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Abstract 

Motivation: Gene fusions are often associated with cancer, yet current fusion detection tools vary in 

their calling approaches, making selecting the right tool challenging. Ensemble fusion calling 

techniques appear promising; however, current options have limited accessibility and function.  

Results: MetaFusion is a flexible meta-calling tool that amalgamates the outputs from any number of 

fusion callers. Results from individual callers are converted into Common Fusion Format, a new file 

type that standardizes outputs from callers. Calls are then annotated, merged using graph clustering, 

filtered and ranked to provide a final output of high confidence candidates. MetaFusion consistently 

outperformed individual callers with respect to recall and precision on real and simulated datasets, 

achieving up to 100% precision. Thus, an ensemble calling approach is imperative for high confidence 

results. MetaFusion also labels fusions found in databases using the FusionAnnotator package, and is 

provided with a benchmarking toolkit to calibrate new callers.  

Availability: MetaFusion is freely available at https://github.com/ccmbioinfo/MetaFusion 

Contact: arun.ramani@sickkids.ca  
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1. Introduction  

Gene fusions, or hybridizations between two independent wildtype genes, are recognized as an 

important class of genomic alteration, particularly in cancer. They arise most frequently from 

chromosomal rearrangements, though recent evidence indicates that they are also caused by 

mechanisms such as cis-splicing of adjacent genes (cis-SAGe) (Brien et al. 2019; Gao et al. 2018; 

Grosso et al. 2015; Hu et al. 2018; Li et al. 2008). Cancer-related fusions can lead to increased 

oncogene expression, decreased tumour suppressor expression, and the formation of oncogenic fusion 

proteins. Such changes are well-documented in the tumourigenesis of multiple cancers (Mertens et al. 

2015; Mitelman et al. 2007; Xiao et al. 2018; Yoshihara et al. 2015), and it is estimated that fusions 

account for nearly 20% of human cancer morbidity (Gao et al. 2018; Mitelman et al. 2007). Fusions 

may serve as disease biomarkers, such as the breast cancer-specific SCNN1A-TNFRSF1A and CTSD-

IFITM10 (Varley et al. 2014), or as targets for treatments such as imatinib, a drug that inhibits tyrosine 

kinase activity of the causative BCR-ABL fusion in chronic myeloid leukemia (Druker 2008; Mitelman 

et al. 2007). Accurate identification of biologically relevant gene fusions in cancer is thus critical, as it 

can contribute to patient diagnosis and care in the rise of precision medicine. 

Although a number of fusion calling tools are currently available, they can vary significantly from 

one another. Callers differ in the genomic regions they consider, the numbers of alignment steps they 

have, their read coverage requirements, filters, output formats and so on. Some may only prioritize 

specific types of fusions, such as those caused by chromosomal rearrangements, and consider all others 

to be transcriptional noise or part of normal cell biology. Such differences can give inconsistent results 

between methods for any single dataset, and lead to biologically relevant fusions being excluded from 

final outputs. 

These problems are further compounded by individual fusion caller limitations, including low 

precision (high false positive rate) and sub-par recall. Poor precision can be caused by outdated filters, 

reliance on outdated databases of false positive fusions, or having overly lenient criteria for keeping 

reads. Benchmarking with only simulated data can also cause more false positives than expected when 

the caller is run on real cancer data. Regarding poor recall, some callers have stringent criteria for 

keeping reads, and low read depth on a true fusion may cause it to be missed. Often, a tool which 

performs well in one of these areas will fall short in another (Liu et al. 2016). Finally, fusion callers 

often provide outputs that are large and ambiguous (Haas et al. 2019), making it a challenge to prioritize 

biologically relevant fusions for experimental validation. This leaves users with the arduous task of 

determining which tools are best suited for their needs. 
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Ensemble approaches have shown promise in overcoming these challenges in various fields within 

genetics and gene expression (Aghaeepour et al. 2013; Lichtenberg et al. 2017; Yang and Deng 2020), 

and a study of 23 fusion callers has shown that using multiple tools leads to improved results (Haas et 

al. 2019). Yet any current means of ensemble fusion identification, or meta-calling, have been largely 

preliminary (Liu et al. 2016), and to our knowledge no robust approach has been developed. Software 

tools such as Pegasus (Abate et al. 2014) may standardize the interface of various callers, but do not 

merge their outputs effectively, making downstream analysis difficult. Chimera collates results from 

10 callers, and can visualize junction coverage and predict the oncogenic potential of a given fusion 

(Beccuti et al. 2014); however, it is not a stand-alone meta-caller. Instead, it functions as a library that 

is compatible with the output files of only 10 pre-defined callers, making it limited and inflexible in 

its utility. Fusion search engine-based approaches such as FusionHub also exist but harness information 

in existing databases, as opposed to combining the results of various fusion callers (Panigrahi et al. 

