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Abstract

We present EPISPOT, a fully joint framework which exploits large panels of epigenetic

marks as variant-level information to enhance molecular quantitative trait locus (QTL) map-

ping. Thanks to a purpose-built Bayesian inferential algorithm, our approach effectively couples

simultaneous QTL analysis of thousands of genetic variants and molecular traits genome-wide,

and hypothesis-free selection of biologically interpretable marks which directly contribute to the

QTL effects. This unified learning approach boosts statistical power and sheds light on the

regulatory basis of the uncovered associations. EPISPOT is also tailored to the modelling of

trans-acting genetic variants, including QTL hotspots, whose detection and functional interpre-

tation are challenging with standard approaches. We illustrate the advantages of EPISPOT

in simulations emulating real-data conditions and in an epigenome-driven monocyte expression

QTL study which confirms known hotspots and reveals new ones, as well as plausible mecha-

nisms of action. In particular, based on monocyte DNase-I sensitivity site annotations selected

by the method from > 150 epigenetic annotations, we clarify the mediation effects and cell-

type specificity of well-known master hotspots in the vicinity of the lyzosyme gene. EPISPOT

is radically new in that it makes it possible to forgo the daunting and underpowered task of

one-mark-at-a-time enrichment analyses for the prioritisation of QTL hits. Our method can be

used to enhance the discovery and functional understanding of signals in QTL problems with

all types of outcomes, be they transcriptomic, proteomic, lipidomic, metabolic or clinical.

Keywords: Epigenetic annotations; Hierarchical modelling; Large-scale multivariate mapping;

Molecular QTL studies; Scalable variational EM algorithm; Trans hotspots.

Introduction

Molecular datasets and annotation databases are growing in size and in diversity. In particular,

genetic data are now routinely collected along with gene, protein or metabolite level measurements

and analysed in molecular quantitative trait locus (QTL) studies, with the aim of unravelling the
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regulatory mechanisms underlying common diseases. However, these studies present additional

complexities compared to classical genome-wide association studies (GWAS). First, they entail a

very different statistical paradigm: while GWAS consider a single or a few related clinical traits,

molecular QTL studies typically involve hundreds or thousands of molecular traits, regressed on

hundreds of thousands of genetic variants. Second, they need to accommodate two types of genetic

control: a variant may affect molecular products of genes in its vicinity (cis action) or products of

remote genes (trans action), where the latter mode of control is typically much weaker and, hence,

harder to uncover than the former. In particular, pleiotropic or hotspot genetic variants may exert

weak trans effects on many molecular traits.

The current mapping practice only partially embraces the features of QTL studies. Indeed,

widely-used marginal screening approaches [1, 2] suffer from a large multiplicity burden and tend

to lack of statistical power as they do not exploit the regulation patterns shared by the molecular

entities, whereas joint modelling approaches [3, 4] are often limited by the computational burden

implied by the exploration of high-dimensional spaces of candidate variants and traits. To manage

this tension between scalable inference and comprehensive joint modelling, we recently proposed a

variational inference approach, called ATLASQTL [5], which explicitly borrows information across

thousands of molecular traits controlled by shared pathways, and offers a robust fully Bayesian

parametrisation of hotspots; its increased sensitivity and that of earlier related models have been

demonstrated in different molecular QTL studies [4–7].

In complement to the actual mapping task, biologists increasingly try to capitalise on the wealth

of available epigenetic annotation sources to infer the functional potential of genetic variants. The

standard strategy uses epigenetic marks mostly for prioritisation of hits derived from marginal

screening: it consists in looping through all the loci with statistically significant associations and,

for each locus, inspecting a few marks to decide on “a most promising” functional candidate genetic

variant among all those in linkage disequilibrium. This approach presents the following disadvan-

tages: first, publicly available databases nowadays contain several hundreds of epigenetic marks for

each variant. Preselecting just a few may involve omitting others that are relevant, which may bias

the conclusions. Second, even if a comprehensive inspection were feasible, the degrees of relevance

of the marks may be very uneven and may depend on the conditions, cell types, tissues, and even

genomic regions considered, so it is unclear how to weight each contribution.

Here, we argue that the epigenome can serve both to increase statistical power for QTL mapping

and to shed light on the biology underlying the uncovered genetic map in a systematic manner. We

propose to couple a fully Bayesian QTL mapping strategy, in which all loci and molecular traits are

analysed jointly, with a principled leveraging of epigenetic information by treating this information

as complementary predictor-level data that may inform the probability of genetic variants to be

involved in QTL associations. As successfully demonstrated in the context of GWAS [8, 9], suitable

use of epigenetic information can boost the detection of weak associations and help in discriminating

genuine signals from spurious ones caused by linkage disequilibrium or other confounding factors

[10, 11].

We introduce a novel approach, called EPISPOT, which infers the role of sparse sets of marks —

from hundreds of candidate epigenetic marks — in the activation of both cis and trans mechanisms

affecting a whole network of molecular traits. Importantly, our proposal combines this epigenome-

driven feature with the flexible hotspot modelling feature from our previous work [5], thereby
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offering a unified toolkit to refine the detection of master trans-hotspots from panels of candidate

loci, aided by the epigenetic information at hand. The base version of EPISPOT assesses the action

of the marks uniformly for the full set of analysed transcripts. However, for cases where a sensible

partition into subsets of co-expressed molecular traits (modules [12]) is available, we also develop a

module version of EPISPOT, which accommodates module-specific epigenetic action by estimating

the contribution of the marks to the QTL associations in each module.

Our take is that fully joint modelling is paramount to borrow information across loci, epige-

netic marks and molecular traits with complex dependences, but this requires careful algorithmic

considerations to ensure scalable inference while retaining accuracy. EPISPOT implements an

adaptive and parallel variational expectation-maximisation (VBEM) algorithm, augmented with a

simulated annealing scheme which effectively explores the multimodal parameter spaces induced by

highly-structured data. This optimisation routine is purposely tailored to the analysis of genetic

data with strong linkage disequilibrium blocks, for which the inclusion of the epigenetic data has

the greatest impact.

EPISPOT is not targeted at genome-wide discovery but at effecting refined QTL mapping and

hotspot prioritisation, based on genomic regions — or candidate loci — believed to be involved in

QTL regulation. The candidate loci can be obtained from an application of ATLASQTL or from

another preliminary screening, ideally on an independent dataset (see Figure 1D for a typical anal-

ysis workflow and Methods section for details). A crucial distinction with the existing enrichment

approaches is that the candidate loci do not correspond to a previously-determined list of QTL

hits but are whole genomic regions, which can harbour hundreds of genetic variants (most of them

with no QTL activity). EPISPOT exploits shared epigenetic signals across these regions to then

select QTL hits from them with an increased statistical power.

Our framework also constitutes a novel tool for interpreting (i) the detected trans-acting and

hotspot variants based on their overlap with the selected epigenetic marks, and (ii) the molecular

traits under genetic control in light of these marks. This additional purpose of EPISPOT is key

given that elucidating the mechanisms of action of hotspots is often as challenging as mapping them

in the first place. Indeed, there is accumulating evidence that most genetic variants acting in trans

lie in intergenic regions [e.g., 13–15], where functional roles are difficult to decipher. Moreover, the

massive trans-gene networks under genetic control are thought to be subject to subtle interplays

[16], and researchers are often left with a variety of possible strategies to try to understand the

interacting pathways between the genotype and underlying disease endpoints. These strategies

range from hypothesis-driven bottom-up approaches that start from isolated mechanisms and try

to generalise them (e.g., based on cis-mediation hypotheses), to agnostic top-down approaches that

directly model the whole system in view of teasing apart its fundamental components (e.g., based

on graphical modelling approaches); see [17] for a review. Our approach provides an alternative

anchor towards decoding the complex networks controlled by hotspots, namely via the epigenetic

marks found to be informative for the genetic mapping.

Importantly, fruitful applications of EPISPOT, that can successfully decipher part of the

molecular regulation machinery, require problems where the signal-to-noise and density of epi-

genetic/QTL signals are sufficient. We will describe extensive simulation experiments to highlight

the benefits of using epigenetic information when available for a panel of regulatory program sce-

narios, and we will question the conditions under which inference is adequately powered to leverage

3

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.21.305789doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.305789


this information. We will therefore formulate guidelines for practical use and provide a software

implementation of EPISPOT along with documented code for the data-generation procedure used

in the simulation experiments.

Another key component of the present paper concerns illustrating and exploiting the advantages

of EPISPOT in real molecular QTL conditions. We will conduct and discuss the findings of a

thorough monocyte expression QTL (eQTL) study leveraging a panel of annotations, including

DNase-I sensitivity sites identified in different tissues and cell types, Ensembl gene annotations

and chromatin state data from ENCODE. In particular, by pinpointing context-relevant marks in

a hypothesis-free manner, EPISPOT will allow us to disentangle key mechanisms pertaining to the

lyzosyme pleiotropic activity of chromosome 12 — an activity which, although reported in several

studies, was so far left unexplained in terms of its functional and mediation processes. Obtaining

such evidence without EPISPOT would involve the daunting task of evaluating the enrichment

of candidate eQTL hits in each individual epigenetic mark; this would also have no guarantee

of success since one-at-a-time inspection strategies are deprived of the enhanced statistical power

obtained with a unified joint epigenome/QTL mapping strategy.

Results

Two-level hierarchical regression model. We consider a Bayesian model linking three data

sources (Figure 1A) with two levels of hierarchy, each involving a spike-and-slab regression for-

mulation (Figure 1B and Methods section). It is meant to be used as a refining analysis tool, on

candidate loci and molecular traits for which some degree of involvement in genetic regulation has

been evidenced (Figure 1D and Methods section).

