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ABSTRACT

Therapeutic strategies for tumor control have traditionally assumed that maximizing reduction in tumor volume correlates
with clinical efficacy. Unfortunately, this rapid decrease in tumor burden is almost invariably followed by the emergence of
therapeutic resistance. Evolutionary based treatment strategies work to delay this inevitability by promoting the maintenance
of tumoral heterogeneity. While these strategies have shown promise in recent clinical trials, they often rely on biological
conjecture and intuition to derive parameters. Reproducibility of the success seen with this treatment paradigm is contingent on
formal elucidation of underlying subclonal interactions. One such consequence of these interactions, "competitive release", is
an evolutionary phenomenon that describes the unopposed proliferation of resistant populations following maximally tolerated
systemic therapies. While often assumed in evolutionary models of cancer, here we show the first empiric evidence of
"competitive release" occurring in an in vitro tumor environment. We found that this phenomenon is modulated by both drug
dose and initial population composition. As such, we observed that monotypic fitness differentials were insufficient to accurately
predict the outcomes of this phenomenon. Instead, derivation of underlying frequency dependent evolutionary game dynamics
is essential to understand resulting sub-population shifts through time. To evaluate the impact of these non-autonomous growth
behaviors over longer time series, we used a range of commonly employed growth models, some of which are the foundation
of ongoing clinical trials. While useful for identifying persistent qualitative features, we observed significant fragility and model
specific behaviors that limited the ability of these models to make consistent quantitative predictions, even when the parameters
were empirically derived.

Introduction1

Given our current understanding of intratumoral heterogeneity, treatment resistance after continuous dose chemotherapy is an2

expected consequence. Genomic instability1, inherent to the development of most cancer2–5, results in the accumulation of a3

wide range of aberrations within a single tumor population.6 While only a small subset of these randomly distributed changes4

will contribute directly to driving carcinogenesis, this diverse population comprised of phenotypically distinct subclones results5

in increased resilience of the overall tumor population across a wide range of external stressors.7–9
6

These distinct subclones do not live, grow, or reproduce in isolation. With this diverse cellular population comes a diverse7

range of intercellular interactions. Complex systems can often not be fully described empirically, and their dynamics are8

usually impossible to intuit from descriptions of their parts. In these situations, mathematical models have historically played9

a role. Specifically, solutions to evolutionary games have proven to be an effective method for elucidating the evolutionary10

consequences of interactions in large multicellular ecosystems, such as fisheries10 and game reserves.11 More recently, these11

evolutionary game theoretical models have begun being utilized to gain insight into phenotypic shifts that occur within tumor12

ecosystems.12–15 Within this framework, it is understood that particular properties selected for within a population are not only13

directed by environmental conditions, but also evolve in manner dependent on the frequency of other subtypes present within14

the population.16 This frequency dependent growth acts to shape treatment-naïve tumor ecosystems and influences inevitable15

development of resistance in post-treatment environments.17–20 Furthermore, as traditional treatment protocols continue to fail,16

more evolutionary-based treatments that rely on judicious treatment schedules and cooperative dynamics between populations17

have gained in popularity21–26. One such hypothesized idea is competitive release.27 Originally coined as “character release”,28
18

competitive release occurs when two or more populations are originally competing for the same resources, however as the19

stress of competition is diminished (such as via the extinction of a population through treatment) one population is able to20
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expand and become more dominant. It is thought that selective killing of sensitive cells during therapy removes competitive21

restrictions on resistant populations, allowing for their outgrowth and subsequent therapeutic failure. While intuitive in theory22

and observed in bacteria29, empiric evidence of the dynamics that underlie this phenomenon in cancer have, to our knowledge,23

yet to be elucidated.24

Dynamic therapeutic protocols using models of this type have already made their way into the clinic with promising25

results.25 While this highlights the value of game theoretical models for treatment optimization, the specific model was selected26

and parameterized mainly based on biological conjecture and intuition. Instead, we hypothesize that for each clinical condition,27

a different model and parameters would be needed to accurately capture intratumoral dynamics. As such, reproducibility28

of this initial success across different tissues and environmental contexts is contingent on our ability to elucidate subclonal29