2018). 

These challenges highlight a need for a single, flexible method that utilizes multiple approaches for 

fusion identification and evaluation to provide a concise high-confidence list of candidate fusions. We 

have thus developed MetaFusion, an ensemble fusion calling method that incorporates predictions 

from any number of callers, leverages the results of all tools included, filters out false positives for 

optimal precision, and ranks calls based on the number of contributing tools. MetaFusion takes fusion 

calls in a Common Fusion Format (CFF) - a novel file type that we have developed to standardize 

fusion caller outputs - and can be run on one’s local machine using a Docker container with installed 

dependencies, and with around 7G of RAM, which is ideal for downstream analysis and visualization. 

MetaFusion dependencies can also be installed on one’s machine, although using Docker is the 

preferred method. As it can incorporate any number of fusion callers, MetaFusion is highly adaptable 

and can be easily updated as new tools become available. Here, we use a series of simulated and real 

cancer datasets to show that MetaFusion consistently performs with high precision and recall, and 

provides high-confidence candidate fusions for further experimental validation. 

2. Methods 

2.1. MetaFusion Workflow 

The MetaFusion workflow was developed to consolidate the outputs from various pre-existing fusion 

callers and to allow for further filtering, refining and benchmarking of those outputs (Figure 1). 
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Metafusion has been developed as a standalone tool, and the workflow to run the fusion callers has 

been implemented in GenPipes (Bourgey et al. 2018), an open-source, Python-based framework for -

omics pipeline development and deployment. The current GenPipes implementation contains seven 

fusion callers, with MetaFusion downstream for consolidation and further analysis of their outputs. 

MetaFusion dependencies are available as a Docker image. The MetaFusion workflow is described in 

detail below. 

   
Figure 1: The MetaFusion workflow. MetaFusion consolidates outputs from various fusion callers. The callers are run 
independently on a given dataset and their outputs are converted into CFF files, which are used as input into the MetaFusion 
pipeline (green). This pipeline consists of renaming, reannotation, categorization, merging and filtering steps (see text for 
details). Afterwards, tools such as FusionAnnotator and the Benchmarking Toolkit may be used to further refine results. 

 

2.1.1. Fusion calling and caller output conversion to CFF  

For this study, we selected seven fusion callers to be used as input to MetaFusion: deFuse 

(McPherson et al. 2011), Arriba (Uhrig 2020), STAR-SEQR (STAR-SEQR 2020), STAR-Fusion 

(Haas et al. 2017), INTEGRATE (Zhang et al. 2016), EricScript (Benelli et al. 2012), and FusionMap 

(Ge et al. 2011). These callers were chosen because they are widely used in the literature and represent 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.17.302307doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.302307
http://creativecommons.org/licenses/by-nc-nd/4.0/


MetaFusion filters and prioritizes RNA fusions 

 5 

a broad array of fusion calling approaches. Each of these callers is independently run on the input data 

to generate their own fusion calls.  

All seven callers provide outputs in varying formats. To standardize this, we have developed the CFF 

file format (Supplementary Table 1A, 1C). Prior to the start of the MetaFusion workflow, a wrapper 

script converts fusion caller outputs into CFF. Separate sections of this script exist for each caller, 

where caller output file fields are mapped to CFF fields. Each line in a CFF file represents one fusion 

call by a given caller (Supplementary Table 1). Subsequent MetaFusion steps add further information 

to the CFF file, for example a unique fusion identifier (FID; e.g. F00000001) and fusion category 

(Figure 2). 

  

Figure 2: The seven categories used by MetaFusion to distinguish fusions. Two chromosomes containing coding 
(coloured) and non-coding (grey) genes are shown above, with intergenic sequences represented by orange lines 
between genes. The chart below shows head and tail genes, the resultant fusion RNA transcripts and the fusion 
categories that the transcripts would be assigned to. NC: non-coding. 

 

Although these seven tools were used for optimization, any number and combination of fusion callers 

can be used as input into the MetaFusion pipeline, provided that caller results are converted into CFF. 

As a demonstration, we performed a subset of analyses with an additional caller, ChimeraScan (Iyer et 
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al. 2011), in a use-case to detect cis-SAGe ReadThrough fusions in prostate cancer. Analyses were 

done by either using all eight callers, or with a smaller subset of four callers found to have adequate 

ReadThrough recall (ChimeraScan, INTEGRATE, EricScript and deFuse) (Supplementary Figure 1). 

