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In statistical genetics, the sequentially Markov coalescent (SMC) is an
important framework for approximating the distribution of genetic variation
data under complex evolutionary models. Methods based on SMC are widely
used in genetics and evolutionary biology, with significant applications to
genotype phasing and imputation, recombination rate estimation, and infer-
ring population history. SMC allows for likelihood-based inference using hid-
den Markov models (HMMs), where the latent variable represents a geneal-
ogy. Because genealogies are continuous, while HMMs are discrete, SMC
requires discretizing the space of trees in a way that is complicated and can
lead to bias. In this work, we propose a method that circumvents this require-
ment, enabling SMC-based inference to be performed in the natural setting
of a continuous state space. We derive fast, exact methods for frequentist and
Bayesian inference using SMC. Compared to existing methods, ours requires
minimal user intervention or parameter tuning, no numerical optimization or
E-M, and is faster and more accurate.

1. Introduction. Probabilistic models of evolution have played a central role in genetics
since the inception of the field a century ago. Beginning with foundational work by Fisher
(1930) and Wright (1931), and continuing with important contributions from Moran (1958),
Kimura (1955a,b), Kingman (1982a,b,c), Griffiths (1981), and Hudson (1983), and many oth-
ers, a succession of increasingly sophisticated stochastic models were developed to describe
patterns of ancestry and genetic variation found in a population. Statisticians harnessed these
models to analyze genetic data, initially with the now quaint-seeming goal of understanding
the evolution of a single gene. More recently, as next-generation sequencing has enabled the
collection of genome-wide data from millions of people, interest has risen in methods for
studying evolution using large numbers of whole genomes.

In this article, we study a popular subset of those methods which are likelihood-based; that
is, these methods work by inverting a statistical model that maps evolutionary parameters to a
probability distribution over genetic variation data. As we will see, exact inference in this set-
ting is impossible owing to the need to integrate out a high-dimensional latent variable which
encodes the genome-wide ancestry of every sampled individual. Consequently, a number of
approximate methods have been proposed, which try to strike a balance between biological
realism and computational tractability.

We focus on one such approximation known as the sequentially Markov coalescent (SMC;
McVean and Cardin, 2005; Marjoram and Wall, 2006; Carmi et al., 2014; Hobolth and Jensen,
2014). SMC1 assumes that the sequence of (random) genealogies at each position in the
genome forms a Markov chain, thereby enabling efficient likelihood-based inference using
hidden Markov models (HMMs). Although the Markov assumption is wrong (Wiuf and Hein,
1999), it has nevertheless proved highly useful in practice. In particular, both the influential
haplotype copying model of Li and Stephens (2003) and the popular program PSMC (Li and
Durbin, 2011) for inferring population history are SMC methods.

Keywords and phrases: coalescent, population genetics, changepoint
1This acronym is shared with a well-known sampling procedure in Bayesian statistics. In this paper, we only

ever use SMC to refer to the sequentially Markov coalescent.
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In order to bring the HMM machinery to bear on this problem, additional and somewhat
awkward assumptions are needed. The latent variable in an HMM must have finite support,
whereas the latent variable in SMC is a continuous tree. Therefore, the space of trees must be
discretized, and, in some cases, restrictions must also be placed on the topology of each tree.
In applications, the user must select a discretization scheme, a non-obvious choice which
nonetheless has profound consequences for downstream inference (Parag and Pybus, 2019).

The main message of our paper is that this is not necessary: it is possible to solve the
SMC exactly, in its natural setting of continuous state space. We accomplish this by slightly
modifying the standard SMC model in a way that does not impact inference, but renders the
problem theoretically and computationally much easier. In particular, this modification allows
us to leverage recent innovations in changepoint detection, leading to algorithms which not
only have less bias than existing approaches, but also outperforms them computationally.

The rest of the paper is organized as follows. In Section 2 we formally define our data and
model, introduce notation, and survey related work. In Section 3 we derive our main results:
exact and efficient Bayesian and frequentist algorithms for inferring genealogies from genetic
variation data. In Section 4 we thoroughly benchmark our method, compare it to existing
approaches, and provide an application to real data analysis. We provide concluding remarks
in Section 5.

2. Background. In this section we introduce notation, formalize the problem we want to
solve, and survey earlier work. We presume some familiarity with standard terminology and
models in genetics; introductory texts include Hein, Schierup and Wiuf (2005) and Durrett
(2008).

2.1. Motivation. Our method aims to infer a sequence of latent genealogies using genetic
variation data. To motivate our interest in this, consider first a related problem with a more di-
rect scientific application: given a matrix of DNA sequence data Y ∈ {A,C,G,T}H×N from
H > 1 homologous chromosomes each N base pairs long, and an evolutionary model ϕ hy-
pothesized to have generated these data, find the likelihood p(Y | ϕ). This generic formula-
tion encompasses a wide variety of inference problems in genetics and evolutionary biology;
if we could easily solve it, important new scientific insights would result.

Unfortunately, this is not possible using current methods. The difficulty lies in the fact
that the relationship between the data Y and the scientifically interesting quantity ϕ is medi-
ated through a complex, latent combinatorial structure known as the ancestral recombination
graph (ARG; Griffiths and Marjoram, 1997), which encodes the genealogical relationships
between every sample at every position in the genome. The ARG is sufficient for ϕ: evolution
generates the ARG, and conditional on it, the data contain no further information about ϕ.
Thus, the likelihood problem requires the integration

(1) p(Y | ϕ) =
∫
A∈A

p(Y |A)p(A | ϕ),

where A denotes an ARG, and A denotes the support set of ARGs for a sample of H chro-
mosomes. This is a very challenging integral; although a method for evaluating it is known
(Griffiths and Marjoram, 1996), it only works for small data sets. That is because, for large
N and H , there are a huge number of ARGs that could have plausibly generated a given
data set, such that the complexity of A explodes as N and H grow. Indeed, (1) cannot be
computed for chromosome-scale data even for the simplest case H = 2.

The sequentially Markov coalescent addresses this problem by decomposing the ARG into
a sequence of marginal gene trees X1, . . . ,XN , one for each position in the chromosome, and
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EXACT SMC 3

supposing that this sequence is Markov. Then, we have

(2) p(Y | ϕ)≈
∫
X1,...,XN

π(X1 | ϕ)p(Y1 |X1)

N∏
n=2

p(Yn |Xn)p(Xn |Xn−1, ϕ),

where π(· | ϕ) is a stationary distribution for the Markov chain X1, . . . ,XN , p(Xn |Xn−1, ϕ)
is a transition density, and [Y1 | · · · |YN ] =Y are the data at each site. If the Xi have discrete
support, then this represents a hidden Markov model, whence (2) can be efficiently evaluated
using the forward algorithm. For estimating ϕ, E-M type algorithms are generally preferred,
and these require computing the posterior distribution p(X1, . . . ,XN |Y, ϕ).

2.2. Demographic inference. To make this problem more concrete, in this paper we fo-
cus specifically on computing (1) when the chromosomes evolve under selective neutrality,
and ϕ represents historical fluctuations in population size. In this case, we can identify ϕ
with a function Ne : [0,∞)→ (0,∞), such that Ne(t) was the coalescent effective popu-
lation size t generations before the present (Durrett, 2008, §4.4). This function governs the
marginal distribution of coalescence time at a particular locus in a sample of two chromo-
somes. Specifically, setting η(t) = 1/Ne(t), the density of this time is

(3) π(t) = η(t)e−
∫ t

0
η(s)ds.

Note that η(t) = 1 recovers the well-known case of Kingman’s coalescent, π(t) = e−t, which
we treat as the default prior in what follows.

Apart from intrinsic interest in learning population history, it is important to get a sharp
estimate of Ne(t) as unmodeled variability in Ne(t) confound attempts to study other evo-
lutionary phenomena such as natural selection, or mutation rate variation. Estimation of this
function is known in the literature as demographic inference (Spence et al., 2018). For the re-
mainder of the paper we will focus on this application. To simplify the notation, we suppress
explicit dependence on Ne(t) and capture it implicitly through the function π, and we even
suppress dependence on π when it is clear from context.

2.3. Our contribution. As discussed in Section 1, discretizing Xi is unnatural and results
in bias. In this work, we derive efficient methods for computing the posterior distribution
p(X1, . . . ,XN |Y), or its maximum a posteriori estimate

arg max
X1,...,XN

p(X1, . . . ,XN |Y)

for a given demography π, when each Xi is a tree with continuous branch lengths. That is,
unlike existing methods, we do not assume that the set of possible Xi is discrete or finite.
For the important case of H = 2 chromosomes, our method is “exact” in the sense that it
is devoid of further approximations (beyond the standard ones which we outline in the next
section). For H > 2 our method makes additional assumptions about the topology of each
Xi, but still retains the desirable property of operating in continuous time.

2.4. Notation and model. We now fix necessary notation and define the model that is
used to prove our results. For ease of exposition, our results focus on the simplest possible
case of analyzing a pair of chromosomes (H = 2 in the notation of the previous section). In
Section 3.4 we describe how to extend our results to larger sample sizes

Assume that that we have sampled a pair of homologous chromosomes each consisting
of N non-recombining loci. Meiotic recombination occurs between loci with rate ρ per unit
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time, and does not occur within each locus.2 The number generations backwards in time until
the two chromosomes meet at a common ancestor (TMRCA) at locus i is denoted Xi ∈R>0.
The number of positions where the two chromosomes differ at locus i is denoted by Yi.
Under a standard assumption known as the infinite sites model (Durrett, 2008, §1.4), Yi has
the conditional distribution

Yi |Xi ∼ Poisson(θXi),

where θ is the mutation rate. We assume that both θ and ρ are small. In particular, some of
our proofs rely on the fact that ρ� 1. These are fairly mild assumptions which hold in many
settings of interest. For example, in humans, the population-scaled rates of mutation and
recombination per nucleotide are around 10−4. Conversely, if recombinations are frequent,
then there is little advantage in employing the methods we describe here, which depend on
the presence of linkage disequilibrium between nearby loci.