interactions in the lab prior to transitioning to clinical practice. These quantitatively and qualitatively distinct interactions30

greatly influence the evolutionary trajectory of the tumor and subsequent growth patterns; therefore, incorrect characterization31

can unintentionally lead to worsened treatment outcomes.32

Recently, we developed an in vitro evolutionary game assay that admits direct measure of the underlying ecological33

dynamics within heterogeneous tumor environments.26 Here we utilize these techniques with a model non-small cell lung34

cancer (NSCLC) population to better understand phenotypic equilibria in treatment naïve populations and subsequent emergence35

of resistance, which has proven to be virtually inevitable in clinic.30–32 Specifically, we sought to elucidate “competitive release”36

as it relates to competing subclones within a tumor. While foundational to many evolutionary based therapeutic strategies, this37

phenomenon had yet to be empirically observed or quantitatively derived. Further, we sought to characterize the diverse range38

of ecological interactions that occur across various microenvironmental contexts to increase accuracy of therapeutic predictions39

and avoid pitfalls that would result in therapeutic failure.40
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Box 1: Experimentally Derived Evolutionary Game Dynamics

Tracking individual subclones in heterotypic cultures:
To track differential growth dynamics of two populations in the same culture, each population was transduced with a
vector encoding a different heritable fluorescent protein. For this experiment, the resistant and parental cells were made
to stably express mCherry and EGFP respectively. The expression of these proteins was linked to nuclear localization
signal (NLS) repeats for localization of the fluorescent signal into each cell’s nuclei. This increases resolution and
accuracy of cell number counts at higher confluency. Once plated together in heterotypic culture, each subclone could
be tracked through time in their respective fluorescent channel using time-lapse microscopy systems [Figure 1.1].

Translating image information into growth rates:
Cell number counts were extracted from each fluorescent image at each time point throughout the time series.
Exponential growth rates where determined via semi-log regression of change in cell number against change in time
(hours) using the Theil-sen estimator [Figure 1.2].

Fitness functions - growth as a function of population composition:
To find the dependence of fitness on the frequency of subclonal interaction, least squares regressions were performed on
the growth rate against the initial proportion of parental in each well [Figure 1.3]. This regression was weighted against
the inverse of the errors ( 1

σ2 ) associated with each growth rate. The resulting linear equations describe growth as a
function of the initial proportion of the opposing subclone:

ŵP = A+ k(1− p) (1)
ŵR = D+ kp (2)

These linear equations can be rearranged into fitness functions, which describe the fitness (ŵ) of a sub clone as a
function of the initial proportion (p) of interacting cells within the population.

ŵP = Ap+B(1− p) (3)
ŵR =Cp+D(1− p) (4)

Game theoretical payoff matrix:
To clearly represent the fitness outcome of specific interactions, payoff matrices corresponding to each of the different
conditions can be derived from the resulting fitness functions. For example, the fitness outcome of parental cells
interacting with one another occurs when p = 1, which translates to ŵP = A. Similarly, the fitness outcome of when
parental interacts with resistant occurs when p = 0, which translates to ŵP = B.

( P R
P A B
R C D

)
(5)

The errors associated with the on-diagonal payoffs are equivalent to the uncertainty of the intercept values, σA and σD
for parental and resistant respectively. The errors associated with the off-diagonal payoffs were derived by propagating
the uncertainty of both the intercept and slope through the addition:

σB = σA +σk (6)
σC = σD +σk (7)

41

Results/Discussion42

Ecological interactions define phenotypic equilibrium in treatment naive tumor populations43

The lung adenocarcinoma cell line PC9 was selected to represent NSCLC driven by activating mutations in the EGFR gene. To44

recapitulate underlying clonal diversity, parental and resistant lineages were derived from an identical starting population. The45

resistant lineage was cultured in the presence of 1µM gefitinib for a minimum of 6 months. The parental lineage was grown in46

parallel in a matched volume of DMSO. A high initial dose was chosen to select for preexisting resistant populations rather47

than drug tolerant cells.33
48
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Figure 1. Experimentally derived subclonal interactions: an evolutionary game assay. (1) Co-cultures of both subclones were plated
across full spectrum of initial proportions and in a range of different different drugs/concentrations. (2) Time-lapse microscopy was utilized
to capture population composition at different time points. Cell number counts were extracted from each fluorescent image and plotted
against elapsed time to derive subclonal growth rates in each well. (3) Growth rates of all wells in a given condition were plotted against
initial proportion parental. (4) Fitness functions and associated payoff matrices from derived via least squared regression and intercepts of
p = 0 and p = 1.

