Childhood location correlates with epigenetic age and methylation stability in British-Bangladeshi migrants

Reinhard Stöger^{1*}, Minseung Choi², Gregory Leeman^{1#}, Richard D. Emes^{3,4}, Khurshida Begum⁵, Philippa Melamed⁶, Gillian R. Bentley^{5,7}

- ¹ School of Biosciences, University of Nottingham, LE12 5RD, United Kingdom
- ² School of Medicine, Stanford University, USA
- ³ School of Veterinary Medicine and Science, University of Nottingham, LE12 5RD, United Kingdom.
- ⁴ Advanced Data Analysis Centre, University of Nottingham, LE12 5RD, United Kingdom.
- ⁵ Department of Anthropology, Durham University, Durham, United Kingdom
- ⁶ Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- ⁷ Wolfson Research Institute for Health and Wellbeing, Durham University, Durham, United Kingdom

E-Mail addresses: RS: <u>reinhard.stoger@nottingham.ac.uk</u>; MS: <u>minseung@stanford.edu</u>; GL <u>gregoryleeman@outlook.com</u>; RDE: <u>richard.emes@nottingham.ac.uk</u>; KB: <u>khurshida.begum@qmul.ac.uk</u>; PM: <u>philippa@tx.technion.ac.il</u>; GRB: <u>g.r.bentley@durham.ac.uk</u>

*Corresponding author: Reinhard Stöger, E-mail: reinhard.stoger@nottingham.ac.uk

1 Abstract

2 Background

- 3 Migration from one environment to another often causes marked changes in developmental
- 4 conditions. Here we compare epigenetic ageing and stability of the epigenetic maintenance
- 5 system among British-Bangladeshi women who grew up in Bangladesh (adult migrants),
- 6 where there are higher pathogen loads and poorer health care, to second-generation
- 7 Bangladeshis who grew up in the UK. In our previous studies of these migrants, those who
- 8 spent their childhoods in Bangladesh also had lower levels of reproductive hormones and a
- 9 shorter reproductive lifespan compared to those who grew up in the UK, suggesting life
- 10 history trade-offs during development. In the present study, we hypothesised that women
- 11 who grew up in Bangladesh would have *i*) an older epigenetic/biological age compared to
- 12 the women with a childhood in the UK and *ii*) that differences in the pace of epigenetic
- 13 ageing might also be reflected by altered stability of DNA methylation marks.

14 **Results**

- 15 Illumina EPIC array methylation data from buccal tissue was used to establish epigenetic
- age estimates from 15 adult migrants and 11 second-generation migrants, aged 18-35
- 17 years. Using residuals from linear regression of DNA methylation-based biological age
- 18 (DNAm age) on the chronological age, the results showed significant differences (p=0.016)
- 19 in epigenetic age estimates: women whose childhood was in Bangladesh are on average
- 20 6.02 (± 2.34) years older, than those who grew up in London. We further investigated the
- 21 efficiency of the epigenetic maintenance system which purportedly is reflected by epigenetic
- 22 clocks. Methylation states of CpGs at the LHCGR/LHR locus, which contributes to Horvath's
- 23 multi tissue epigenetic clock were evaluated. Based on the Ratio of Concordance
- 24 Preference (RCP) approach that uses double-stranded methylation data, we find that
- 25 maintenance of epigenetic information is more stable in women who grew up in Bangladesh.

26 Conclusions

- 27 The work supports earlier findings that adverse childhood environments lead to phenotypic
- 28 life history trade-offs. The data indicate that childhood environments can induce subtle
- 29 changes to the epigenetic maintenance system that are detectable long after exposure
- 30 occurred. The implication of such a finding warrants further investigation as it implies that a
- 31 less flexible epigenetic memory system established early in life could reduce the capacity to
- 32 respond to different environmental conditions in adult life.

33 Keywords

- 34 Childhood, migrants, epigenetic age, RCP values, epigenetic stability, DNA methylation,
- 35 accelerated ageing, Bangladesh, UK.
- 36

37 Background

38 Reproductive lifespans vary among individuals. Genetic variants associated with these 39 complex traits, which include timing of puberty, age at first birth and age at menopause are 40 closely related to fitness and undergo purifying selection [1.2]. The genetic architecture of 41 reproductive ageing has been investigated largely in women of European ancestry. 42 However, a limited number of studies in other populations suggests shared genetic 43 underpinnings of these reproductive phenotypes, albeit with noticeable variations in effect 44 allele frequencies and effect estimates in women of different ethnic groups [3-5]. 45 Environmental exposures likely contribute to variations in heritability estimates and the 46 phenotypic heterogeneity detected within and across different ethnic populations [6,7]. 47 48 Our earlier work identified strong correlations between childhood environmental conditions 49 and adult reproductive function [8–10]. In particular, Bangladeshi women who migrated as 50 young adults to London, have lower levels of reproductive steroids when compared to 51 British-Bangladeshi women who moved to the UK prior to the age of eight and women who 52 were born in London to first-generation Bangladeshi immigrants [7,9–11]. An upbringing in 53 Bangladesh is generally associated with a shortened reproductive lifespan, while its duration 54 is longer for women with Bangladeshi ancestry, whose childhoods were spent in London [9]. 55 Timing of reproductive functions across the life course correlates with the rate of ageing in 56 other body systems [12].

57

58 Geographically and culturally the British-Bangladeshis women in these studies have a 59 comparable background. They are all ethnic Bengalis and originally stem from a relatively 60 affluent middle-class population in the northeast of Bangladesh and now live in East London. 61 A possible environmental factor that distinguishes between the two childhood locations is the 62 exposure to higher and recurrent infectious disease loads in Bangladesh [13–15]. Indeed, by 63 mimicking early-life immune challenges in a mouse model, we replicated some of the distinct 64 reproductive phenotypes characteristic of women with a childhood in Bangladesh, in 65 including delayed onset of puberty lower ovarian reserve [16]. 66 67 At the cellular level, environmental factors influence the chromatin state of the genome [17].

Stored as epigenetic information, cells have the capacity to retain some memory of past developmental and environmental conditions [18]. Methylation of genomic DNA is part of the epigenetic information storage system in mammalian cells where it is primarily confined to cytosines of CpG dinucleotides [19]. Methylation levels of discrete CpG sites have been

used to develop remarkably accurate estimators of age. Such 'epigenetic clocks' link
developmental and maintenance processes to biological ageing [reviewed in [20]]. Pace of
ageing can vary and result in a mismatch between chronological and biological age of an
individual [21].

76

77 Here, we explore the possible association between chronological age, biological ageing and 78 an epigenetic maintenance system in Bangladeshi women of prime reproductive age (18-35 79 years old). The women of this study live within the same ethnic community in London but 80 can be divided into two groups: those with a childhood in the UK, and those with a childhood 81 in Sylhet, a city in the northeast region of Bangladesh. Using buccal cell DNA from these 82 London-based Bangladeshi women, we recently identified genome-wide, altered DNA 83 methylation levels between the two groups [16]. Since these DNA methylation 84 measurements were generated on the MethylationEpic array platform, we re-examined the 85 data using 'Horvath's clock', a multi-tissue age-estimator with a robust relationship between 86 chronological age and DNA methylation-based (DNAm) age [22].

