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One Sentence Summary 

COVID-19-associated ARDS is biologically distinct from other causes of ARDS. 

 

Abstract  

Acute respiratory distress syndrome (ARDS) is the main complication of COVID-19, requiring 

admission to Intensive Care Unit (ICU). Despite recent immune profiling of COVID-19 patients, 

to what extent COVID-19-associated ARDS specifically differs from other causes of ARDS 

remains unknown, To address this question, we built 3 cohorts of patients categorized in COVID-

19negARDSpos, COVID-19posARDSpos, and COVID-19posARDSneg, and compared their immune 

landscape analyzed by high-dimensional mass cytometry on peripheral blood followed by artificial 

intelligence analysis. A cell signature associating S100A9/calprotectin-producing CD169pos 

monocytes, plasmablasts, and Th1 cells was specifically found in COVID-19posARDSpos, unlike 

COVID-19negARDSpos patients. Moreover, this signature was shared by COVID-19posARDSneg 

patients, suggesting severe COVID-19 patients, whatever they experienced or not ARDS, displayed 

similar immune dysfunctions. We also showed an increase in CD14posHLA-DRlow and 

CD14lowCD16pos monocytes correlated to the occurrence of adverse events during ICU stay. Our 

study demonstrates that COVID-19-associated ARDS display a specific immune profile, and might 

benefit from personalized therapy in addition to standard ARDS management. 
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Introduction:  

The SARS-Coronavirus-2 (SARS-CoV-2) virus has currently affected more than 30 million people 

worldwide, requiring admission to Intensive Care Unit (ICU) for more than 2 million patients (1). 

Whereas most patients exhibit mild-to-moderate symptoms, acute respiratory distress syndrome 

(ARDS) is the major complication of the coronavirus disease 2019 (COVID-19) (2, 3), leading to 

prolonged ICU stays, and high frequency of secondary complications, notably cardiovascular 

events, thrombosis, pulmonary embolism, and stroke (1, 4). The immune system plays a dual role 

in COVID-19, contributing to both virus elimination and ARDS development. Excessive 

inflammatory response has been proposed as the leading cause of COVID-19-related clinical 

complications, thus supporting intensive efforts to better understand the specificities and 

mechanisms of SARS-CoV-2-induced immune dysfunction (5, 6). Moreover, even if antiviral 

strategies, such as those provided by remdesivir or convalescent plasma, can lower the viral burden, 

no antiviral treatment has yet been able to prevent the evolution of some patients towards 

deregulated inflammation and critical respiratory complications. Recent data however suggest a 

benefit of corticosteroids in lowering overall mortality in COVID-19 patients with moderate 

disease, severe disease, and ARDS (7). However, steroid therapy could be harmful in some specific 

ARDS etiologies, such as in influenza-associated ARDS (8). A better understanding of the 

etiology-specific immune dysfunctions underlying ARDS development and severity is thus a major 

unmet need to design specific therapeutic strategy.  

A number of high-resolution studies have recently concentrated on the determination of circulating 

markers that can distinguish severe from mild forms of COVID-19, providing a tremendous amount 

of data describing phenotypic and functional alterations in T cell, B cell, and myeloid cell subsets 

(9-20). In particular, CD14posHLA-DRlow, CD14posCD16pos, CD14lowCD16pos, and immature 

monocytes were demonstrated as increased among peripheral blood mononuclear cells (PBMCs) 
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from critically ill COVID-19 patients (11, 16, 18, 21-23). Various alterations of lymphoid cells 

have also been described, including a T-cell lymphopenia, predictive of patient outcome, a broad 

T-cell activation including Th1, Th2, and Th17, an alteration of B-cell and T-cell repertoires, and 

a strong increase of plasmablasts, most prominent in ARDS COVID-19 patients (12, 20, 24-26). 

Importantly, whereas non-COVID-19 ARDS is associated with a large panel of immune alterations, 

COVID-19 ARDS immune profiling was performed using healthy donors as a control, thus 

precluding any conclusions on whether reported immune alterations could be related to COVID-

19 and/or ARDS status. Answering this question has potential to decipher whether ARDS induced 

by SARS-CoV-2 is mechanistically different from other ARDS etiologies.  

To fill this gap, we performed a high-throughput mass cytometry approach on PBMCs obtained 

from 3 complementary cohorts of 12 COVID-19negARDSpos, 13 COVID-19posARDSpos, and 17 

COVID-19posARDSneg patients. We report common myeloid cell alterations in all COVID-19 

patients, which are absent from non-COVID-19 ARDS patients. This includes in particular a strong 

increase of an unusual population of activated monocytes showing upregulated expression of 

CD169, associated with major COVID-19-specific alterations of T and B-cell compartments. 