2.1.2. Renaming of genes to current NCBI symbols  

As gene names and symbols are regularly being updated and callers may vary in the database or GTF 

file they use to obtain gene name information, we have included a standardization step to rename the 

genes identified in fusions to the current NCBI symbols. This optimizes subsequent merging and 

benchmarking steps, as benchmarking of MetaFusion outputs relies on gene name matches to 

categorize fusions as either true or false positives (see “Benchmarking Toolkit” section below for more 

detail) .  

A Python-based renaming script is used to assign current NCBI symbols to each CFF entry. This is 

done using information from the NCBI Homo sapiens gene alias file (Homo_sapiens.gene_info.gz, 

accessed May 7 2020), which is freely available on the NCBI FTP website 

(ftp://ftp.ncbi.nlm.nih.gov/gene). The script also removes delimiters and unusual characters from gene 

names. If the gene name is neither a known NCBI symbol, nor an alias of one, the original gene name 

is kept. 

2.1.3. Reannotate and categorize  

Once all gene names have been updated to current NCBI symbols, each fusion entry in the CFF is 

reannotated to include the following information: 

(1) Each entry in the CFF is assigned a unique identifier (FID; e.g. F00000001) 

(2) Breakpoints for each fusion are reannotated based on their intersection with genomic features (e.g. 

exon, intron, 5’UTR, 3’UTR, etc) in the gene annotation file. If multiple intersections occur for a 

given breakpoint, the genomic feature that matches the gene name is chosen.  

(3) Each fusion entry in the CFF is assigned to one of seven categories, based on the coding status and 

adjacency of the fusion partners (Figure 2). For any given fusion, the upstream gene is referred to 

as the “head gene” and the downstream gene the “tail gene.” A fusion’s annotated category can be 

used to prioritize and filter fusion candidates.  

2.1.4. Merging of fusion calls 

After reannotation and categorization, fusion calls are merged using breakpoints and gene names 

(Figure 3). To consolidate fusion calls from multiple callers, we applied a graph-clustering algorithm, 
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in which nodes represent individual fusion calls from each caller, and edges represent intersections 

based on breakpoints, gene names or both. Breakpoints and gene names are both considered, as this 

allows for the most complete merging of calls (Figure 3A). Clustered fusion calls are then merged. All 

together, this process is done in four steps.  

  
Figure 3: Diagram of the graph clustering approach used in MetaFusion. (A) MetaFusion relies on breakpoint (in 

parentheses) and gene name intersections to determine if multiple calls should be merged into one. Edges represent 

intersections based on breakpoint, gene name, or both. Edge colours indicate if calls are merged based on breakpoint 

(green), name (blue) or both (red). If only breakpoints (B) or only names (C) are considered for merging, calls may be 

merged incompletely or orphaned. The example depicted here is based on the true positive STX16-RAE1 fusion from the 

BT474 breast cancer cell line. FIDs correspond to those in Supplementary Table 1A, and corresponding CFF can be found 

in the test data .cff in test_data/cff/BRCA.cff. 
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First, intersection edges are generated using bedtools pairToPair function (Quinlan and Hall 2010) 

from within the “pybedtools” Python package. A BED file is generated in which every line is a separate 

fusion call. The file is then intersected with itself, and an edge is generated from each intersection. 

Breakpoints must be within 100 base-pairs of one another to be considered a match. An example of 

edges generated based on breakpoints is represented in Figure 3B. 

Second, edges are generated by matching calls based on gene names. Names must be matching 

exactly. A hash table is created which uses head and tail gene names as keys, and collects FIDs which 

match the “Head--Tail” key (i.e. {key: [fusion_id list]}). Then, for each key, an edge is created for 

each FID pair in its corresponding FID list. An example of edges generated based on gene names are 

represented in Figure 3C. 

Third, a graph is generated using the R package RBGL (Carey et al. 2020). Edges from both 

breakpoint intersections and gene name matches are combined, and a graph is constructed from the 

edge set. Since edges contain only FIDs, the graph is built unaware of which edges are due to gene 

name match or breakpoint intersections (Figure 3A). For each connected subgraph, a list of FIDs is 

generated which correspond to CFF file entries.  

Fourth, the CFF entries are converted to cluster format, MetaFusion’s final output format 

(Supplementary Table 1B). Delimiter-separated lists are generated for fields such as sample, tool and 

breakpoint, which may differ among merged calls. 

2.1.5. Custom filters 

After merging of fusion calls is complete, the resulting list is refined using a series of MetaFusion 

filters. 