The bottom level of the model uses a series of conditionally independent regressions to

parametrise the QTL effects, i.e., the regulation of q molecular traits — gathered in an n × q

matrix y = (y1, . . . ,yq) — by p candidate genetic variants or single nucleotide polymorphisms

(SNPs) — gathered in an n× p matrix X = (X1, . . . ,Xp) — for n samples. It models the QTL

associations using a binary latent parameter γst taking value 1 if and only if SNP s is associated

with trait t. The posterior means of the γst then correspond to marginal posterior probabilities of

inclusion of the SNP-trait pairs, pr(γst = 1 | y) (qtl-PPIs, Figure 1C), from which Bayesian false

discovery rate (FDR) estimates can be obtained.

The top-level hierarchy then lets the primary QTL associations be informed by r candidate

epigenetic marks for the p SNPs — gathered in a p× r matrix V = (V1, . . .Vr) — via a spike-and-

slab probit regression on the probability of effects. Although prior information on the relevance of

the marks for the QTL control can be accommodated if desirable, this is not required, as the use of

a sparse prior on the mark effects ξ allows incorporating a large number of marks even though only

a fraction may be responsible for genetic activity. In particular, if none of the marks are relevant,

the QTL mapping will not suffer any bias from modelling the candidate marks (see simulations

studies hereafter). Moreover, similarly as for the QTL effects, mark selection is easily achieved

using posterior probabilities of inclusion, pr(ρl = 1 | y), corresponding to the posterior means of

the binary latent inclusion indicators ρl (epi-PPIs, Figure 1C). This typically yields a sparse subset

of marks, whose biological interpretation may help in understanding the mechanisms of action of

the SNPs involved in the QTL associations.
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Figure 1: Overview of EPISPOT. A: Data input. Epigenetic annotations (predictor-level information) V ,
genetic variants from candidate loci (candidate predictors) X, molecular traits (responses) y. B: Graphical
representation for the two-level hierarchical model. The shaded nodes are observed, and the others are
inferred. The top-level regression corresponds to the top plate; the probability of association is decoupled
into a trait-specific contribution, ζt, a SNP-specific contribution with a “hotspot propensity parameter” θs
and an epigenome-specific contribution, ξl, where Vl is the vector gathering the observations of predictor-
level epigenetic covariate l for all candidate SNP predictors Xs, s = 1, . . . , p. Parameter βst models the
effect between SNP Xs and trait yt, and γst and ρl are binary latent indicators for the QTL associations
and epigenetic mark involvement respectively. Parameter σ models the typical size of QTL effects and τt
models the residual variability of trait yt. See also Methods section. C: Posterior output. Selection of
epigenetic marks with a role in QTL regulation is carried out using the posterior probabilities of inclusion
(epi-PPIs), pr(ρl = 1 | y), l = 1, . . . , r (bottom left) and selection of associated SNP-trait pairs (aided
by the marks) is carried out using the the posterior probabilities of inclusion (qtl-PPIs), pr(γst = 1 | y),
s = 1, . . . , p; t = 1, . . . , q (bottom right). The hotspot Manhattan plot (top) reports the number of traits
associated with each SNP (“hotspot size”), after using a selection threshold on the qtl-PPIs (e.g., FDR-
based). D: EPISPOT workflow. Candidate loci and molecular traits are obtained from a preliminary
screening or from existing databases, and supplied as input to the method along with epigenetic marks at
the variants present in the loci. The algorithm is used with or without the module option depending on
whether the traits are gathered into modules or not (M-EPISPOT in grey, resp. EPISPOT in blue). The
output consists of sets of associated variants and traits, QTL hotspots and epigenetic marks relevant to the
primary QTL associations, for given significance thresholds. It is then interpreted to generate mechanistic
hypotheses about the functional processes underpinning the QTL associations.

Finally, the propensity of each SNP to be associated with many traits, i.e., to be a hotspot, is

explicitly modelled using a SNP-specific parameter, θs, similarly as in our earlier work [5].

In summary, the EPISPOT model borrows information across the three types of entities (epige-

netic marks, SNPs and molecular traits) in a unified manner, while providing interpretable posterior

quantities, in particular qtl-PPIs and epi-PPIs, for the selection of each type of variables. It lever-
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ages the epigenome for two complementary purposes: (1) to enhance statistical power for QTL and

hotspot mapping and (2) to shed light on the biology underlying the genetic control, via the inspec-

tion of the selected marks. The model is described in full in the Methods section and Additional

file 1.

A modification for module-specific epigenetic contributions. The machinery of genetic

control is complex and it is unlikely that the action of the epigenome on QTL regulation will

uniformly affect the transcriptome. In particular, different groups of molecular traits may be

governed by different functional mechanisms, involving different sets of epigenetic marks, to different

degrees. When a partition into modules of genes (proteins or metabolites for pQTL or mQTL

analyses, respectively) likely to be co-regulated is available to the analyst, it can be provided as

input to the method which will then infer the annotation effects in a module-specific fashion. The

modification of the top-level model hierarchy is detailed in Methods section and the corresponding

version of the algorithm is hereafter called M-EPISPOT when an explicit distinction with the base,

module-free version is needed.

Different approaches, based on some prior state of knowledge, on specific optimisation methods

or both, will typically yield complementary definitions of modules. In some instances, there will

be obvious biological reasons backing up the obtained grouping, in others, no clear partitioning

will emerge, in which case the analyst may choose to use the module-free version of the model.

As there is no generic strategy for forming modules, it is important to understand the impact of

such choices on inference. In particular, from a modelling point of view, a given module should

ideally comprise co-regulated molecular traits, i.e., traits under genetic control and correlated to

common epigenetic marks. The top-level regression will then represent the possible epigenetic

effects underlying the functional mechanisms in the module, and module-specific epi-PPIs will be

useful to select the marks involved in the regulation of each module. In particular, shared signals

will be best leveraged when the molecular traits controlled by a given SNP belong to a same module.

The simulation studies and the eQTL analysis will provide practical guidelines as well as analyses

of sensitivity to module misspecification.

A scalable purpose-built algorithm. The hierarchical model described above couples two levels

of spike-and-slab regression, which accommodate three large spaces of SNPs, molecular traits and

epigenetic marks, with possibly thousands of variables each. Careful algorithmic strategies are

therefore critical to ensure that inference is accurate and scalable. To meet both requirements, we

implement an adaptive variational expectation-maximisation (VBEM) algorithm and augment it

with a simulated annealing procedure that efficiently explores the highly multimodal variable spaces

formed by data with strong dependence structures. This annealing feature is designed to robustly

infer signals from genotyping data with marked linkage disequilibrium structures, whereby the

inclusion of epigenetic information is particularly beneficial to disentangle the genetic contributions.

Moreover, for M-EPISPOT, inference can be performed in two stages and in parallel across the

modules, saving substantial computational time. Both the EPISPOT and M-EPISPOT versions

run within minutes to few hours depending on the numbers of loci, molecular traits and epigenetic

marks.
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The details and a sketch of the algorithm are provided in the Methods section. The full deriva-

tion of the annealed VBEM updates is in the Additional file 2. The algorithm is implemented as a

publicly available R package with C++ subroutines [18].

Data generation and simulation set up. The series of simulation studies presented in the next

sections have the dual purpose of (i) illustrating the effectiveness of EPISPOT in learning from the

epigenome when the epigenetic annotations at hand are sufficiently informative (first simulation

study), and (ii) evaluating the method in weakly informative scenarios (second simulation study)

or scenarios where the module partition supplied to M-EPISPOT is misspecified (third simulation

study).

We simulate data so as to best emulate molecular QTL regulation and the role of the epigenome

in triggering this regulation; the general data-generation procedure is detailed in the Methods

section and we further tailor it to each simulation experiment in their dedicated sections. We use

the following terminology when referring to the simulated association patterns:

• an active SNP is a SNP with at least one association with a molecular trait;

• an active locus is a locus which involves at least one active SNP;

• an active trait is a trait with at least one association with a SNP;

• an active module is a module which contains at least one trait involved in QTL associations;

• an active mark is a mark which triggers at least one SNP-trait QTL association;

• the hotspot size is the number of traits associated with a given hotspot SNP.

A first illustration. We first describe the type of posterior output produced by EPISPOT and its

performance in a simple problem where no modules are involved, i.e., the active epigenetic marks

exert their influence on all associated SNP-trait pairs.

We simulate 32 datasets with an average of 600 molecular traits, r = 500 candidate epigenetic

marks and 60 candidate loci, each comprising an average of 20 real SNPs for 413 subjects. A subset

of 100 SNPs are active (between 0 and 3 per locus) and their QTL effects are triggered by r0 = 3

active marks. This is a strong assumption, which permits a direct illustration of our algorithm

in a simple setting, but since it may be unrealistic, we will only use it as a starting point for the

more complex numerical experiments that follow. To help interpretability in the context of the

simulations, we also generated marks with positive effects only, i.e., inducing QTL activity and

not repressing it (Methods section). The QTL signals are relatively weak: for any given trait, the

cumulated QTL effects are responsible for at most 25% of its total variance. Many active SNPs are

hotspots; across all 32 replicates, the active SNPs are associated with a number of traits ranging

from 1 (isolated QTL association) to 96 (large hotspot), with an average of 27 active traits per

active SNP.

We benchmark our approach against our earlier joint model, ATLASQTL [5], also tailored

to the modelling of hotspots but which does not accommodate the epigenetic marks, as well as

with the purely marginal screening approach, MATRIXEQTL [2], which tests each SNP-trait pair

one-by-one and does not involve any epigenetic information.
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Figure 2: Performance for selection of epigenetic marks, pairs of associated SNPs and traits,
and hotspots. Left: epi-PPIs for the marks averaged over 32 replicates. The three marks simulated as
active are indicated by the triangles. Middle: average partial ROC curves for SNP-trait selection with 95%
confidence intervals obtained from 32 replicates. EPISPOT is compared to the joint hotspot-QTL mapping
method, ATLASQTL [5], and the univariate screening method, MATRIXEQTL [2], none of which makes
use of the epigenetic marks. Right: idem for the selection of active SNPs (here, mainly hotspots).