87

88 **Results and Discussion**

89 Accelerated DNAm Age measured with Horvath's epigenetic clock

90 We find that the correlation between chronological age and DNAm age does not differ

significantly between women who grew up the UK ('UK' group; n=11) and women who grew

92 up in Bangladesh ('Bangladesh' group; n=15). That is, chronological age affects DNAm age

93 in a similar way in both groups (Additional file 1). However, regression analysis showed that

94 the y-intercepts of the UK and Bangladeshi groups differ significantly (p=0.0083) / Additional

95 file 1). This suggested that a childhood in Bangladesh correlates with DNAm Age predictions

that differ noticeable when compared with epigenetic age estimates for women of the UK

97 group.

98 The tick rate of epigenetic clocks is increased by many different environmental factors,

99 including psychological traumas, smoking, asthma, alcohol, infections and hormonal

100 changes following menopause [23–26]. Such acceleration of epigenetic age is best

101 measured by residuals obtained from regressing DNAm age on chronological age [22].

102 Indeed, the pace of epigenetic ageing is accelerated in women with a childhood in

103 Bangladesh and overall differs significantly from the UK group (p=0.016) (Figure 1). This

104 altered pace of biological ageing is consistent with our previous observations that women

105 who grow up in Bangladesh have a shorter reproductive lifespan and chronically lower levels

106 of reproductive hormones [9,13,15]; reviewed in [7]. Although our finding of accelerated

- 107 epigenetic ageing rests on a small number of sampled individuals, it highlights the limited
- 108 utility of epigenetic clocks as a tool to determine the age and consequently eligibility
- 109 considerations of asylum-seekers [27].
- 110

- 111
- 112

113 **Fig. 1 Differences in pace of epigenetic ageing**

Plot of DNAm Age Accel Residuals, with each data point representing an individual. The
colour indicates the corresponding dataset: blue = childhood in UK, orange = childhood in
Bangladesh. The median is indicated by a horizontal line with upper and lower hinges
representing the 25th and 75th percentiles. A positive or negative value indicates that the
estimated epigenetic/biological age of the sample is higher or lower, respectively, than
expected based on chronological age.

120

121 Epigenetic stability of a clock locus

122 The tick rate of Horvath's epigenetic clock is thought to reflect the rate at which work is done 123 to maintain epigenetic stability [20,22]. It is possible to infer epigenetic stability by analysing 124 double-stranded DNA methylation data with a new metric, Ratio of Concordance Preference 125 (RCP) [28]. We used the RCP metric to estimate epigenetic stability at the Luteinizing 126 Hormone/Choriogonadotropin Receptor (LHCGR/LHR) gene, which plays an important role 127 in reproductive function. The LHCGR locus contains a CpG site, which contributes to 128 Horvath's DNAm Age clock [22]. 129 We find that RCP estimates are generally higher for the 'Bangladeshi' group of women 130 (Figure 2). Higher RCP estimates indicate higher levels of epigenetic stability [28]. That is,

131 the methylation states of CpGs at *LHCGR* locus are more often identical on the two strands

- 132 of individual DNA molecules of 'Bangladeshi' individuals when compared to 'UK' individuals.
- 133 We note that the RCP estimates are based on a relatively small number of data points
- 134 (Additional file 1), yet they are sufficient to indicate subtle differences in the workings of the
- 135 epigenetic maintenance system between two groups of women who appear to age at
- 136 different rates.

137

Fig. 2 Inferences of DNA methylation stability differ between UK and Bangladeshi
 samples at the epigenetic-clock associated *LHCGR/LHR* locus.

140 A) Ratio of Concordance Preference (RCP) is a metric that infers stability/flexibility of

- 141 methylation states at matching CpG sites (CpG dyads) on the parent and daughter strand of
- 142 individual DNA molecules, without assuming any specific enzymatic mechanisms of DNA
- 143 methylation. Flexibility, indicated by RCP values near 1, indicates that the methylation
- 144 system has no preference for either concordance or discordance of the methylation state at

145 a CpG dyad and follows the random model. High RCP values - with the extreme 146 approaching infinity - indicate high stability, where epigenetic maintenance systems have 147 complete preference for concordant methylation states of CpG dyads (they are either 148 methylated or unmethylated); none, or very few CpG dyads are hemi-methylated. Shown are 149 the RCP distributions taken from bootstrap samples, weighing each individual evenly within each group (UK = blue, Bangladesh = orange). The sampled population of double-stranded 150 151 DNA molecules – and the corresponding methylation states of CpG dyads - revealed a clear 152 preference for a more stable epigenetic maintenance system in operation at the LHR locus 153 in women with a childhood in Bangladesh, when compared to inferred RCP values for the 154 samples from women with a childhood in London. B) Testing if the bootstrap samples of 155 RCP differences (Bangladesh vs UK childhood) are significantly differnt. The red line is set 156 at 0. The p-value is derived from this as the proportion of samples to the left of 0 (a one-157 tailed test to examine whether Bangladesh RCPs are significantly greater than UK RCP 158 values). Two-tailed p-value is the double of that amount. p = 0.026 (one tailed); p = 0.052 (two 159 tailed)

160

161

162 Conclusions

163 The results of our study support a large body of work demonstrating phenotypic plasticity in 164 response to environments encountered during early life. A childhood in Bangladesh 165 measurably accelerates epigenetic/biological ageing in women, when compared to women 166 of same chronological age (18 -35 yrs) and ethnicity, who were born and brought up in 167 London, UK. The multi tissue epigenetic clock is thought to register the workings of 168 developmental and epigenetic maintenance systems linking these processes with the life 169 course [20,22]. Our study is one of the first to test if differences in function of the epigenetic 170 maintenance system can be linked with epigenetic age estimators. The findings indicate that 171 subtle differences in the stability of epigenetic states are indeed associated with biological 172 ageing and opens a new line of investigation. 173

174 Methods

175 DNA methylation data and establishment of DNAm Age

- 176 Genome-wide cytosine methylation levels were established using the Illumina
- 177 HumanMethylationEPIC BeadChip Array following isolation of genomic DNA from buccal
- 178 cells DNA (DNeasy Blood & Tissue Kit (Qiagen). Multidimensional scaling (MDS) plots

- 179 indicated that no significant batch effects were skewing the MethylationEPIC BeadChip data
- 180 sets. The data were processed with the Bioconductor/minfi package. CpG probes associated
- 181 with known SNPs were removed, as were those with a detection probability of <0.01. Probes
- 182 on both X and Y chromosomes were retained. Methylation beta values (0-1) were
- 183 normalized by SWAN. The methylation data set (GSE133355 study) is accessible on the
- 184 Gene Expression Omnibus (GEO) data platform at:
- 185 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133355

186 Determination of DNAm Age and age acceleration

- 187 A file with the beta values obtained from the Illumina HumanMethylationEPIC BeadChip
- 188 Array work (see above) was used to establish the epigenetic age (DNAm age and
- 189 AgeAccelerationResiduals) with Horvath's method [22]. The underlying algorithms are
- 190 available through the online DNA methylation calculator (<u>http://dnamage.genetics.ucla.edu/</u>).
- 191