The sequentially Markov coalescent is a generative model for the sequence X1, . . . ,XN ,
which we abbreviate as X1:N henceforth (and similarly for Y1:N ). SMC characterizes how
shared ancestry changes when moving from one locus to the next. Assuming there is at most
one recombination between adjacent loci, and we can specify an SMC model by the condi-
tional density

(4) fXn+1|Xn
(t | s) := p(Xn+1 ∈ (t, t+ dt) |Xn = s) = δ(t− s)e−ρs + (1− e−ρs)q(t | s),

where δ(·) is the Dirac delta function, and q(t | s) is the conditional density of t given that a
recombination occurred and that the existing TMRCA equals s. Various proposals for q(t | s)
exist in the literature, each with slightly different properties (McVean and Cardin, 2005;
Marjoram and Wall, 2006; Li and Durbin, 2011; Hobolth and Jensen, 2014; Carmi et al.,
2014). Importantly, they share the common feature that (4) is (approximately, in the case of
Li and Durbin, 2011) reversible with respect to the coalescent. That is,

(5) π(s)fXn+1|Xn
(t | s) = π(t)fXn+1|Xn

(s | t),

where the stationary measure π was defined in equation (3).

2.5. Connection to changepoint detection. Our work is motivated by the observation that
(4) is almost a changepoint model. Indeed, SMC can be viewed as a prior over the space of
piecewise constant functions spanning the interval [0,N); conditional on realizing one such
function, say ξ : [0,N)→ [0,∞), each Xi = ξ(i − 1), and the data Y1:N are independent
Poisson draws with mean E(Yi | Xi) = θXi. In genetics, each contiguous segment where
Xi =Xi+1 = · · ·=Xi+k−1 = τ , say, is known as an identity by descent (IBD) tract, with time
to most recent common ancestor (TMRCA) τ ; the flanking positions where Xi−1 6=Xi and
Xi+k 6=Xi+k−1 are called recombination breakpoints (e.g., Browning and Browning, 2011).
In changepoint detection, these are called segments, segment heights (or just heights), and
changepoints, respectively. In what follows, we use these terms interchangeably depending
on what is most descriptive in a given context.

A standard assumption in changepoint detection is that neighboring segment heights are
independent, which is to say that Xi ⊥Xi+1 for any i such that Xi 6=Xi+1. As we will see,
this enables fast and accurate algorithms for inferring the sequence X1:N . SMC violates this

2In the most granular analysis of sequence data, we can treat each nucleotide as an individual locus. However,
if recombination is rare, then a large computational speedup can be obtained, with little effect on accuracy, by
grouping nucleotides into windows of length e.g., 100, and assuming that recombination only occurs at the bound-
aries between adjacent windows. For this reason, we describe our model generically in terms of non-recombining
loci, rather than focusing specifically on sequence data.
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EXACT SMC 5

assumption through the conditional density q(t | s): the correlation between t and s in (4)
makes the problem non-standard from a changepoint perspective. It is tempting to simply
ignore it. Indeed, if q(t | s) were replaced by some function π(t) which did not depend on
s, then (4) would become a so-called product partition model (PPM; Barry and Hartigan,
1992). PPMs are well-understood. In particular, efficient methods have been developed to
analyze PPMs in both Bayesian (Barry and Hartigan, 1993; Fearnhead, 2006) and frequentist
(Jackson et al., 2005; Killick, Fearnhead and Eckley, 2012) settings.

2.6. A renewal approximation. In biological applications, the orientation of the data
sequence Y1:N is arbitrary; we could equivalently work with the reversed sequence
YN , YN−1, . . . , Y1 instead. Additionally, both theoretical and empirical evidence overwhelm-
ingly support that Kingman’s coalescent is a robust and accurate description of ancestry at a
particular gene. For these reasons, it is important that any SMC model maintain the detailed
balance condition (5). Given this desideratum, the obvious choice for π becomes

(6) π(t)∝ tπ(t),

leading to the modified transition density

(7) fR
Xn+1|Xn

(t | s) = δ(t− s)e−ρs + (1− e−ρs)π(t).

Checking the detailed balance condition (5), we obtain

(8) π(s)(1− e−ρs)tπ(t)
?
= π(t)(1− e−ρt)sπ(s), s 6= t.

Though (8) is not true in general, equality holds when both sides are expanded to first-order
in ρ, which suffices for the applications we consider here. So, we will assume henceforth that
ρ is sufficiently small that (8) holds as an identity.

The renewal approximation preserves an important piece of prior information concerning
the nature of identity-by-descent. Recall that π as defined in (6) is the so-called length-biased
distribution corresponding to π (Feller, 1971). Length bias emerges precisely because of the
level-dependent nature of IBD tract lengths under SMC: given an IBD tract with TMRCA x,
the rate of recombination is ρx, so more recent IBD tracts are longer. Therefore, a randomly
sampled location on the chromosome is more likely to fall on a longer tract and be recent. π
“undoes” this bias and restores stationarity with respect to π.

Thus, compared with the standard SMC model in (4), the modified formulation in (7) re-
tains prior information on the dependence between IBD segment length and height, while
dropping prior information on the correlation between neighboring segment heights. We hy-
pothesized that, for inference, it is more important that the prior capture the former effect
than the latter. This is similar to the observation in changepoint detection that identifying
changepoint locations tends to be harder than identifying the corresponding segment heights.
Conditional on a given segmentation, finding the most likely segment heights is usually triv-
ial, with a solution that depends mostly on the data and very little on the prior. Thus, it seems
most important to encode prior information about the nature of the segmentation itself.

2.7. Prior work. The Markov chain defined by (7) was previously studied by Carmi
et al. (2014), who coined the term renewal approximation. Carmi et al. derived theoretical
results and performed simulations to study identity-by-descent patterns produced by SMC
models. They found that the renewal approximation is comparable to other variants of SMC
with some inaccuracy mainly in the tails of the IBD distribution. Importantly, these results
pertain to the accuracy of these methods as priors; they do not necessarily imply that the
renewal approximation is inferior for inference. Indeed, generally one hopes that “the data
overwhelm the prior,” so that inferences do not depend strongly on the choice of prior model.
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We hypothesized that the ability to analyze significantly larger quantities of data, with less
bias, would outweigh any penalty incurred through the use of a more approximative prior.

There have been a few papers specifically devoted to improving the efficiency of SMC.
The naive forward-backward and Viterbi algorithms for HMMs take O(LM2) time when
applied to SMC, where L is the length of the analyzed sequence, and M is the number
of hidden states (time discretizations) used to approximate the coalescent state space. By
exploiting the specialized structure of the SMC transition matrix, Harris et al. (2014) were
able to reduce this to O(ML) for the SMC model of McVean and Cardin (2005). Palamara
et al. (2018) extended these results to the so-called SMC’ model of Marjoram and Wall
(2006). In a different line of work, Lunter (2019) recently showed that MAP estimation can
be performed for the Li and Stephens model in O(L) time irrespective of the size H of the
underlying copying panel, after a preprocessing step that costs O(HL) time (Durbin, 2014).
Compared to these works, we will show that our method has empirical running time O(HL),
without requiring discretization or making strong genealogical assumptions as in the Li and
Stephens model.

More generally, SMC is the foundation of a large number of other inference methods in
genetics. Haplotype copying models (Li and Stephens, 2003) have been used to study natu-
ral selection (Voight et al., 2006), ancestry (Price et al., 2009), population structure (Lawson
et al., 2012), and population history (Gay, Myers and McVean, 2007); and to perform hap-
lotype phasing and imputation (Scheet and Stephens, 2006; Marchini et al., 2007; Howie,
Donnelly and Marchini, 2009). Similarly, PSMC and related methods for inferring popu-
lation size history (Li and Durbin, 2011; Schiffels and Durbin, 2014; Terhorst, Kamm and
Song, 2017; Steinrücken et al., 2019) are now a standard component of population genetic
analysis, and have been cited in thousands of papers.

3. Methods. In this section we derive exact representations for the sequence of marginal
posterior distributions p(Xn | Y1:N ), n = 1,2, . . . ,N , and efficient algorithms for sampling
paths from the posterior density p(X1:N | Y1:N ) and for computing the MAP path

X∗
1:N = arg max

X1:N

p(X1:N | Y1:N ).

3.1. Exact marginal posterior. In what follows, we write f(x) ∈MΓ(K) to signify a the
probability density f is a mixture of K gamma distributions, with the mixing weights, scale
and shape parameters left unspecified. By abuse of notation, we also write X ∼MΓ(K) to
signify that the random variable X is distributed according to such a mixture.

Let α(Xn) = p(Xn | Y1:n) denote the (rescaled) forward function from the standard
forward-backward algorithm for inferring hidden Markov models (Bishop, 2006, §13.2.4).
Our first result shows that, under the renewal approximation, α(Xn) is a mixture of gamma
distributions.

LEMMA 1. Suppose that π(x) ∈MΓ(K). Then α(Xn) = p(Xn | Y1:n) ∈MΓ(nK).

The proof of Lemma 1 requires only a few simple facts from Bayesian analysis.

FACT 1. If X ∼ Γ(a, b) and Y |X ∼ Poisson(θX), then X | Y ∼ Γ(a+ Y, b+ θ).

FACT 2. If X ∼MΓ(K) and Y |X ∼ Poisson(X), then X | Y ∼MΓ(K).

FACT 3. If Xn | Yn ∼MΓ(nK) and π ∈MΓ(K), then under the renewal approximation
(7), Xn+1 | Yn ∼MΓ((n+ 1)K).
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The first two facts are well-known consequences of conjugacy. To establish the third, note
that

p(Xn+1 | Yn) =
∫
Xn

fR
Xn+1|Xn

(Xn+1 |Xn)p(Xn|Yn)

=

∫
Xn

[δ(Xn −Xn+1)e
−ρXn + (1− e−ρXn)π(Xn+1)]p(Xn|Yn)

= p(Xn =Xn+1 | Yn)e−ρXn+1︸ ︷︷ ︸
∈MΓ(nK)

+π(Xn+1)

∫
Xn

(1− e−ρXn)p(Xn|Yn)︸ ︷︷ ︸
=constant

(9)

∈MΓ((n+ 1)K).

PROOF OF LEMMA 1. By induction on n. The case n = 1 follows from Facts 1 and 2.
And, if the claim holds for n= i, then Xi+1 | Y1:i ∼MΓ((i+1)K) by Fact 3. Since Yi+1 ⊥
Y1:i |Xi+1, Fact 2 implies

(10) (Xi+1 | Y1:i) | Yi+1 =Xi+1 | Y1:i+1 ∈MΓ((i+ 1)K).