 

Results 

Study population 

Analyses were performed on a cohort of 63 cryopreserved PBMC samples isolated from 42 patients 

included in ICU (n = 36) or infectious standard ward (n = 6). The demographic characteristics of 

patients included are provided in Table 1. All patients but one were classified as severe at 

admission, requiring oxygen at a flow rate higher than 2 liters/min. ARDS was defined in 

accordance with international guidelines (27). Patients were classified in 3 groups: COVID-

19negARDSpos (n = 12, ARDS stages: 1 mild, 4 moderate, 7 severe), COVID-19posARDSpos (n = 13, 
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ARDS stages: 8 moderate, 5 severe), and COVID-19posARDSneg (n = 17, including 11 from ICU 

and 6 from infectious standard ward). In the COVID-19posARDSneg, no statistical differences were 

noticed for immune cell abundance or phenotype between ICU and standard ward patients. Within 

the COVID-19negARDSpos group, ARDS etiologies were bacterial pneumonia (n = 9), anti-

synthetase syndrome (n = 1), and unknown (n = 2). No corticoid therapy was started at the time of 

sampling. For 21 patients, a second blood sample obtained on day 7 after enrollment was studied 

(n = 7 for COVID-19negARDSpos, n = 8 for COVID-19posARDSpos, and n = 6 for COVID-

19posARDSneg).  

 

SARS-CoV2 induces phenotypic changes in circulating immune cells 

To decipher the impact of SARS-CoV2 on circulating immune cells, we characterized PBMCs 

from COVID-19pos versus COVID-19neg patients at admission (D0) using two separate mass 

cytometry panels exploring myeloid and lymphoid subsets, respectively (Table S1). The full 

pipeline of analysis is depicted in fig. S1. First, we performed an unbiased discovery approach with 

CellCnn, a neural network-based artificial intelligence algorithm allowing analysis of single-cell 

data and detection of cells associated with clinical status (28-30). During training, CellCnn learns 

combinations of weights for each marker in a given panel that best discriminate between groups of 

patients. These weight combinations, called filters, can be used to highlight the specific profiles of 

cells associated with patient status. We identified the best-performing CellCnn filters for both the 

myeloid and the lymphoid panels highlighting a population of cells significantly enriched in 

COVID-19pos patients as compared to COVID-19neg patients (P < 0.0001 for both panels) (Fig. 1A). 

Projecting these cells on tSNE maps generated with either the myeloid or the lymphoid panels 

revealed that they fell into several distinct areas (Fig. 1B). The cells selected by the CellCnn filter 

on the myeloid panel showed high expression for CD169, CD64, S100A9, CD11b, CD33, CD14, 
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and CD36 compared to background, while the cells selected by the CellCnn filter on the lymphoid 

panel showed high expression for CD38 and CXCR3 (Fig.1B and Fig. S2). This broad and unbiased 

approach showed that immune markers, in particular related to monocytes, segregated COVID-

19neg and COVID-19pos patients.  

 

SARS-CoV2 induces CD169-expressing monocyte subsets  

To investigate circulating monocyte heterogeneity and define consistent phenotypes, we used the 

FlowSOM algorithm. This approach led to the identification of 15 monocyte metaclusters from the 

myeloid panel (Fig. 2A). In particular, Mo30, Mo11, and Mo28 metaclusters were defined by 

higher expression of CD16 and lower expression of CD14, CD36, and CD64, corresponding to a 

non-classical monocyte phenotype. Mo21 and Mo22 were defined by the high expression of 

S100A9 and the low expression of CD36. Finally, Mo243 and Mo180 strongly expressed S100A9, 

CD169, and CD36. To assess the phenotypic changes in monocytes during SARS-CoV2 infection, 

we determined the frequencies of these metaclusters in each patient at admission and performed 

hierarchical clustering on these values (Fig. 2B). The upper branch of the hierarchical clustering 

included 20 COVIDpos (10 ARDSneg and 10 ARDSpos) and 1 COVIDnegARDSpos patient whereas 

the lower branch included 10 COVIDpos (7 ARDSneg and 3 ARDSpos) and 11 COVIDnegARDSpos 

(chi-square = 0.001) (Fig. 2B). We then analyzed the abundance of individual metaclusters and 

identified only 4 metaclusters out of 15 as differentially represented between the 3 groups of 

patients (Fig. 2C and Fig. S3). In particular, within ARDSpos patients, Mo11 and M181 were less 

abundant in COVID-19pos patients (P < 0.01 and P < 0.05, respectively), while Mo243 and Mo180 

were more abundant (P < 0.05 and P < 0.001) (Fig. 2C). No differences were detected within 

COVID-19pos groups (ARDSpos versus ARDSneg) (Fig. 2C). Interestingly, Mo243 and Mo180 were 

both enriched in cells highly expressing CD169, CD64, CD36, and CD14 (Fig. 2A and 2D). 
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Additionally, Mo22 was present only in some COVIDpos patients and also expressed CD169 (Fig. 

2B). Taken as a whole, Mo243, Mo180, and Mo22 clusters were highly enriched in COVID-19pos 

patients when compared to COVID-19neg patients (P < 0.0001), with no difference regarding the 

ARDS status (Fig. 2E). Accordingly, CD169 was differentially expressed in COVID-19pos versus 

COVID-19neg patients (P < 0.001) (Fig. 2E). As a whole, our study including COVID-19 and non-

COVID-19 critically ill patients suggest a specificity of CD169 expression in COVID-19 patients, 

and greatly extend previous scRNAseq data showing an expansion of CD169-expressing 

monocytes in COVID-19 patients compared to healthy donors (Fig. 2F) (20).  