Evaluation of monotypic cultures revealed significantly slower growth of the resistant subclone compared to parental in the49

absence of drug [Figure 2A]. This finding provides evidence for a fitness cost associated with the resistant phenotype in this50

model population of NSCLC, which is an oft made assumption in models of resistance development. While these reduced51

growth kinetics had been previously suggested in treatment resistant populations of EGFR driven NSCLC,34 this feature may52

not be generalizable across all NSCLC types.26 Given this differential fitness and expected similar resource needs, traditional53

Darwinian evolution would predict extinction of the less fit subclone if cell autonomous growth was assumed. Interestingly, our54

observations in heterotypic cultures revealed that interactions with parental in this environment positively impacted resistant55

fitness (D < C in game matrix [eq. 5]) in a frequency dependent manner [Figure 2B] allowing for a heterotypic equilibrium56

which would not be predicted from evaluation of monotypic growth alone.57

One of the most important features of this eco-evolutionary dynamic is that the fitness of the resistant population becomes58

statistically indistinguishable from the parental as the population approaches p = 1. As a consequence, entries A, B, and C in59

the resulting game matrix [eq. 5] are not significantly different from one another. In other words, retention of the resistant60

phenotype in the population is promoted by parental cells, but only low proportions of the resistant phenotype can be maintained.61

This finding supports the notion of stable heterogeneous treatment-naïve tumor populations that allow for pre-existence of62

growth suppressed resistant subclones.63

Chemotherapeutic resistance as a consequence of competitive release64

Given this quantitative evidence to support a heterogeneous, treatment-naïve tumor population comprised of both subclones at65

equilibrium, we sought to model the emergence of resistance after exposure to treatment. Our derived resistant subclone was66

evolved under the selective pressure of continuous 1µM gefitinib therapy and, as expected, monotypic cultures at this dose67

clearly show a significant fitness advantage of the resistant cells [Figure 3A].68

Heterotypic cultures show positive growth rates of both subclones while the population harbors majority parental [Figure69

3A]. At these proportions, the fitness of the resistant subclone is still significantly greater than that of the parental population.70

Over time, this differential fitness results in greater representation of the resistant subclone in the population [Figure 3A]. Once71

the proportion crosses a critical threshold, which can be quantified from the derived game matrix, the fitness of the parental72
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Figure 2. Ecological interactions significantly alter resistant clone growth dynamics, which promotes coexistence of both
subtypes in treatment-naïve environments. Monoculture cultures in DMSO shows significant difference in growth between subclones
(p < 0.05), highlighting the cost associated with the resistant phenotype. Heterotypic cultures in DMSO reveal strong frequency dependent
interactions where the resistant subclone benefits greatly from interaction with parental cells, promoting retention of the resistant phenotype
at low proportions within the population. Plotted values were normalized against mean monotypic parental growth in DMSO. Values in
displayed game matrix have been scaled ×10 for ease of comparison.

lineage becomes negative, resulting in its rapid extinction [Figure 3B].73

As such, the eco-evolutionary dynamics that prevented the resistant population from increasing in representation can74

be altered with exposure to gefitinib. This introduced environmental stressor releases resistant cells from the competitive75

interactions that prevented their expansion in treatment-naïve conditions, allowing for increased representation. We believe this76

to be the first empiric demonstration of this phenomenon in cancer, though it is one that is often referred to in the theoretical77

literature, and has been observed recently in a simple bacterial population.29
78