Using Lemma 1, we establish a representation theorem for p(Xn | Y1:N ).

THEOREM 1. If π(x) ∈ MΓ(K) then there exists f(Xn) ∈ MΓ(Kn) and g(Xn) ∈
MΓ(K(N − n)) such that

(11) p(Xn | Y1:N ) =
f(Xn)g(Xn)

π(Xn)
.

PROOF. Define −→α (Xn) = p(Xn | Y1:n) to be the quantity derived in Lemma 1, and let
←−α (Xn+1) be obtained by running the forward algorithm from that lemma on the reversed
sequence (YN , YN−1, . . . , Yn+1). By reversibility,←−α (Xn+1) = p(Xn+1 | Yn+1:N ) and hence

p(Xn | Y1:N )∝−→α (Xn)p(Yn+1:N |Xn)

∝
−→α (Xn)p(Xn | Yn+1:N )

π(Xn)

=

−→α (Xn)
∫
Xn+1

p(Xn |Xn+1)
←−α (Xn+1)

π(Xn)
.(12)

By Lemma 1, −→α (Xn) ∈MΓ(Kn) and←−α (Xn+1) ∈MΓ(K(N − n− 1)). Finally, using the
same argument that established equation (10),∫

Xn+1

p(Xn |Xn+1)
←−α (Xn+1) ∈MΓ(K(N − n)).

We can also derive exact expressions for the mixing proportions, shape, and scale pa-
rameters for π(Xn)p(Xn | Y1:N ), as well as the correct normalizing constant. This requires
substantial additional notation and is deferred to Appendix A.
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REMARK. Instead of the reversibility argument used to prove Theorem 1, we could have
used ideas from the proof of Lemma 1 to derive a sum-of-gammas representation for the
rescaled backward function

β(Xn) = p(Yn+1:N |Xn)/p(Yn+1:N | Y1:n),

whence p(Xn | Y1:N ) = α(Xn)β(Xn). We experimented with this approach, but found that
it was numerically unstable for long sequences: whereas the mixture coefficients of α(Xn)
live in the simplex, the backwards function β(Xn) is not a probability distribution in Xn, and
we observed that the mixture coefficients tended to diverge when N was large. It seems that
the rational representation (11) has superior numerical properties.

3.2. Efficient posterior sampling. The exact posterior formula derived in Theorem 1 is
useful for visualization, or numerically evaluating functionals (e.g., the posterior mean) of
the posterior distribution. However, it is less suited to sampling because:

1. The denominator does not divide the numerator except when K = 1, so the posterior is
not a mixture in general; and

2. Even then, sampling requires expanding the numerator in (12) into (as many as) O(K2N2)
mixture components.

Thus, in the general case, an iterative scheme like MCMC would be needed to sample from
the posterior under our model, and such a scheme would be slow owing to the complexity of
evaluating the target density.

Instead, we provide an algorithm for efficiently sampling entire paths from p(X1:N | Y1:N ).
This idea is due to Fearnhead (2006), with slight modifications to accommodate our model’s
dependence between segment length and height.

Let Rt denote the event that a new IBD segment begins at position t, let Rs:t :=(⋃t−1
i=s+1Ri

)C
denote the event that there is not a recombination event between positions

s and t (exclusive), and set Ȳs:t :=
∑t

i=s Yi. The joint likelihood of the data Ys:t and the
event that an IBD segment starts at position s and extends ∆ = t − s + 1 positions before
terminating at position t is

(13) p(Ys:t,Rs,Rs:t) =

∫
x
x1{s>1}π(x)ρxe−ρ∆x

t∏
i=s

e−θx(θx)Yi/Yi! =: P (s, t).

(A special case for s= 1 is necessary because the initial segment height is sampled from the
stationary distribution π, while successive segments heights are distributed according to π;
cf. equations 2 and 7).

For the last segment, we know only that it extended past position N , so make the special
definition

(14) P−1(s,N) = p(Ys:N ,Rs,Rs:N ) =

∫
x
x1{s>1}π(x)e−ρ∆x

N∏
i=s

e−θx(θx)Yi/Yi!.

This algorithm can be used whenever (13) can be efficiently evaluated, in particular when
π(t) is a gamma mixture. For example, if π(x) = e−x then

P (s, t) =
Γ(2 + 1{s>1} + Ȳs:t)θ

Ȳs:t

[1 +∆(θ+ ρ)]2+1{s>1}+Ȳs:t
∏t

i=s Yi!
.
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EXACT SMC 9

Defining Q(t) = p(Yt:N |Rt) and integrating over the location s where the segment origi-
nating at position t terminates, we have (Fearnhead, 2006, Theorem 1)

(15) Q(t) =

N−1∑
s=t

P (s, t)Q(s+ 1) + P−1(t,N)

which can be solved by dynamic programming starting from t=N in O(N2) time. As in the
preceding section, when t− s is large, P (s, t) tends to be extremely small, so the summation
in (15) can be truncated without loss of accuracy to obtain an algorithm which is effectively
linear in N .

To sample the next recombination breakpoint τ ′ from the posterior given that the previous
breakpoint occurred at location τ , note that

p(τ ′ | τ,Y1:N ) =
p(Y1:N ,Rτ ,Rτ ′ ,Rτ,τ ′)

p(Y1:N ,Rτ )

=
p(Y1:τ−1,Rτ )p(Yτ :τ ′−1,Rτ ′ ,Rτ :τ ′ |Rτ )Q(τ ′)

p(Y1:τ−1,Rτ )Q(τ)

= P (τ, τ ′ − 1)Q(τ ′)/Q(τ)

for τ ′ = τ +1, . . . ,N − 1, with the remaining probability mass placed on the event that there
are no more changepoints. If sampling the first changepoint we set τ = 1.

3.3. Exact frequentist inference. To complement the Bayesian results in the preceding
section, we also derive an efficient frequentist method for inferring the maximum a posteriori
(MAP) hidden state path,

(16) X∗
1:N := arg max

X1:N

p(X1:N , Y1:N ).

When X1, . . . ,XN ∈ X have discrete support, |X | = M , the MAP path can be found in
O(NM2) time using the Viterbi algorithm (Bishop, 2006), and in some cases in O(NM)
time by exploiting the special structure of the SMC (Harris et al., 2014; Palamara et al.,
2018). Our goal is to solve the the optimization problem (16) in O(N) when X =R>0.

To accomplish this, start by defining the recursive sequence of functions

V1(t) = logπ(t) + e1(t)

Vn(t) =max
s

Vn−1(s) + ϕ(t | s) + en(t), n≥ 2

V ∗
n = arg max

s
Vn−1(s) + ϕ(t | s) + en(t),

where ei(t) = log p(Yi |Xi = t), and

ϕ(t | s) = log p(Xi+1 = t |Xi = s)

=

{
−ρt, t= s

log(1− e−ρs) + logπ(t), otherwise

≈

{
−ρt, t= s

log(ρs) + logπ(t), otherwise,
(ρ� 1)

This is the usual Viterbi dynamic program, but defined over a continuous instead of discrete
domain. By standard arguments (Bishop, 2006, §13.2.5), we have

X∗
N = V ∗

N = arg max
XN

[
max
X1:N−1

p(X1:N , Y1:N )
]
,
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and the full path X∗
1:N can be recovered by backtracing using the vector V ∗

n .
Thus, if we could calculate Vn(t) then the optimization problem (16) would be solved. In

general, it is not obvious how to accomplish this, since Vn(t) is a function, i.e., an infinite-
dimensional object which cannot be represented by a computer program. However, our next
theorem shows that, in fact, each Vn(t) has a finite-dimensional representation.

DEFINITION 1. Let VK be the space of all functions f : [0,∞)→R which can be piece-
wise defined by K functions of the form t 7→ at+ b log t+ c. That is, f ∈ VK if and only if
there exists there exists an integer K , a vector τ ∈RK+1 satisfying

0 = τ1 < τ2 < · · ·< τK+1 =∞,

and vectors a,b,c ∈RK such that

f = akt+ bk log t+ ck, t ∈ [τk−1, τk).

THEOREM 2. For each n= 1, . . . ,N, there exists Kn <∞ such that Vn(t) ∈ VKn
.

To prove the result we need a few lemmas. We omit the trivial proofs of the first two.

LEMMA 2. VK contains all piecewise constant and piecewise linear functions with K
pieces. For all i, Vi ⊂ Vi+1. If c ∈ R and f ∈ Vi, g ∈ Vj , then cf ∈ Vi, f + g ∈ Vi+j and
max{f, g} ∈ Vi+j .

LEMMA 3. Let en(t) := log p(Yn |Xn = t). Then

en(t) =−θt+ Yn log(θt)− logYn! ∈ V1.

LEMMA 4. Suppose that Ne(t) ∈ VK is piecewise constant. Then log π(t) ∈ VK .

PROOF. If Ne(t) is piecewise constant then so too is log η(t) =− logNe(t). Also, R(t) :=∫ t
0 η(s)ds ∈ VK is piecewise linear on the same set of breakpoints. Hence,

logπ(t) = const. + log t+ logπ(t)

= const. + log t+ log η(t)−R(t),

and the result follows from Lemma 2.

PROOF OF THEOREM 2. By induction on n. For n= 1,

V1(t) = logπ(t) + en(t) =−t+ en(t) ∈ V1,

as claimed. For the inductive step, we have

(17) Vn+1(t) = en+1(t) +max
{
−ρt+ Vn(t)︸ ︷︷ ︸

(A)

, logπ(t) +maxs ̸=tVn(s) + log(ρs)︸ ︷︷ ︸
(B)

}
.

By the induction hypothesis and Lemmas 2-4, both (A) and (B) are in Vk1
for some k1.

Then, another application of the lemmas shows that in fact the entire right-hand side of (17)
is in Vk2

for some (possibly larger) k2.

REMARK. The proof shows that in order to efficiently compute Vn(t) we need to be able
to take the pointwise maximum between any two functions in VK . We provide an O(K)
procedure for doing this in Appendix B.
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Our next result shows that the structure of Vn(t) essentially mirrors that of the posterior
distribution p(Xn | Y1:n) (cf. Section 4.2 and Appendix A). Each piece of Vn(t) comprises an
interval I ⊂R where, conditional on the TMRCA at position n being t ∈ I, the most probable
recombination event occurred a certain number of positions ago. In the statement and proof of
the theorem, we use double brackets, J·K, to refer to individual entries of subscripted vectors;
cf. Appendix A.