 

Monocyte metacluster enrichment in COVID-19 is correlated with a specific increase of 

effector memory T cells and plasma cells 

To define a more global immune pattern and the relationship between immune cells in the context 

of the SARS-CoV2 infection, we sought for correlation between frequencies of clusters of T, NK, 

B, and plasma cells (n = 136 clusters from the lymphoid panel, fig. S4) and the 4 monocyte 

metaclusters (Mo11, Mo181, Mo243, and Mo180) previously described. This analysis identified 

70 clusters with significantly correlated variations (P < 0.05) (Fig. S5). To strengthen the relevance 

of these correlations, we restrained further analysis to the 29 strongest relationships (R > 0.5 or < -

0.5 and P < 0.01) between Mo180 or Mo243 (the two metaclusters enriched in COVID-19 patients) 

and other immune cell subsets (Fig. 3A and Table S2). As expected, Mo180 and Mo243 clusters 

were correlated (R = 0.93). Moreover, they were positively correlated with 18 clusters of T (n = 6), 

NK (n = 10), and plasma cells (n = 2), and inversely correlated with 11 clusters of T (n = 9), and 

NK cells (n = 2) (Fig. 3A). Among positively correlated clusters, plasmo_183 and plasmo_198 

similarly expressed CD38, CD44, and CD27, whereas plasmo_183 was high for Ki-67 and HLA-

DR, corresponding to an early plasma cell phenotype (Fig. 3B). NK cells were all marked by CD7 
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and T-bet expression, NK_209 being CD8high, and NK_241 and NK_197 displaying a Ki-67high 

proliferating phenotype. The related T8_147 and T8_161 clusters exhibited a 

CD45RAhighCD45ROlowCCD7lowCD27lowTbethighCD38high effector phenotype. Few T4 clusters 

were positively correlated with Mo180 and Mo243, among them T4_106 displayed an effector 

memory proliferating phenotype (Ki-67highCD45RAlowCCR7lowCD45ROhighCD27high and 

CTLA4highPD1high). T4_25 was also marked by an effector memory phenotype 

(CD45RAlowCCR7lowCD45ROpos) and displayed a CD27lowCD127posCCR6posCxCR3negCD161pos 

Th17 profile (Fig. 3B). Conversely, some T4 clusters were inversely correlated with Mo_180 and 

Mo_243, in particular clusters T4_6, T4_20, and T4_34, all three corresponding to naïve cells 

(CD45RAhighCD45ROlowCCR7high), and T4_59 expressing a Th2 phenotype (CCR4high). We then 

compared the abundance of these 29 lymphoid clusters correlated with Mo180 and Mo243 and 

highlighted the 22 differentially represented lymphoid clusters between the three groups of patients 

(P < 0.05) (Fig. 3C and Fig. S6). Only 7 clusters of CD4 T cells, and 2 clusters of CD8 T cells were 

at lower abundance in COVID-19posARDSpos patients compared to COVID-19negARDSpos patients. 

As previously discussed, T4_6, T4_20, and T4_34 corresponded to naïve cells, whereas within the 

effector memory cells, T4_7 and T4_45 were CD127low, T4_24, T8_99, and T8_113 were 

CD127high, and T4_59 was CCR4high. Conversely, 13 clusters were enriched in COVID-

19posARDSpos compared to COVID-19negARDSpos including: i) CTLA4highPD1high effector memory 

activated CD4 Tcells (T4_106); ii) Tbethigh Th1-like CD8 effector phenotype (T8_146, T8_147, 

and T8_161); iii) cytotoxic mature CD16posCD56lowCD7posTbetposCD127neg NK cells (NK_209, 

NK_241, NK_242, and NK_244) with in particular proliferating Ki-67high NK cells (NK_241); and 

iv) proliferating plasmablasts (plasmo_183) and mature plasma cells (plasmo_198) (Fig. 3B and 

Fig. 3C). Of note, no cluster was differentially expressed between COVID-19posARDSpos and 

COVID-19posARDSneg groups (Fig. 3C and Fig. S6). Then, to explore the whole immune profile 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.22.307975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.307975


9 
 

and define relationship with groups of patients, we performed correspondence analysis (CA) using, 

as a variable, the abundance of the myeloid (n = 4) and the lymphoid (n = 22) clusters differentially 

expressed between groups of patients (Fig. 3D). CA was developed to analyze frequency tables and 

visualize similarities between patients and co-occurrence of cell subsets (31). The first and second 

dimension of the correspondence analysis explained 80.5 % and 13.5 % of the difference, 

respectively (Fig. 3D). The top-ten cell populations explaining the difference between COVIDpos 

and COVIDneg patients were Mo243, Mo180, T8_146, NK_244, and T8_161 being increased and 

Mo181, T4_6, Mo11, T8_99, and T4_45 being decreased in COVIDpos. Altogether, these subsets 

corresponded to an increase in inflammatory monocytes (CD169high CD64high), Tbethigh Th1-like 

CD8 T cells, and mature NK cells and a decrease in naïve T4 cells and effector memory T4 and T8 

cells. Interestingly, only the first dimension of the correspondence analysis segregated COVID-

19posARDSpos from COVID-19negARDSpos (P < 0.001) and no statistical differences were found 

between COVID-19posARDSpos and COVID-19posARDSneg (Fig. 3D).  