Exploiting eco-evolutionary dynamics to modulate competitive release79

Continual administration of chemotherapeutic agents at their maximum tolerated dose (MTD) has become the mainstay in80

many therapy regimens. While these strategies may find success in the short-term, they often have no significant impact in the81

long term due to the inevitability of treatment resistance.35 We investigated why this may be the case through heterotypic dose82

escalation experiments.83

In monotypic cultures, increasing the dose of gefitinib had no significant impact on resistant growth rate [Figure 4A], but did84

significantly impact the growth of parental, albeit with diminishing returns. While doses above 0.25µM had minimal additional85

effect on cell autonomous parental growth, these higher doses greatly enhanced interactions between the subclones, which86

manifests as an increase in the absolute value of the fitness functions’ slopes [eq. 4]. This results in negative parental growth87

occurring at higher parental proportions, greatly increasing the rate of competitive release. Interestingly, although the monotypic88

resistant growth rates were not significantly different at any of the doses, they derived increasing benefit from interacting with89

the parental population in heterotypic cultures. A similar phenomenon has been observed in bacterial populations, in that high90

densities of sensitive bacterial cells boost the probability of existing resistant cell outgrowth under selective pressures.36
91

While these findings provide evidence for the inevitability of resistant outgrowth for all doses of gefitinib tested, increasing92

the dose greatly impacted the speed at which the parental population was extinguished from the population. This potential to93

modulate time to parental extinction and subsequent competitive release has significant implications for the long-term success94

of therapeutic strategies.95

To explore the outcomes of these specific features further, time expansion of the derived fitness functions was done with both96

replicator dynamics [eq. 9] and a practical derivative of the Lotka-Volterra (LV) equation [eq. 11] that allows for competitive97

exclusion of interacting species. Both of these models attempt to predict population level trends through time, the former with98

the assumption of infinite expansion and the latter constraining the populations to a strict maximum. In vivo tumor growth likely99

falls somewhere in between, as nutrient availability and space constrains growth in a more fluid manner through mechanisms100
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Figure 3. Frequency dependent interactions in gefitinib drive extinction of the parental lineage and subsequent competitive
release of resistant cells A. Monotypic cultures in 1µM gefitinib show significant reduction in parental growth compared to resistant.
Heterotypic cultures reveal resistant cells greatly driving down parental growth in a frequency dependent manner. Plotted values were
normalized against mean monotypic parental growth in DMSO. B. Proportional shifts through time reveal competitive release of resistant
subclone and inevitable extinction of parental from the population. C. Rate of parental extinction increases significantly at specific
proportional thresholds, as predicted by the value at which the fitness function crosses y = 0.

such as angiogenesis. Given the inability of either of these models to perfectly recapitulate realistic growth conditions, they are101

inadequate to confidently make specific numerical predictions of in vivo outcomes. Instead, their value lies in the ability to102

identify qualitative dynamics that persist across this spectrum of growth behaviors.103

For each model, relative time to extinction was determined for the range of doses, where extinction is defined as proportion104

of the population, p, dropping below < 0.01. This definition of extinction was adopted to evaluate this model because within105

this framework, true parental extinction does not occur if the corresponding fitness function never reaches a negative value106

between 0≤ p≤ 1. As expected, the replicator equation predicted faster extinction of the sensitive population at higher doses107

[Figure 5A]. The LV model told a similar story while providing hypothetical information regarding total tumor burden given108

assumptions about carrying capacities, which are very difficult to estimate and have large effects on quantitative aspects [Figure109

5B]. When the carrying capacities of both subclones are equal (Kp = Kr = Kmax), time to extinction occurs at identical time110

scales compared to the replicator equations [Figure 5C]. To evaluate the impact of frequency dependent growth, the results111

were contrasted against models run with monotypic growth parameters [Figure 5C]112

Unfortunately, this assumption of equal carrying capacity is likely untrue of in vivo contexts, as the carrying capacity for113

each cell type would likely change as a function of environmental stressors. To capture this, we varied the relative carrying114

capacity of the two populations to be a ratio of the cell autonomous rates scaled by their maximum rate in the absence of drug115

[Figure 5D]. With these parameters, there is a significant decrease in the absolute tumor burden across all doses, a response116

that is more characteristic of what would be expected in the clinical setting. The time to parental extinction still followed117

the same trend as before, albeit at different time scales [Suppl. Fig. 10]. This sensitivity to even small alterations in the the118

relative carrying capacities underscores the fragility of this model when attempting to make specific quantitative predictions.119