Figure 2 shows that EPISPOT could clearly discriminate the three active marks contributing

to the QTL associations from the remaining r−r0 = 497 inactive marks. The partial receiver oper-

ating characteristic (ROC) curves also show that it outperforms ATLASQTL in terms of selecting

associated SNP-trait pairs and hotspots. It is unsurprising given that ATLASQTL does not use

any predictor-level information, yet it nevertheless confirms that EPISPOT can effectively exploit

the marks to enhance the estimation of the primary QTL associations. MATRIXEQTL performs

poorly compared to the two joint approaches EPISPOT and ATLASQTL, which is expected since,

by design, it does not exploit the shared association signals across traits.

We checked that EPISPOT and ATLASQTL display similar performance under simulation

scenarios with no active mark: their 95% confidence intervals for the standardised partial area

under the curve (pAUC) overlap, i.e., (0.74, 0.78) and (0.76, 0.79) for ATLASQTL, resp. EPISPOT

(Additional file 3). This further supports the observation that the improvement of EPISPOT

seen in Figure 2 is attributable to an effective use of the three informative marks and not to

other intrinsic differences between the two models; more evidence on this is provided in the next

simulation experiment.

Performance under varying degrees of epigenome involvement. Effectiveness in QTL

mapping is subject to a number of interdependent factors pertaining to (i) the sparsity of the

studied QTL network and magnitude of the QTL effects (ii) the amount of information contained

in the data at hand (iii) the ability of the statistical approach to interrogate the data, i.e., by

both leveraging and being robust to the dependence structures within and across genetic variants

and molecular traits. When it comes to exploiting the epigenome to enhance statistical power, an

additional level of complexity is introduced for determining the impact of the above factors on the

analysis, and new questions arise as to whether the signal present in the data is sufficient to inform

inference on the location of the relevant epigenetic marks and of the QTL associations potentially

triggered by these marks.
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Figure 3: Performance of EPISPOT for a grid of numbers of traits and proportions pepi of
epigenome-driven active SNPs. Left: standardised pAUCs for the QTL selection performance. Middle:
simulated hotspot QTL pattern for problems with an average of 600 traits (first replicate for each value of
pepi). The crosses indicate hotspots whose activity is triggered by the epigenome and the circles indicate
hotspots whose activity is independent of the epigenome. Right: average epi-PPIs, as inferred by EPISPOT
for the simulated scenarios with an average of 600 traits.
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In the previous simulation experiment, we generated data under the simplifying assumption that

all QTL associations were induced by the epigenome, and to a degree to which the relevant marks

would be detectable, as evidenced by the high epi-PPIs for the active marks and the power gained

from leveraging this signal (Figure 2). Here, we focus on evaluating how the level of involvement of

the epigenome in QTL activity impacts the detection of QTL effects and of the marks responsible

for these effects.

We consider a series of QTL problems, each generated by replicates of 32, for a grid of response

numbers and degrees of involvement of the epigenome in activating QTL control. More precisely,

we simulate data with a number of traits sampled from a Poisson distribution with mean λ =

200, 400, 600, 800, 1000 or 1600, respectively, and 60 loci with 20 SNPs each and involving 100 active

SNPs in total. We vary the proportion of active SNPs whose activity is triggered by epigenetic

marks from pepi = 0 (all QTL associations simulated independently of the action of the epigenome)

to pepi = 1 (all QTL associations simulated as the result of the action of the epigenome); see Methods

section for the data-generation details. The typical pleiotropic pattern simulated is displayed in

Figure 3 for the different choices of pepi and problems with an average of λ = 600 traits.

Figure 3 also shows the performance for the selection of QTL effects in terms of standardised

pAUC. It provides two separate layers of information: first, it illustrates again how EPISPOT is

able to leverage the epigenetic marks to improve QTL mapping, and more so when the number of

active SNPs triggered by these marks increases (top to bottom rows) since EPISPOT is then able

to effectively borrow information across the mark-activated SNPs. This underlines the need for

the relevant epigenetic marks to be sufficiently represented at causal variants so that the analysed

data are informative about their involvement. It is therefore advised to use a reasonably large

number of loci thought to be active and dense SNP panels (e.g., imputed SNPs, see the eQTL case

study section), so the active SNPs are more likely to be included. Second, it shows that the joint

modelling of all traits permits exploiting shared signals across these traits, thereby also improving

statistical power, as reflected by the increased pAUCs for problems with larger numbers of traits

in Figure 3. This is particularly true in presence of co-regulated molecular traits, a special case of

which is the regulation of these traits by a single hotspot.

Finally, Figure 3 indicates that, when the epigenetic signal is moderate to large (pepi = 0.4, 0.6,

0.8 or 1), EPISPOT is able to pick the active epigenetic marks from a large number of candidate

marks, while setting the epi-PPIs of the inactive marks to zero. However, when the signal is weak

(pepi = 0.2), the active marks are barely detected, as expected. Importantly, though, in the null

scenario where the epigenome plays no role (pepi = 0), modelling the r = 500 inactive marks does

not deteriorate the performance (Additional file 3).

Inferring module-specific epigenetic action. The simulation experiments presented next focus

on evaluating M-EPISPOT, i.e., the module version of the algorithm which models module-specific

epigenetic effects. They illustrate how statistical power and interpretability are enhanced when

the structure underlying epigenome-driven QTL associations is exploited. They also evaluate the

robustness of inference when misspecified module partitions are supplied to M-EPISPOT. This

is particularly important given the uncertainty that often surrounds the definition of modules,

as reflected by fact that different co-expression inferential tools often produce different module

specifications.
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Figure 4: Performance of M-EPISPOT. A: Simulated scenario with two modules, whereby the first
module m1 is contaminated by an increasing number of traits from the second module m2. Panel A(1)
shows the simulated pleiotropic pattern for one replicate. The grey levels suggest the different QTL effect
strengths of each active SNP (x-axis) with the traits (y-axis) from modules m1 and m2. The horizontal
dotted lines mark the boundary between m1 and m2 for the misspecified module partitions supplied to M-
EPISPOT. Panel A(2) shows the partial ROC curves (with 95% confidence intervals based on 32 replicates)
for the QTL mapping performance obtained when supplying the different misspecified partitions shown in
A(1) to M-EPISPOT. B: Simulation with five pleiotropic modules. Panel B(1) shows the simulated pattern
for the active SNPs of one replicate. Panel B(2) panel shows the dependence structure of the simulated
traits for one replicate. Panel B(3) shows the module-specific average epi-PPIs for the contribution of the
epigenetic marks to the QTL effects. Panel B(4) shows the partial ROC curves for the QTL mapping, with
95% confidence intervals based on 32 replicates.

We start with a simple example involving 60 concatenated loci of average size 40 SNPs and

two modules of 50 simulated traits each. In the first module m1, the traits are largely co-regulated

by hotspots whose activity is imputable to the epigenome. In the second module m2, only few

traits are involved in isolated QTL associations, with no implication of the epigenome. Figure 4A

illustrates the corresponding simulated QTL pattern restricted to the active SNPs, for the first

data replicate. We evaluate the performance of M-EPISPOT with the following settings:

1. The oracle case, where we assume the simulated module partitionM = {m1,m2} to be known

and provided it as input to M-EPISPOT;

2. the module-free case, where we perform inference with the base model EPISPOT which does

not exploit the module partition;
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3. a series of intermediate cases, where the module partition supplied to M-EPISPOT is misspec-

ified, i.e., module m1 is contaminated with 10, 20, 30 or 40 traits from module m2 (Figure 4A).

This mimics a real data scenario whereby the assignment of some traits to modules is difficult.

The ROC curves of Figure 4A show that leveraging information about the underlying module

partition can improve significantly the detection of QTL effects. They also confirm the intuition that

the impact of misspecified partitions on performance is a function of the degree of misspecification:

for a given specificity, the power decreases smoothly with the number of inactive traits from module

m2 contaminating module m1. From a modelling point of view, leaving all traits controlled by a

same hotspot in a single module permits maximising the opportunities to learn the epigenetic

contribution to the QTL activity by borrowing strength across co-regulated traits. It is advised

to make use of prior information on pleiotropy when available in order to avoid splitting hotspot-

controlled networks of traits into distinct modules.

The second simulation experiment considers a more general setting with five modules of aver-

age size 50. It compares ATLASQTL, EPISPOT, M-EPISPOT with the oracle module partition

supplied and M-EPISPOT with a contaminated module partition supplied, i.e., where a fifth of the

traits in the simulated modules are randomly re-assigned to the other modules.

Figure 4B leads to a conclusion similar to that of the previous example: the idealised scenario

of the oracle module partition provided to M-EPISPOT yields the best performance, followed, in

order, by the more realistic case of the contaminated partition, the EPISPOT run (with no module

information) and finally, the ATLASQTL run which does not make use of any epigenetic infor-

mation. Importantly, the fact the that module-free version EPISPOT outperforms ATLASQTL

indicates that, even when the module structure is not employed, the method is still able to leverage

the epigenome in order to improve the QTL mapping.

Figure 4B also shows how the marks responsible for the activation of the different modules

are correctly recovered by M-EPISPOT. An inspection of these separate sets of marks provides a

refined level of interpretability for a module-specific understanding of the genetic control. We will

see in the eQTL analysis presented next how this can be particularly helpful to shed light on the

mechanistic action of trans hotspots, when such hotspots are thought to control gene modules in a

context-specific way.