 

Evolution of immune cell clusters between D0 and D7 in COVID-19 patients defines high-

risk clinical grade 

We next performed mass cytometry analysis for 21 patients at day 7 of hospitalization, including 7 

COVID-19negARDSpos, 8 COVID-19posARDSpos, and 6 COVIDposARDSneg patients, in order to 

follow up the kinetic of PBMC phenotypic alterations. The 42 samples (21 at day 0 and 21 at day 

7) were parsed by correspondence analysis using, as a variable, the abundance of myeloid and 

lymphoid clusters (Fig. 4A). The first and second dimensions of the correspondence analysis 

explained 85.1 % and 9 % of the differences acquired between D0 and D7. The first dimension 

captured the difference between D0 and D7 only for COVID-19posARDSpos (P < 0.01) (Fig. 4A). 

Because of the limited number of samples, only a trend was observed for COVIDposARDSneg (P = 
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0.062). The top-five enriched populations explaining the differences between D0 and D7 for 

COVID-19posARDSpos patients were Mo11, Mo181, T8_113, T4_34, and NK_197, corresponding 

to an enrichment in non-classical monocytes (CD14lowCD16highCD64lowCD36lowS100A9high), in M-

MDSC-like (HLA-DRlowS100A9high), in effector memory CD127high T8 cells, in T4 naïve cells, 

and in Ki-67high proliferating NK cells. These 5 cell subsets were integrated in an immune score 

combining their fold change between D0 and D7. To define the relevance of this immune score in 

discriminating COVID-19 patients with unfavorable prognosis, we built a clinical score as the sum 

of events occurring during ICU stay (thromboembolic, ICU-acquired infection, septic shock, renal 

failure, and deaths) (Table 1). Interestingly, both the clinical and the immune scores were found 

correlated in severe COVID-19 patients, irrespectively of their ARDS status (Spearman R = 0.58; 

P < 0.05) (Fig. 4B).  

 

Discussion 

Immune response to COVID-19 infection has been recently intensively studied at transcriptomic 

and proteomic levels. However, most studies focused on either the lymphoid (15, 17, 19) or the 

myeloid compartments (9, 16, 18), and only few performed a wide analysis of the circulating 

immune landscape (10, 12, 13, 20, 32), thus precluding the definition of complex patterns of 

immune parameter alterations associated with COVID-19 severity or physiopathology. Moreover, 

these works were designed to identify differences in immune cell subset frequencies between 

COVID-19 patients and healthy donors, and eventually correlated with the severity of the disease, 

but did not include severe non-COVID-19 patients as controls, although critically ill patients were 

largely demonstrated previously to display immune reprogramming (33). ARDS is a major adverse 

event occurring during ICU stay, leading to an overall mortality rate of 40 % to 60 %. Whether 

COVID-19 associated ARDS is clinically and biologically similar to other causes of ARDS remains 
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controversial (34, 35). To address this point, we characterized for the first time, by mass cytometry, 

the immune landscape in COVID-19-associated ARDS compared to other causes of ARDS. We 

demonstrated that an increase of CD169pos monocytes, correlated with specific changes of T, 

plasma, and NK cell subsets, defines COVID-19-associated ARDS and is not found for bacteria-

associated ARDS, suggesting a COVID-19 specific immune reprogramming.  

The amplification of CD169pos circulating monocytes has already been highlighted in the context 

of COVID-19 (11, 18, 36, 37), and is reminiscent of other inflammatory conditions found in viral 

infections, such as with Human Immunodeficiency Virus or Epstein-Barr Virus, in which the 

CD169 sialoadhesin is induced in an IFN-dependent manner on the surface of circulating 

monocytes (38, 39). Consistent with the inflammatory response, we showed that the accumulation 

of CD169pos monocytes in COVID-19pos patients is positively correlated with an increase of 

plasmablasts and mature plasma cells, Th1-like CD8 effector T cells, cytotoxic mature NK cells, 

and activated CD4 effector memory T cells displaying a CTLA4highPD1high phenotype. CD169pos 

activated monocytes were detected in mild disease (18), and were proposed to rise rapidly and 

transiently in patients with COVID-19, in association with a high expression of IFNγ and CCL8 

(11). This could be due to the transient nature of this monocytic population, either losing CD169, 

being short-lived, or being recruited into tissues as CD169pos macrophages, as suggested by the 

high expression of CCR2 on Mo243 and Mo180, the two monocyte subsets identified here in 

COVID-19 patients, and the local inflammation and lung tissue destruction mediated by monocyte-

derived macrophages in severe cases of SARS-CoV2 infections (40, 41). Interestingly, we also 

found an upregulation of cytoplasmic S100A9 in monocyte subsets specifically amplified in 

COVID-19 patients irrespectively of their ARDS status. These data suggest that, in the early stage 

of the disease, monocytes could contribute to the burst of circulating calprotectin 
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(S100A8/S100A9), recently proposed to contribute to the secondary cytokine release syndrome 

described in severe COVID-19 and attributed to neutrophils (18).  