Interestingly, there is less of an absolute decrease in the tumor burden after initiation of lower dose therapy; however, this120

decrease is sustained for a longer period of time compared to higher doses [Figure 5E]. This is largely dictated by the slower121

extinction of the parental population, whose presence continues to limit outgrowth of the resistant population - a feature that122

persisted across all models tested.123

Insight into pair-wise interactions can inform therapeutic protocols124

Given the shifts in strength of eco-evolutionary interactions that were observed as a function of changing gefitinib dose, we125

sought out to measure the frequency-dependent interactions of these two populations in a diverse array of drugs. We explored126

second-line therapies because of potential therapy implications of collateral sensitivities, a focus of our group.37–40
127

For example, monotypic cultures of parental and gefitinib resistant cell lines in 0.6µM etoposide and 0.2µM pemetrexed128

show fairly similar sensitivity profiles; however, their heterotypic growth tell a significantly different story [Figure 6]. In129
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Figure 4. Dose dependent alteration of ecological dynamics in gefitinib modulate competitive release in this model system of
EGFR driven NSCLC. This extinction is specifically driven by frequency dependent interactions. Outer plots: Non-cell autonomous
growth patterns of parental and resistant cells in 0.25µM, 0.5µM, 1µM, and 4µ of gefitinib. Plotted values were normalized against mean
monotypic parental growth in DMSO. Center plot: Comparison of resulting fitness functions across the range of doses highlights how
intratumoral interactions between subclones can be altered through dose escalation of selective pressure. The effect of increased dose was far
more pronounced in heterotypic cultures as compared to monotypic cultures.

pemetrexed, parental growth has an inverse relationship with the proportion resistant in the population. As p→ 0, the parental130

and resistant fitness become statistically indistinguishable. As such, it is likely that a fixed point exists within this region131

where both parental and resistant populations have equal fitness. Competitive release of the parental population with extinction132

of resistant will only occur if the parental proportion surpasses this fixed point. Conversely, 0.6µM etoposide will result in133

increased representation of the parental across all frequencies.134

In practice, these eco-evolutionary dynamics have the potential to drive radically different outcomes. Based on monotypic135

fitness measurements, both of these drugs appear to be equally good candidates for sensitization phases of dosing protocols.136

While competitive release is possible in pemetrexed, the timing of the sensitization will be critical in determining its success. If137

significant expansion of the resistant population is allowed during the treatment phase, then sensitization will fail as the fitness138

of parental becomes statistically indistinguishable from that of resistant as p→ 0.139

When devising adaptive therapeutic regimens, it is important to not only identify the quality of interactions in the different140

drugs, but also develop understanding of how the drug concentration can modulate these interactions. Etoposide highlights141

important shifts that can occur at different drug doses [Figure 7]. At low doses of etoposide, the interactions follow a qualitative142

dynamic known in the game theory literature as “Harmony II” resulting in inevitable extinction of the resistant subclone. As the143

dose is increased, the game switches to one known as “Leader I”, which contains an evolutionary stable strategy (ESS). The144

resulting net fitness in this condition maintains heterogeneity at a wide range of proportions. If the dose is increased further,145

there is disruption of this equilibrium with competitive release of the resistant cell population as the parental cells are driven146

to extinction. These three distinct qualitative outcomes at different doses of the same drug demonstrates how dynamic the147

underlying interactions can be and, in turn, highlighting the value of pre-clinical elucidation.148

Discussion149

Similar to how Lotka and Volterra both independently observed the dependence of prey on predator,41 so to has the importance150

of interactions within the diverse tumor ecosystem become apparent to the field of cancer biology.42, 43 The outcome of these151

interactions shape this ecosystem, creating continuous feedback that defines the overall composition and growth characteristics.44
152

As a result of this continuous feedback, increased resolution on the ecological underpinnings of the tumor environment is153

accompanied with the ability to manipulate and drive this dynamic system to clinically desirable endpoints.45
154

7/16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.18.303966doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.303966
http://creativecommons.org/licenses/by-nc/4.0/