An epigenome-driven monocyte eQTL case study. In this section, we take advantage of

EPISPOT in a targeted eQTL study to refine the detection and interpretation of genetic regulation

in monocytes. Specifically, we analyse two independent datasets with transcript levels measured

in CD14+ monocytes. Our study workflow is described in Figure 5A: we discover active loci in a

prescreening step using the joint hotspot QTL mapping approach ATLASQTL in the first dataset

(n = 413 samples, see [19]), and we then leverage the epigenome using EPISPOT in the second

dataset (CEDAR cohort, n = 286 samples, see [20]) for an in-depth analysis of the genetic activity

in the preselected loci.

The epigenetic information consists of a panel of 168 annotation variables, compiling DNase-I

sensitivity sites from different tissues and cell types, Ensembl gene annotations and chromatin

state data from ENCODE. These variables display strong correlation structures within annotation

types, as well as within tissues and cell types at a finer granularity level (Figure 5C). Details

about the prescreening step, as well as the epigenetic, genetic and expression datasets are given
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Figure 5: Overview of the monocyte eQTL case study. A: Workflow for the monocyte eQTL case
study. Candidate loci from chromosome 12 and transcripts are obtained from a preliminary prescreening
in the first dataset [19] using the joint eQTL mapping approach ATLASQTL [5] with a permutation-based
Bayesian false discovery rate (FDR) of 5% for selecting pairs of associated SNP-transcript. The analysis
is then performed in the second dataset [CEDAR, see 20]. EPISPOT and M-EPISPOT select associated
SNP-transcript pairs, QTL hotspots and epigenetic marks relevant to the primary QTL associations. This
output is then interpreted as a whole to generate hypotheses about the mechanisms of action underlying
these associations. B: Correlation of the analysed transcripts, according to their module membership. The
pleiotropic module displays a strong dependence pattern, reflecting dense connections in the network con-
trolled by the hotspots; the traits in the scattered module are mostly uncorrelated, which is unsurprising
given that they are mainly controlled via isolated cis mechanisms. C: Correlation of the epigenetic annota-
tions supplied to the method. All variables are binary, except the distance to the closest transcription start
site (TSS) which is not included in the heatmap. Only the labels of the marks retained by M-EPISPOT
are displayed; a heatmap with the full labels is provided in Additional file 4. The majority of the marks are
DNase-I hypersensitivity sites (DHS) in different tissues and cell types. They tend to cluster together on
the top-left 4/5 of the heatmap, and DHS in similar tissues/cell types also form subgroups. The remaining
marks relate to gene structures and genome segmentation annotations. The labels indicated on the right are
in grey and black depending on whether they were selected by M-EPISPOT as relevant for the pleiotropic,
resp. scattered module. The (+) and (-) indicate positive, resp. negative effects of the marks, i.e., their
triggering or repressive action on the primary QTL effects. Their relevance is discussed in the main text
and in Additional file 4. D: Hotspot sizes (i.e., number of associated transcripts per SNP) as inferred by
M-EPISPOT. Only the active SNPs (i.e., associated with ≥ 1 transcripts) are displayed. The grey and black
colours indicate the module membership of the controlled transcripts. The numbers in parentheses refer to
the discussion of the main text.
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in the Methods section and Additional file 4, and the eQTL associations for the prescreening and

subsequent analyses are listed in Additional files 5–8 (Tables S1–S4).

In this case study, we concentrate our attention on the following key finding revealed by the

prescreening step: chromosome 12 is highly pleiotropic, notably around the gene LYZ. This gene

encodes lysozyme, which is associated with the monocyte-macrophage system and enhances the

activity of immunoagents. The LYZ locus has already been reported as pleiotropic in several

monocyte datasets [21–23], but its functional role remains unclear. We will therefore exploit the

epigenetic annotations within EPISPOT to shed light on the mechanisms of action of this locus as

well as of other surrounding cis- and trans-acting loci.

The LYZ-region pleiotropy defines two modules of transcripts

A total of 977 eQTL associations, involving 350 unique SNPs on chromosome 12 and 430 unique

transcripts genome-wide, were identified at FDR 5% from the ATLASQTL prescreening analysis

of the first dataset. When mapped to the CEDAR dataset, these eQTLs corresponded to 195

independent loci, comprising a total of p = 1, 540 imputed SNPs (Figure 5A and Methods section).

As highlighted in the second simulation study, supplying a dense panel of SNPs (here imputed

SNPs) to EPISPOT is important to ensure a sufficient representation of the relevant epigenetic

marks among the analysed SNPs.

We also mapped the prescreened transcripts to the CEDAR dataset. The LYZ -region pleiotropy

defines two natural modules of transcripts, based on whether they are associated with SNPs in

the vicinity of LYZ (< 1 Mb from it) or not, and further augmenting these modules with highly

correlated transcripts (Methods section). This module partition is driven by the following biological

consideration: the peculiar pleiotropic QTL activity arising from the LYZ region may be triggered

by specific epigenetic influences, which may differ from those triggering isolated (scattered) cis or

trans effects outside the LYZ region; to reflect this, the modules are hereafter referred to as the

pleiotropic module and the scattered module, respectively (Figure 5A).

The correlation structure within and across the two modules supports this partitioning

(Figure 5B). Namely, it indicates a strong co-expression of transcripts within the pleiotropic

module, suggesting a dense network of genes whose connections may be attributed in large part to

the shared QTL control exerted by the LYZ hotspots. Conversely, the transcripts in the scattered

module display little co-expression, which is unsurprising given that they tend to be involved in

isolated QTL effects (most transcripts are controlled by distinct genetic variants).

Overall comparison of methods and replication rates

We next refined our understanding of the eQTL structure in this region using the CEDAR

dataset. To assess the sensitivity of inference to this module partition, we compared the results of

the module-based algorithm, M-EPISPOT, with those of the base algorithm, EPISPOT, i.e., with

no module provided as input. To highlight the benefits of using epigenetic information, we also

confronted these two runs with an ATLASQTL analysis of the same data. We employed the same

settings for all three runs to set common grounds for comparison. In particular, we used a same

permutation-based Bayesian FDR threshold of 5% for declaring QTL associations (Figure 5A and

Methods section).
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Table 1: Number of hits and replication rates. Number of eQTL associations discovered by the
ATLASQTL prescreening (chromosome 12) and by each of the three (M-EPISPOT, EPISPOT and AT-
LASQTL) analyses of the CEDAR data, along with the replication rates for the associations discovered at
the prescreening stage. All analyses use an FDR threshold of 5%. The numbers of samples n, SNPs p and
transcripts q are indicated for each dataset. Full lists of eQTL associations for the different methods are
provided in Additional files 5–8 (Tables S1–S4).

PRESCREENING
(n = 413, p = 28100, q = 22827)

CEDAR
(n = 286, p = 1540, q = 474)

ATLASQTL M-EPISPOT EPISPOT ATLASQTL

Nb eQTL associations 977 514 444 337
cis replication (%) 78.2 77.9 77.9
trans replication (%) 55.8 54.9 54.9

Importantly, the simulated annealing scheme implemented as part of the EPISPOT algorithm

is specifically designed to handle effectively the strong linkage disequilibrium structures present in

the dense SNP panel data and the block correlation structures among transcript levels (Figure 5B)

and epigenetic marks (Figure 5C).

In the CEDAR dataset, the M-EPISPOT analysis of the two modules (q = 283 + 191

transcripts) and the 195 candidate loci (p = 1, 540 SNPs) identified 514 eQTL associations,

involving a total of 267 unique transcripts and 82 unique loci (Additional file 6: Table S2). In

terms of independent replication of the prescreening hits, this corresponds to rates of 78.2%

and 55.8% for the cis and trans QTL associations respectively. Using ATLASQTL instead of

M-EPISPOT on the CEDAR data yielded 262 unique active transcripts and 80 unique active loci,

with slightly lower cis and trans replication rates, namely 77.9% and 54.9% respectively (Table 1,

Additional file 8:Table S4). Similar observations were obtained for EPISPOT (Table 1, Additional

file 7:Table S3). Given the well-known difficulty to validate trans effects and the relatively small

sample size of the CEDAR dataset (n = 289), these appreciable independent replication rates may

result from the efficient joint modelling of all transcripts and SNPs achieved by M-EPISPOT,

EPISPOT and ATLASQTL.

A focus on two susceptibility loci

We next discuss two examples resulting from a closer inspection of the analysed loci. First, not

only does M-EPISPOT confirm the LYZ pleiotropic activity (Figure 5D-i), but it also uncovers

associations of this locus with four additional genes compared to the ATLASQTL run, namely,

COPZ1, DPY30, KLHL28 and OSTC. The EPISPOT run (with no module partitioning) reports

the exact same list as ATLASQTL, also missing the above four genes.

The second example is a novel pleiotropic locus uncovered by M-EPISPOT and for which

only isolated effects were detected at the prescreening stage (Figure 5D-ii). This locus is located

32 Mb downstream to the LYZ locus and entails a hotspot of size 52 in the 3′ UTR of the gene

GNPTAB, namely, rs10860784 (r2 = 0.001 with the lead hotspot rs10784774 of the LYZ locus).

The trans network formed by the controlled transcripts has not been previously described and nor

has any trans-acting association involving rs10860784 (up to proxies using r2 > 0.8). However

rs10860784 is known to be cis-acting on gene DRAM1 (located 98 Kb downstream) in multiple

tissues [24], an association which M-EPISPOT also confirms using a looser FDR of 15%. Moreover,
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the UK Biobank PheGWAS also reported a strong association between this SNP and height (p =

1.47× 10−14, see [25]).