Within severe COVID-19 patients, we detected no significant differences between ARDSpos and 

ARDSneg immune profiles, indicating a specificity of the phenotype induced by SARS-CoV2 

infection, irrespectively of the respiratory complications. While most published studies showed 

differences between mild and severe COVID-19 diseases, some of their conclusions might be 

obscured by the fact that ARDS by itself, mechanical ventilation, and/or nonspecific treatments 

might impact immune parameters (42). A strength of our study comparing two groups of severe 

COVID-19 patients with or without ARDS is to highlight features directly related to the viral 

infection rather than to its respiratory complications or their treatment. Importantly, our cohort was 

homogeneous regarding treatment with in particular no immunosuppressive therapy at the time of 

sampling.  

The small size of our cohort did not allow us to pinpoint a mortality prognostic factor based on our 

phenotypic data. However, we identified a specific immune pattern associated with the occurrence 

of the major adverse clinical events (thrombosis, nosocomial infection, septic shock, acute renal 

failure, and death) described in COVID-19 and combined as a clinical score. In particular, an 

increase of non-classical CD14lowCD16pos monocytes (Mo11), and CD14posHLA-DRlow M-MDSC-

like (Mo181), both not expressing CD169, are markers of adverse events. This suggests that besides 

the early increase of CD169pos monocytes in all COVID-19 patients associated with T-cell 

dysfunctions, the immunological response to SARS-CoV2 infection features multiple alterations 

of monocytic subsets reflecting the severity of the disease. Consistent with these data, it was shown 

that CD14posHLA-DRlow cells were increased in critical COVID-19 patients (16, 21), while 

CD14lowCD16pos monocytes were correlated with the length of stay in ICU (11, 18). To our 
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knowledge, our study is the first to correlate the accumulation of non-classical monocytes and M-

MDSCs occurring during the first days of ICU to adverse events. 

Besides the low number of included patients, our study has some limitations. By focusing on severe 

patients with and without ARDS, we cannot make conclusions about phenotypic changes in mild 

and moderate diseases. Moreover, since the mass cytometry was conducted on PBMCs, we lack 

information on the neutrophil lineage, which appears affected in the COVID-19 (18). It would also 

be interesting to link these data with in situ data from lung tissue samples and bronchoalveolar 

lavages. However, our detailed analysis of circulating immune cells shows that immune monitoring 

of severe COVID-19 patients brings interesting prognostic biomarkers independently of their 

clinical classification in ARDSpos versus ARDSneg. Moreover, we demonstrated that at the 

biological level, COVID-19 associated ARDS is different from other causes of ARDS, and might 

benefit from personalized therapy in addition to standard ARDS management (18, 43).  

 

Materials and Methods 

Patients 

This study was performed in the infectious diseases department and intensive care unit (ICU) at 

Rennes University Hospital. The study design was approved by our ethic committee (CHU Rennes, 

n°35RC20_9795_HARMONICOV, ClinicalTrials.gov Identifier: NCT04373200) and informed 

consent was obtained from patients in accordance with the Declaration of Helsinki. Peripheral 

blood was collected in tubes containing lithium heparin from COVID-19negARDSpos, COVID-

19posARDSpos, and COVID-19posARDSneg patients. Peripheral blood samples were drawn at D0 and 

D7. PBMC were isolated from whole blood using ficoll before cryopreservation. All patients 

provided written informed consent. The following data were recorded: gender, age, preexisting 

chronic kidney disease and acute kidney failure during the ICU stay (44), preexisting chronic heart 
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failure (45), Body Mass Index (BMI), SAPS II at admission (46), duration of mechanical 

ventilation, length of hospital stay, and outcome (alive or dead) on day 7, day 30 and day 90. The 

occurrence of nosocomial infection, defined following CDC criteria as previously described (47), 

was also recorded during hospital stay. For each patient, a clinical score was built to summarize 

the occurrence of adverse clinical events frequently encountered during hospitalization (47, 48). 

Each of the following events: thromboembolic events, nosocomial infection, septic shock, acute 

renal failure, and death counting as one point, the score varies from 0 (no adverse events) to 5. 

Patients characteristics are reported in table 1. 