Figure 5. Evaluation of growth models with empirically derived parameters highlights rapid acceleration of competitive release
via non-cell autonomous interactions and demonstrates persistence of qualitative features across the spectrum of models tested.
The same initial parameters were used for each model (p = 0.99). A. Replicator dynamics showing proportional shifts of both competing cell
populations over time in three gefitinib doses. B. Lotka-Volterra (LV) model of outgrowth in constrained environments with equal carrying
capacities (Kp = Kr). C. Time to extinction (defined as the proportion of the population, p, dropping below 0.01) across a range of gefitinib
doses was determined and compared between cell autonomous (monotypic) and non-autonomous (heteorotypic) growth. D. LV model with
unequal carrying capacities (Ki = Kmaxαi where αi = rmono/rmax). E. Estimates for changes in total tumor burden for relative LV model in
0.25µM and 1µM of gefitinib. Treatment with the lower dose of 0.25µM had a smaller initial response to therapy, but longer overall response
due to delayed parental extinction and maintenance of heterogeneity over a longer period of time.

We found that gefitinib resistance is associated with a significant, quantifiable cost in drug-free monotypic cultures. One155

might posit that competition with the more fit sensitive subclone in treatment-naïve environments would promote extinction156

and allow for only transient existence. Instead, we observed that the parental cells positively impacted the growth of the157

resistant lineage in a frequency dependent manner, which provides evidence that these non-cell autonomous behaviors promote158

phenotypic equilibria that result in the maintenance of underlying tumor heterogeneity. Without these non-cell autonomous159

growth dynamics, costly resistance conferring mutations that arise stochastically would quickly disappear from the population.160

We show that a small proportion of resistant cells are able to coexist; however, their reliance on the parental population prevents161

increasing representation: competition prevents their outgrowth.162

In keeping with traditional game theoretical literature, this interaction can conceptually be thought of as a public goods163

game in which the parental population is producing a “good” that the resistant lineage can free-ride, providing them with a164

significant increase in fitness.46 In a sense, the incurred resistant phenotype cost is “reimbursed” through interaction with the165

parental population.166

While the exact mechanism of this hypothesized “public good” is unknown, the resulting effect on the fitness of the resistant167

lineage is significant – allowing for their preservation at low frequency in treatment-naïve populations, while simultaneously168

preventing their outgrowth. Mechanisms for public goods have been theorized to include growth factor production47
169

Altering tumoral heterogeneity can change the quality of these interactions and allow for outgrowth of this previously170

suppressed population. Resistance to targeted therapy is thought to arise from this described outgrowth due to the selective171

killing of sensitive tumor cells. Specifically, we observed that introduction of gefitinib into heterotypic cultures resulted in172

frequency dependent killing of the sensitive cell, which allowed for unopposed proliferation of resistant subclone through a173

phenomenon known in the literature as competitive release.27 While remaining agnostic to the specific resistance mechanisms,174
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Figure 6. While seemingly similar monotypic profiles, frequency dependent growth reveals significantly different underlying
eco-evolutionary dynamics.
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Figure 7. A. Here we show escalating dosage of etoposide result in qualitatively different growth dynamics. At low doses the ancestor
out-competes the resistant strain no matter the parental proportion. However, as dose increases the resistant strain becomes dominant,
out-competing the ancestor at all proportions. B. We visualize this dose-dependent behavior in the game space. The x-axis is the relative
fitness of a resistant invader (quantified as C-A in the game matrix). The y-axis is the relative fitness of a parental invader (quantified as B-D
in the game matrix).

this uninhibited proliferation offers an explanation for the eventual failure to targeted therapies seen across most cancer175

types.48–50
176

Interestingly, we found that altering the intensity of the selection pressure through dose modulation can promote and177

maintain heterogeneity without compromising response to therapy - a finding that has been observed in clinic51 and studied in178

pre-clinical models24, but is incompletely understood. At lower concentrations of gefitinib, the fitness of the parental was not179

dramatically impacted by the presence of resistant cells. With dose escalation, the strength of interaction between the two types180

increased in a dose dependent manner resulting in faster rates of parental extinction from the tumor population. Theoretical181

growth models with these experimentally derived parameters predicted a blunted initial response to therapy at lower doses;182

however, longer retention of the parental subclone prolonged total therapy response by delaying outgrowth of the resistant183

population and subsequent competitive release. This feature of delayed resistant outgrowth was not sensitive to model selection184

and persisted under assumptions of either infinite or restricted populations.185

The implications of this specific feature are especially important in the development of dynamic protocols.52 For example,186

bio-markers utilized for tracking resistance may only surpass detectable thresholds once a significant resistant population187

has been established. We observed that the higher the dose, the more likely the parental population will have been driven to188

extinction by the time these thresholds are reached, guaranteeing failure of subsequent sensitization phases. As such, designing189

specific interventions without quantitative derivation of underlying interactions can result in worsened therapeutic outcomes,190
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even if the qualitative assumptions are correct. Only through elucidation of these dynamics can we proceed to the development191

of protocols that have the power to promote and sustain heterogeneity, rather than eliminate it.192