ReadThrough filter. ReadThrough fusions, or those consisting of two adjacent coding genes in which 

the head gene is immediately upstream of the tail gene, occur in healthy tissues (Babiceanu et al. 2016) 

and are more likely to be the result of cis-splicing than chromosomal rearrangements (Qin et al. 2015; 

Tang et al. 2017), making them seldom of interest in cancer research. As such, MetaFusion includes a 

ReadThrough filter, which removes entries categorized as ReadThrough fusions during reannotation. 

If they are of interest, ReadThrough fusions can still be viewed in a separate cis-SAGe.cluster file, 

decribed below. 

CallerfilterN. This filter is used to remove fusions identified by fewer than N fusion callers. Fusions 

called by N or more callers are kept as part of the final output. The user can set the value of N to their 

desired threshold. Unless otherwise indicated, for this study we use callerfilter2 (i.e. calls have to be 
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made by at least 2 callers). The value of N also determines the naming for the final output file (e.g. if 

callerfilter2 is used, the final output file will be named final.n2.cluster). 

Blocklist filter. MetaFusion’s blocklist filter is based on part of Arriba’s blacklist file. This filter is 

used to block out known ReadThroughs, T-cell receptors, MHC complexes and immunoglobulins, as 

fusions involving these genes are less frequently of interest in cancer-specific research. This filter 

intersects the blacklist file’s “recurrent breakpoints”, “T-cell receptors” and “MHC complexes” paired 

regions with fusion breakpoints using bedtools pairToPair. Those which intersect are removed from 

the final output. Users can add a personal list of false positive fusions to this file 

(blocklist_breakpoints.bedpe) if they wish to remove them from their results. 

Adjacent noncoding filter. The adjacent noncoding filter removes all fusions in the TruncatedCoding, 

TruncatedNonCoding and NoHeadGene categories whose constituent gene partners are within 100kb 

of one another, as we noticed that fusions with these characteristics are heavily represented among our 

negative control dataset (Supplementary Figure 2). Using this filter also removed false positives from 

our benchmarking datasets and did not affect true positive counts. These fusions are included in the 

cis-SAGe.cluster file described below. Since our negative control is designed to contain no fusions 

caused by chromosomal rearrangements (further detail in Datasets and Results sections), we developed 

this filter. 

cis-SAGe.cluster file. While cis-SAGe fusions such as ReadThroughs are often considered a part of 

normal biology or transcriptional noise (Babiceanu et al. 2016; Tang et al. 2017), some occur uniquely 

in certain types of cancer, and can serve as disease biomarkers (Varley et al. 2014; Qin et al. 2014, 

2016; Rickman et al. 2009). MetaFusion stores cis-SAGe fusions, such as ReadThroughs, in a separate 

cis-SAGe.cluster file, instead of simply discarding them. Not all cis-SAGe fusions are necessarily 

ReadThroughs, therefore this file also contains SameGene fusions as well as those flagged by the 

adjacent noncoding filter, as their breakpoint proximity and orientation may be indicative of cis-

splicing. Fusions in the cis-SAGe.cluster file are removed from the final.n2.cluster output using the 

above-described filters.  

Ranking calls by number of callers. Fusions called by multiple tools are more likely to be true fusions, 

and MetaFusion leverages this to provide a ranking of final calls. After the above filters are applied, 

the final output file is sorted by the number of tools that call each fusion. Fusions in the file are sorted 

by the number of contributing tools in descending order (highest first). This information can then be 

used to prioritize fusions for further analysis.  
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2.1.6. Benchmarking Toolkit 

The Benchmarking Toolkit, developed by Haas and colleagues (2019), allows for benchmarking of 

MetaFusion outputs. When a caller combination different from that used in this study is chosen, 

MetaFusion should be benchmarked with the provided test data to ensure adequate performance (see 

Software Availability section, Github wiki for links to fastqs). This series of perl scripts has been 

modified slightly to include the unique FIDs provided by MetaFusion’s reannotation step which allows 

MetaFusion output to be partitioned into separate true positive and false positive files. We also 

modified the Benchmarking Toolkit’s genes.coords.gz file to include an additional 41,496 entries 

corresponding to loci with updated NCBI symbols in NCBI’s most recent Homo_sapiens.gene_info 

file (accessed May 7th, 2020). This ensures that gene naming is consistent with the most up-to-date 

NCBI symbols and allows CFF outputs of individual callers to be benchmarked without the need to 

run them through MetaFusion’s gene renaming step.  

More information about the Benchmarking Toolkit can be found at 

https://github.com/fusiontranscripts/FusionBenchmarking/wiki.  

2.1.7. FusionAnnotator 

MetaFusion also integrates the FusionAnnotator tool (Haas et al. 2019), which annotates fusion calls 

with metadata from a number of cancer and normal fusion databases. It relies on gene name matches 

for this. An enrichment in cancer-related fusions may indicate that a workflow is prioritizing fusions 

of interest. FusionAnnotator output is used to add a comma-separated list of database hits to the column 

cancer_db_hits of the final.n2.cluster file.  