The module-free version EPISPOT run also finds a trans network for the exact same SNP,

yet slightly smaller, as it involves 31 transcripts at FDR 5%; ATLASQTL finds no signal. This

example suggests that the added value of epigenome-driven inference is particularly striking

for the detection of weak trans signals. Indeed, a comparison of the estimated QTL effects at-

tributable to rs10860784 with those attributable to LYZ pleiotropic locus (Figure 5D-i) shows that

the former are significantly smaller in magnitude compared to the latter (t-test p-value < 2×10−16).

The selected epigenetic annotations reveal possible genetic mechanisms of action

The above figures suggest that the M-EPISPOT and EPISPOT runs allow for more powerful

QTL mapping compared to ATLASQTL. This probably results from their ability to leverage the

epigenetic marks, as we next discuss.

For each module, M-EPISPOT identifies a subset of epigenetic annotations with a potential

to induce or inhibit the QTL associations (depending on the sign of the posterior mean of

each annotation effect); these annotations are highlighted in Figure 5C. For instance, DNase-I

hypersensitivity sites (DHS) in fibroblasts and epithelial cells of different tissues tend to promote

the QTL effects. Interestingly, DHS in CD14+ monocytes are found to be enhancers of eQTL

associations in both the M-EPISPOT and EPISPOT runs, with epi-PPI > 0.99. The two runs

also estimate a negative effect of the distance to transcription start sites (TSSs, epi-PPI > 0.99),

in line with the frequently reported decay in abundance of eQTL signals with the distance to TSS

[26]. These last two observations are helpful to interpret the uncovered QTL signals, as we next

discuss.

CD14+ cell DHS: hints to a monocyte-specific pleiotropic activity in LYZ

We first focus on the LYZ pleiotropic region. Previous studies have highlighted distinct lead

hotspots around LYZ (see [27] for a list), yet none provided a functional characterisation that

would allow a clear prioritisation of one variant over another. The lead hotspots revealed by the

M-EPISPOT and EPISPOT runs are intergenic variants, rs10784774 (size 154) and rs2168029 (size

109, r2 = 0.89 with rs10784774; see Figure 5D-i). They differ from the lead hotspot flagged by

the ATLASQTL run, namely, rs1384 (size 149, r2 = 0.99 with rs10784774). We next examine the

possible biology behind these candidates, starting with the ATLASQTL top hotspot.

The fact that rs1384 is located within the 3′ UTR of LYZ may suggest a trans action mediated

by LYZ. This hypothesis is plausible given that the locus associates with LYZ in all M-EPISPOT,

EPISPOT and ATLASQTL runs and that GTEx also reported this cis association in whole blood

and different tissues. However regressing out the effect of LYZ on the expression matrix does not

explain away the hotspot effects, which argues somewhat against a mediation by LYZ (the size

of the top hotspot in the LYZ locus is only marginally reduced: 134 versus 154 in the original

M-EPISPOT analysis, see Additional file 4).

The monocyte-specific DHS annotation selected by M-EPISPOT for the pleiotropic module

suggests another scenario. Namely, the pleiotropic activity of the locus may be triggered by cell-

type specific enhancers in open chromatin regions, which are known to be key players in activating

the transcription in trans [28]. This hypothesis of monocyte-specific pleiotropy would also explain
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why no hotspot was reported so far in cell types and tissues other than monocytes [19, 29]. To

investigate this further, we performed a complementary enrichment analysis using the multiple

tissue/cell-type histone modification marks of the ENCODE catalog: we found that the two sets

of genes associated with the M-EPISPOT’s lead hotspots rs10784774 and rs2168029 respectively

are enriched in H3K27ac enhancers, again in CD14+ monocytes only, which further supports cell-

type specific activation. In addition, the distal gene CREB1, located on chromosome 2, overlaps

this histone mark. This gene has previously been suggested as a putative mediator of the LYZ

pleiotropic network [19]. Unlike for LYZ, regressing out the effect of CREB1 on the expression

matrix substantially reduces the pleiotropy of the locus (the size of the top hotspot in the LYZ

locus is 36, versus 154 in the original M-EPISPOT analysis). Moreover, the connectivity of the

transcript conditional independence network is also substantially lower (Additional file 4).

We further explored whether the two sets of genes associated with rs10784774, respectively

rs2168029, were enriched in transcription factor binding sites (TFBS) using the ENCODE data in

K562 cells. We found a profound enrichment of a number of transcription factors, including ATF3,

CREB1, c-Myc (Additional file 9: Table S5). The networks of transcription factors for rs10784774

and rs2168029 are similar, indicating that the two SNPs may be proxies for a same causal variant

or, at least, that they share a same biological function. Interestingly, ATF transcription factors

are CREB-binding proteins, in line with the CREB1 -mediation hypothesis, but the strong enrich-

ment for many other transcription factors suggests that the same loci can be targeted by different

processes and the co-occupancy of these loci in primary monocytes may resolve this further. The

c-Myc transcription factor is involved in cell division and has broad transcriptional consequences

[30], which is sensible given the large pleiotropy observed at the LYZ locus, for rs10784774 and

rs2168029. Consistent with this, the UK Biobank data further reveal strong associations of these

two SNPs with monocyte counts and other myeloid cell counts [25].

Although by no means conclusive, these observations corroborate the context specificity of the

trans effects controlled by the LYZ locus, possibly with CREB1 acting as a monocyte-specific

mediator of the hotspot network. They also suggest that our epigenome-driven EPISPOT runs

found promising candidate hotspots, whose presumed mechanisms of action on the massive LYZ

gene network would merit experimental follow up.

Finally, our TFBS analysis also indicated a somewhat weaker enrichment for the set of genes

controlled by the smaller hotspot rs10860784 (Figure 5D-ii) located downstream to the above LYZ

locus. Although its network of TFBS partly overlaps with those of the lead hotspots rs10784774

and rs2168029 from the LYZ locus, there are notable differences. In particular, no strong

enrichment is seen for ATF transcription factors, which may hint towards distinct pathways for

the two loci (Figure 5D-i & ii). rs10860784 may control a more generic gene network, as opposed

to the monocyte-specific network of the LYZ locus.

Distance to TSSs: examples of cis and hotspot signals shared across cell types

Another interesting result concerns the negative effect of the annotation coding the distance

to TSSs, this time for transcripts belonging to the scattered module. As active transcripts in this

module are mostly involved in cis associations, the module-specificity of this annotation aligns

with the previous observation that the distance to TSSs associates with an enrichment of cis

eQTLs [26, 31]. Moreover, an empirical assessment of this enrichment in our dataset shows that
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the SNPs selected with M-EPISPOT are on average significantly closer to TSSs compared to

SNP subsets of the same size randomly drawn within the analysed loci (p = 0.017). Such an

enrichment is unsurprising and actually also present in the EPISPOT and ATLASQTL results, but

the importance of the distance to TSS is nevertheless made explicit by the selection of the TSS

variable by both EPISPOT and M-EPISPOT.

As it is located in a 3′ UTR, the rs10860784 hotspot discussed above is a good representative

of this enrichment. In addition, three candidate hotspots, namely, rs10876864, rs11171739 (r2 =

0.94 with rs10876864) and rs705699 (r2 = 0.86 with rs10876864), located 13 Mb upstream of

the LYZ locus, are within a TFBS, a 5′ UTR and an exon, respectively (Figure 5D-iii). Our

ATLASQTL prescreening and EPISPOT analyses find that they control a small network of size 11

involving transcripts mapping to the cis gene RPS26 and other distal genes, including IP6K2 on

chromosome 3.

This locus has been linked with several autoimmune diseases [32–35] including type 1 diabetes,

where evidence exists that RPS26 transcription does not mediate the disease association [36].

Interestingly, previous studies have reported the RPS26 cis effect as an isolated association in

monocytes. The trans activity, in particular on IP6K2, was unknown in monocytes, but is known

in B and T cells [19, 37]. This suggests that it has so far gone unnoticed in monocytes using

standard univariate mapping approaches, but our fully joint, annotation-driven method has enabled

its detection. Moreover, unlike the monocyte-specific LYZ pleiotropic locus discussed above, this

locus is an example of trans-hotspot eQTL present in several cell types. The genomic location also

aligns with the observation that eQTLs common to multiple cell types or tissues tend to be closer

to TSSs compared to eQTLs only detectable in a single cell type or tissue [38].

Discussion

Large panels of epigenetic marks are nowadays collected along with genetic data and expression

levels, however their use to enhance the detection of QTL effects remains mostly heuristic. Thanks

to its hypothesis-free mark selection routine which is fully integrated within a joint QTL mapping

framework, EPISPOT can tell apart the relevant epigenetic marks from thousands of candidates

while also directly refining the estimation and interpretation of associations in large molecular QTL

studies.

Epigenetic marks have been used in different modelling approaches, such as for single-trait asso-

ciation studies (e.g., FINDOR [39]) or fine mapping (e.g., FINEMAP [40]). EPISPOT, however, is

unique in several fundamental respects. First, to the best of our knowledge, it is the first approach

that exploits the epigenome to enhance molecular QTL mapping, with a special emphasis on de-

tection of hotspots. The fully Bayesian model implemented in EPISPOT parametrises proximal

cis and distal trans action on thousands of molecular traits, whereas existing epigenome-based

approaches are limited to GWAS or cis QTL mapping for one or a handful of traits [8, 9, 41].

Second, it is both fully joint and scalable, accounting simultaneously for all epigenetic marks, ge-

netic variants and molecular levels and their shared signals. Third, it combines this information to

perform an automated selection of the epigenetic marks relevant to the primary QTL associations,

thereby providing direct insight into the functional basis of the signals. Fourth, its crafted annealed

variational algorithm ensures a robust exploration of complex parameters spaces, such as induced

by candidate SNPs in high linkage disequilibrium, corresponding to scenarios for which the use
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of epigenetic information is particularly beneficial. Finally, EPISPOT allows for module-specific

learning of the epigenetic action.