 

Mass cytometry analysis 

PBMC from patients were thawed. Briefly, cells were stained 5 minutes in RPMI supplemented 

with 0.5 µM Cisplatin Cell-ID™ (Fluidigm, San Francisco, CA) in RPMI 1640 before washing 

with 10% FCS in RPMI 1640. Cell pellets were resuspended in 80µl of 0.5% BSA in PBS. Then 

60µl of each surface staining cocktail, lymphoid or myeloid, were added to 40µl of resuspended 

cells. After staining, cells were washed in 0.5% BSA in PBS before fixation/permeabilization with 

the transcription factor staining buffer set (Miltenyi, Bergisch-Gladbach, Germany). Then 60µl of 

each surface staining cocktail, lymphoid or myeloid, were added to 40µl of resuspended cells in 

Perm Buffer. After intracellular staining, cells were washed twice before staining in DNA 

intercalator solution (2.5% Paraformaldehyde, 1:3200 Cell-ID™ Intercalator-Ir (Fluidigm, San 

Francisco, CA) in PBS). Samples were cryopreserved at -80°C until acquisition on Helios™ 

System (Fluidigm, San Francisco, CA). 

 

CyTOF analysis pipeline 

Pre-processing 
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After acquisition, intrafile signal drift was normalized and .fcs files were obtained using CyTOF 

software. To diminish batch effects, all files were normalized on EQ Beads (Fluidigm Sciences) 

using the premessa R package  (https://github.com/ParkerICI/premessa). Files were then uploaded 

to the Cytobank cloud-based platform (Cytobank, Inc.). Data were first arcsinh-transformed using 

a cofactor of 5. For all files, live single cells were selected by applying a gate on DNA1 vs. DNA2 

followed by a gate on DNA1 vs. Cisplatin, then beads were removed by applying a gate on the 

beads channel (Ce140Di) vs. DNA.1 Normalized, transformed and gated values were exported as 

FCS files.  

 

CellCnn analysis 

Identification of a Covid-19-specific cell-identity signature was carried out using the CellCnn 

algorithm (28), implemented in Pytorch in the ScaiVision platform (version 0.3.6, © Scailyte AG). 

Briefly, this is a supervised machine learning algorithm that trains a convolutional neural network 

with a single layer to predict sample-level labels using single-cell data as inputs. 

The first 39 samples at day0 were analyzed by CellCnn. Data from each CyTOF panel was analyzed 

separately, in each case using all measured protein markers to train a series of CellCnn networks 

with varying hyperparameters. Each sample was given a label corresponding to the Covid-19 status 

of the patient from which the sample was drawn (positive or negative). To generate input data for 

training CellCnn, sub-samples of 2000 cells, termed multi-cell inputs (MCIs), were chosen 

randomly from each sample independently. For each training epoch, 2000 MCIs from each label 

class (Covid-19pos or Covid-19neg) were presented to the network in random order. During training, 

30 % of the samples were set aside for validation, chosen in a stratified manner to maintain the 

relative proportions of each class. 50 independent networks were generated for each CyTOF panel 

using hyperparameters randomly chosen from the following options: i) number of filters: (2, 3, 5, 
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7, and 10), ii) top-k pooling percentage: (1, 5, 10, 20, and 30), iii) dropout probability: (0.3, 0.4, 

and 0.6), iv) learning rate: (0.001, 0.003, and 0.01), and v) weight decay: (0.00001, 0.0001, 0.001, 

0.01, and 0.1). Training was performed with a batch size of 50. Adam was used as an optimizer 

{kingma2015adam}, with a beta1 coefficient of 0.999 and a beta2 coefficient of 0.99. Each network 

was trained for a maximum of 50 epochs, or until the validation loss no longer decreased for 10 

consecutive epochs. At the end of training, the weights from the epoch with lowest validation loss 

were returned. Representative filters were determined by clustering the filters from all networks 

achieving ≥ 90 % accuracy on the validation samples, then choosing the filter in each cluster with 

the minimum distance to all other filters in that cluster. For both CyTOF panels, a single 

representative filter showing the largest positive association with the Covid-19pos label class was 

used to calculate cell-level filter response scores. Thresholds were set on the filter response scores 

to select Covid-19-associated cells by calculating the relative frequencies of selected cells in each 

sample at 100 different thresholds for each filter, then performing a logistic regression to predict 

sample labels. For each threshold, the data was first split in a stratified manner into a training set, 

comprising 60 % of samples, and a test set, comprising 40 % of samples. The logistic regression 

was performed on the training set, and the accuracy of resulting predictions was calculated on the 

test set. This procedure was performed 10 times, with randomly chosen training/test splits, and the 

mean of the resulting accuracies for each threshold was calculated. For the lymphoid panel, one 

threshold (9.63) achieved the highest accuracy and was set as the final threshold. For the myeloid 

panel, multiple thresholds achieved the same level of accuracy; the lowest of these (4.96) was set 

as the final threshold. The relative frequencies of cells in each sample with filter response scores 

greater than or equal to the respective thresholds were calculated and compared using a Wilcoxon 

rank-sum test. 
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viSNE, FlowSOM, and hierarchical clustering 

We first performed a dimension reduction for both panels (i.e. myeloid and lymphoid) and all 

cleaned-up 63 files were first analyzed using viSNE, based upon the Barnes–Hut implementation 

of t-SNE. Equal downsampling was performed, based on the lowest event count in all files 

(lymphoid panel) or on the maximum total events allowed by Cytobank (myeloid panel). For the 

myeloid panel, the following parameters were used: perplexity = 45; iterations = 5000; theta = 0.5; 

all 37 channels selected. For the lymphoid panel the parameters were as follows: perplexity = 45; 

iterations = 7500; theta = 0.5; all 36 channels selected.  