192 Generation of bisulfite hairpin data / methylation states of CpG dyads at the

193 LHCGR/LHR locus

- 194 We have previously described in detail the concept and procedure of generating
- authenticated, non-redundant double-stranded DNA methylation data [19,29,30]. In brief,
- 196 genomic sequence information surrounding the LHR clock-CpG site [one of the 353 CpG
- 197 sites contributing to Horvath's clock [22]; Illumina cluster ID cg12351433 / chr2:48982957-
- 198 48982957 / UCSC Genome Browser (GRCh37/hg19)] was used to identify suitable
- 199 restriction recognition sites to generate 3', or 5'-overhangs, respectively, for the ligation of
- 200 UMI-barcoded hairpin linkers. Specifically, restriction enzymes Styl or BstXI (New England
- 201 Biolabs) were used. Combinations of the following primers were used to amplify hairpin-
- 202 linked, bisulfite converted DNA:
- 203 bsLHR-R1 5'-RCAAATCAAAACAAAACAAACTC-3';
- 204 bsLHR-R2 5'-CACTAAACACTATCRCAAATCAAAAC-3';
- 205 bsLHR-F1 5'-TAGTAGGAAGGAGGTTATTGG-3';
- 206 bsLHR-F2 5'-GTAGGTTAAGGTAGAGTAGATTTAG-3';
- 207 bsLHR-F3 5'-GAATTGGGTTTTTGCGGTTTGTTAG-3'.
- 208 Further information of the hairpin-concept and of the barcoded and batch-stamped hairpin
- 209 linkers (Eurofins Genomics) are provided in Additional file 1.
- 210
- 211 **Processing of the sequencing data:** Fold is a web application for the analysis of the output
- of hairpin-bisulphite sequencing data. Specifically, the programme reconstructs, visualises,

213 and generates statistics on the double-stranded CpG methylation patterns of the original 214 cohort of DNA molecules. This is achieved by first 'realigning' the top and bottom strand of 215 the molecule about the hairpin, in which the programme attempts to manage 'PCR slippage', 216 and other sequencing errors. Then algorithm then identifies and categorises CpG dyads. 217 which is possible due to the previous bisulphite conversion of unmethylated cytosine to 218 uracil (and so recognised as tyrosine when sequenced). For example, fully methylated 219 dyads are those regions in where the reconstructed top strand is C-G and the bottom is G-C. 220 Similarly, fully unmethylated dyads are those where the top is T-G and the bottom is G-T. In 221 addition, the programme calculates a metric: 'Ratio of Concordance Principle' which 222 guantifies the concordance of methylation between the top and bottom strands of the DNA 223 molecule (0=complete discordance, 1=random concordance, inf=complete concordance). 224 This metric represents the preference of the summation of epigenetic mechanisms of the cell 225 to either maintain or obscure methylation patterns of the DNA in the cells at the time the 226 sample was taken. The functions of Fold was written in R and the web application is written 227 in PHP. The live web application can be found at http://www.gregoryleeman.com/fold. and 228 the repository can be found at https://github.com/gregoryleeman/fold.

229

230 Analysis and comparison of RCPs at the *LHCGR/LHR* locus

231 RCP values are based on double-stranded DNA methylation data derived from sequences of 232 individual hairpin bisulfite PCRs products. RCP analyses were done following the 233 procedures described in [28] with the small addition of bootstrapping individuals within each 234 population. The additional step in the procedure helps to address the possibility of uneven 235 sampling from a larger population. The analysis procedures in brief are described below. 236 Each population RCP distribution was drawn through hierarchical bootstrap sampling. For 237 each of 20,000 bootstrap samples, individuals in each population were sampled with 238 replacement, and double stranded DNA sequences of each of the sampled individuals were 239 in turn sampled with replacement. Dyad counts were then normalised such that each 240 individual had the same number of dyads. The normalised dyad counts were then summed, 241 corrected for failed bisulfite conversions (rate of 0.0039, measured empirically) and 242 inappropriate conversions (rate of 0.017, estimated as described in [31] [Genereux et al., 243 2008]), and used to compute the RCP value. A bootstrap sample of the RCP difference was 244 computed by taking the difference of the RCP values sampled for the two populations. 245

- For one-tailed comparison tests, with which we examine directional differences, we
- 247 determined the p-value as the proportion of bootstrap-difference samples to the left of 0. For

248	two-tailed tests, with which we can detect differences in any direction, we determined the p-
249	value as twice the smaller proportion of the bootstrap difference samples on either side of 0.
250	
251	Availability of data and materials
252	The datasets generated and/or analysed during the current study are available in the Gene
253	Expression Omnibus (GEO) data platform
254	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133355
255	All data generated or analysed during this study are included in this published article and its
256	supplementary information file.
257	
258	Competing interests
259	The authors declare that they have no competing interests.
260	
261	Funding
262	This research was supported by the Biotechnology and Biological Science Research Council
263	(BBSRC) and the Economic and Social Research Council (ESRC) grant ES/N000471/1(to
264	GB, PM and RS).
265	
266	Authors' contributions
267	RS: Conceptualisation, Funding acquisition, Experimental work, Analysis, Resources,
268	Supervision, Data curation, Project administration, Writing – original draft, Writing – review &
269	editing.
270	MC: Analysis, review & editing
271	GL: Analysis, Coding
272	RDE: Analysis, Data curation
273	KB: Experimental work, Resources
274	PM: Funding acquisition, Project administration, Writing - review & editing.
275	GRB: Conceptualisation, Funding acquisition, Project administration, Writing - review &
276	editing.
277	
278	Acknowledgements
279	We thank Kamila Derecka for technical support, Ian C. W. Hardy for statistical advice and
280	Steve Horvath for information on DNAm age analysis.
281	
282	

283 **References**

- 1. Day FR, Ruth KS, Thompson DJ, Lunetta KL, Pervjakova N, Chasman DI, et al. Large-
- scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer
- susceptibility and BRCA1-mediated DNA repair. Nat Genet. Nature Publishing Group;
- 287 **2015;47:1294–303**.
- 288 2. Zeng J, De Vlaming R, Wu Y, Robinson MR, Lloyd-Jones LR, Yengo L, et al. Signatures
 of negative selection in the genetic architecture of human complex traits. Nat Genet. Nature
- 290 Publishing Group; 2018;50:746–53.
- 3. Fernández-Rhodes L, Malinowski JR, Wang Y, Tao R, Pankratz N, Jeff JM, et al. The
- 292 genetic underpinnings of variation in ages at menarche and natural menopause among
- women from the multi-ethnic Population Architecture using Genomics and Epidemiology
- 294 (PAGE) Study: A trans-ethnic meta-analysis. Thameem F, editor. PLoS One. Public Library
- 295 of Science; 2018;13:e0200486.
- 4. Horikoshi M, Day FR, Akiyama M, Hirata M, Kamatani Y, Matsuda K, et al. Elucidating the
- 297 genetic architecture of reproductive ageing in the Japanese population. Nat Commun.
- 298 Nature Publishing Group; 2018;9:1–9.
- 299 5. Carty CL, Spencer KL, Setiawan VW, Fernandez-Rhodes L, Malinowski J, Buyske S, et
- 300 al. Replication of genetic loci for ages at menarche and menopause in the multi-ethnic
- 301 Population Architecture using Genomics and Epidemiology (PAGE) study. Hum Reprod.
- 302 Oxford University Press; 2013;28:1695–706.
- 303 6. Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon JP. The Timing
- 304 of Normal Puberty and the Age Limits of Sexual Precocity: Variations around the World,
- 305 Secular Trends, and Changes after Migration. Endocr. Rev. Endocr Rev; 2003. p. 668–93.
- 306 7. Bar-Sadeh B, Rudnizky S, Pnueli L, Bentley GR, Stöger R, Kaplan A, et al. Unravelling
- 307 the role of epigenetics in reproductive adaptations to early-life environment. Nat. Rev.
- 308 Endocrinol. Nature Research; 2020. p. 519–33.
- 309 8. Magid KS, Uddin Ahamed F, Lawson DW, Chatterton RT, Bentley GR. Effects of adult
- 310 migration on male salivary testosterone. Am J Hum Biol. 2006;18:262.
- 311 9. Begum K, Muttukrishna S, Sievert L, Sharmeen T, Murphy L, Chowdhury O, et al.
- 312 Ethnicity or environment: Effects of migration on ovarian reserve among Bangladeshi
- 313 women in the UK. Fertil Steril. 2015;under revi.
- 10. Nunez-De La Mora A, Bentley GR, Choudhury OA, Napolitano DA, Chatterton RT. The
- 315 impact of developmental conditions on adult salivary estradiol levels: why this differs from
- 316 progesterone? Am J Hum Biol. 2007/10/25. 2008;20:2–14.
- 11. Houghton LC, Cooper GD, Booth M, Chowdhury OA, Troisi R, Ziegler RG, et al.