2.2. Datasets 

To evaluate the MetaFusion pipeline, we used a series of simulated and real cancer data (Table 1). 

All datasets were run through the MetaFusion pipeline, and are described below. 

2.2.1. Curation and renaming of truth sets 

All of the datasets used to evaluate MetaFusion performance contain truth sets, with the exception 

of the negative control. These are subsets of fusions that have been either intentionally created in 

simulated data or have been experimentally confirmed in real cancer data.  

Since the benchmarking toolkit relies on gene name matches to identify true and false positives, it is 

important that the names of the genes involved in these truth set fusions follow NCBI consensus 
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naming. Although some benchmarking approaches might use breakpoints for benchmarking, this can 

be a challenge as it may involve unannotated regions of the genome where it is much more difficult to 

distinguish noise from biologically relevant events.  

Upon renaming the truth set for sim50/101, 257/2500 fusions contained an outdated NCBI symbol 

in at least one of the fusion partners. For this reason, we have used the NCBI Homo_sapiens.gene_info 

file to update names to the most recent NCBI symbols in the truth sets. Truth sets were run through the 

renaming script in a separate step, independent of the MetaFusion workflow. 

2.2.2. Simulated datasets 

DREAM dataset. This dataset comprises the sim45 and sim52 datasets from round 3 of the SMC 

DREAM RNA challenge. The sim45 dataset, containing 30 true fusions, has 60 million reads, 101bp 

long with a 150-160 fragment size. The sim52 dataset, containing 31 true fusions, has 135 million 

reads, 101bp long with a fragment size of 150-160. Together, the DREAM dataset has a truth set of 61 

fusions. 

Negative control BEERS dataset. This dataset was created using the Benchmarker for Evaluating the 

Effectiveness of RNA-seq software (BEERS) simulator (Grant et al. 2011) by the authors of JAFFA 

(Davidson et al. 2015). It is designed to contain no fusions, which for the purposes of this dataset are 

defined as those occurring due to chromosomal rearrangements. It is used to identify fusion callers 

with high false positive rates, allowing users to exclude them from further analyses of real data. It is 

also used to determine characteristics of false positives, allowing for further refinement of results. 

sim50 and sim101 datasets. Both the sim50 and sim101 simulated datasets were generated by Haas 

and colleagues using the Fusion Transcript Simulation Toolkit (Haas et al. 2019). The sim50 dataset 

has a truth set of 2500 fusions, and 50 base pair reads. The sim101 dataset has the same truth set as 

sim50, but has 101 base pair reads.  

A summary of all datasets is provided in Supplementary Table 2 

2.2.3. Real cancer datasets 

Breast cancer (BRCA). This dataset consists of 53 experimentally validated fusions found in four 

breast cancer cell lines -- BT474, KPL4, MCF7, and SKBR3 (Edgren et al. 2011). It was previously 

used as a benchmarking dataset to evaluate the performances of 23 fusion callers (Haas et al. 2019). 

These samples were downloaded from the Broad Institute’s Trinity index.  
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Melanoma. This dataset consists of six melanoma patient-derived samples (SRR018259 SRR018260 

SRR018261 SRR018265 SRR018266 SRR018267) and two chronic myelogenous leukemia cell lines 

(SRR018268, SRR018269) (Supplementary Table 2) (Berger et al. 2010; Jia et al. 2013). It has a 17 

fusion truth set, and was previously used for benchmarking of the SOAPfuse fusion caller (Jia et al. 

2013).  

Prostate cancer. This dataset contains 44 cis-SAGe fusions, most of which fall into the ReadThrough 

category (Kumar et al. 2016; Qin et al. 2015). This data is divided into 100nt read length (SRR1657556, 

SRR1657557) and 50nt read length (SRR1657558 SRR1657559, SRR1657560 and SRR1657561). 

Samples SRR1657557, SRR1657559 and SRR1657561 are siCTCF-treated, whereas SRR1657556, 

SRR1657558 and SRR1657560 are negative controls. 

