FACS 633 
data were collected from same biological prep by IU School of Medicine Flowcytometry Core. 634 
Hematopoietic stem cells were identified by lineage negative, C-Kit high and Sca1 high cells, 635 
general myeloid progenitor cells were identified by Cd34 and Cd16/32 high cells, mature myeloid 636 
cells were identified by Gr1 and Cd11b high cells, and PreB cells were identified by B220 and 637 
SSC-A high cells.  638 

 639 
Generation of simulated bulk tissue data from scRNA-seq data 640 
 Cell types in each scRNA-seq data were labeled by the cell clusters provided in the original 641 
works or by using Seurat pipeline with default parameters. Detailed information of the scRNA-seq 642 
data and cell type annotation is given in Supplementary Table S3. For each data set, we simulate 643 
bulk tissue data by: (1) removing insignificantly expressed genes, (2) randomly generate the 644 
proportion of each cell type, called true proportion in this paper, that follows a Dirichlet 645 
distribution, and (3) draw cells randomly from the cell pool with replacement according to the cell 646 
type proportion, and sum up the expression values of all cells to produce a pseudo bulk tissue data. 647 
The insignificant expressed genes were identified by left truncated mixture Gaussian model [39, 648 
40]. The Dirichlet distribution matrix was generated with R package “DirichletReg” [41]. 649 
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FIGURE LEGENDS 750 
Fig 1. Analysis pipeline of SSMD and core cell type specific markers. (A) Analysis pipeline of 751 
the core marker training procedure. (B) Analysis pipeline of the deconvolution procedure. In (A) 752 
and (B), input data including training and target data, computational procedure and key 753 
intermediate outputs were colored by orange, green and blue, respectively. (C) Core markers of 12 754 
cell types in blood, solid cancer, and inflammatory tissue. An edge between two genes means the 755 
two genes are co-identified as markers of one cell type in more than 50% of the training data sets. 756 
(D) Core markers of 9 cell types in central nervous system. Noted, core markers for the endothelial 757 
cell in the inflammatory tissue and central nervous system were separately trained by comparing 758 
with other cell types in the same tissue system. 759 
 760 
Fig 2. Method evaluation on scRNA-seq simulated tissue data. (A-D) Correlation between true 761 
and predicted cell proportions in the simulated Lung (A), Pancreas (B), Small Intestine (C), and 762 
Mouse Melanoma (D) tissue data. The x-axis represents cell type and y axis represents prediction 763 
accuracy. Predictions made by SSMD, EPIC, ImmuCC and tissue-ImmuCC were dark blue, green, 764 
yellow and orange colored, respectively. The red dash line represents the 0.9 correlation cutoff. 765 
(E-F) Correlation between true and predicted cell proportions in the two simulated brain tissue 766 
data. (G) The total rank of the gene expression profile of selected marker genes in the six simulated 767 
tissue data (grey), and the total number of cell types identified by SSMD in each data set or 768 
assumed in other methods (left three grey bars). 769 
 770 
Fig 3. Method evaluation on scRNA-seq simulated tissue data on hematopoietic tissue data. 771 
(A-D) Correlation between SSMD predicted (x-axis) and FACS identified (y-axis) cell proportions 772 
of HSC, GMP, mature myeloid cell and preB cell. (E-H) marker proteins utilized to identify the 773 
four cell types by using FACS. The x- and y- axis of the plots represent the level of cell type 774 
markers. The black block in (E), the green block in (F), the upper-right block in (G) and the block 775 
in (H) are the sorted HSC, GMP, Myeloid and Pre-B cell, respectively. 776 
 777 
Fig 4. Prediction of SSMD on real tissue data. (A, C) The total rank of the gene expression 778 
profile of selected marker genes (grey) in different (A) cancer tissue and (C) brain data, and the 779 
total number of cell types identified by SSMD in each data set (colored). (B, D) E-Score for 780 
different cell types identified by SSMD (blue) in (B) cancer and (D) brain data set or assumed in 781 
other methods (EPIC: red, ImmuCC: Yellow). 782 
 783 
Fig 5. Correlation between expression level of strain specific cell type marker genes and 784 
predicted cell proportion. High correlation is a necessary but non-sufficient condition for the 785 
genes to serve as marker genes of the cell types in corresponding mouse strain. In the heatmap, x- 786 
and y-axis represent genes and mouse strains, respectively. Genes in the core marker list of four 787 
selected cell types, namely Neutrophil, Nature Kill (NK), Macrophage, and Monocyte, were 788 
colored on the column side bar. 789 

 790 
Fig 6. Performance evaluation of different sample size. (A) Prediction accuracy (y-axis) in 791 
different sample size (x-axis) using all core markers. Accuracy is the Pearson correlation between 792 
predicted proportion using only selected small sample and using all samples. (B) Prediction 793 
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accuracy (y-axis) in different sample size (x-axis) using selected stringent markers. (C) True 794 
positive rate (y-axis) of the cell type specific markers identified by using the stringent markers 795 
(blue) and core markers (green) with respect to different sample size (x-axis). (D) E-Score for 796 
using co-expression modules consisting of all core markers and only selected stringent markers. 797 
From top to bottom, the statistics were derived from GSE76095, GSE67186, GSE90885, 798 
GSE94574, and GSE126279. 799 
 800 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.309278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.309278


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.309278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.309278


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.309278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.309278


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.309278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.309278


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.309278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.309278


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.309278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.309278


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.309278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.309278