THEOREM 3. For each Vn(t), with breakpoints τn ∈ RKn+1, there exists vectors in ∈
ZKn

≥0 and Cn ∈RKn such that, for t ∈ [τnJkK,τnJk+ 1K),
Vn(t) =CnJkK+ log π(t) + ȲinJkK:n log(θt)− t(θ+ ρ)(n− inJkK)− θt.

Hence, up to the constant CnJkK, Vn(t) equals the log-likelihood of ȲinJkK:n given that the
most recent recombination event occurred at position inJkK and XinJkK = · · ·=Xn = t.

PROOF. In view of equation (17), note that for fixed t, we can unwind the recursion
Vn+1(t) = en+1(t) − θt + Vn(t) until we reach an index i where (A) < (B). By continu-
ity, this index is the same for all t ∈ [τnJkK,τnJk + 1K). Denote the vector of such indices
associated with each interval by in, and let

CnJkK =max
s ̸=t

VinJkK(s) + log(ρs)−
n∏

i=inJkK logYn!.
Then

Vn(t) =CnJkK+ n∏
i=inJkK logYn! + logπ(t) +

n∑
i=inJkKei(t)− tρ(n− inJkK),

so the claim follows by using Lemma 3 to expand the sum.

3.3.1. Linear running time. Theorem 2 paves the way for inference by proving that each
Vn(t) can be finitely represented. However, it leaves open the possibility that the dimension
Kn of this representation increases with n. This would imply that the running time of our
algorithm increases faster than linearly in the sequence length N , an impediment to real-
world applications.

Surprisingly, this does not happen: as we show empirically in Section 4.3, the recursion
(17) is “self-pruning” in the sense that term (B) of that equation frequently dominates (A)
over entire intervals, meaning that those terms can be dropped. This makes intuitive sense
since (B) corresponds to the event that a recombination occurred between positions n and
n+ 1, and this will be the most likely explanation for extreme values of t.

Thus, we find that the average number of intervals tracked by our algorithm is bounded
by a moderate constant, implying that the expected running time of this method is linear in
the sequence length N . This result agrees with recent findings in the changepoint detection
literature, where pruned dynamic programming has been used to derive methods whose av-
erage complexity grows linearly in the amount of data (Killick, Fearnhead and Eckley, 2012;
Johnson, 2013; Maidstone et al., 2017).

3.3.2. Generalization to non-MAP paths. It will be seen in Section 4.2 that the MAP path
is rather different from a “typical” path sampled from the posterior distribution: the former
tends to oversmooth, missing many recombination breakpoints, whereas the posterior mode is
generally centered over the truth (Figure S5). This behavior occurs in hidden Markov models
more generally, and can be understood in terms of decision theory (Yau and Holmes, 2013;
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Lember and Koloydenko, 2014; Kuljus and Lember, 2016). The MAP path XMAP
1:N solves the

optimization problem

XMAP
1:N = argmax

Z1:N

p(X1:N = Z1:N | Y1:N )

= argmin
Z1:N

EX1:N |Y1:N
1{X1:N 6= Z1:N},(18)

so the Viterbi algorithm can be interpreted as minimizing risk with respect to the loss function
ℓMAP(x, y) = 1{x 6= y}, where x, y are paths, and x= y if they are equal at every position.
This loss function is “global” in that paths incur equal loss irrespective of whether they mis-
match the true path at one position or all of them; there is no benefit to improving the match
at a particular position.

On the opposite end of the spectrum, the pointwise posterior mode

XPM
1:N := (argmax

Z1

p(X1 = Z1 | Y1:N ), . . . ,argmax
Zn

p(Xn = Zn | Y1:N )

= argmin
Z1:N

n∑
i=1

EXi|Y1:N
1{Xi 6= Zi}

is “local”, placing no emphasis on paths that are continuous from one position to the
next. Indeed, from Theorem 4 and Appendix A, we can see that argmaxp(Xi | Y1:N ) 6=
argmaxp(Xi+1 | Y1:N ) almost surely for all i, so that XPM

1:N has a changepoint at every posi-
tion and thus vanishingly small prior probability for large N .

For ordinary HMMs, it is possible to algorithmically interpolate between these these two
extremes, resulting in paths that achieve better pointwise accuracy than XMAP

1:N and higher
prior likelihood than XPM

1:N (Yau and Holmes, 2013; Lember and Koloydenko, 2014). How-
ever, these algorithms assume a discrete state space, and it is unclear whether they can be
extended to our setting. Instead, we propose a simple modification of our method which has
a straightforward interpretation as penalized changepoint detection.

To build the connection, note that we can write the optimization in (16) equivalently by
representing X1:N by the locations and heights of each segment, τ ,x ∈RK , such that

1 = τ1 < · · ·< τK < τK+1 =N + 1

Xτk =Xτk+1 = · · ·=Xτk+1−1 = xi, k = 1, . . . ,K.

Then, we can rewrite the complete likelihood as

(19) p(X1:N , Y1:N ) = p(τ ,x, Y1:N ) =

K∏
k=1

p(Yτk:τk+1−1,τ ,x)

where

p(Yτk:τk+1−1 | τ ,x) = x
1{k>1}

k π(xk)(ρxk)
1{k<K}

e−(ρ+θ)∆kxk∏τk+1−1
i=τk

Yi!
(θxk)

Ȳτk:τk+1−1 .

and ∆k = τk+1 − τk. Under the renewal approximation, for fixed τ , (19) separates into a
series of simpler one-dimensional optimization problems:

max
τ ,x

p(τ ,x, Y1:N ) =max
τ

max
x

p(τ ,x, Y1:N )

=max
τ

|τ |∏
k=1

max
xk

p(Yτk:τk+1−1, τk, τk+1, xk).(20)
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where we abused notation to write |τ | for the dimension of (i.e. the number of changepoints
in) τ . Taking the log of equation (20), we have that the MAP path equivalently solves

(21) min
τ

|τ |∑
k=1

Ck(Yτk:τk+1−1) + β|τ |

where we defined β =− logρ and

Ck(Ys:t) =min
x
−
{
(1{k>1} + 1{k<K}) logx+ logπ(x)− (ρ+ θ)∆kx+ Ȳs:t log(θx)

}
.

Hence, β penalizes segmentations with many changepoints. Above we showed that with
β =− logρ, the optimum of (21) is exactly XMAP

1:N , which is also optimal for (18). Other set-
tings of β result in paths which are suboptimal with respect to this objective, but potentially
superior by other metrics. In particular, we observed that by setting β lower than − logρ,
thus encouraging the algorithm to find paths with more changepoints than the MAP path, the
paths are pointwise superior to XMAP

1:N in the sense of the preceding paragraph.

3.4. Extension to larger sample sizes. The preceding sections focused on inferring the
sequence of TMRCAs in a pair of sampled chromosomes. In modern applications where hun-
dreds or thousands of samples have been collected, methods that can analyze larger sample
sizes are both useful and desirable.

To generalize our inference problem to larger sample sizes, we recast it as follows: given
a “focal” chromosome f and a “panel” Y ∈ ZH×N

+ , where Yhn is the number of pairwise
differences between chromosomes f and h at locus n, infer the sequence

(X,h)1:N := (X1, h1), (X2, h2), . . . , (XN , hN )

of genealogical nearest neighbors (GNNs) to f . In other words, at each position i, find
the panel entry hi ∈ {1, . . . ,H} and corresponding TMRCA Xi for the chromosome most
closely related to f . Note that there may be more than one GNN at a given site, so the se-
quence is not necessarily unique.

For H = 1 this problem reduces to finding p(X1:N | Y1:N ), or its maximizer X∗
1:N , as

outlined above. This suggests that we consider the likelihood p((X,h)1:N |Y) in the general
case. Unfortunately, evaluating this likelihood is significantly harder when H > 1. This is due
to the fact that, except when H = 1, the sequence (X,h)1:N does not uniquely determine the
sequence of trees T1, . . . , TN used to approximate the underlying ARG; we must integrate out
the remaining uncertainty, which is quite difficult for the reasons described in Section 2.1.
To circumvent this difficulty, we employ a so-called trunk approximation, which supposes
that the ARG is a completely disconnected forest of H trunks extending infinitely far back
into the past, in which case the sequence (X,h)1:N is again in bijection with the (trivial)
tree sequence T1:N . Although the trunk assumption is quite strong, it has proved useful in a
variety of settings (Sheehan, Harris and Song, 2013; Spence et al., 2018; Steinrücken et al.,
2019).

Modifying our methods to utilize the trunk approximation is straightforward and amounts
to, essentially, replacing the coalescence measure p(X ∈ [t, t+ dt)) = π(t)dt with the prod-
uct measure p((X,h) ∈ ([t, t+ dt),{i})) = π(Ht)dt in all of our formulas. (Note that this
measure is properly normalized.) In other words, coalescence occurs with each haplotype at
rate 1, and conditional on coalescence, it occurs uniformly onto each haplotype.

4. Results. In this section we compare our method to existing ones, benchmark its speed
and accuracy, and conclude with some applications.
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4.1. Insensitivity of the posterior to the prior. As described in the introduction, the driv-
ing hypothesis of this work is that posterior inferences for the haplotype decoding problem
are relatively insensitive to the choice of prior. In this section we investigate that hypothesis.

4.1.1. Differences between different SMC models. We first studied whether different
types of Markovian approximations to the spatial coalescent had a significant effect on the
accuracy of posterior inferences. In particular, we initially compared the Markovian approxi-
mation of Hobolth and Jensen (2014) with the renewal approximation described above. SMC
(McVean and Cardin, 2005) and SMC’ (Marjoram and Wall, 2006) are further approxima-
tions of the Markovian approximation to the tree building process, while the renewal process
drops the dependence between neighboring tree heights altogether. Thus, the Markovian ap-
proximation and the renewal process can be viewed as the least and most approximative SMC
methods, respectively.

To study the relationship between the posterior and prior, we compared the two methods
under both constant population size and varying population size, as well as when the re-
combination rate is equal to the mutation rate and when it is lower. Under the constant size
simulations, the effective population size was set to Ne(t) = 20,000 for all t. In the varying
case,

Ne(t) =


20,000, t≥ 3162

10,000, 1000≤ t < 3162

2,000,000, t < 1000

.