- 318 Childhood environment influences adrenarcheal timing among first-generation Bangladeshi
- 319 migrant girls to the UK. Sear R, editor. PLoS One. 2014/10/14. 2014;9:e109200.
- 320 12. Perry JRB, Murray A, Day FR, Ong KK. Molecular insights into the aetiology of female
- 321 reproductive ageing. Nat. Rev. Endocrinol. Nature Publishing Group; 2015. p. 725–34.
- 322 13. Núñez-de la Mora A, Chatterton RT, Choudhury OA, Napolitano DA, Bentley GR,
- 323 Nunez-de la Mora A, et al. Childhood conditions influence adult progesterone levels. Fisk
- 324 NM, editor. PLoS Med. 2007/05/17. 2007;4:e167.
- 325 14. Siddique AK, Baqui AH, Eusof A, Zaman K. 1988 floods in Bangladesh: pattern of illness
 326 and causes of death. J Diarrhoeal Dis Res. 1991;9:310–4.
- 327 15. Murphy L, Sievert L, Begum K, Sharmeen T, Puleo E, Chowdhury O, et al. Life course
- 328 effects on age at menopause among Bangladeshi sedentees and migrants to the UK. Am J
- 329 Hum Biol. 2012/11/24. 2013;25:83–93.
- 330 16. Bar-Sadeh B, Pnueli L, Begum K, Leeman G, Emes RD, Stöger R, et al. Early-life
- environment programs reproductive strategies through epigenetic regulation of SRD5A1 1.
- bioRxiv. Cold Spring Harbor Laboratory; 2020;2020.09.16.299560.
- 333 17. Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, et al. Genome-wide Chromatin
- 334 State Transitions Associated with Developmental and Environmental Cues. Cell.
- 335 2013;152:642–54.
- 18. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome
- integrates intrinsic and environmental signals. Nat Genet. 2003;33 Suppl:245–54.
- 338 19. Laird CD, Pleasant ND, Clark AD, Sneeden JL, Hassan KMA, Manley NC, et al. Hairpin-
- 339 bisulfite PCR: Assessing epigenetic methylation patterns on complementary strands of
- 340 individual DNA molecules. Proc Natl Acad Sci U S A. National Academy of Sciences;
- 341 2004;101:204–9.
- 342 20. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of
- 343 ageing. Nat Rev Genet. Nature Publishing Group; 2018;19:371–84.
- 344 21. Khan SS, Singer BD, Vaughan DE. Molecular and physiological manifestations and
- measurement of aging in humans. Aging Cell. Blackwell Publishing Ltd; 2017;16:624–33.
- 346 22. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol.
- 347 2013/10/22. BioMed Central Ltd; 2013;14:R115.
- 348 23. Dhingra R, Nwanaji-Enwerem JC, Samet M, Ward-Caviness CK. DNA Methylation
- 349 Age-Environmental Influences, Health Impacts, and Its Role in Environmental
- 350 Epidemiology. Curr. Environ. Heal. reports. Springer; 2018. p. 317–27.
- 351 24. Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, et al. Epigenetic clock
- analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY). 2017;9:419–

353 46.

- 25. Austin MK, Chen E, Ross KM, McEwen LM, MacIsaac JL, Kobor MS, et al. Early-life
- 355 socioeconomic disadvantage, not current, predicts accelerated epigenetic aging of
- 356 monocytes. Psychoneuroendocrinology. 2018;97:131–4.
- 26. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic
- biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10:573–91.
- 27. Editorial. Molecular test of age highlights difficult questions. 2018;561.
- 28. Choi M, Genereux DP, Goodson J, Al-Azzawi H, Allain SQ, Simon N, et al. Epigenetic
- 361 memory via concordant DNA methylation is inversely correlated to developmental potential
- 362 of mammalian cells. Barsh GS, editor. PLOS Genet. 2017;13:e1007060.
- 363 29. Miner BE, Stöger RJ, Burden AF, Laird CD, Hansen RS. Molecular barcodes detect
- 364 redundancy and contamination in hairpin-bisulfite PCR. Nucleic Acids Res. 2004;32.
- 365 30. Stöger R. Hairpin-Bisulfite PCR. Methods Mol Biol. NLM (Medline); 2021;2198:287–99.
- 366 31. Genereux DP, Johnson WC, Burden AF, Stöger R, Laird CD. Errors in the bisulfite
- 367 conversion of DNA: modulating inappropriate- and failed-conversion frequencies. Nucleic
- 368 Acids Res. 2008/11/06. Oxford University Press; 2008;36:e150.

369

371372 Additional file 1: Chronological age vs DNAm Age

- 373
- 374
- 375

376 Estimates of DNA methylation age (DNAm Age)

The online calculator (<u>https://dnamage.genetics.ucla.edu/</u>) was used to generate estimates of DNAm Age, AgeAccelerationDiff (= DNAmAge-Age), and AgeAccelerationResidual (= the recommended age acceleration measure based on Horvath's linear regression model [Horvath S (2013) DNA methylation age of human tissues and cell types. *Genome Biol* 14(10):R115 PMID: 24138928].

- 381
- 382

id	Sample ID	Childhood location	Age at time of sample collection	DNAmAge	AgeAcceleration Diff	AgeAcceleration Residual
1	X201247480032_R01C01	uk	22	30.4	8.4	7.2
5	X201247480032_R04C01	uk	25	29.0	4.0	2.4
8	X201247480032_R07C01	uk	27	27.9	0.9	-1.1
14	X201247480031_R03C01	uk	31	30.9	-0.1	-2.6
15	X201247480031_R04C01	uk	33	29.1	-3.9	-6.6
22	X201247480036_R03C01	uk	35	29.3	-5.7	-8.7
23	X201247480036_R04C01	uk	26	24.8	-1.2	-3.0
24	X201247480036_R05C01	uk	27	20.4	-6.6	-8.6
25	X201247480036_R06C01	uk	25	15.0	-10.0	-11.6
30	X201247480034_R03C01	uk	21	22.2	1.2	0.1
31	X201247480034_R04C01	uk	26	22.7	-3.3	-5.1
2	X201247480032_R02C01	bangladesh	34	37.4	3.4	0.5
4	X201247480032_R03C01	bangladesh	32	50.6	18.6	16.0
12	X201247480031_R01C01	bangladesh	35	41.3	6.3	3.2
13	X201247480031_R02C01	bangladesh	21	27.0	6.0	4.9
16	X201247480031_R05C01	bangladesh	33	44.2	11.2	8.4
17	X201247480031_R06C01	bangladesh	28	41.5	13.5	11.4
18	X201247480031_R07C01	bangladesh	35	31.2	-3.8	-6.9
19	X201247480031_R08C01	bangladesh	29	25.6	-3.4	-5.6
20	X201247480036_R01C01	bangladesh	32	35.9	3.9	1.3
21	X201247480036_R02C01	bangladesh	28	24.8	-3.2	-5.3
26	X201247480036_R07C01	bangladesh	32	37.9	5.9	3.3
27	X201247480036_R08C01	bangladesh	35	38.1	3.1	0.0
28	X201247480034_R01C01	bangladesh	34	40.8	6.8	3.8
32	X201247480034_R05C01	bangladesh	28	32.5	4.5	2.4
36	X201247480034_R07C01	bangladesh	22	25.2	3.2	1.9