Then we applied a clustering method using the FlowSOM clustering algorithm. FlowSOM uses 

Self-Organizing Maps (SOMs) to partition cells into clusters based on their phenotype, and then 

builds a Minimal Spanning Tree (MST) to connect the nodes of the SOM, allowing the 

identification of metaclusters (i.e. group of clusters). We performed the FlowSOM algorithm on 

the previous viSNE results, using all events and panel channels, and the following parameters: 

clustering method = hierarchical consensus, iterations = 10, number of clusters = 256, number of 

metaclusters = 30. For both panels, each metacluster (containing a given number of clusters) was 

manually annotated based on his marker expression phenotype, his projection on the viSNE and 

his localization in the FlowSOM MST.  

We first analyzed the myeloid panel. Out of 30 metaclusters defined by the FlowSOM approach, 

we identified 13 metaclusters with monocyte markers, other metaclusters contained other cell types, 

low count of cells or remaining doublets or dead cells. We visually identified 2 (Mo18 and Mo26) 

out or the 13 metaclusters that were heterogeneous. These 2 metaclusters were manually splited 

into 2 new metaclusters (identified respectively as Mo180, Mo181 and Mo214, Mo243) (Fig. S1B). 

Thus, altogether we analyzed 15 metaclusters of myeloid cells. Regarding the lymphoid 

compartment, we noticed that FlowSOM defined metaclusters at the lineage level, thus we retain 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.22.307975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.307975


18 
 

all the 136 clusters included in 10 metaclusters of interest (i.e. containing lymphoid lineage 

markers) (Fig. S1C). All metaclusters and clusters phenotypes including their abundances and mean 

marker intensity were then exported from Cytobank for further analyses. Cytometry data was 

explored with Kaluza Analysis Software (Beckman Coulter). Hierarchical clustering and heatmaps 

were generated with R v3.6.3, using Rstudio v1.2.5033 and the pheatmap package.  

 

Statistical analysis  

Statistical analyses were performed with Graphpad Prism 8.4.3. P values were defined by a 

Kruskal-Wallis test followed by a Dunn’s post-test for multiple group comparisons or by Wilcoxon 

matched-pairs signed rank tests as appropriate. Correlations were calculated using Spearman test. 

* P < 0.05, ** P < 0.01, *** < 0.001, and **** P < 0.0001. Hierarchical clustering of the patients 

was performed using euclidean distance and complete clustering. Correspondence analysis was 

performed using the package factoshiny using as variable the abundance in cell subsets for each 

patient.  

 

Supplementary Materials: 

Figure S1: CyTOF experimental design and data analysis pipeline 

Figure S2: CellCnn analysis (related to fig. 1B) 

Figure S3: Abundance of Mo clusters (related to fig. 2C) 

Figure S4: Heatmap of marker expression for the clusters from the lymphoid panel (related to fig. 

3) 

Figure S5: Correlation between myeloid metaclusters and lymphoid clusters (related to fig.3A) 

Figure S6: Abundance of clusters from the lymphoid panel (related to fig. 3C) 

Table S1: Panel of antibodies 
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Table S2: Spearman correlation between myeloid and lymphoid clusters 
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Fig. 1 : SARS-CoV2 induces specific phenotype of circulating immune cells 

CellCnn analysis performed on single cells from myeloid (top) and lymphoid (bottom) panels on 

39 samples at admission (Day 0) (COVID-19neg [n = 9] and COVID-19pos [n = 30]). (A) 

Frequencies of cells discovered by the best-performing CellCnn filter in COVID-19neg (blue) and 

COVID-19pos (orange) patients for each panel. Mann-Whitney tests, ****P < 0.0001. (B) Cells 

defined by the best-performing CellCnn filters enrichment shown on tSNE and representative 

markers for each panel (CD14 and CD38 [see additional markers in Fig. S2]).  
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Fig. 2 : CD169 monocytes are enriched in SARS-CoV2 infected patients 

(A) Heatmap of the 15 monocyte metaclusters defined after FlowSOM analysis. (B) Relative 

abundance of metaclusters among monocytes for each patient and hierarchical clustering of 

COVID-19negARDSpos (n=12, green), COVID-19posARDSpos (n=13, blue), and COVID-

19posARDSneg (n=17, red). (C) Abundance of metaclusters differentially expressed between groups, 

among singlet cell analyzed. (D) Expression of the corresponding markers (mean metal intensity) 

for background (gray), Mo11 and Mo181 (orange), and Mo243 and Mo180 (blue) metaclusters. 

