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Abstract 

The ability to safely negotiate the world on foot takes years to develop in human infants, reflecting the 

huge cognitive demands associated with real-time dynamic planning and control of walking. Despite the 

importance of walking, surprisingly little is known about the neural and cognitive processes that support 

ambulatory motor control in humans. In particular, methodological limitations have, to date, largely 

prevented study of the neural processes involved in detecting and avoiding obstacles during walking. Here, 

using mobile EEG during real-world ambulatory obstacle avoidance, we captured the dynamic oscillatory 

response to changes in the environment. Time-frequency analysis of EEG data revealed clear neural 

markers of proactive and reactive forms of movement control (occurring before and after crossing an 

obstacle), visible as increases in frontal theta and centro-parietal beta power respectively. Critically, the 

temporal profile of changes in frontal theta allowed us to arbitrate between early selection and late 

correction mechanisms of proactive control: our data show that motor plans are updated as soon as an 

upcoming obstacle appears, rather than when the obstacle is reached, as previously thought. In addition, 

regardless of whether motor plans required updating, a clear beta rebound was present after obstacles were 

crossed, reflecting the resetting of the motor system. Overall, our use of mobile EEG during real-world 

walking provides novel insight into the cognitive and neural basis of dynamic motor control in humans, 

suggesting new routes to the monitoring and rehabilitation of motor disorders such as dyspraxia and 

Parkinson’s disease. 
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Introduction 

Moving safely through the environment while walking requires continual monitoring and adjustment of 

planned behaviour, including the ability to make fast online motor transformations in response to dynamic 

changes such as the appearance of unexpected obstacles. The skill of negotiating the constraints of the 

environment while walking is sufficiently complex that it develops slowly throughout infancy (Mowbay 

& Cowie, 2020) and is progressively lost in aging and motor impairments such as Parkinson’s disease 

(Holtzer et al., 2014; Peterson & Horak, 2016). The gradual reduction in cognitive resources and motor 

control that occurs with aging and disease means that it becomes increasingly difficult to respond 

effectively to obstacles that are encountered while walking. Indeed, falls associated with stumbling or 

tripping over objects represent a critical factor in the increased mortality rates that are seen for elderly and 

neurologic patients (Tinetti et al., 1988; Kovacs, 2005; Weerdesteyn et al., 2006). Given the complexity 

and fragility of the processes involved in walking, it is clearly important to identify the neural processes 

supporting cognitive control during walking and obstacle avoidance, generating new targets for clinical 

practice (Alexander & Hausdorff, 2008; Peterson et al., 2016). 

Over the last decade, growing research interest in human ambulation has led to the extensive recording of 

EEG (the electroencephalogram) during active walking on treadmills (Petersen et al., 2012; Severens et 

al., 2012; Gwin et al., 2010, 2011; Gramann et al., 2011; Wagner et al., 2012; 2016; 2019; and Seeber et 

al., 2014, 2015). Recorded from electrodes placed on the scalp, EEG provides a non-invasive 

representation of oscillatory brain activity produced during task performance, allowing the identification 

of functionally dissociable cortical mechanisms that drive human behavior (Buzsáki & Draguhn, 2004). 

To date, EEG studies of walking have revealed the activation of a number of ‘prefrontal’ brain signals 

before approaching an obstacle, reflecting the recruitment of additional cognitive resources. For example, 

Haefeli et al. (2011) recorded EEG while participants walked on a treadmill, finding increased activity 

over frontal electrodes in response to an acoustic signal that warned of upcoming obstacles. Similar 
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findings have been reported using mobile fNIRS. Maidan et al. (2018) reported a higher hemodynamic 

response over prefrontal sensors when participants had to prepare to step over unanticipated obstacles 

(compared to during normal walking), an effect that was independent of the size of the object. These 

findings have also been extended by a recent EEG investigation of walking on a treadmill (Nordin et al., 

2019) that showed a power increase in low-frequency oscillations (i.e. ranging from 3-13 Hz) while 

participants were walking at different speeds and stepping over foam obstacles (appearing from behind a 

curtain placed at the front of the treadmill). These oscillatory brain changes were widespread across the 

scalp, consistent with activation of a distributed cortical network (i.e., supplementary motor, premotor and 

posterior parietal areas). Indeed, Nordin et al. (2019) argued that obstacle avoidance involves the early 

engagement of premotor and supplementary motor areas and a later activation of posterior parietal cortex.  