Taking all the combinations of the different population size histories and the recombination
rate gives us a total of 4 scenarios. Scenarios 1 and 3 have constant population size, and
scenarios 2 and 4 have the variable population size. Scenarios 1 and 2 have recombination
rate r = 10−9, and scenarios 3 and 4 have recombination rate r = 1.4× 10−8 per base-pair
per generation. We bucket consecutive base pairs into groups of size w = 100 and assume
that the recombinations occur between these groups. We discretized time into 32 epochs by
selecting time points t0 = 0 < t1 < · · · < t32 =∞ and setting epoch Iϵ = [tϵ, tϵ−1). After
setting the first time point as 0 and the final time point (t32) as∞, we set t1, t2, . . . , t31 as the
sequence of 31 evenly log-spaced numbers between 10 and 100,000 including the endpoints.

In what follows we measure the accuracy of the discretized SMC posterior with respect to
the true (simulated) TMRCA at each position. To do this, we assume that coalescence events
occur at the expected time of coalescence given that coalescence occurred in that epoch. (See
Appendix C for a precise description of our metrics.) To perform a fair comparison, even
though we know how to solve the renewal model exactly, in this section we compare the
time-discretized versions of it and the Markovian model.

For each scenario, we used msprime (Kelleher, Etheridge and McVean, 2016) to simulate
L= 5× 106 base pairs of sequence data for 25 pairs of chromosomes, for a total of L/w =
5 × 104 loci. The sequences were simulated with a per generation mutation rate of µ =
1.4× 10−8. Note that in scenarios 3 and 4, µ= r. We calculate the posterior probabilities for
the Markovian and renewal approximation using their corresponding transition probabilities.
To assess the accuracy of the two priors we measure error using both an absolute and relative
scale. We define the absolute error as

ErrA(x̂,x) =
1

L/w

L/w∑
i=1

Ex̂i
|x̂i − xi|

and the relative error as

ErrB(x̂,x) =
1

L/w

L/w∑
i=1

Ex̂i

∣∣∣∣ log10( x̂i
xi

)∣∣∣∣
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EXACT SMC 15

TABLE 1
Mean absolute error (ErrA) over 25 runs under each scenario. Standard error in parenthesis.

Scenario 1 2 3 4

Markov 6075.50 (215.59) 5187.24 (187.27) 12037.25 (298.71) 12112.81 (106.44)
Renewal 6068.04 (209.11) 5187.49 (184.34) 11476.92 (282.36) 11571.28 (97.99)

TABLE 2
Mean absolute error (ErrA) over 25 runs under each scenario stratified by quartile. Standard error in

parenthesis.

Scenario 1 2 3 4

Markov Q1 2840.79 (124.42) 2219.61 (101.38) 6820.01 (245.65) 6672.23 (88.84)
Renewal Q1 2887.14 (129.53) 2273.91 (100.00) 5292.75 (180.86) 5256.89 (55.12)
Markov Q2 6524.06 (131.61) 6106.74 (122.89) 13346.56 (35.50) 13465.23 (57.68)
Renewal Q2 6604.09 (117.57) 6123.72 (107.90) 11463.27 (38.05) 11665.01 (35.60)
Markov Q3 10543.82 (239.47) 9716.04 (219.67) 18831.10 (64.05) 18957.97 (67.16)
Renewal Q3 10454.31 (249.99) 9528.27 (225.84) 19538.07 (72.65) 19682.76 (71.76)
Markov Q4 17242.02 (460.92) 16362.35 (471.86) 33016.17 (212.12) 33526.33 (226.10)
Renewal Q4 16959.09 (505.93) 16341.50 (601.40) 40181.58 (263.39) 40141.12 (279.70)

where xi is the true TMRCA of the tree at position i and x̂i is time to coalescence distributed
according to the posterior. The set of values that x̂i can take is {E(Cj)}32j=1 where Cj is the
expected time to coalescence given that coalescence occurred in epoch j and is distributed
according to the posterior at locus i.

Supplemental Figures S1 and S2 show the Viterbi path and the posterior heatmap for one
run of each scenario of the simulation. Looking at all the panels of Figure S1, there is little
difference in the Viterbi plot between the Markovian and renewal priors. Both priors produce
a Viterbi path very similar to the true sequence of TMRCAs. When the recombination rate
increases, the Viterbi path produced by the two priors fail to capture all the recombination
events, but are still very similar in their outputs. In Figure S2 it is even more difficult to
discern any meaningful difference in all scenarios between the two priors. This is especially
the case in scenarios 1 and 2 where the recombination rate is lower.

Confirming these qualitative observations, Table 1 shows the average absolute error for the
two priors over the 25 simulations. In terms of absolute error, the renewal prior does as well
as the more correct Markov prior. In fact, the renewal prior outperforms the Markov prior
under scenarios 3 and 4, the scenarios with higher recombination rate. Table S1 shows that
the Markov approximation slightly is slightly better in relative error. However, in general the
differences are minor, and both the tables confirm our hypothesis that the posterior is fairly
insensitive to the choice of prior.

To further understand the difference between the priors, we stratified this analysis by quar-
tiles of the true TMRCA. We denote the minimum and maximum TMRCAs as q0 and q4, and
the first, second, and third quartiles as q1, q2, and q3. We then recalculate the absolute error
in quarter j as

ErrA(x̂,x, j) =

∑L/w
i=1 Ex̂i

|x̂i − xi|1[qj−1,qj)(xi)∑L/w
i=1 1[qj−1,qj)(xi)

with relative error defined similarly. Due to the length bias of IBD tracts, the number of loci
in quarter j will be smaller than the number of loci in quarter j − 1. The number of loci in
each quarter under the various scenarios is displayed in Table S3.

Tables 2 contains the mean absolute error over the 25 simulations after stratification. Under
scenarios 1 and 2 where the recombination rate is lower, again we see virtually no difference
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between the two priors across all quarters. Under scenarios 3 and 4 where the recombination
rate is higher, we see that in the first and second quarters, the renewal prior outperforms the
Markov approximation by a large margin. The results are reversed in the third and fourth
quarters where the Markov approximation is more accurate than the renewal prior. This trend
is mostly mirrored in Table S2 with the mean relative errors. The renewal prior does just
slightly worse than the Markov prior under scenarios 1 and 2 across all quarters. Under
scenarios 3 and 4 as the underlying true TMRCA increases, so too does the difference in
ErrB. The large difference in quarter 4 is expected as under the Markov prior, the distribution
of tree height of the current segment conditioned on the tree height of the previous segment,
q(t | s) is approximately uniform in t for large s; i.e. q(t | s)≈ 1/s when s� t. In contrast,
the distribution under the renewal prior π(t) = e−t is more dense for smaller values of t.

In general, outside of the large difference between the methods in quarter 4, the two ap-
proximations are comparable, with neither one clearly dominating the other. When the under-
lying true TMRCA is smaller, ErrA is the better measure of accuracy, so despite the Markov
approximation outperforming the renewal prior in all quarters in terms of ErrB, the renewal
prior actually outperforms the Markov approximation in quarters 1 and 2. We conclude from
these results that our choice of prior is justified.

4.1.2. Effect of the demographic prior. Next, we studied the extent to which the de-
mographic prior π(t) affects the resulting estimates. We simulated data under three differ-
ent demographic models and then measured the resulting accuracy of the posterior when
each model was used as a prior to infer TMRCAs on data generated from the other mod-
els. The standard library for population genetic simulation models, stdpopsim (Adrion
et al., 2019), provides a demographic model of the human population in Africa available
as Africa_1T12 and a difficult demography known in the literature as the zig-zag model
(Schiffels and Durbin, 2014) available as Zigzag_1S14. This is a pathological model of
repeated exponential expansions and contractions, and is designed to benchmark various de-
mographic inference procedures.

In addition to these two models, we use a model with a constant population size of 2×
104. We modeled the two non-constant population size history using a piecewise constant
function of 64 segments instead of a continuous function. The three models are plotted in
Supplemental Figure S3. The set of time breakpoints used to approximate the size history is
also the same set of points we used to discretize time into epochs. Here we discretized time
into 64 epochs setting t0 = 0, t64 =∞, and the sequence t1 < · · ·< t63 as the sequence 63
evenly log-spaced numbers between 10 and 106 including the endpoints.

We then simulated 25 pairs of chromosomes for each model with msprime using the
human chromosome 20 model with the default flat recombination and mutation maps in con-
junction with the demographic models. The per generation per base pair mutation rate and
recombination rate for chromosome 20 given by stdpopsim are µ = 1.29 × 10−8 and
r = 1.718× 10−8 respectively. After simulating the data, for each pair of chromosomes gen-
erated under each of the models, we used each demographic size history as a demographic
prior to calculate the posterior distribution of the TMRCA using the renewal approximation.

We display the posterior of one pair of chromosomes for all 9 pairs of demographies used
as data generation and demographic priors in Figure S4. The plots show that regardless of
which demographic prior was used, the resulting posteriors all had the same shape. There
does seem to be a slight difference between the zig-zag demography and the other two de-
mographies, in that the zig-zag posterior is generally more diffuse.

We use the same measures of accuracy as in the previous simulation, ErrA and ErrB , to
quantify how well the demographic priors perform against one another. Table 3 shows that
in terms of mean absolute error, all three demographic models perform similarly when used
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TABLE 3
Mean absolute error (ErrA) over 25 runs under each scenario. Standard error in parenthesis.

Prior Used

Simulation Model Africa Zigzag Constant

Africa 10144.40 (19.76) 10359.75 (20.84) 10663.13 (20.19)
Zigzag 5507.79 (132.03) 4962.75 (120.63) 5700.60 (137.21)
Constant 11584.24 (259.28) 11764.86 (263.18) 11898.49 (266.09)

as prior, regardless of which one of them in fact generated the data. Given the vast difference
between the three demographic models (Figure S3), if the posterior were sensitive to the
demographic model we would expect each column in the table to be quite different from one
another. However, this is clearly not the case; using the correct prior results in an average
improvement of a few percent in most cases.

Relative error measurements (Table S4) tell a similar story. The Africa and zig-zag de-
mographies perform the best when used as a prior when they are also used to generate the
data. In addition, the zig-zag demography performs somewhat worse than the other two de-
mographies when the data is generated with the other demographies. While this does suggest
that the posterior is somewhat sensitive to the prior, the zig-zag demography is an unrealistic
model that would not be used in practice. In particular, it assumes that the population under-
went repeated bottlenecks, causing estimated TMRCA to be low in general, and resulting in
low absolute error rates in Table 3 and inflated relative error rates in Table S4. In conclusion,
our results suggest that, as long as the chosen prior is not pathological, its effect on inference
will be limited.