(E) Abundance of Mo22, Mo180, and Mo243 and expression of CD169 (Bow and Whiskers with 

10 and 90 percentile). (F) UMAP from scRNAseq of COVID-19 patients (COVID-19) and healthy 

donors (healthy) highlighting CD14 and CD169 expression (20). Kruskal-Wallis test with Dunn’s 

multiple comparison correction, *P < 0.05, **P < 0.01, ***P < 0.001.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.22.307975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.307975


29 
 

 

Fig. 3 : Monocyte clusters enriched in COVID-19 are correlated with effector memory T cells 

and plasma cells 
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(A) Correlation between Mo180 and Mo243 and lymphoid clusters (see heatmap for all lymphoid 

clusters and markers in Fig. S4) from all patients at D0 (COVID-19negARDSpos [n=12], COVID-

19posARDSpos [n=13], and COVID-19posARDSneg [n=17]. Only strong correlations (Spearman R > 

0.5 or R < -0.5 and P < 0.01) are shown (see all significant correlations [P < 0.05] in fig. S5 and 

table S2). (B) Heatmap showing marker expression for the lymphoid clusters (Spearman R > 0.5 

or R < -0.5 and P < 0.001) strongly correlated with Mo180 and Mo243 (see heatmap for all clusters 

and markers in Fig. S4). (C) Abundance of lymphoid clusters differentially expressed between 

groups, among singlet cells analyzed. Kruskal-Wallis test with Dunn’s multiple comparison 

correction, *P < 0.05, **P < 0.01, ***P < 0.001 [see all clusters in Fig. S6]). (D) Two first 

dimensions of correspondence analysis accounting for 84 % of the association between immune 

clusters differentially expressed between groups (n= 4 monocyte- and n=22 lymphoid- clusters), 

and patients. For clarity, patients and immune cells are shown on 2 different plots. Dimensions 1 

and 2 coordinates are compared between groups of patients. Kruskal-Wallis test with Dunn’s 

multiple comparison correction, ****P < 0.0001. 
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Fig. 4 : Evolution of immune cell subsets between D0 and D7, defines high-risk clinical grade 

COVID-19 patients 

(A) Two first dimension of correspondence analysis accounting for 94.1% of the association 

between immune clusters differentially expressed between groups (n= 4 monocyte and n=22 

lymphoid clusters), and patients for which a follow-up of 7 days was available (COVID-

19negARDSpos [n=7], COVID-19posARDSpos [n=8], and COVID-19posARDSneg [n=6]). For clarity, 

patients and immune cells are shown on 2 different plots. Dimensions 1 and 2 coordinates were 

compared between D0 and D7 for each group of patients. Wilcoxon matched-pairs signed rank 

tests, **P < 0.01. (B) Spearman correlation between immune and clinical score for COVID-19pos 

patients (ARDSpos [n=8] and ARDSneg [n=6]). 
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Table 1: Patients characteristics 

 COVID-19neg 

ARDSpos  

COVID-19pos 

ARDSpos 

COVID-19pos 

ARDSneg 

Patients D0/D7, n 12/7 13/8 17/6 

Age, median (IQR) 62 (48.2-66.7) 59 (53.5-67.5) 55 (46-67) 

Male, n (%) 7 (58) 10 (77) 12 (71) 

ICU/Clinical ward, n 12/0 13/0 11/6* 

SAPS II, median (IQR) 44.5 (29.2-59.2) 33 (19.5-39.5) 22 (13-28)* 

Length of stay in ICU, median (IQR) 11.5 (4.5-18.7) 15 (11-54) 2 (1-2)** 

Length of stay in Hospital, median (IQR) 18 (7-30.5) 22 (15-62.5) 9 (7.5-13) 

Comorbidities 

BMI, median (IQR) 26.4 (19.5-28.4) 28.6 (25-32) 28.1 (22.3-32.1) 

Chronic cardiovascular disease, n (%) 1 (8.3) 3 (23) 1 (5.8) 

Diabetes, n (%) 2 (16.7) 3 (23) 1 (5.8) 

Chronic respiratory disease, n (%) 1 (8.3) 0 (0) 0 (0) 

Chronic kidney disease, n (%) 0 (0) 2 (15.4) 0 (0) 

Cancer, n (%) 3 (25) 0 (0) 0 (0) 

Severity criteria 

Maximal O2 (L/min), median (IQR) 10 (7.5-15) 14 (9.2-15) 3 (2-5) 

Invasive ventilation, n (%) 12 (100) 13 (100) 0 (0) 

PaO2/FiO2, median (IQR) 116.5 (75.2-161.9) 106 (95.5-240) 313 (218.5-340.3) 

Events occurring during follow up 

Thromboembolic, n (%) 4 (33.3) 4 (30.8) 1 (5.8) 

ICU-acquired infections, n (%) 2 (16.7) 7 (53.8) 0 (0) 

Septic shock, n (%) 3 (25) 2 (15.4) 0 (0) 

Renal failure, n (%) 5 (41.7) 8 (61.5) 0 (0) 

Deaths, n (%) 4 (33.3) 1 (7.7) 0 (0) 

*: all patients except 1 required O2 at > 2 L/mn at admission; **: For patients in ICU; n: number; IQR: interquartile range; SAPS II: 

simplified acute physiology score 
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