We showed in a series of simulation experiments emulating epigenome-driven QTL problems that

EPISPOT effectively scales to large datasets, while retaining the accuracy necessary for a powerful

QTL mapping. We demonstrated that our method was not only able to pinpoint the correct marks

with high posterior probability, but that it could also leverage these marks to improve the detection

of weak QTL signals. In particular, we saw that the spike-and-slab representation of the epigenome

contribution ensures that the irrelevant epigenetic marks are effectively discarded as “noise”, so

panels with hundreds of candidate marks can be considered without the risk of worsening inferences.

This allows skipping the delicate process of pre-filtering marks, whose practical grounds are often

blurry and disconnected from the QTL dataset under consideration.

Our work attaches special importance to acknowledging the complexity of the learning task

(selection of hotspots, pairwise QTL associations between variants and molecular traits, selection

of epigenetic marks relevant to these QTL associations) and possible biological scenarios (pattern of

regulation, importance of the epigenome in this regulation, dependence structures among variants,

marks and molecular traits and between them). Our simulations examined under what conditions

inference is well powered to leverage the epigenetic information, and evaluated the sensitivity to

different input choices, in particular when gene modules are provided. Importantly, our method is

not meant to be used as a black box to fish genetic variants involved in trans regulation and their

epigenetic roots, but rather is predicated on a careful analysis design which takes into account the

dataset, the biological question of interest and the expected statistical power. Further assessments

for specific problem settings (sparsity levels, association patterns and epigenetic control) can be

made using the code provided at GitHub [18, 42].

Finally, we showed how our simulation studies prefigured the efficiency of EPISPOT in a large

monocyte eQTL study (high replication in an independent sample, novel pleiotropic loci, refined

list of candidate lead hotspots). We further illustrated how the EPISPOT posterior output can be

used to both select interpretable annotations underlying the QTL activity and reduce the range of

hypotheses about the functional mechanisms involved, particularly for hotspots. We also showed

how the localised nature of QTL activity could be accounted for when inferring annotations in a

module-specific fashion using M-EPISPOT (the monocyte-specific enhancer activity affecting the

pleiotropic module, the enrichment of QTL hits closer to TSSs affecting the scattered module).

Altogether, this thorough case study demonstrates that QTL analyses may largely benefit from

the use of rich complementary data sources annotating the primary genotyping data, provided

principled joint approaches are used to capture shared association patterns.

Conclusion

EPISPOT opens new perspectives for robust and interpretable molecular QTL mapping. Thanks to

its efficient annealed VBEM algorithm with adaptive and parallel schemes, it enables information-

sharing across epigenetic marks, genetic variants and molecular traits governed by complex reg-

ulatory mechanisms, at scale. In particular, its use of selection indicators in a spike-and-slab

framework allows for a systematic identification of sparse sets of epigenetic annotations which are

directly relevant for the QTL regulation of the problem at hand. Importantly, with EPISPOT it
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is finally possible to forgo the daunting and underpowered task of one-mark-at-a-time enrichment

analyses for the prioritisation of QTL signals.

We envision holistic approaches such as EPISPOT to be increasingly adopted in an age where

large molecular datasets and annotation information become widely available. EPISPOT applies to

any type of molecular QTL problem, involving genomic, proteomic, lipidomic or metabolic levels,

but also to genome-wide association with several clinical endpoints. In particular, exploiting the

epigenome to build finer maps of hotspots across the genome holds great promises, as these master

regulators are likely to be triggered by tissue- and cell-type-specific epigenetic functions.

Methods

Model. The Bayesian hierarchical model implemented in EPISPOT comprises two levels of hier-

archy (see graphical representation in Figure 1B). The bottom level parametrises the QTL effects

and the top level parametrises the epigenetic modulations of the primary QTL effects.

Specifically, the bottom-level hierarchy consists of the following multiple-response spike-and-slab

regression model:

yt | βt, τt ∼ Nn
(
Xβt, τ

−1
t In

)
, t = 1, . . . , q,

βst | γst, σ2, τt ∼ γstN
(
0, σ2 τ−1t

)
+ (1− γst) δ0 , s = 1, . . . , p, (1)

where y = (y1, . . . ,yq) is an n×q matrix of centred responses (molecular traits),X = (X1, . . . ,Xp)

is an n× p matrix of centred candidate predictors for them (SNPs), for n samples. Here, δ0 is the

Dirac distribution and to each regression parameter βst corresponds a binary latent parameter γst

taking value 1 if and only if SNP s is associated with trait t. Taking the posterior means of γst

then yields marginal posterior probabilities of inclusion (qtl-PPIs), pr(γst = 1 | y). Moreover, the

precision parameters τt and σ−2 are assigned diffused Gamma priors.

The top-level hierarchy parametrises the effects of the epigenetic marks on the QTL probability

of association via a second-stage probit regression on the probability of effects:

γst | θs, ζt, ξ ∼ Bernoulli
{

Φ(ζt + θs + V T
s ξ)

}
,

ξl | ρl ∼ ρlN (0, s2) + (1− ρl) δ0, θs ∼ N (0, s20s), ζt ∼ N (n0, t
2
0),

ρl ∼ Bernoulli (ωl) , l = 1, . . . , r, (2)

where Φ(·) is the standard normal cumulative distribution function and V = (V1, . . . ,Vr) is a

p × r matrix of (centred) predictor-level covariates (epigenetic marks). This probit representa-

tion also allows decoupling the contributions of the predictors and the responses: it involves a

response-specific parameter, ζt, which adapts to the sparsity level linked with each response yt and

a predictor-specific parameter, θs, which influences the probability of association according to the

overall effect of each predictor Xs. Parameter θs has a central role in pleiotropic molecular QTL

settings as it represents the propensity of each predictor to be associated with multiple responses,

i.e., its propensity to be a hotspot. Its Gaussian prior specification involves a local-scale feature (via

s0s) which effectively prevents overshrinkage; see our previous work on the modelling of hotspots

from which this formulation is borrowed [5]. The value of s0s is set by empirical Bayes, and so are

the epigenetic effect hyperparameters ωl and s (see hereafter). The values of the hyperparameters
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n0 and t0 are chosen to induce sparsity, by specifying a prior expectation and a prior variance for

the number of predictors associated with each response (Additional file 1).

When a partition of the responses into modules is available, it can be supplied to the algorithm

(then called M-EPISPOT) which will infer module-specific epigenetic effects based on the following

modification of the top-level model (2):

γst | θm,s, ζt, ξm ∼ Bernoulli
{

Φ(ζt + θm,s + V T
s ξm)

}
,

ξm,l | ρm,l ∼ ρm,lN (0, s2m) + (1− ρm,l) δ0, θm,s ∼ N (0, s20m,s), ζt ∼ N (n0, t
2
0),

ρm,l ∼ Bernoulli (ωm,l) , l = 1, . . . , r, (3)

where m ∈M is a module of traits, withM a partition of {1, . . . , q} and m 3 t. Parameter ξm then

represents the epigenetic contribution of the r marks for the QTL associations involving the traits

from module m. The hotspot parameter θm,s also accounts for the module structure: it represents

the propensity of SNP s to be associated with few or many traits from module m. This encodes

module-specific pleiotropic levels, which also reflects the fact that a SNP controlling a given trait

in a module is more likely to be also associated with related traits from the same module compared

to traits outside the module.

Annealed variational expectation-maximisation inference. The algorithm implemented in

EPISPOT is designed to meet accuracy and scalability requirements in problems with thousands

of molecular traits, SNPs and epigenetic marks. It consists of an annealed variational expectation-

maximisation (VBEM or variational-EM) approach, with adaptive and parallel schemes.

VBEM algorithms were introduced by Blei et al. (2003) [43] in the context of Dirichlet allocation

modelling. In short, they iterate between optimising empirical Bayes estimates (in our case for the

hotspot propensity and epigenetic effect hyperparameters) and running a variational algorithm for

the remaining parameters, given the updated empirical Bayes estimates. We present hereafter the

algorithm in its general module-based form (M-EPISPOT); omitting the index m and taking M = 1

gives the base version with no module partitioning (EPISPOT).

Let v =
(
β, τ ,γ, σ2,θ, ζ, ξ,ρ

)
denote the parameters for model (1)–(3), and let η =

(η1, . . . ,ηM ) denote the second-stage model hyperparameters, with ηm = (s20m, s
2
m,ωm) for module

m = 1, . . . ,M . We propose estimating η via an empirical Bayes procedure, by finding

η̂ = arg max
η

` (η;y) , (4)

where ` (η;y) = log p (y | η) is the marginal log-likelihood. Computing (4) analytically for our

model would require high-dimensional integration and thus is infeasible. Our VBEM algorithm

circumvents this by coupling the empirical Bayes estimation of the hyperparameter η with a vari-

ational inference scheme that simultaneously infers the model parameter vector v. The procedure

implements alternating optimisations of the variational lower bound

L(q;η) = Eq log p(y,v | η)− Eq log q(v), (5)

where q(v) is the variational density for p (v | y, η̂) for a current estimate η̂ and Eq (·) is the

expectation with respect to q(v). More precisely, it initialises the parameter and hyperparameter
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Algorithm 1: VBEM algorithm

Define: Parameters v = (v1, . . . , vJ), hyperparameters η = (η1, . . . ,ηM ), ηm = (s20m, s
2
m,ωm).