4.2. Comparison of Bayesian and frequentist inferences. In Section 3 we derived meth-
ods for inferring tree heights. Here we compare the Bayesian method where we sample from
the posterior and the frequentist method where we take the MAP path. We apply these two
methods to the same simulated data from Section 4.1.1. For the Bayesian method we sample
200 paths from the posterior and take the median to compare against the MAP path.

Figure S5 shows the results of running the two methods on one set of simulated chromo-
somes under each scenario. The top two panels of the figure show that when the recombina-
tion rate is an order of magnitude lower than the mutation rate, both methods give a faithful
approximation of the true sequence of TMRCAs. However, the bottom two panels where the
recombination rate is larger displays the key difference between the two methods: the MAP
path fails to detect many recombination events, whereas the posterior median is an average
over many paths so it can detect recombination events that the MAP path cannot.

We use the same measures of absolute and relative we used in the previous sections. For
this simulation, we look at the error at each position so L/w = L. The results in Tables 4 and
S5 show that the posterior median dominates the MAP path. Again, since the MAP path is
the most likely single path whereas in the Bayesian method we take the pointwise median
of many paths, the MAP path has inferior pointwise accuracy. This result is expected, but it
should be noted that when compared to Tables 1 and S1, the MAP path performs similarly
to, and the Bayesian method greatly outperforms, the posterior decoding of the discretized
SMC models.

4.3. Empirical running time. In Sections 3.2 and 3.3.1 we suggested that by pruning the
state space of our methods in certain ways, their running time is effectively linear in the num-
ber of decoded positions. A rigorous proof of this fact is difficult, and beyond the scope of
this article. We settled for verifying that the claim holds in simulations. We benchmarked our
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TABLE 4
Mean absolute error (ErrA) over 25 runs under each scenario. Standard error in parenthesis.

Scenario 1 2 3 4

MAP 6021.78 (234.36) 5040.54 (183.42) 11916.00 (293.34) 12060.40 (122.81)
Bayesian 4422.97 (173.91) 3845.58 (139.81) 8636.69 (197.69) 8531.71 (78.97)

methods on simulated sequences of length L = 106 to L = 108. For each length, we simu-
lated 10 pairs of chromosomes. Figure S6 confirms that there is a linear relationship between
chromosome length and running time for both the Bayesian sampler method and the MAP
decoder. Note that, if decoding against a larger panel of chromosomes (cf. Section 3.4), the
amount of work performed by our algorithms scales linearly in the panel size H . Therefore,
the empirical running time of our methods is O(HL). This matches the running time of the
most efficient existing methods for decoding the SMC (Harris et al., 2014; Palamara et al.,
2018).

4.4. Applications. We tested our method on the two most common real-world applica-
tions of the sequentially Markov coalescent.

4.4.1. Exact PSMC. The pairwise sequentially Markov coalescent (PSMC; Li and
Durbin, 2011) is a method for inferring historical population size (i.e., the function Ne(t)
defined in Section 2.2) using genetic variation data from a single diploid individual. Al-
though in some settings PSMC has been superseded by more advanced methods which can
analyze larger sample sizes (Schiffels and Durbin, 2014; Terhorst, Kamm and Song, 2017;
Steinrücken et al., 2019), it remains very widely used in many areas of genetics, ecology and
biology, because it is fairly robust, and does not require phased data, which can be difficult
to obtain for species that have not been studied as intensively as humans.

As noted in Section 1, PSMC uses an HMM to infer a discretized sequence of genealo-
gies. The discretization grid is a tuning parameter which is challenging to set properly—finer
grids inflate both computation time and the variance of the resulting estimate, and for a fixed
level of discretization, the optimal grid depends on the unknown quantity of interest Ne(t).
A poorly chosen discretization can have serious repercussions for inference (Parag and Py-
bus, 2019). It is preferable to dispense with this tuning parameter altogether, as our method
enables us to do.

A second benefit of our approach is that it allows us to recast the problem in a more natural
form. PSMC requires the user to fix a parametric function class for Ne(t), also dependent
on the aforementioned discretization, and performs parameter optimization via E-M. This
process is slow and occasionally unstable. We will proceed differently, by establishing a
connection to density estimation. Recalling equation (3), we see that inference of Ne(t) is
tantamount to estimating (the reciprocal of) η(t). In survival analysis, η is known as the
hazard rate function, and a variety of methods have been developed to infer it (Wang, 2014).
Thus, if we could somehow sample directly from π, then inference of Ne(t) would reduce to
a fairly well-understood problem.

While this is impossible in practice, the simulated results shown in the preceding sec-
tions inspire us to believe that samples drawn from the posterior p(X1:N | Y1:N ) could serve
the same purpose. Concretely, we suppose that a random sample x1, . . . , xk drawn from the
product measure

p(Xi1 | Y1:N )× p(Xi2 | Y1:N )× · · · × p(Xik | Y1:N ),

where the index sequence i1, . . . , ik ∈ [N ] is sufficiently separated to minimize correlations
between the posteriors, is distributed as k i.i.d. samples from π. We then use a kernel-
smoothed version of Nelson-Aalen estimator (Wang, 2014) in order to estimate N̂e(t).
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FIG 1. Comparison of PSMC and XSMC on various simulated size histories.
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FIG 2. Result of fitting XSMC to 1000 Genomes data. For each superpopulation, 20 samples were chosen. Solid
line denotes the median across all samples, and shaded bands denote the interquartile range.

We first compared the performance of our method with PSMC on simulated data. Figure 1
compares the results of running our method, which we call XSMC (eXact SMC), and PSMC
on data simulated from three size history functions (plotted as dashed grey lines). We sim-
ulated a chromosome of length L = 5 × 107 base pairs for 25 diploid individuals (total of
50 chromosomes), and then ran both methods on all 25 pairs. The plots show the pointwise
median, with the interquartile range (distance between the 25th and 75th percentiles) plot-
ted as an opaque band around the median. For the first two simulations we assumed that the
mutation and recombination rates were equal, µ = r = 1.4× 10−8 per base pair per gener-
ation. For reasons discussed below, we assumed in the third simulation that r = 10−9. Both
methods were run with their default parameters and provided with the true ratio r/µ used to
generate the data.

The left panel of the figure (“Constant”) depicts the most basic scenario, where the pop-
ulation size is unchanged over time. Both methods do an acceptable job, while exhibiting
some bias. For PSMC, there is clear bias from the piecewise-constant model class it uses to
perform estimation. XSMC has a slight downward bias in the recent past, but is otherwise

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.21.307355doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.307355
http://creativecommons.org/licenses/by-nc/4.0/


20

centered over the true values Ne = 104. Both methods appear slightly biased in the period
103-104 generations, though in opposite directions.

In the center panel (“Growth”), we simulated a cartoon model of recent expansion, in
which the population experiences a brief bottleneck from 2,000–1,000 generations ago, be-
fore suddenly increasing in size by two hundredfold. This model is more difficult to correctly
infer using only diploid data, because the large recent population size prevents samples from
coalescing during this time, effectively depriving methods of the ability to learn size history
in the recent past. Nevertheless, XSMC does an acceptable job of showing that the popula-
tion experienced a dip followed by a sharp increase, though the estimates are oversmoothed.
In contrast, PSMC estimates size history that is nearly flat, with no acknowledgement of the
bottleneck. This result also illustrates another benefit of the nonparametric approach: XSMC
only returns an answer where it actually observes data. Because no coalescence times were
observed before ∼ 103 generations when sampling from the posterior, our method does not
plot anything outside of that region. This compares favorably with PSMC and related para-
metric methods (e.g., Schiffels and Durbin, 2014; Terhorst, Kamm and Song, 2017), which
have to model Ne(t) over all 0≤ t <∞ in order to perform an analysis, even when the data
contain no signal outside of a limited region.

Lastly, in the right-hand panel we examined the zig-zag demography mentioned previ-
ously in Section 4.1.2. We found that with the default setting ρ = θ used in the preceding
two examples, neither XSMC nor PSMC produced good results on the zig-zag. We therefore
lowered the rate of recombination to r = 10−9/bp/generation in order to create more linkage
disequilibrium for the methods to exploit. Here, a fairly substantial difference emerges be-
tween the two methods. XSMC does a good job of inferring this difficult size history, with
accurate results to almost 102 generations in the past, and almost no discernible bias. In con-
trast, PSMC is very inaccurate, with a wildly overestimated ancestral population size, and an
overall shape that differs substantially from the truth.

Encouraged by these results, we next turned to analyzing real data. We performed a simple
analysis where we analyzed whole genome data from 20 individuals from each of the five su-
perpopulations (African, European, East Asian, South Asian, and Admixed American) in the
1000 Genomes dataset (The 1000 Genomes Project Consortium, 2015). Results are shown
in Figure 2. Broadly speaking, our method agrees with other recently-published estimates
(Li and Durbin, 2011; Terhorst, Kamm and Song, 2017), and succeeds in capturing major
recent events in human history such as an out-of-Africa event 100-200kya, a bottleneck ex-
perienced by non-African populations, and explosive recent growth beginning around 20kya.
We suspect that these estimates could be improved somewhat with fine-tuning and the use
of additional data, but we did not do this, the message being that our method has moderate
data requirements and produces reasonable results with minimal user intervention. Finally,
we note that our method is highly efficient: to analyze all 20× 5× (3× 109Mbp)≈ 300Gbp
of sequence data took approximately 40 minutes on a 12-core workstation. A single human
genomes (all 22 autosomes) can be analyzed in about 30 seconds.

4.4.2. Phasing and Imputation. The Li and Stephens (2003) haplotype copying model
(hereafter, LS) is an approximation to the conditional distribution of a “focal” haplotype (e.g.,
a chromosome) given a set of other “panel” haplotypes. It supposes that the focal haplotype
copies with error from different members of panel, occasionally switching to a new template
due to recombination. Genealogically, this can be interpreted as finding the local genealogi-
cal nearest neighbor (GNN) of the focal haplotype within the panel. LS has been used exten-
sively in applications, for example phasing diploid genotype data into haplotypes (Stephens
and Scheet, 2005) and imputing missing data (Li and Abecasis, 2006; Scheet and Stephens,
2006; Marchini et al., 2007; Howie, Donnelly and Marchini, 2009). The method’s undeniable
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TABLE 5
Proportion of segregating sites where XSMC and the Li and Stephens’ agree on the GNN.