Further, our observations show that monotypic fitness differentials are insufficient to predict ecological shifts in specific193

environments. Assumption of cell autonomous growth can result in non-optimal scheduling, or in some cases, completely194

unexpected clinical outcomes. Many of the interactions observed within this model system of EGFR driven NSCLC greatly195

deviate from what biological intuition may predict. As such, elucidation of underlying effective ecological interactions53, 54 is196

critical to admit clinical decision making and avoid pitfalls that result in therapeutic failure.197

While often discussed in theory and assumed based on intuition, this is the first empiric evidence of competitive release198

occurring in an empirical cancer system to our knowledge. Further, we observed that this phenomenon can be modulated in a199

dose dependent manner to alter time to extinction in a way that was incompletely predicted from monotypic growth differentials,200

as underlying intratumoral interactions can prevent or enhance this ecological outcome [Figure 8]. As such, it can be concluded201

that intuition is not sufficient to apply these concepts clinically. Instead, ecological parameters should be determined empirically202

to ensure accurate characterization of population shifts through time.203

By working with, rather than against, the underlying eco-evolutionary dynamics, we can move towards therapeutic protocols204

that favor tumor control by maintaining treatable populations.55 Translation of these quantitative models to the in vivo setting205

can provide the necessary framework to make shifts towards these treatment paradigms possible.56
206

Figure 8. Dose dependent modulation of competitive release is incompletely predicted from monotypic growth rates.

Methods207

Cell lines: All cells were cultured in Roswell Park Memorial Institute (RPMI) media supplemented with 10% fetal bovine208

serum (FBS) and 1% penicillin/streptomycin.209

Parental and resistant cell lines were established from the same initial population of PC9 cells (Sigma-Aldrich 90071810).210

Resistant population was cultured in 1uM of gefitinib (Cayman 13166) for greater than 6 months, until a population of stably211

growing cells was observed. Resulting subpopulations exhibited noticeable visual morphological differences in culture. The212

parental population was cultured in parallel in matched volumes of dimethyl sulfoxide (DMSO) (Sigma-Aldrich 276855) for213

the same duration as a vehicle control.214

Resulting resistant and parental subclones underwent lentiviral transduction with plasmid vectors encoding EGFP- and215

mCherry- fluorescent proteins with attached nuclear localization sequence (plasmids were a gift from Andriy Marusyk’s lab at216

Moffitt Cancer Center). Derivative cell lines with heritable fluorescent protein expression were selected for in puromycin (MP217

Biomedical 100552).218

Experimental design: Cells were harvested at 70-80% confluence, stained with trypan blue (Corning 25-900-CI), and219

manually counted with a hemocytometer (Bright-Line Z359629). Mono- and co-cultures of each subclone were seeded across a220

range of initial relative proportions in 96-well formats and allowed to attach for 18-24 hours.221

Wells were treated with the following drugs: gefitinib, paclitaxel (Cayman 10461), etoposide (Cayman 12092), pemetrexed222

(Cayman 26677), and lapatinib (Cayman 11493) as single agents. Plates were loaded into a BioSpa 8 Automated Incubator223
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(BioTek Instruments). Time-lapse microscopy images were obtained for bright field, GFP, and mCherry via Cytation 5 Imaging224