1. VBEM runs for hyperparameter estimation

for m = 1, . . . , M (parallel loop) do

Input: Responses for module m, predictors and predictor-level covariates: ym, X, V
Output: Empirical Bayes hyperparameter estimate: η̂m

initialise: η
(0)
m , t← 0

repeat

t← t+ 1

E-step (details in Additional file 2):

Input: Current hyperparameter value: η
(t−1)
m

Output: Top-level model variational parameters: µθ, σ
2
θ , µξ, σ

2
ξ , ρ(1) (dropping label m)

repeat
for j = shuffle(1, . . . , Jm) do

qm
(
vj ;η

(t−1)
m

)
∝ exp

{
E−j log p

(
v,ym | η(t−1)

m

)}
,

end

until convergence of all variational parameters (with adaptive tolerance);

M-step:

Input: Current variational parameter values: µθ, σ
2
θ , µξ, σ

2
ξ , ρ(1)

Output: Updated hyperparameter value: η
(t)
m

s20m,s ← µ2
θ,s + σ2

θ,s, s = 1, . . . , p,

s2m ←
∑r
l=1 ρ

(1)
l

(
µ2
ξ,l + σ2

ξ,l

)∑r
l=1 ρ

(1)
l

ωm,l ← ρ
(1)
l , l = 1, . . . , r,

η
(t)
m ← (s20m, s

2
m,ωm)

until convergence of η
(t)
m ;

η̂m ← η
(t)
m

end

2. Final variational run

Input: All responses, predictors and predictor-level covariates: y, X, V , empirical Bayes hyperparameter:
η̂

Output: Variational parameters
repeat

for j = shuffle(1, . . . , J) do
q (vj ; η̂) ∝ exp {E−j log p (v,y | η̂)}

end

until convergence of all variational parameters;

vectors v(0) and η(0), and alternates between the E-step,

q(t) = arg max
q
L
(
q;η(t−1)

)
,

using the variational algorithm for obtaining q(t) at iteration t, and the M-step,

η(t) = arg max
η
L
(
q(t);η

)
,

until convergence of η(t). In our case, the updates for the M-step are obtained analytically by

setting to zero the first derivative of L
(
q(t);η

)
with respect to each component of η. This only
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requires computing and differentiating the joint likelihood term Eq log p(y,v | η) in (5), as the

entropy term −Eq log q(v) is a function of η(t−1) and is constant with respect to η.

Variational inference is typically orders of magnitude faster than classical Markov chain Monte

Carlo inference, see, e.g., [5, 6, 44] for comparisons on GWA and molecular QTL models. Some

computational cost is added for VBEM algorithms as each E-step requires running the variational

algorithm until convergence. Moreover, the two regression levels of our model (1)–(2) or (1)–(3)

necessitate the exploration of a very large parameter space, which is complex and time-consuming

for any type of inference.

We consider two strategies to overcome this burden. First, we substantially reduce the runtime

of the within-EM variational runs by using an adaptive stopping criterion, namely, starting with a

large tolerance and dynamically decreasing it according to the convergence state of the overall EM

algorithm. The second strategy applies to the module version of our algorithm: the specification in

(3) suggests that its hyperparameters may be estimated reasonably well by restricting the VBEM

scheme to subproblems corresponding to each module, i.e., applying model (1)–(2) to the subsets

of responses ym separately for obtaining the corresponding empirical Bayes estimates ηm, m =

1, . . . ,M . In addition to accelerating hyperparameter estimation for each module (as the model is

much smaller), this has the advantage of allowing parallelisation across modules. Once all module

hyperparameters are estimated, they are inserted into model (1)–(3) and variational inference is

run on the entire dataset. A sketch of the procedure is given in Algorithm 1, and the full derivation

is in Additional file 2.

To efficiently deal with the posterior multimodality induced by strong data dependence struc-

tures, we augment all variational schemes (within the E-step and the final run) with a simulated

annealing routine, although for brevity this is not described in Algorithm 1; see Additional file 2 for

details. Annealing introduces a so-called temperature parameter to index the variational distribu-

tions and control the level of separations between their modes, thereby easing the progression to the

global optimum. In practice, we start with a temperature T0 to flatten the posterior distribution

and sweep most local modes away, and we then lower it at each iteration, until the original mul-

timodal distribution, called the cold distribution, is reached. Finally, to ensure stable inference,

our routine excludes redundant SNPs and marks (i.e., displaying perfect collinearity with other

SNPs/marks) prior to the run. Moreover, constant marks or marks which concern less than a given

proportion of SNPs (default 5%) are also discarded as insufficiently informative before the analysis.

Recommended use. EPISPOT is a refining tool for the detection and interpretation of hotspots.

It is meant to be used for joint analysis of preselected genomic regions (candidate loci) and tran-

scripts believed to be under genetic control. Different approaches can be considered to obtain loci

of interest. Public databases can be employed to form loci of given size around previously identi-

fied hits, provided this information is available for the condition, tissue or cell type at hand. An

alternative approach is based on a preliminary application of ATLASQTL or another screening

method, ideally on an independent dataset. If no independent dataset is available to the analyst,

useful research hypotheses may still be obtained by running the prescreening step on the same

dataset, prior to running EPISPOT. However, results should then be considered as exploratory, as

this procedure interrogates the same data twice, which may be subject to overfitting.
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Data-generation design for the simulation studies. Given the remarkably complex and

multifaceted biochemical processes involved in genetic regulation, multiple interrelated steps are

required to generate realistic datasets with epigenome-induced QTL associations. For each of these

steps, we take special care to accommodate a wide range of parameter settings in order to cover a

variety of plausible regulatory programs. We will also focus on producing scenarios demonstrating

pleiotropy, with hotspots of diverse “sizes” (numbers of associated traits).

The code for generating simulated traits, SNPs (real or simulated) and epigenetic marks (real

or simulated), as well as association patterns across these three data types, can be found under

the form of documented functions in the R package echoseq freely available online [42]; it can be

employed to generate alternative association maps to those presented hereafter, under a panel of

assumptions from which the user can choose. This resource can also be used as an independent

tool to generate epigenome-driven synthetic QTL data which mimic real data conditions.

We base all our numerical experiments on real genetic data which we supplement with data

simulated according to generally-accepted principles of population genetics. To fix ideas, we present

the steps for the general scenario with M modules; the canonical scenario with no module is readily

obtained by choosing M = 1.

• Simulation step 1 — independent loci from real genotyping data. We start by

building the n× p SNP matrix X by concatenating loci from quality-checked genotyping data for

n = 413 healthy European individuals with minor allele frequency > 0.05 [19, 22]. Namely, we

draw the locus sizes from a Poisson distribution with a prespecified mean, and sample the loci from

chromosome one, making sure that they are sufficiently far apart (i.e., separated by at least 150

SNPs which corresponds to a median size of 1 Mb) so as to be reasonably assumed “independent

loci”.

• Simulation step 2 — epigenetic control map. We then form the “control map” between

the epigenetic marks and the SNPs. We randomly select up to three active SNPs from each locus,

stopping when a prespecified total number of active SNPs has been reached; hence some loci may

contain no active SNP. We similarly select r0 active marks among r binary epigenetic marks to be

simulated (see below); the remaining r − r0 marks will have no role in the generation of the QTL

associations. Not all QTL associations are expected to result from epigenetic modifications. To

accommodate this, we specify a proportion of active SNPs whose QTL associations will be triggered

by active marks; the remaining active SNPs will have QTL associations simulated independently

of the action of the marks. The epigenome control map design is slightly more involved when

M > 1 modules are simulated, since it must reflect the fact that distinct modules can be governed

by distinct epigenetic processes. In other words, the set of active marks and their action on SNP

activity are simulated as module-specific, i.e., the active traits within a given module are associated

with SNPs whose activity is triggered by specific marks, and these active marks may differ from

those triggering QTL associations with traits from another module. The number, r0m, of active

marks controlling each module corresponds to the minimum between r0 and a draw from a zero-

truncated Poisson distribution with parameter 1. All module-specific active marks are then placed

randomly among the r0 active marks, ensuring that each of the r0 marks are assigned to at least

one module.

• Simulation step 3 — QTL control map. We next generate the pleiotropic QTL asso-

ciation pattern. For each active SNP s, we choose a subset of active modules (in the non-module
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case M = 1, this step is skipped). Then, for each of these active modules, we draw the proportion

of its traits controlled by the SNP from a uniform distribution (first and third simulation study) or

from a right-skewed Beta distribution, favouring large hotspots (second simulation study). We then

randomly select the traits associated with SNP s within the module according to this proportion.

These module-specific hotspot propensities therefore produce hotspots of different sizes within and

across the active modules.

• Simulation step 4 — epigenetic marks. We then effectively generate a p × r binary

matrix of marks V as follows. For each mark, we draw a proportion of SNPs falling in the mark

from a left-skewed Beta distribution (so the mark concerns relatively few SNPs), and we randomly

select the SNPs concerned by the mark. We code this mapping in V by assigning the value unity

if and only if the SNP (row of V ) falls within the mark (column of V ) and we make sure that each

mark concerns at least two SNPs. We then enforce that each entry of V corresponding to a pair

of active mark and SNP whose activity is triggered by the mark is set to unity.

• Simulation step 5 — molecular traits. Given this matrix V and the above epigenome-

and QTL-association maps, we generate a series of auxiliary variables in view of simulating the

traits as the sum of a genetic component and an independent noise component. For each module

m, we first obtain an r × 1 regression vector ξm for the epigenetic marks, such that its nonzero

entries correspond to active marks (i.e., inducing QTL associations with traits from module m)

and have a log-normal distribution. Hence the marks have non-negative effects, thereby only

increasing the potential of SNPs to be involved in QTL activity, but not decreasing it (“enrichment

effect”). We then draw zst ∼ N (ζ, 1), for all s = 1, . . . , p, t = 1, . . . , q, with a large negative mean

ζ = −2.5 to induce overall sparsity. For each active SNP s and module m controlled by it, we next

proceed as follows: if the QTL activity is triggered by the epigenome, we set zst ← zst + V T
s ξm

for all traits t ∈ m associated with SNP s; if the activity is not triggered by the epigenome, we set

zst ← zst+θm,s for all traits t ∈ m associated with SNP s, where θm,s is a SNP-specific effect drawn

from a log-normal distribution. We then obtain binary variables specifying the QTL association

pattern, γst = 1 (zst > q1−α), for all s = 1, . . . , p, t = 1, . . . , q, where q1−α is the 1 − α empirical

quantile of zst (s = 1, . . . , p, t = 1, . . . , q), with α, a chosen proportion of pairwise associations.