Panel Size 2 4 10 25 100

Chromosome 10 0.9042 (0.0031) 0.6653 (0.0047) 0.5537 (0.0019) 0.7738 (0.0019) 0.8390 (0.0053)
Chromosome 13 0.9054 (0.0030) 0.6664 (0.0051) 0.5470 (0.0028) 0.7787 (0.0019) 0.8387 (0.0036)

success is actually somewhat surprising, since it assumes an extremely simple genealogical
relationship between the focal and panel haplotypes which ignores time completely (Paul and
Song, 2010; Paul, Steinrücken and Song, 2011). Hence, while we motivated XSMC as a fast
and slightly more approximate SMC prior, it can also be seen as a more biologically faithful
version of LS.

We wondered whether our method could be used to improve downstream phasing and
imputation. Fully implementing a phasing or imputation pipeline is beyond the scope of
this paper, so we settled for checking in simulations whether decoding results produced by
XSMC were more genealogically accurate than those obtained using LS. We simulated data
using realistic models of human chromosomes 10 and 13 (Adrion et al., 2019). We chose
these two because chromosome 10 is estimated to have an average ratio of recombination to
mutation slightly above 1 (ρ/θ = 1.07), while in chromosome 13 the ratio is slightly below
1 (ρ/θ = 0.87). The ratio of recombination to mutation affects the difficulty of phasing and
imputation, with higher ratios leading to less linkage disequilibrium and thus less accurate
results. We also explored the effects of varying the size of the haplotype panel. For each
chromosome, we simulated 25 data sets with panels of size H = 2,4,10,25,100.

As a proxy for phasing and imputation accuracy, we studied which method identified a ge-
nealogical nearer neighbor on average. The GNN at a given position is defined to be any panel
haplotype that shares the earliest common ancestor with the focal haplotype. In other words,
any panel haplotype that has the smallest TMRCA with the focal haplotype is a GNN. (Note
that there may be more than one GNN.) For purposes of accurate phasing and imputation, it
is desirable to identify the GNN as closely as possible.

For each simulation we computed the Viterbi path from XSMC and LS, and studied the
proximity of those paths to the true GNN at each segregating site. Table 5 shows the propor-
tion of segregating sites where XSMC and LS both estimated the same haplotype to be the
GNN. There is a high level of agreement, 80-90%, between the two methods for both small
and large panel sizes. When the panel size is small (H = 2), there are few possible choices,
and when the panel size is large (H = 100) the decoding consists mostly of long, recent
stretches of IBD which are fairly easy to estimate. Disagreement is highest for intermediate
values H = 4,10,25 where neither of these effects dominates. At sample size H = 10 the
methods only agree at about half of segregating sites.

At the 10-50% of sites where the methods disagree, the results indicate a statistically sig-
nificant gain for XSMC compared to LS. Table 6 shows that conditional on the two methods
inferring different haplotypes as the GNN at that site, XSMC finds a genealogical nearer
neighbor more often in all scenarios. This difference is most pronounced at the intermediate
panel sizes, H = 4,10, where XSMC selects a closer neighbor more than 80% of the time.
The advantage of using XSMC increases, albeit slightly, in chromosome 13, indicating that
our method may have an advantage when ρ/θ is smaller.
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TABLE 6
Proportion of segregating sites that XSMC finds the more closely related haplotype than the Li and Stephens’

method conditional on the two methods inferring different haplotypes at that site.

Panel Size 2 4 10 25 100

Chromosome 10 0.6860 (0.0018) 0.8142 (0.0041) 0.8351 (0.0015) 0.6838 (0.0127) 0.6528 (0.0058)
Chromosome 13 0.7160 (0.0013) 0.8322 (0.0038) 0.8495 (0.0023) 0.7037 (0.0122) 0.6766 (0.0112)

5. Conclusion. In this article, we studied the sequentially Markov coalescent, a frame-
work for approximating the likelihood of genetic data under various evolutionary models. We
proposed a new inference method which supposes that the heights of neighboring identity-
by-descent segments are independent. We showed that this led to decoding algorithms which
are faster and have less bias than existing algorithms.

There are several possible extensions to our work. It is straightforward to extend our tech-
niques to allow for position-specific rates of recombination and mutation, which could then
be used to infer spatial or motif-specific variation in these processes.

Although we focused here on analyzing data from a single, panmictic population, we can
also use posterior samples or MAP estimates to infer more complicated models of popu-
lation structure. It is also possible to extend some of our techniques to other priors which
model correlations between adjacent IBD segments. For the Viterbi decoder, we were able to
implement a version of the algorithm in Section 3.3 which works for McVean and Cardin’s
original SMC model. This could be useful, for example, if analyzing data from a structured
population, to the extent that adjacent segments of identity by descent are more likely to
derive from members of the same subpopulation. However, the resulting procedure is much
more complicated. The Viterbi function Vn(t) no longer has the tractable form derived in
Theorem 2. Consequently, we cannot use a simple method like the one in Appendix B to
perform the pointwise maximization in equation (17). Instead, numerical optimization must
be used instead, resulting in a slower algorithm. Similarly, on the Bayesian side, though there
has been some work on posterior inference for correlated changepoint models (Fearnhead
and Liu, 2011), these methods are slower and no longer sample exactly from the posterior.

Another interesting possibility is to use our method to estimate ancestral recombination
graphs. Recently, there has been a resurgence of interest in inferring ARGs using large sam-
ples of cosmopolitan genomic data (Kelleher et al., 2019; Speidel et al., 2019). Although
these represent an impressive breakthrough, they rely on heuristic estimation procedures
that do not directly model the underlying genealogical process that generates ancestry. Our
method provides a new possibility for ARG estimation, by iteratively "threading" each addi-
tional samples onto a sequence of estimated genealogies, but without the need to discretize
those genealogies (Rasmussen et al., 2014). These and other extensions are the subjects of
ongoing work.

Data and code availability. All of the data analyzed in this paper are either simu-
lated, or publicly available. A Python package implementing our method is available at
https://terhorst.github.io/exact_smc. Code which reproduces all of the fig-
ures and tables in this manuscript is available at https://terhorst.github.io/
exact_smc/paper.
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APPENDIX A: FORWARD RECURSION CONSTANTS

In this section we derive the exact mixing weights and scale/shape parameters for the
mixture representation proved in Theorem 1. Define γ(x;a, b) to be the PDF of the gamma
distribution with mean a/b and variance a/b2,

γ(x;a, b) =
xa−1e−bx

Γ(a)ba
.

To conserve notation, in this section we use the following array-based conventions for vector
expressions:

• Scalar functions operate on vectors in a component-wise manner. For example, if x,y,z ∈
Rk then

2xey/z= 〈2x1ey1/z1, . . . ,2xne
yn/zn〉 .

In particular, for vectors α,a,b ∈Rn,

αγ(·;a,b) = 〈α1γ(·;a1, b1), . . . , αnγ(·;an, bn)〉 .

• A binary operation between a scalar and a vector “broadcasts” the scalar to the dimension
of the vector. For example, 1 + x= 〈1 + x1, . . . ,1 + xn〉.

• To refer to individual entries of subscripted vectors, we will use the notation xnJiK. A
subvector (“slice”) of xn of length i≤ n is denoted xnJ1 : iK = 〈xnJ1K,xnJ2K, . . . ,xnJiK〉 .

• The sum of all the entries of x is denoted
∑

x=
∑n

i=1 xi.

Additionally, we define the following function for later use:

f(a, b, c, y) =
θyba

(b+ c)a+y

Γ(a+ y)

Γ(a)Γ(1 + y)
.(22)

We prove the following theorem in the case where π is a gamma distribution. Extending
the proof to gamma mixtures requires no new ideas, only notation; details are left to the
reader.

THEOREM 4. Suppose that π(x) = γ(x;a0, b0). For each n ∈ [N ] let an,bn ∈ Rn be
defined by

anJiK = 1+ a0 +

n∑
i=1

Yi

bnJiK = 1+ θ+ (n− i)(θ+ ρ),

and define α0
n,αn ∈Rn and Cn ∈R by the recursions

α1 = 1

α0
nJ1 : n− 1K =αn−1f(an−1,bn−1, θ+ ρ,Yn)
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α0
nJnK = f(a0, b0, θ, Yn) (1−

∑
αn−1 [bn−1/(bn−1 + ρ)]an−1)

Cn =
∑

α0
n

αn =αn/Cn.

Then

(23) p(Xn | Y1:n) =
∑

αnγ(x;an,bn),

and additionally Cn = p(Yn | Y1:n−1).

PROOF. By induction on n. The base case p(X1 | Y1) follows from Fact 1 in the main text.
For the general case, assume that p(Xn | Y1:n) has the form shown in (23). Then

p(Xn+1 | Y1:n+1)∝
∫
Xn

p(Yn+1,Xn+1,Xn | Y1:n),(24)

= p(Yn+1 |Xn+1)

∫
Xn

p(Xn+1 |Xn)p(Xn | Y1:n),

where the constant of proportionality Cn+1 = p(Yn+1 | Y1:n) does not depend on Xn+1.
Using the transition rule (4), this implies∫

Xn

p(Xn+1 |Xn)p(Xn | Y1:n)

=

∫
Xn

[δ(Xn −Xn+1)e
−ρXn + (1− e−ρXn)π(Xn+1)]p(Xn | Y1:n)

= e−ρXn+1p(Xn =Xn+1 | Y1:n) + π(Xn+1)

∫
Xn

(1− e−ρXn)p(Xn | Y1:n)

= e−ρXn+1p(Xn =Xn+1 | Y1:n) + π(Xn+1)

[
1−

∫
Xn

e−ρXnp(Xn | Y1:n)
]
.

Now, by the inductive hypothesis and the identity

(25) γ(x;a, b)xce−dx = ba(b+ d)−(a+c)Γ(a+ c)

Γ(a)
γ(x;a+ c, b+ d)

we obtain, for α′
n =αn [bn/(bn + ρ)]an ,∫

Xn

p(Xn+1 |Xn)p(Xn | Y1:n) =
∑

α′
nγ(Xn+1;an,bn + ρ) +

(
1−

∑
α′

n

)
π(Xn+1).