389 Prism GraphPad 8 analysis / Chronological age vs DNAm Age:

390 The slopes of the regression lines between the 'UK' group (n=11) and the 'Bangladesh' group (n=15)391 are not significantly different (F = 1.136; DFn = 1, DFd = 22 p=0.29). Therefore, a single slope for data 392 of the entire cohort can be established: the pooled slope equals 0.8128 (Additional Fig 1a). However,

- 393 the intercepts are significantly different (F = 8.341. DFn = 1, DFd = 23, p=0.0083)
- 394

Additional Fig 1a

Chronological Age

395 396 Additional Fig 1a: Plot of predicted methylation age (Horvath clock) against chronological age. 397 The scatter plot shows DNA methylation age vs. chronological age vs. and the line in which DNA 398 methylation age was regressed on chronological age using both, the 'UK' and the 'Bangladesh' data 399 sets. 'UK' = Bangladeshi women who grew up in London, UK (blue); 'Bangladeshi = Bangladeshi 400 women who grew up in Sylhet, Bangladesh. Each data point represents an individual, with the colour 401 indicating the corresponding dataset.

402

403 Genstat analysis / Chronological age vs DNAm Age:

404 Genstat analysis of covariance yielded similar results to those obtained by Prism GraphPad 8 405 analysis, in that Bangladeshi women with a childhood in the UK and Bangladeshi women with a 406 childhood in Bangladesh are affected by chronological age the same way - the two slopes are the 407 same based on a minimal adequate mode (Additional Fig 1b). Parameters needed to reconstruct the 408 lines are indicated in vellow:

1 00	intes are indicated in ye
409	Estimates of parameters

-					
0	Parameter	estimate	s.e.	t(23)	t pr.
1	Constant	10.78	8.35	1.29	0.209
2	Country UK	-7.19	2.49	-2.89	0.008
3	chronological_age	0.813	0.269	3.02	0.00
4					

Country	Bangladesh

	-						
410	Parameter	estimate)	s.e.	t(23)	t pr.	
411	Constant	10.78		8.35	1.29	0.209	
412	Country UK	-7.19		2.49	-2.89	0.008	
413	chronological_age	0.813		0.269	3.02	0.00	
414							
415	Parameters for factors are dif	ferences	compared	with the re	eference le	vel:	
416	Factor	Referen	ce level				
417	Country	Banglad	esh				
418	,						
419	Accumulated analysis of va	riance					
420	Change	d.f.	S.S.		m.s.	v.r.	F pr.
421	+ chronological_age	1	660.09		660.09	19.57	<.001
422	+ Country	1	282.95		282.95	8.39	0.008
423	+ chronological_age Country	1	38.32		38.32	1.14	0.298
424	Residual	22	741.94		33.72		
425	 chronological_age.Country 	-1	-38.32		38.32	1.14 0.2	298 interaction not significant
426	- Country	-1	-282.95		282.95	8.39 0.0	008 country significant
427	+ Country	1	282.95		282.95	8.39 0.0	008 country put back into model
428	- chronological_age	-1	-309.57		309.57	9.18 0.0	006 age significant
429	+ chronological_age	1	309.57		309.57	9.18 0.0	006 age put back into model, so
430							model can be plotted.

9.18 0.006 age put back into model, so that the final 309.5 309.5 model can be plotted. 25 1723.29 68 93

431 432 Total

- 433 Additional Fig 1b: The minimal adequate model (Genstat analysis):
- 434

Additional Fig 1 b

436 DNA sequence surrounding the *LHR*-clock CpG site analysed by hairpin bisulfite PCR

The CpG site [clock CpG] at the *Luteinizing Hormone/Choriogonadotropin Receptor (LHCGR/LHR)* locus, which contributes to 'Horvath's clock' (Horvath, 2013) was PCR-amplified following hairpin

439 linker-ligation and sodium bisulfite conversion. The hairpin PCR products also captured methylation

- information of flanking CpGs (highlighted in red): four CpGs with the Styl-hairpin linker approach and
- 441 eight CpGs with the BstXI-hairpin linker approach, respectively:
- 442

447 BstXI- and Styl-hairpin linkers used in this study

Name:	Sequence:	individual	converted
hLHR-hp-III	ACAGTGCADDDDDDDTGCACTGTtgtc	#12	ATAGTGTADDDDDDDDTGTATTGTtgtT
hLHR-hp-1	ACATGGCADDDDDDDTGCCATGTtgtc	#16	ATATGGTADDDDDDDDTGTTATGTtgtT
hLHR-hp-2	ATCGTGCADDDDDDDTGCACGATtgtc	#17	ATTGTGTADDDDDDDDTGTATGATtgtT
hLHR-hp-3	AAGGTGCADDDDDDDDTGCACCTTtgtc	#19	AAGGTGTADDDDDDDDTGTATTTttgtT
hLHR-hp-4	AACCTGCADDDDDDDDTGCAGGTTtgtc	#22	AATTTGTADDDDDDDDTGTAGGTTtgtT
hLHR-hp-5	TAGCACGTDDDDDDDDACGTGCTAtgtc	#13	TAGTATGTDDDDDDDDDTGTGTTAtgtT
hLHR-hp-6	TTACACGTDDDDDDDDACGTGTAAtgtc	#15	TTATATGTDDDDDDDDATGTGTAAtgtT
hLHR-hp-7	TTCCACGTDDDDDDDDACGTGGAAtgtc	#23	TTTTATGTDDDDDDDDATGTGGAAtgtT
hLHR-hp-8	TTTCACGTDDDDDDDDACGTGAAAtgtc	#29	TTTTATGTDDDDDDDDATGTGAAAtgtT
hLHR-hp-9	TTGAACGTDDDDDDDDACGTTCAAtgtc	#30	TTGAATGTDDDDDDDDDTGTTTAAtgtT
hLHR-hp-10	TTGTACGTDDDDDDDDACGTACAAtgtc	#31	TTGTATGTDDDDDDDDDTGTATAAtgtT
Styl			
hLHR-hp-11	caagACATGGCADDDDDDDDTGCCATGT	#5/6	taagATATGGTADDDDDDDTGTTATGT
hLHR-hp-12	caagATCGTGCADDDDDDDDTGCACGAT	#7	taagATTGTGTADDDDDDDTGTATGAT
hLHR-hp-13	caagAAGGTGCADDDDDDDDTGCACCTT	#8	taagAAGGTGTADDDDDDDTGTATTTT
hLHR-hp-14	caagAACCTGCADDDDDDDDTGCAGGTT	#10	taagAATTTGTADDDDDDDTGTAGGTT
hLHR-hp-15	caagTAGCACGTDDDDDDDDACGTGCTA	#25	taagTAGTATGTDDDDDDDDATGTGTTA
hLHR-hp-16	caagTTACACGTDDDDDDDDACGTGTAA	#16	taagTTATATGTDDDDDDDDATGTGTAA
hLHR-hp-17	caagTTCCACGTDDDDDDDDACGTGGAA	#17	taagTTTTATGTDDDDDDDDATGTGGAA
hLHR-hp-18	caagTTTTCACGTDDDDDDDDACGTGAAA	#18 / #27	taagTTTTTATGTDDDDDDDDATGTGAAA
hLHR-hp-19	caagTTGAACGTDDDDDDDDACGTTCAA	#20 / #28	taagTTGAATGTDDDDDDDDATGTTTAA
hl HR-hn-20		#26 / #22	taagTTGTATGTDDDDDDDDTGTATAA