A summary of all datasets is provided in Supplementary Table 2 

3. Results 

3.1  Precision and recall of MetaFusion and individual callers 

To evaluate MetaFusion’s performance, we began by comparing its precision and recall to that of the 

seven individual callers we used. We selected three simulated datasets (DREAM, sim50, and sim101; 

Figure 4 A-C; Supplementary Table 4) and two real cancer datasets (BRCA and melanoma; Figure 4 

D, E; Supplementary Table 5) for this comparison. The BRCA and melanoma datasets were selected 

as they have well-defined truth sets of validated fusions, and were both used as validation datasets in 

previous studies (Haas et al. 2019; Jia et al. 2013).  
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Figure 4: MetaFusion consistently outperforms individual fusion callers on simulated datasets. Precision and recall 
plots showing performance of seven fusion callers and MetaFusion for the DREAM (A), sim50 (B) and sim101 simulated 
datasets (C), as well as the BRCA (D) and melanoma (E) real cancer datasets. MetaFusion generally outperforms individual 
callers across all three simulated datasets. It performs comparably to STAR_fusion on the BRCA data and outperforms all 
callers on the melanoma data. It was the only tool to identify all 14 true positive melanoma fusions and had the highest F1 
score

We analyzed the five datasets using each of the seven callers with default parameters, then calculated 

precision, recall and F1 scores of each caller. The caller outputs were run jointly through MetaFusion 

(see Methods for filter settings), and precision, recall and F1 scores were calculated. 

Counting false positive calls was done on a per-sample basis. For example, if fusion GeneA-GeneB 

is a false positive present in three samples, this will be counted as three separate false positives. It 

should, however, be noted that MetaFusion represents such GeneA-GeneB fusion as one row in the 

final.n2.cluster output file (with the names of the affected samples shown in the corresponding 

column), hence the number of entries in the final output file may be fewer than the sum of true and 

false positive calls. 

MetaFusion generally outperforms individual tools for all five datasets, as indicated by precision, 

recall and F1 measurements (Figure 4; Supplementary Table 4, 5). In instances where either the 

precision or the recall of an individual caller is greater than that of MetaFusion, MetaFusion’s F1 score 

is often higher, indicating better overall performance. For example, both EricScript and STAR_fusion 
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have greater precision than MetaFusion for the sim50 dataset, yet MetaFusion has a superior F1 score, 

due to its improved recall compared to either of these tools. MetaFusion’s categorization, merge 

function and custom filters thus result in a refined list of higher-confidence calls which can be used to 

prioritize fusion candidates for Sanger or PCR validation.  

Moreover, MetaFusion performs favourably even though our combination of callers included those 

with generally poor performance with both real and simulated datasets, such as EricScript. This is 

because false positive calls tend to be uncorrelated among methods, and are removed by MetaFusion’s 

filters and joint calling approach. Thus MetaFusion can be used to improve upon callers with lower 

performance to provide high confidence candidate fusions. 

Importantly, MetaFusion outperforms individual fusion callers on both BRCA and melanoma real 

cancer datasets (Figure 4 D, E; Supplementary Table 5). It should be noted that fusion calling tools 

generally have poorer performance on real datasets compared to simulated data, and this trend remains 

with MetaFusion, as it relies on the final results of these tools for its input. Furthermore, complete truth 

sets for real cancer data cannot be known with certainty, and are often amalgamated from various 

sources in the literature (Asmann et al. 2011; Edgren et al. 2011; Kangaspeska et al. 2012; Maher et 

al. 2009). It is thus possible, and even likely, that fusions labelled as false positives in these samples 

are not yet part of the known truth set (Haas et al. 2019). This may explain why the precision of 

MetaFusion is lower for the BRCA and melanoma datasets compared to simulated data, and why in 

the melanoma dataset a higher ratio of false to true positives is detected.  

It is also worth noting that unfiltered MetaFusion output from all seven callers detects 47/53 BRCA 

true positives. The precision, however, is only ~9% (47/528). When MetaFusion filters are applied, 

four of these true positives are filtered out because they are supported by only one tool (not the same 

tool in each case), while the fifth is a ReadThrough that is instead stored in the cis-SAGe.cluster file. 

Interestingly, the four fusions called by one tool have junction and spanning read counts between 0-5 

reads, substantially lower than the read counts for the other 42 true positives (mean split=39, span=40). 

This suggests that lower coverage fusions are more likely to be missed by callers. 

3.2 Negative control benchmarking with BEERS dataset 

Continuing our benchmarking, we used the BEERS negative control dataset to compare 

MetaFusion’s performance with that of individual callers with respect to false positives. MetaFusion 

identified five false positive fusions, and was only outperformed by FusionMap, which identified four 
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(Figure 5). In comparison, deFuse and EricScript called over 200 false positives each (275 and 258, 

respectively). All false positives identified with MetaFusion were in the CodingFusion category. 

  
Figure 5: MetaFusion has a low false positive detection rate compared to most individual callers. The BEERS 

negative control dataset was used to evaluate the detection of false positive calls by MetaFusion and seven individual 

callers. MetaFusion detected five false positives, outperforming all callers except FusionMap. Most callers identified a 

significantly larger number of false positives, particularly deFuse and EricScript. 
 