Multiplying through by

p(Yn+1 |Xn+1) = e−θXn+1(θXn+1)
Yn+1/Yn+1!

yields

(26) p(Xn+1 | Y1:n+1)∝∑
αn f(an,bn, θ+ ρ,Yn+1)︸ ︷︷ ︸

(A)

γ(Xn+1;an + Yn+1,bn + θ+ ρ)

+ f(a0, b0, θ, Yn+1)
(
1−

∑
α′

n

)︸ ︷︷ ︸
(B)

γ(Xn+1; 1 + a0 + Yn+1, b0 + θ),

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.21.307355doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.307355
http://creativecommons.org/licenses/by-nc/4.0/


EXACT SMC 27

by (22) and (25). If we make the additional definitions

an+1J1 : nK= an + Yn+1(27)

an+1Jn+ 1K = 1+ a0 + Yn+1(28)

bn+1J1 : nK= θ+ ρ+ bn(29)

bn+1Jn+ 1K = 1+ θ(30)

C−1
n+1 =

∑
A+B(31)

αn+1J1 : nK=C−1
n+1A(32)

αn+1Jn+ 1K =C−1
n+1B(33)

then (26) can be written as

p(Xn+1 | Y1:n+1) =
∑

αn+1γ(Xn+1;an+1,bn+1),

completing the proof. The recursive definition for αn+1 follows from (32) and (33), and
the representations for an+1 and bn+1 follow from (27)–(30). Finally, note that Cn+1 is
precisely the constant of proportionality in (24) and therefore equals the conditional evidence
p(Yn+1 | Y1:n).

APPENDIX B: COMPUTING THE POINTWISE MAXIMUM IN VK
In this section we derive a procedure for finding the pointwise maximum max{f, g} when

f, g ∈ VK . By enlarging K if necessary, we can without loss of generality assume that f and
g are defined on the same set of breakpoints. Then it suffices to show how to find the zeros
(if any) of the function h= f − g ∈ VK over any given interval.

Accordingly, let h(t) = at+ b log t+ c for τ ∈ I := [τ1, τ2). By the change of variables
− log t→ u it is equivalent, and slightly simplifies the math, to find the zeros of h(u) =
ae−u − bu+ c over an arbitrary interval I . Since interchanging the roles of f and g does not
change the result, we may also assume that a ≥ 0, and if a = 0 then we may assume that
b≥ 0.

Let w = −aec/b/b. If w ≥ 0 then h(u) has a single real root u0 =W0(w)− c/b, where
W0(x) denotes the principal branch of the Lambert W function (DLMF, §4.13). If −1/e≤
w0 < 0 then h(u) has two real roots, one at u0 and the other at u1 =W−1(w)− c/b where
W−1 is the −1 branch of the Lambert W function.

We will use repeatedly the fact that a trivial solution exists whenever h can be shown to
be globally decreasing, since:

• If h(τ2)≥ 0 then the function is non-negative over I , so the maximum is f .
• If h(τ1)< 0 then the function is negative over I , so the maximum is g.
• Else the function has a single root u0 ∈ I , so the maximum is f on [τ1, u0) and g on
[u0, τ2).

To find the zeros of h(u), we proceed by cases:

• If b= 0:
– If a= 0 then h= c, so the maximum over I is either f or g depending on the sign of c.
– Else (a≥ 0, b= 0):

* If c≥ 0 then h= f − g ≥ 0 so the maximum over I is f .
* Else, we have h′ =−uae−u + c < 0 so the function is decreasing.

• If a= 0 then we assume that b≥ 0. Then h′(u) =−b≤ 0, so h is decreasing.
• Else (a > 0, b 6= 0):

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.21.307355doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.307355
http://creativecommons.org/licenses/by-nc/4.0/


28

– If b > 0 then h′(u) =−ae−u − b < 0 so h is decreasing.
– Else we have h′′(u) = ae−u > 0 so the function is convex with a global minimum at

u∗ = log(−a/b):
* If h(u∗)> 0 then the function is non-negative so the maximum is f .
* Otherwise, h is convex with

lim inf
u→−∞

h(u) = lim inf
u→∞

h(u) =∞,

so it has two real roots u0 and u1. Without loss of generality assume u0 ≤ u1. There
are

(
4
2

)
cases to consider depending on the ordering of u0, u1, τ1, τ2. For example, if

τ1 < u0 < u1 < τ2 then h is positive on [τ1, u0), negative on [u0, u1) and positive on
[u1, τ2), leading to a pointwise maximum function which takes on the values f, g, f
on those three intervals. The other five cases are handled similarly, and we omit the
details.

The running time of this procedure is O(1) assuming we can evaluate Wn(w) in constant
time. Thus, to find the pointwise maximum of f and g when both have are defined on K
pieces takes O(K) time.

APPENDIX C: EXPECTED TIME TO COALESCENCE

In this section we describe how to calculate the expected time to coalescence which we
use in the simulations in Sections 4.1.1 and 4.1.2. Suppose we have discretized time into the
following set of m+ 1 times points t0 = 0< t1 < · · ·< tm =∞. Precisely, the distribution
of time to coalescence within epoch Iϵ = [tϵ−1, tϵ) is

Cϵ ∼ tϵ−1 +Zϵ

where Zϵ is a truncated exponential in the interval [0, tϵ − tϵ−1) with parameter ηϵ =
1/Ne(tϵ−1). The expectation of Zϵ is

E(Zϵ) =

∫ δ
0 zηϵe

ηϵzdz

1− e−ηϵδ
=

1− e−ηϵδ − ηϵδe
−ηϵδ

ηϵ(1− e−ηϵδ)
=

1

ηϵ
+

δ

1− e−ηϵδ

where δ = tϵ − tϵ−1.
Finally, with some algebra we have that

E(Cϵ) = tϵ +
1

ηϵ
+

δ

e−ηϵδ − 1
.

The final epoch Im = [tm−1, tm) = [tm−1,∞) is not bounded above, so the time to coa-
lescence simply follows an exponential random variable with parameter ηm−1 without trun-
cation. Thus the expected time to coalescence is simply given by

E(Cm) = tm−1 +
1

ηm
.

SUPPLEMENTARY MATERIAL

Additional figures and tables
().
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FIG S1. Comparison of Viterbi path between Markovian and renewal approximations.

TABLE S1
Mean relative error (ErrB) over 25 runs under each scenario. Standard error in parenthesis.

Scenario 1 2 3 4

Markov 0.1362 (0.0035) 0.1281 (0.0024) 0.3051 (0.0013) 0.3006 (0.0014)
Renewal 0.1437 (0.0026) 0.1359 (0.0025) 0.3451 (0.0046) 0.3422 (0.0014)
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FIG S2. Comparison of posterior heatmap between Markovian and renewal approximations. The top panel in
each group is the posterior given by the Markovian prior and the bottom panel is the posterior given by the
renewal prior.
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TABLE S2
Mean relative error (ErrB) over 25 runs under each scenario stratified by quartile. Standard error in

parenthesis.

Scenario 1 2 3 4

Markov Q1 0.1479 (0.0056) 0.1328 (0.0033) 0.3212 (0.0020) 0.3080 (0.0022)
Renewal Q1 0.1563 (0.0045) 0.1413 (0.0034) 0.3299 (0.0057) 0.3119 (0.0018)
Markov Q2 0.1279 (0.0023) 0.1253 (0.0023) 0.2755 (0.0016) 0.2863 (0.0016)
Renewal Q2 0.1373 (0.0024) 0.1336 (0.0024) 0.3277 (0.0019) 0.3480 (0.0022)
Markov Q3 0.1255 (0.0029) 0.1242 (0.0036) 0.2826 (0.0020) 0.2857 (0.0022)
Renewal Q3 0.1324 (0.0033) 0.1293 (0.0039) 0.3769 (0.0024) 0.3857 (0.0024)
Markov Q4 0.1197 (0.0036) 0.1216 (0.0032) 0.3168 (0.0026) 0.3178 (0.0021)
Renewal Q4 0.1247 (0.0040) 0.1278 (0.0036) 0.4546 (0.0029) 0.4568 (0.0023)

TABLE S3
Mean counts of loci in each quarter for under each scenario across 25 simulations. Standard error in

parenthesis.

Scenario 1 2 3 4

Q1 25878.20 (951.37) 28103.76 (1075.15) 27807.96 (580.26) 27659.64 (233.24)
Q2 12037.56 (646.81) 10589.40 (702.38) 10931.92 (331.94) 11149.32 (143.83)
Q3 7917.24 (461.61) 7231.24 (509.98) 7200.76 (178.59) 7119.12 (95.21)
Q4 4167.00 (360.71) 4075.60 (272.09) 4059.36 (124.89) 4071.92 (90.72)

TABLE S4
Mean relative error (ErrB) over 25 runs under each scenario. Standard error in parenthesis.

Prior Used

Simulation Model Africa Zigzag Constant

Africa 0.3293 (0.0004) 0.3934 (0.0005) 0.3549 (0.0004)
Zigzag 0.3678 (0.0041) 0.3548 (0.0042) 0.3788 (0.0038)
Constant 0.3496 (0.0068) 0.3955 (0.0059) 0.3679 (0.0064)

TABLE S5
Mean relative error (ErrB) over 25 runs under each scenario. Standard error in parenthesis.

Scenario 1 2 3 4

MAP 0.1332 (0.0048) 0.1224 (0.0041) 0.3388 (0.0035) 0.3447 (0.0029)
Bayesian 0.1098 (0.0052) 0.1112 (0.0034) 0.2584 (0.0067) 0.2278 (0.0012)
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FIG S4. Comparison of posterior using different demographic priors. The figure is broken into groups of three
panels where the data in the first three panels were generated by the Africa demography model, the second three
by the zigzag model, and the last three by a constant population size model. Within each group of three, the first
panel is the posterior using the Africa model as a demographic prior, the second using the zigzag model, and the
last using a constant model. The red line in each panel is the true TMRCA.
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FIG S5. Comparison of Bayesian and frequentist method on simulated data. The light purple lines represent
sample paths drawn from the posterior.
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FIG S6. Mean running time of XSMC over various chromosome lengths on a log-log scale. The bands represent
the standard error of the runs.
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