452 Double-stranded methylation data of individual DNA molecules derived from buccal cells

453 The data shown on page 5 are processed, in that the methylation status of matching CpG sites of the

454 top- and bottom strands (CpG dyads) are indicated as methylated (=1), or unmethylated (=0).

- 455 Information of individual, double-stranded DNA molecules is displayed as follows:

Hairpin methylation data / Bangladesh-childhood

462	Hairpi	n methylation da	ata / Banglades
464	12_1	0,0,0,0,0,0,1,0,0) GTTAAATT
465	12_2	0,0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,0,0,) L GTATTATT
467 468	12 3	0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,	l L TGGTTTTA
$469 \\ 470$	_ 12_4	0,0,0,0,0,0,0,0,0,	
471 472	12_1	0,0,0,0,0,0,0,0,0,0	
473	12_5	0,0,0,0,0,0,0,0,0,0,0	
475	12_6	0,0,0,0,0,0,0,0,0,0,0) TAGGAGTG
476 477	12_7	0,0,0,1,0,0,0,0, 0,0,0,0,0,0,0,0,0,0	GGTTTGAA
478 479	12_8	0,0,0,0,0,0,0,0,0,0,0	GGTGTGTT
480 481	12_9	0,0,0,0,0,0,0,1,0,0	AGATGTAA
482	12_10	0,0,0,1,0,0,0,0,0,0	TTGGAGGG
484	12_11	0,0,0,1,0,0,0,0,0,0,0) ATTTAGTT
486	12_12	0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,	D TGTAAAGA
487 488	12_13	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,) D TGTTTTTT
489 490	12 14	0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) ATTTTAGG
491 492	_ 12_15	0,0,0,0,0,0,0,1,0	
493	12_15	0,0,0,0,0,0,0,0,0,0,0	
495	12_16	0,0,0,0,0,0,0,0,0,0,0) TTGAAAGG
490	12_17	0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,	GGGTTAAG
498 499	13_1	0,0,0,0,1,1,0,0, 0,0,0,0,0,0,0,0,0,0	AAGAGAGT
500 501	13_2	0,0,0,0,0,0,0,0,0,0,0	D TTGTTATA
502 503	13_3	0,0,0,0,0,0,0,0,0,0	О ТАААТСТА
504 505	13_4	0,0,0,1,0,0,0,0,0	TTAGATGG
506	13_5	0,0,0,0,0,0,0,0,0,0,0,0	D TGATATAA
508	13_6	0,	GGGTTGGG
509 510	13_7	0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,	GATTGATA
511 512	13 8	0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,) GGGTTAAG
513 514	-	0,0,0,0,0,0,0,0,0,0) ТАСТАТАТ
515 516	13 10	0,0,0,0,0,0,0,0,0,0	
<u></u> <u>5</u> <u>1</u> 7	13_10	0,0,0,0,0,0,0,0,0,0,0,0	
519	13_11	0,0,0,0,0,0,0,0,0,0,0) ATAGGAAG
520 521	13_12	0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,	l TGGGATGA l
522 523	13_13	0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,	D TATGTTTG
524 525	13_14	0,0,0,0,1,1,0,0, 0,0,0,0,1,1,0,0,	GAGAAATG
526 527	13_15	0,1,0,0,0,0,0,0,0,0	D TTTATTGT
<u>528</u>	13_16	0,0,0,0,0,0,0,0,0,0,0	TTTGTAGA
530	13_17	0,	ATGTTAGT
532	13_18	U,U,U,U,U,O,O,O,O,O, O,O,O,O,O,O,O,O,O,O	ATGAGGGG
233 534	13_19	0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,0,) GTTTGAAG
535 536	_ 19 1	0,) GTGAATAT
537 538	- 19 2	0,1,0,0,0,0,0,0,0,0) ТАСССААТ
539		0,0,0,0,0,0,0,0,0,0	