3.3 cis-SAGe file 

MetaFusion was designed to be a versatile and flexible tool that facilitates ensemble fusion calling 

of various fusion types for a range of applications. This is in contrast to many currently available fusion 

calling tools, which may favour specific fusion types. In particular, many tools filter out cis-SAGe 

fusions, in which neighbouring genes are transcribed into a single pre-mRNA (Qin et al. 2015), and 

prioritize CodingFusions, which occur between non-adjacent coding genes and are typically caused by 

chromosomal rearrangements. Yet some cis-SAGe fusions, such as SCNN1A-TNFRSF1A and CTSD-

IFITM10, are translated into fusion proteins, and can contribute to cancer progression or serve as 

disease biomarkers (Varley et al. 2014). Instead of discarding these types of fusion calls, MetaFusion 

stores them in a separate cis-SAGe.cluster file that can be used for downstream analysis if cis-SAGe 

fusions are of interest (see Methods, Figure 1). 

Indeed, both SCNN1A-TNFRSF1A and CTSD-IFITM10 are identified by MetaFusion in our BRCA 

benchmarking data. Additionally, SLC45A3-ELK4, a ReadThrough present in the urine of men at risk 

for prostate cancer (Rickman et al. 2009), is detected in our prostate data. These cis-SAGe fusions are 
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filtered out of the final.n2.cluster results by MetaFusion’s filters and stored in the cis-SAGe.cluster 

file, as they cannot be distinguished from cis-SAGe RNAs found in normal biology. We further show 

that cis-SAGe.cluster files are enriched for cis-SAGe fusions by analyzing a prostate cancer dataset 

containing 44 cis-SAGe fusions verified by Sanger sequencing (Qin et al. 2015; Kumar et al. 2016) 

(Supplementary Figure 1). These results also exemplify that MetaFusion can be easily adapted to 

specific research questions, such as those pertaining to fusion types that may be of interest in certain 

tissues or diseases.  

 

3.4 MetaFusion uses FusionAnnotator to identify cancer related fusions in databases 

Once a final output of candidate fusions has been obtained, it can be difficult to determine which 

fusions should be prioritized for further investigation. Cross-referencing databases of known 

oncogenic fusions can identify calls that have been previously validated in other forms of cancer, and 

may thus be of more interest for downstream analysis. FusionAnnotator, which is an optional feature 

of MetaFusion, leverages such databases and can be used on .cluster output files to annotate cancer-

related fusions. This is done based on gene name. 

For example, for the BRCA dataset MetaFusion provides 76 total calls, 58 (76%) of which are in 

cancer fusion databases, as indicated by FusionAnnotator. 41/42 (98%) of BRCA true positive calls 

identified with MetaFusion are among these 58. The remaining 17 fusions found in databases may be 

thus also true positives that were not validated when this truth set was established, making them strong 

candidates for further experimental analysis. 

It should be noted that some cancer fusion databases do contain certain fusions found in normal 

tissues (Singh et al. 2020). Therefore, although enrichment for hits using FusionAnnotator is useful in 

identifying and prioritizing fusions that may be expressed in cancer samples, some of these fusions 

may not be cancer-specific.  

 

3.5 Ranking MetaFusion calls by number of callers 

Using multiple tools is the best practice for the field of fusion calling. This was demonstrated by a 

study in which 23 callers were used to examine the same BRCA dataset that we used, with results 

showing that implementing three or more callers improved fusion detection (Haas et al. 2019). 

Specifically, increasing fusion caller number led to enrichment of true fusions that have been 

experimentally validated.  
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Likewise, assigning a rank to MetaFusion calls based solely on the number of contributing callers 

highly correlates with true fusion calls in benchmarking datasets (Figure 6; Supplementary Table 6). 

Indeed, using callerfilter7 on MetaFusion output results in 100% precision for all benchmarking 

datasets (Figure 6). This ranking system is particularly meaningful for the real BRCA dataset, where 

14/19 calls made by five to six callers, and all 21 calls made by seven callers are experimentally 

validated true positives. 

   
Figure 6: Precision-recall curves for fusions identified by one to seven fusion callers. Precision and recall was evaluated 
for the five benchmarking datasets (DREAM, sim50, sim101, BRCA and melanoma), for fusions identified by an 
increasingly stringent number of callers. As the caller requirement increased, recall decreased but precision rose. In all five 
datasets, all fusions identified by 7 callers were true positives. 