We next use these variables to generate the regression coefficients βst. If γst = 0, we set βst = 0.

To set the βst for which γst = 1, we first draw the proportion of a trait’s variance explained by

individual SNPs from a left-skewed Beta distribution to favour the generation of smaller effects

and we then rescale these proportions so that the proportion of genetic variance of each trait does

not exceed a prescribed value. The magnitude of the βst derives from this value, and its sign is

altered with probability 0.5. This implies an inverse relationship between minor allele frequencies

and effect sizes, as expected under natural selection [45]. Finally, we build the n × q matrix of

traits, y ← Xβ + ε, where the noise ε is a centred multivariate normal variable with covariance

such that the traits are equicorrelated with coefficient drawn from the interval (0, 0.25); for module-

based scenarios, the noise component is modelled using a multivariate normal variable with block

equicorrelation.

Here the number of traits, q, is either prespecified or drawn from a Poisson distribution with a

given mean; in the third simulation study, we simulate five modules of traits, and the number of

traits in each module corresponds to a Poisson draw with mean 50.
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We evaluate statistical performance based on 32 data replicates for each scenario, and use the

annealing-augmented version of our algorithm, with a geometric schedule for a grid of 100 inverse

temperatures and with initial temperature T = 5.

Monocyte eQTL datasets, epigenetic annotations and selection of candidate suscepti-

bility loci. The first dataset consists of genotyping and microarray expression measurements for

n = 413 healthy European individuals [19, 22]. The genotyping data are preprocessed using stan-

dard quality control filters (SNPs with call rate < 95%, violating the Hardy–Weinberg equilibrium

assumption at nominal p-value level 10−4 and with minor allele frequency < 5% are discarded).

The transcripts are also quality checked and only the levels with mean expression and IQR above

the first quartile of their corresponding empirical distribution are kept. This results in retaining

p ≈ 550K SNPs and q = 22, 827 transcripts for analysis. Known confounders, namely, age, gender

and batch, are regressed out from the expression matrix. To account for hidden confounders, we

first derive principal components for the transcripts screened as free of any genetic control (i.e., us-

ing a preliminary univariate screening with MATRIXEQTL [2] and retaining the transcripts whose

association p-values with SNPs are all > 10−6) and we regress out the first k = 10 components

from the expression matrix, where k = 10 is obtained by maximising the number of cis and trans

associations. Here and throughout the analysis, an effect between a SNP and a transcript is called

cis eQTL if the SNP and the transcript are on the same chromosome and no more than 1 Mb

apart, and it is called trans eQTL otherwise.

The application of ATLASQTL at a genome-wide level reveals substantial pleiotropy around the

gene LYZ, on chromosome 12. To shed light on the genetic mechanisms underlying this pleiotropy,

we focus our analysis on the genetic variants located on chromosome 12. We next describe the data

preparation steps for the EPISPOT analysis.

• Analysis step 1 — prescreening with ATLASQTL. We first consider the ATLASQTL

run on the first dataset and take note of all QTL associations involving SNPs from chromosome 12

based on a permutation-based Bayesian FDR threshold of 5% (using spline-based interpolation) on

the posterior probabilities of inclusion. We obtain 382 cis, resp. 595 trans associations, involving

350 unique SNPs on chromosome 12 and 430 unique transcripts overall. We also define the LYZ

region as encompassing all SNPs located < 1 Mb upstream or downstream to LYZ. SNPs in this

region are responsible for 515 trans associations and only 22 cis associations, reflecting the high level

of pleiotropy; in comparison SNPs outside the LYZ region control 360 cis and 80 trans associations.

• Analysis step 2 — candidate loci. We then prepare the second, independent monocyte

eQTL dataset involving n = 286 healthy European individuals from the CEDAR study [20]. These

data consist of imputed SNPs (Sanger Imputation Services with the UK10K+ 1000 Genomes Phase

3 Haplotype panels, see details in [20]) and q = 12, 771 quality-checked microarray transcript levels,

which are preprocessed using the same filtering- and confounding-adjustment procedure as for the

first dataset. We look up all 350 active SNPs in this dataset and we form loci by gathering

all imputed SNPs in a 25 Kb neighbourhood of each active SNP and then merging overlapping

regions. This results in a total of p = 1, 543 SNPs distributed into 195 loci on chromosome 12; we

concatenate all the loci to form an n× p matrix X of candidate SNP predictors.

• Analysis step 3 — epigenetic annotations. We then retrieve epigenetic information

for SNPs from the 1000 genome project, using a curated database [46]. This database gathers

different genomic annotations, namely, DNase-I hypersensitivity sites (DHS) for a range of tissues

26

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.21.305789doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.305789


and cell lines, annotations on gene structures (3′ and 5′ UTRs, protein-coding exons), as well as

genome segmentation annotations reporting whether nearby histone modifications are in line with

transcription start sites (TSSs), CTCF binding sites, enhancer activity, promoter-flanking regions

or repressed chromatin. Moreover, the distance of genetic variants to their nearest TSS in the

Ensembl gene database is also provided. With the exception of the distance to TSSs, each entry

of a given mark is coded unity if the corresponding variant falls in the mark and zero otherwise.

We further merge experimental replicates by taking the union of the annotations derived from the

same tissue or cell type. We hence obtain a total of r = 168 candidate epigenetic annotations for

all our candidate SNPs but three, which are excluded from the X matrix and from all downstream

analyses. We last drop all binary marks which concern < 5% of the SNPs in X and gather the

remaining marks in a p× r matrix V , where now p = 1, 540 and r = 107; V has no missing entry.

Figure 5C shows the correlation structure among the candidate annotations in V ; a more detailed

heatmap is provided in Additional file 4.

• Analysis step 4 — modules of transcripts. We then look up all 430 active transcripts

in the second dataset; 50 transcripts are missing in this dataset and we assign the remaining

380 transcripts to two “modules” based on whether they were controlled by SNPs from the LYZ

region in the first dataset (pleiotropic module, for “pleiotropic” QTL control) or not (scattered

module, for “scattered” QTL control). We then augment each module by adding all transcripts

highly correlated with any transcript in the module, starting with the pleiotropic module (Pearson

correlation ρ > 0.9). This results in a partition with q = 283 + 191 transcripts in the pleiotropic

and scattered modules, respectively. We gather all transcripts to form an n× q matrix y of traits.

• Analysis step 5 — settings for the QTL methods. Finally, to ensure common com-

parative grounds, we use the same settings for all the methods (M-EPISPOT, EPISPOT and

ATLASQTL), i.e., annealing schemes with same schedule, as well as a prior average number of

SNPs associated with each trait of 2 and a corresponding prior variance of 4 (see Additional file 1).

We base the replication of the ATLASQTL prescreening results on the transcript levels available

in CEDAR and we map the hits up to proxy SNPs in a 1 Mb window.

Software

EPISPOT is implemented as an R package with C++ subroutines and is publicly available under

the GNU General Public License version 3 (GPL3) [18].

Ethics approval and consent to participate

The studies were approved by the local human research ethic committees, namely, the Oxfordshire

Research Ethics Committee (COREC reference 06/Q1605/55) [22] and the University of Liège

Academic Hospital Ethics Committee [20]. Participants provided informed written consent, and

all procedures were conducted in accordance with the Declaration of Helsinki.

Availability of data and materials

Fairfax et al. (2012, 2014) [19, 22] provide gene expression in CD14+ monocytes and genotyping

data from individuals with European ancestry. The raw expression data were generated with Illu-
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mina HumanHT-12 v4 arrays and downloaded from ArrayExpress [47] (accession E-MTAB-2232),

while the raw genotyping data were generated by Illumina HumanOmniExpress-12 arrays and have

been deposited at the European Genome-Phenome Archive (accessions: EGAD00010000144 and

EGAD00010000520). The expression data are freely available, but the genotyping data require

a data access agreement, as detailed in [19, 22] and https://www.well.ox.ac.uk/research/research-

groups/julian-knight-group/research-projects/data-access.

The CEDAR dataset [20] consists of gene expression data from CD14+ monocytes and geno-

typing data from individuals with European ancestry. The raw expression data were generated

with Illumina HumanHT-12 v4 arrays and downloaded from ArrayExpress [47] (accession: E-

MTAB-6667), while the raw genotyping data were generated by Illumina HumanOmniExpress-12

v1 A arrays and downloaded from ArrayExpress (accession: E-MTAB-6666). Both the expres-

sion and genotyping data are freely available. Preprocessed data are available at http://cedar-

web.giga.ulg.ac.be/.

All statistical analyses were performed using the R environment (version 3.6.1) [48] and the

synthetic datasets were generated using the freely available R package ECHOSEQ (version 0.3.0)

[42]. The following resources were also employed for the data processing, method comparison and

eQTL analysis, in addition to the EPISPOT software [18].

• ATLASQTL (version 0.1.4) [49];

• EnrichR (version 2.1) [50];

• Ensembl [51];

• Gene ATLAS (UK Biobank) [25];

• GTEx [52];

• GWAS Catalog [53];

• MATRIXEQTL (version 2.3) [54];

• PhenoScanner [55];

• PLINK (version v1.90b5.3) [56].
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