Whilst studies of walking have focused largely on identifying neural markers, wider interest in the 

processes involved in goal directed behaviour have led to the development of theoretical models of 

cognitive control that provide a framework for understanding ambulatory control. Notably, studies of 

cognitive control by Braver and colleagues (Braver, 2012; see also Pezzullo & Ognibene, 2012) have 

characterised two broad stages of control processing. First, when a behaviour is planned, proactive control 

processes are employed to respond to potential sources of interference, allowing the original goal to be 

reached. Second, when an unexpected event has occurred, reactive control processes are employed to 

allow recovery from the interference, and return to the original goal. Markedly similar distinctions 

between proactive and reactive control mechanisms have also emerged from studies on human balance 

(Horak et al., 2006; Shumway-Cook & Woollacott, 2007; Bhatt et al., 2018). Proactive strategies are used 

to anticipate the loss of balance before it occurs (due to some source of interference), when the body has 

enough space and time to predict the upcoming interference and adjust motor plans. By contrast, reactive 

strategies involve compensatory adjustments that occur after unexpected events, to restore postural control 

and balance. 
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Although the theoretical distinction between proactive and reactive control strategies was not developed in 

relation to ambulatory control per se, the distinction is nonetheless clearly relevant for understanding the 

processes supporting obstacle avoidance during walking. Indeed, the neural signals observed in studies of 

treadmill walking can be readily interpreted within this theoretical framework. For example, Nordin et al. 

(2019) found widespread power modulation of low frequency oscillations, which was evident two steps 

before reaching unexpected obstacles, consistent with the operation of a proactive control process. 

According to this view, the putative proactive mechanism allows adjustments to be made to the planned 

walking activity. In addition, on the basis of the timing of the EEG signal, Nordin and colleagues 

proposed that the adjustment was made just before the obstacle was encountered, that would be suggestive 

of late correction.  

To our knowledge there is no equivalent evidence of EEG markers of reactive control during obstacle 

avoidance. There is, however, wider evidence for reactive control mechanisms after movement. In 

particular, EEG studies have revealed post-movement increases of beta power (13-30 Hz), described as 

the beta rebound, as a marker of reactive control (Liebrand et al., 2017). Beta oscillatory activity over 

sensory motor regions is enhanced when the predictions of an incoming stimulus are violated (Arnal et al., 

2011) and after forcibly interrupted movements (Alegre et al., 2008; Heinrichs-Graham et al., 2017), 

suggesting a mechanism that re-calibrates the motor system after a movement (Pfurtscheller et al., 1996; 

Engel & Fries, 2010; Kilavik et al., 2013). Thus, although reactive control mechanisms have not been 

demonstrated during obstacle avoidance, changes in beta power provides a likely candidate index of the 

operation of such mechanisms.  

The recent emergence of mobile EEG (Ladouce et al., 2017) represents a particularly important 

development for researchers interested in walking, not least because it significantly extends the range of 

contexts in which brain activity can be studied (e.g., see Park & Donaldson, 2015; Park et al., 2018). 

Critically, using mobile EEG technology it is now possible to monitor the activity of the brain while 
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participants navigate natural environments, taking investigations of walking off treadmills, and out of the 

laboratory (e.g., see Ladouce et al., 2019; Park & Donaldson, 2019, for examples). As a result, the neuro-

cognitive processes supporting walking can now be studied in the real-world, offering an entirely new 

embodied perspective to the understanding of human behavior and motor impairments (which had been 

previously limited to non-ecological settings and fairly uninformative tasks; cf. McFadyen et al., 2017; 

Ladouce et al., 2017). Furthermore, the high temporal resolution of EEG (i.e., millisecond accuracy), 

combined with wireless portability, makes mobile EEG ideally suited to capturing the rapid cortical-

responses that occur in response to dynamic stimuli (Kline et al., 2015).  

As far as we are aware, currently there is no direct evidence for EEG markers of proactive and reactive 

control processes during real-world ambulatory obstacle avoidance. Thus, our primary aim in the current 

study is to ask whether the putative changes in EEG power described above can be identified during 

naturalistic walking. To address this issue we recorded EEG whilst participants walked across a room, to 

demonstrate whether it is possible to identify neural signals of proactive and reactive control during real-

world obstacle avoidance. Rather than simply observe natural walking in isolation, however, we also 

examined EEG when obstacles were present. Critically, we manipulated the nature of the obstacle across 

trials, providing participants with more or less time and space to prepare for the obstacle. Obstacles were 

either absent, always present at the start of the journey, or appeared up ahead after a short or long delay. 