 

Although recall decreases as the number of required callers increases, precision can improve 

substantially. Our results thus suggest that fusions detected by multiple callers are indeed more likely 

to be true fusions expressed in a given sample. Fusion calls in the MetaFusion final.n2.cluster output 

file are therefore sorted by the number of callers that identify them, in descending order. Fusions called 

by more tools are placed at the top of the list, and can be prioritized for further validation using methods 

such as PCR and Sanger sequencing. 

 

4. Discussion 

Here we introduce MetaFusion, a tool for consolidating and prioritizing fusion calls from multiple 

callers. The MetaFusion pipeline leverages the recall of chosen callers, standardizes format and gene 

naming among calls, merges fusion calls, and implements a series of stringent filters to provide a final 

output of fusion candidates. It consistently outperforms individual callers, overcoming limitations of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.17.302307doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.302307
http://creativecommons.org/licenses/by-nc-nd/4.0/


M Apostolides et al. 

 18 

current fusion calling approaches including high false positive rates, poor recall, lack of a common 

output format such as VCF for genetic variants, and inconsistent fusion definitions and gene naming 

conventions. MetaFusion is also equipped with components for further benchmarking and database 

cross-referencing, making it a flexible tool for fusion calling in cancer and genetic research. 

A hallmark of MetaFusion is the seamless integration of multiple fusion callers via the 

standardization of caller outputs into CFF. While various fusion calling tools are readily available, they 

can vary significantly in the formatting of their outputs, making consolidation and direct comparison 

of their results difficult. We thus created the CFF as a means to unify the file formats of each tool used 

for fusion analysis. This allows for any combination of fusion callers to be used with MetaFusion, as 

integration of new tools is as simple as converting their output to CFF. Users may choose any 

combination of callers available to them for input into the pipeline, instead of being limited to a specific 

set of callers. For these reasons, we hope that future fusion calling tools will include CFF as an output 

format for their pipelines. 

A necessary feature of joint calling is identification of a given fusion by an N number of callers 

(callerfilterN), and true positives may be missed if merging is not robust enough. MetaFusion relies on 

a two-component merging process, in which both gene name and breakpoint matching are considered. 

This is in contrast to other joint calling approaches that rely on one component, such as gene name 

matching (Beccuti et al. 2014). To rectify naming inconsistencies among callers, MetaFusion renames 

calls to current NCBI symbols early in the pipeline, improving the downstream merge. Our graph 

clustering method allows for multiple points of contact between groups of similar calls, reducing the 

chance that a matching call will be orphaned. Calls can be merged together even if they do not intersect 

directly (Figure 3). This eliminates the need for manual result curation to check for orphaned calls that 

may have escaped merge, increasing merging reliability.  

Another benefit of MetaFusion is its flexibility and versatility. While individual fusion callers are 

limited to their own definitions of fusions, MetaFusion combines the ways fusions are identified by all 

callers included by the user. This makes MetaFusion incredibly customizable, as users can select callers 

based on their specific needs pertaining to the data they have, the tissues and diseases they are working 

with, tool preference and more. Furthermore, MetaFusion will only improve as callers with more 

precise fusion detection capabilities are developed and included in the pipeline. The included 

Benchmarking Toolkit allows for easy evaluation of new caller combinations using the truth sets 

provided along with the MetaFusion software. This is a unique feature, as most fusion calling tools do 

not provide built-in benchmarking functionality. Once caller outputs have been merged, a series of 
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filters is used to refine the results. Enrichment for cis-SAGe RNAs – which many callers discard – or 

for fusions found in cancer databases further allows for tailoring of the MetaFusion pipeline to specific 

research questions.  

While many studies rely on a single fusion calling tool for analysis, we show that a joint fusion 

calling approach can yield higher confidence results. This is key particularly in the context of cancer, 

where insight into genetic drivers of disease is critical for diagnosis and can shape treatment and 

prognosis. Oncogenic fusion research is an ever-growing field, and MetaFusion provides several 

functionalities to aid in cancer-related investigations, including cancer database enrichment and 

reporting of cis-SAGe. Ultimately, MetaFusion is a novel tool that provides a robust yet versatile 

approach to fusion calling.  

 

Software availability and implementation 

MetaFusion is a free software tool implemented in Python, with bash scripts used as wrappers. The 

MetaFusion source code is available on GitHub at [https://github.com/ccmbioinfo/MetaFusion]. For 

convenience and ease of installation, a platform-independent Docker image containing installed 

dependencies is available at [https://hub.docker.com/r/mapostolides/metafusion]. Instructions for 

downloading the Docker container, running MetaFusion software, discerning output files and fastq file 

data access can be found at https://github.com/ccmbioinfo/MetaFusion/wiki. The individual fusion 

callers used by MetaFusion are available at their respective software repositories (see References).  

Supplementary Material 

Supplementary material provided online. 
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