540	19_3	0,0,0,0,0,0,1,1, <mark>1</mark>	GTGGGGTG
541 542	19_4	0,0,0,0,0,0,1,1, <mark>1</mark> 0,0,0,0,0,0,0,0,0,0	GAAATAGT
543 544	19 5	0,0,0,0,0,0,0,0,0 <mark>,0</mark> 0,0,0,0,0,0,1,0, 1	GTGTGTAT
545 546	_ 19_6	0,0,0,0,0,0,1,0, <mark>1</mark> 0,0,0,0,0,0,0,0,0	TGATGTGA
547 548	19 7	0,0,0,0,0,0,0,0,0	2 2 2 2 2 2 2 2 2 2 2 2 2 2
549	10_0	0,0,0,0,0,0,0,0,0	
551	19_8	0,0,0,0,0,0,0,0,0	ATATGTTC
552 553	19_9	1,1,0,0,0,0,0,0,0, <mark>0</mark> 1,1,0,0,0,0,0,0,0, <mark>0</mark>	AGTTGAGG
554 555	19_10	0,0,0,0,0,0,0,0, <mark>0</mark> 0,0,0,0,0,0,0,0,0, <mark>0</mark>	ΤΤΤΑΑΑΑΑ
556 557	19_11	0,0,0,0,0,0,0,0, <mark>0</mark> 0,0,0,0,0,0,0,0,0	GATAATTT
558 559	19_12	0,0,0,0,0,0,0,0,0, <mark>0</mark> 0,0,0,0,0,0,0,0,0	GTTGTTGT
560 561	19_13	0,0,0,0,0,0,0,0,0	TTGTGTAT
562 563	19_14	0,1,1,0,0,0,0,0,0	TTGGGTAT
564	19_15	0,0,0,0,0,0,0,1,0,0	ATTTATTT
566	19_16	0, 0, 0, 0, 0, 0, 0, 1, 0, 0 0, 0, 0, 1, 0, 0, 0, 0, 0	GTGGAGGT
567 568	19_17	0,0,0,1,0,0,0,0, <mark>0</mark> 0,0,0,0,0,0,0,0,0 <mark>1</mark>	TAAGTAGG
509 570	19_18	0,0,0,0,0,0,0,0,1 0,0,0,0,0,1,0,0, <mark>0</mark>	AATGTTGT
$\frac{5/1}{572}$	19_19	0,0,0,0,0,1,0,0, <mark>0</mark> 0,0,0,0,0,0,0,0,0,0	TTAAGGGT
573 574	19_20	0,0,0,0,0,0,0,0, <mark>0</mark> 0,0,0,0,0,0,0,0,0	TTAAAGGT
575 576	19 21	0,0,0,0,0,0,0,0, <mark>0</mark> 0,0,0,0,0,0,0,0,0	TAGATTTG
577 578	_ 19 22	0,0,0,0,0,0,0,0,0, <mark>0</mark> 0,0,0,0,0,0,0,0,0	GGGATTTT
579 580	- 19_23	0,0,0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0,0	АСАТТСТС
581 582	19 24	0,0,0,0,0,0,0,0,0	
583	20 1	0,0,0,0,0,0,0,0,0	
585	20_1	0,0,1,1,1	AGAGAIGG
587	20_2	0,0,1,1,1 0,0,1,1,1	GAAGGATA
288 589	20_3	0,0,1,1, <mark>1</mark> 0,0,1,1, <mark>1</mark>	TAGGTAGG
590 591	20_4	0,0,0,0, <mark>0</mark> 0,0,0,0,0	GGGGATGG
592 593	20_5	0,0,0,0, <mark>0</mark> 0,0,0,0,0	AAATGTGG
594 595	20_6	0,0,0,0,0 0,0,0,0,0	GTAGTTTA
596 597	20_7	0,0,1,0,1 0 0 1 0 1	ATAAAGAG
<u>598</u>	20_8	1,1,1,0,1	GTGAGGAG
600	20_9	0,0,0,0,0	GATGGGGT
601 602	20_10	0,0,1,0,1 0,0,0,0,0	TATGAGTG
604	20_11	0,0,0,0, <mark>0</mark> 0,0,0,0, <mark>0</mark>	AAAAATTG
605 60 <u>6</u>	21_1	0,0,0,0, <mark>0</mark> 1,1,1,1, <mark>1</mark>	ATGAGGAT
608	21_2	1,1,1,1, <mark>1</mark> 1,1,1,1, <mark>1</mark>	GGTGATTG
609 610	21_3	1,1,1,1, <mark>1</mark> 1,1,1,1, <mark>1</mark>	TGGGATAA
611 612	21_4	1,1,1,1, <mark>1</mark> 1,1,1,1, <mark>1</mark>	GGATGTGA
613 614	_ 21 5	1,1,1,1, <mark>1</mark> 1,1,1,1,1	TAAGGGGG
615 616	36 1	1,1,1,1,1,1 0,1,0,1,0	GGAGAAGT
ŏ17	30_1	0,1,0,1, <mark>0</mark>	JUNUANUI

}	36_2	0,0,0,0, <mark>0</mark>	AGGGAGTT
)	36_3	0,0,0,0, <mark>0</mark> 0,0,0,0, <mark>0</mark>	GGAGAGGA
5	36 4	0,0,0,0, <mark>0</mark> 0,0,0,0,0	GGAGAGGG
}	26 5	0,0,0,0,0	
2	36_5	0,0,0,0,0 0,0,0,0, <mark>0</mark>	AGAGTAGT
)	36_6	0,0,0,0, <mark>0</mark> 0,0,0,0,0	AGGGAGGA
}	36_7	0,0,0,0,0	AAATTTAG
)	36_8	0,0,0,0,0 0,0,0,0, <mark>0</mark>	GGGTAATA
)	36 9	0,0,0,0, <mark>0</mark> 0,0,0,0,0	ATATGGAG
}	26 10	0,0,0,0,0	
)	36_10	0,0,0,0,0 0,0,0,0, <mark>0</mark>	AAGAAAAA
)	36_11	0,0,0,0, <mark>0</mark> 0,0,0,0,0	ATAAGAAA
))	36_12	0,0,0,0,1	AAGGGGTA
		0,0,0,0,1	

Hairpin methylation data / Bangladesh-childhood

5_1	0,0,0,0, <mark>0</mark>	AGTTGTTT
	0,0,0,0, <mark>0</mark>	
5_2	0,0,1,0, <mark>0</mark>	GGATGATA
	0,0,1,0, <mark>0</mark>	
5_3	1,1,1,1, <mark>1</mark>	GATAGTTG
	1,1,1,1, <mark>1</mark>	
5_4	1,1,1,1, <mark>1</mark>	GTTTAGGT
	1,1,1,0, <mark>1</mark>	
5_5	0,0,0,0, <mark>1</mark>	TGGGGTGA
	0,0,0,0, <mark>0</mark>	
15_{1}	0,0,0,0,0,0,0,0,0, <mark>0</mark>	ATATGAGA
	0,0,0,0,0,0,0,0,0, <mark>0</mark>	
15_2	0,0,0,0,0,0,0,0,0, <mark>0</mark>	ATGGGAGA
	0,0,0,0,0,0,0,0,0, <mark>0</mark>	
15_3	0,0,0,0,0,0,0,0,0, <mark>0</mark>	GATTGTAA
	0,0,0,0,0,0,0,0,0, <mark>0</mark>	
15_{4}	0,0,0,0,0,0,1,0, <mark>1</mark>	ATAGGGAA
	0,0,0,0,0,1,1,0, <mark>1</mark>	
15_5	0,0,0,0,0,0,1,0, <mark>0</mark>	TTGAAGAT
	0,0,0,0,0,0,1,0, <mark>1</mark>	
15_6	0,0,0,0,0,0,0,0,0, <mark>0</mark>	TGGTTAAA
	0,0,0,0,0,0,0,0,0, <mark>0</mark>	
15_7	0,0,0,0,0,0,0,0,0, <mark>0</mark>	TAAAGAAA
	0,0,0,0,0,0,0,0,0, <mark>0</mark>	
15_8	0,0,0,0,0,0,0,0,0, <mark>0</mark>	TATTTTTT
	0,0,0,0,0,0,0,0,0, <mark>0</mark>	
15_9	0,0,0,0,0,0,0,0,0, <mark>0</mark>	TGTATGTA
	0,0,0,0,0,0,0,0,0, <mark>0</mark>	
15_10	0,0,1,0,0,0,0,0,0, <mark>0</mark>	AAGTAAAG
	0,0,0,0,0,0,0,0,0, <mark>0</mark>	
15_{11}	1,1,0,0,0,0,1,0, <mark>0</mark>	AAAATTGA
	1,1,0,0,0,0,1,0, <mark>1</mark>	
15_{12}	0,0,0,0,0,0,0,0,0, <mark>0</mark>	GTGTGGGG
	0,0,0,0,0,0,0,0,0, <mark>0</mark>	
15_13	0,1,0,0,0,0,0,0,0, <mark>0</mark>	TAGTTGGA
	0,1,0,0,0,0,0,0,0, <mark>0</mark>	
15_{14}	1,1,1,1,1,0,0,0, <mark>1</mark>	AATGTAAA
	1,1,1,1,0,0,0,0, <mark>1</mark>	
15_{15}	0,0,0,0,0,0,0,0,0, <mark>0</mark>	TTGGTAGG
	0,0,0,0,0,0,0,0,0, <mark>0</mark>	
15_{16}	0,0,0,0,1,0,0,0, <mark>1</mark>	GTATTATG
	0,0,0,0,0,0,1,0, <mark>1</mark>	
30_1	0,0,0,0,0,0,0,0,0, <mark>0</mark>	ATAAGGGA
	0,0,0,0,0,0,0,0,0, <mark>0</mark>	
30_2	0,0,0,0,0,0,0,0,0, <mark>1</mark>	TTTTTAGA
	0,0,0,0,0,0,0,0,0, <mark>0</mark>	
30_3	0,0,0,0,0,0,0,0,0, <mark>1</mark>	TTGTGATA
	0,0,0,0,0,0,0,0,0, <mark>1</mark>	
30_4	0,0,0,0,0,0,0,0,0, <mark>0</mark>	TATAATTA
	0,0,0,0,0,0,0,0,0, <mark>0</mark>	