Reader (BioTek) every 4 hours over the course of 5 days.225

Image Processing: Images were processed with Gen5 (BioTek) and the open-source software ImageJ.57 Image sets were226

duplicated, background subtracted, contrasted limited adaptive histogram equalization (CLAHE), and thresholded. Despeckle227

filter was applied to the now binary images, watershed segmentation was performed, and raw cell numbers were extracted from228

the resulting image sets.229

Evolutionary Game Assay: To quantify the dynamics in our in vitro environments, we utilized the experimental game assay230

developed by Kaznatcheev et al..26 Initial proportions were calculated for each well individually from the first image. Time231

series of raw cell numbers were normalized against initial number in each well. Linear regression was performed using the232

Theil-sen estimator on the semi-log cell change against time. The slope of the resulting linear function (with its corresponding233

95% confidence interval) was translated as the growth rate across the time series, which were normalized against the average of234

six parental monoculture wells that were run on each plate.235

To find the dependence of fitness on the frequency of subclonal interaction, least squares regressions were performed on the236

growth rate against the initial proportion of parental in each well. This regression was weighted against the inverse of the errors237

( 1
σ2 ) associated with each growth rate. The resulting linear equations describe fitness as a function of the initial proportion of238

the opposing subclone:239

ŵP = A+ kr

ŵR = D+ kp

The intercepts of these functions translate to monoculture fitness, which are the symmetric payoffs within a game matrix.240

The asymmetric payoffs can be translated as the fitness values when r and p are equal to 1:241

B = A+ k

C = D+ k

These linear equations can be rearranged to describe the fitness (ŵ) of a sub clone as a function of the initial proportion (p)242

of interacting cells within the population.243

ŵP = Ap+B(1− p)

ŵR =Cp+D(1− p)

Payoff matrices corresponding to each of the different conditions can be derived by setting p equal to one and zero for both
equations. For example, the symmetric payoff for parental occurs when p = 1, which translates to ŵP = A.

( P R
P A B
R C D

)
The errors associated with the on-diagonal payoffs are equivalent to the uncertainty of the intercept values, σA and σD244

for parental and resistant respectively. The errors associated with the off-diagonal payoffs were derived by propagating the245

uncertainty of both the intercept and slope through the above addition [eq.8].246

Growth models: To synthesize hypothetical tumor growth using our measured frequency dependent growth rates, we used247

two distinct models, one that allowed for infinite growth and one that limited total volume to a strict maximum. This was248

done to identify salient qualitative features that persisted across this spectrum of models, rather than make specific quantitative249

predictions.250

For infinite growth, replicator dynamics were chosen:

ṗ = p(ŵP−〈w〉) (8)
ṙ = (1− p)(ŵR−〈w〉) (9)

where 〈w〉 denotes average population fitness such that:

〈w〉= pŵP +(1− p)ŵR

11/16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.18.303966doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.303966
http://creativecommons.org/licenses/by-nc/4.0/


For growth that is strictly limited to a maximum, a Lotka-Volterra derivative58 was utilized that included frequency dependent
growth:

dNp

dt
= Np ∗ rp

[
1−

Np

Kp
− Nrrr

Kprp

]
(10)

dNr

dt
= Nr ∗ rr

[
1− Nr

Kr
−

Nprp

Krrr

]
(11)

where rp and rr are non-cell autonomous growth rates determined by values of the game matrix such that:

rp = A

(
Np

Np +Nr

)
+B

(
Nr

Np +Nr

)

rr =C

(
Np

Np +Nr

)
+D

(
Nr

Np +Nr

)

While this model is insensitive specific carrying capacity values, it is highly sensitive to the relative value of the carrying
capacity. Given that both subclones occupy similar space in an in vitro environment, we first evaluated the condition where the
carrying capacities were equal to one another:

Kp = Kr

The above assumption likely does not translate to in vivo conditions. Instead, the carrying capacities of each type would likely
vary across different environments. To capture this phenomenon, the carrying capacity was scaled for each condition:

Ki = Kmaxαi

where Kmax is the maximum carrying capacity across all conditions and αi is a weighting term that scales this maximum using
a ratio of current monoculture growth rate against the maximum growth rate:

αi =
rmono

rmax
.
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Supplemental Figures

Figure 9. Monotypic and heterotypic fitness differences in gefitinib for 0.25µM, 0.5µM, and 4µM.
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Figure 10. Time to parental extinction with unequal carrying capacities (solid) follows the same qualitative pattern as both replicator and
equal carrying capacity models (faded), albeit at different time scales.
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