We highlight that our experimental design includes a condition in which no obstacle was presented - 

providing a baseline in which reactive and proactive control was not required. In addition, we manipulated 

the available time and space that participants had to adjust their gait when negotiating the environment, 

while allowing the walking task to remain as natural as possible. Based on the literature reviewed above, 

we predicted that proactive and retroactive control mechanisms should be identifiable in distinct temporal 

dynamics of theta and beta oscillations. 
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As well as demonstrating that neural markers of movement control can be identified during natural 

walking, we also tested two specific hypotheses. First, by varying the time and space that participants had 

to prepare for an obstacle we were able to arbitrate between early selection and late correction 

mechanisms of proactive control. As noted above, current evidence (cf. Nordin et al. 2019) suggests that 

proactive control mechanisms operate when an obstacle is tackled (so-called late correction). Here we test 

an alternative possibility, namely that proactive control processes operate as soon as information about an 

upcoming obstacle becomes available (so called early selection). Put simply, the high temporal resolution 

of EEG data would allow us to reveal the precise temporal dynamics of proactive control during walking. 

Second, by varying the opportunity to anticipate and prepare before adjusting to an obstacle, we aimed to 

test whether reactive control processes during walking are indexed by changes in beta power (the so-

called beta rebound), reflecting the need for recovery after a change of a motor plan, in order to reset the 

previous state. Critically, based on previous studies (Arnal et al., 2011; Alegre et al., 2008; Heinrichs-

Graham et al., 2017), we predicted that the beta rebound should only occur after participants cross an 

obstacle, and should be stronger when participants had less time to adjust their gait. As we show below, 

mobile EEG does indeed capture the dynamic engagement of proactive and reactive control processes 

during real-world ambulatory obstacle avoidance. 

Materials and methods 

This study was approved by the local ethics committee and conformed to standards set by the Declaration 

of Helsinki. Thirty-two healthy participants (21 female and 11 male; age range = 19-65; mean age = 32.1 

years, SD = 11.6 years) took part in the experiment. All participants were right handed (self-reported) and 

gave their written informed consent before the experiment. 

The experimental design involved four conditions (as depicted in Figure 1) in which participants walked 

across an 18 m long room, passing through a series of infrared laser beams that recorded their location and 

controlled the presentation of obstacles (visible as a colour patch projected onto the floor that had to be 
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stepped over). In the “no adjustment” condition no obstacle was presented and participants simply walked 

across the room. In the “preset adjustment” condition, obstacles were present at the start of each trial, 

placed at a fixed location 250 cm from the first laser beam. In the “immediate adjustment” condition, 

walking through the laser beam would trigger the presentation of an obstacle, displayed 160 cm in front of 

the participant. Finally, in the “delayed adjustment” condition, walking through the laser beam once again 

triggered the presentation of an obstacle, presented 310 cm in front of the participant. The participants were 

always instructed to walk straight across the room, to maintain a comfortable pace, and to step over any 

obstacle presented in front of them. Each crossing of the room corresponded to an individual trial, and on 

reaching the end of the room participants were asked to turn around and walk back across the room in the 

same way. The video projector and laser beams were arranged to allow data collection in both directions. 

Participants completed a total of 240 trials divided into 6 experimental blocks. Each block lasted for 5 min. 

All conditions were presented with equal probability. The overall experimental session lasted 

approximately 90 minutes, including preparation, recording and breaks between experimental blocks. 

The obstacle was presented as a white stripe (40x80cm) projected on a 10 m long carpet. The obstacle 

presentation was controlled with a system interfacing two fixed motion sensors placed at 230 cm from both 

ends of the carpet (directing infrared laser beams across the room, through which participants would pass). 

Stimulus presentation was controlled using E-prime 3.0 software (Psychology Software Tools, Pittsburgh, 

PA) and a projector. The motion sensors were designed to send an input signal to the stimulus presentation 

software running on a laptop, using the Auxiliary I/O port of a Chronos response device (Psychology 

Software Tools, Sharpsburg, PA). The laptop was connected to a projector placed at the side of the room. 