695 696	30_5	0,0,0,0,1,0,0,0,0	GAGTAATT
697	30_6	0,0,0,0,0,1,0,0,0,0,0 0,0,0,0,0,0,0,0,0,	TGAGTGAG
698 699	30_7	0,0,0,0,0,0,0,0,0, <mark>0</mark> 0,0,0,0,1,0,0,0, <mark>0</mark>	GGTGAATG
700 701	30 8	0,0,0,0,0,0,0,0,0, <mark>0</mark> 0,0,0,0,0,0,0,0,0	TGGAAATA
$702 \\ 703$	30.9	0,0,0,0,0,0,0,0,0	ጥጥጥጥጥርርል
704	20 10	0,0,0,0,0,0,0,0,0	CCTT 2 CTT 2
706	30_10	0,0,0,0,1,0,1,0,1	GGTAAGTA
708	30_11	0,0,0,0,0,0,1,0, <mark>1</mark> 0,0,0,0,0,0,0,0,0, <mark>1</mark>	GATAAAAG
709 710	30_12	0,0,0,1,1,0,0,0, <mark>0</mark> 0,1,0,1,0,0,0,1,0	TTAATAGG
711 712	30_13	0,0,0,0,0,0,0,0,0, <mark>0</mark> 0,0,0,0,0,0,0,0,0	AAGGTTTG
713	30_14	0,0,0,0,0,0,0,0,0	AGTTGGAG
715	30_15	0,0,0,0,0,0,0,0,0	TAAAGTAG
717	30_16	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 1, 0, 1	TTTTTAGA
719	30_17	0,0,0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0,0	TTAATTGA
721	30_18	0,0,0,0,0,0,0,0,0	TGGTTAAT
723	30_19	0,0,0,0,0,0,0,0,0,0 0,0,0,1,0,0,0,0,0	ATGTTGTG
725	30_20	0,0,0,0,0,0,0,0,0,0	TGAAAGAT
727	30_21	0,0,0,0,0,0,0,0,0,0	AGTAAGTG
729	30_22	0,0,0,0,0,0,0,0,0,0	TTTTTAGA
731	30_23	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 1	AAATGGGT
733	31_1	0,0,0,0,0,0,0,0,0,0 0,1,0,0,0,1,0,0,0	GGATTAGA
735	31_2	0, 1, 0, 0, 0, 1, 0, 0, 0 0, 0, 0, 0, 0, 0, 1, 1, 1, 1	TGAGTAAA
737	31_3	0,0,0,1,0,0,1,1,1	TAGAGAGA
739	31_4	0,0,0,1,0,0,1,1,1,1 0,0,0,0,0,0,0,0,0,0	TTTATAAT
740 741	31_5	0,0,0,0,0,0,0,0,0,0 1,1,0,0,0,0,1,0,0	AGATATAG
742	31_6	1,1,0,0,0,0,1,0, <mark>0</mark> 0,0,0,0,0,0,0,0,0, <mark>0</mark>	АААТААА
744 745	6_1	0,0,0,0,0,0,0,0, <mark>0</mark> 0,0,0,0, <mark>0</mark>	ATTGTTGA
746 747	62	0,0,0,0, <mark>0</mark> 0,0,1,0,0	TTGGGAAT
748 749	- 63	0,0,0,0, <mark>0</mark> 0,0,0,0,0	TTAAGATG
750 751	6 4	0,0,0,0,0 0,1,0,1,1	GTAGGGGG
752	°	0,1,0,1,1	ССТАССАТ
754	0_5	0,0,0,0,0	mammccac
756	8_1	0,0,1,1,0	TATTGGAG
758	8_2	0,0,0,0, <mark>0</mark> 0,0,0,0, <mark>0</mark>	GTTTGTAT
759 760	8_3	0,0,0,0, <mark>0</mark> 0,0,0,0, <mark>0</mark>	GTGTGTGT
761 762	8_4	0,0,0,0, <mark>0</mark> 0,0,0,0, <mark>0</mark>	TAGGGGAT
763 764	8_5	0,0,1,0, <mark>1</mark> 0,0,1,0, 1	TATTAAAG
765 766	8_6	0,0,0,0,0	GTAGGTGG
767 768	8_7	1,0,1,1,1	GTAGAGGG
769	8_8	0,0,0,0,0	ААААТАТА
źźł	8_9	0,0,0,0,0 0,0,0,0,0	GTTTTTGT
112		0,0,0,0, <mark>0</mark>	

773	8_10	0,0,0,0, <mark>0</mark>	GAGGTTAT
444		0,0,0,0,1	
113	8_11	0,0,0,0,0	TGTAGGAA
449	0 1 0	0,0,0,0,0	
448	8_12		AATTTGTT
448	0 1 2	0,0,1,1,1	
780	8_13	0,0,0,0,0	AAGTTAT
781	0 1/		Ͳሮሮአሞሞሞሮ
782	0_14		IGGAIIIG
783	0 15		መአመመአሮሮም
784	0_15	0,0,0,0,0	IAIIAGGI
785	8 16		ͲልͲͲርርልͲ
786	0_10		INIIGGNI
787	8 17		ΔΔͲͲϹϹϹͲ
788	0_17		1011100001
789	8 1 8	0, 0, 0, 0, 0	ͲႺͲͲႺͲልል
790	0_10	0.0.0.0.0	101101111
791	8 1 9	0.0.1.0.1	AGGATATA
792		0.0.1.0.1	
793	8 20	0,0,1,0,0	AGTTAGGT
794	_	0,0,1,0,0	
795	8 21	0,0,0,0,0	TTAGTAAG
796	-	0,0,0,0,0	
797	8 22	0,0,1,1, <mark>1</mark>	GAATTTGT
798	—	0,0,1,1, <mark>1</mark>	
799	8_23	0,0,0,0, <mark>0</mark>	GAAATGGA
800		0,0,0,0, <mark>0</mark>	
801	8_24	0,0,0,0, <mark>0</mark>	GTTGTTAA
802		0,0,0,0, <mark>0</mark>	
803	8_25	1,0,1,1, <mark>1</mark>	TTTTGGGT
804		0,0,0,0, <mark>0</mark>	
803	8_26	0,0,0,0, <mark>0</mark>	GATAAGGG
809		0,0,0,0,0	
80/	8_27	0,0,0,0,0	GGAAGTTG
808		0,0,0,0, <mark>0</mark>	
842	8_28	0,1,1,1,1	AGTAATGT
81Y		0,1,1,1,1,	
	8_29	0,0,0,0,0	AAATGGGT
812	0 20		
814	8_3U		AGTTTGGT
813	0 21		ሮእሮእመመመ
816	0_21		GAGATTTT
817		0,0,0,0,0	