The presence and location of the obstacle presented varied on a trial-by-trial basis, depending on the 

experimental condition. 

During each trial the experimenter manually marked two main events (as illustrated in Figure 1): the 

moment that the participant crossed the beam (‘Approach’) and the moment when the participant was over 
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the obstacle (‘Crossing’). These two points provided temporal markers for use within the analysis of the 

EEG data that identified a planning phase (before the obstacle was encountered) and a resetting phase (after 

the obstacle was encountered).  

Participants also wore foot sensor insoles (Pedar-x System, novel.de, Munich, Germany), a bluetooth 

pressure distribution measuring system for monitoring local loads between the foot and the shoe. The data 

of gait parameters were not recorded in all participants of this study and are not reported here. 

EEG acquisition and analysis 

EEG data was recorded from 32 Ag/AgCl electrodes connected to a portable amplifier (ANT-neuro, 

Enschede, The Netherlands). Electrodes were positioned according to the International 10-20 system (FP1, 

FPz, FP2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, M1, T7, C3, Cz, C4, T8, M2, CP5, CP1, CP2, CP6, P7, 

P3, Pz, P4, P8, POz, O1, Oz, O2) with AFz electrode as ground and CPz electrode as reference. The 

electrode impedances were reduced below 5 kΩ before the recording. EEG data were sampled at 500 Hz 

and bandpass filtered at 0.01-250 Hz.  

EEG data analyses were performed using custom scripts written in MATLAB 2019a (The MathWorks) 

incorporating EEGLAB toolbox (Delorme and Makeig, 2004). Mastoid channels (M1 and M2) were 

removed from the initial 32 electrodes. EEG channels with prominent artifacts were automatically selected 

(kurtosis > 5 SDs) and interpolated. All channels were then re-referenced to the average. An extended 

infomax Independent Component Analysis (ICA, Makeig et al., 1996) was performed, using a 0.1 Hz to 40 

Hz bandpass filter. After the ICA decomposition, a Finite Impulse Response (filtered from 0.1 Hz to 80 Hz, 

-6db cut-off, filter order 16500) was applied to ICs in order to nullify phase delay. Resulting non-

artifactual ICs scalp maps were selected through SASICA (Semi-Automated Selection of Independent 

Components of the electroencephalogram for Artifact Correction, Chaumon et al., 2015). The selected ICs 

scalp maps, residual variance and mean power spectra were further visually inspected to identify non-brain 
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sources. An average (mean ± SD) of 5.85 ± 1.97 of non-artifactual ICs across conditions were selected and 

retained for the analysis.  

Data was segmented into epochs relative to the step over the obstacle (i.e., the ‘Crossing’ event, which was 

defined as time 0), producing a -3500 ms to 2000 ms time window. Since the latency of different trials 

were affected by a great deal of variability within and between participants, single trial spectrograms were 

time warped to the median latency (across participants) of the ‘Approach’ event using linear interpolation. 

In order to have the same number of trials, 40 trials were randomly selected for each condition. Epochs still 

contaminated by muscular artifacts or in which the latency of the ‘Approach’ event exceeded the limit of -

2500 ms from the ‘Crossing’ were excluded. An average (mean ± SD) of 37 ± 2.07 epochs across 

conditions were included in the subsequent analysis, resulting in 7.5% of trials being excluded. Event 

related spectral perturbations (ERSPs) were obtained by computing the mean difference between single-

trial log spectrograms for each channel, for each participant, relative to the mean baseline spectrum (from -

3000 ms preceding to 1500 ms following the obstacle stepping).  
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Fig. 1. Representation of the experimental conditions, indicated with different colors (from top to bottom, respectively: blue, 

preset adjustment; red, delayed adjustment; black, immediate adjustment; green, no adjustment). For each condition, the 

median duration (in ms) of the planning phase (between participants) is reported inside each path between the approach and 

the crossing dotted lines.  

Statistical Analysis 

Midline single channel spectrograms (Fc, Cz, POz; Figure 2) were visually inspected to identify prominent 

changes in the spectral power across conditions. Topographic maps of theta (Fig. 3) and beta (Fig. 5) 

activities were further assessed to determine the cortical origin of relevant spectral changes for each 

frequency band. Informed by our hypothesis and visual inspection of the topographic maps, we identified a 

frontal (mean activity across FC1, Fz and FC2 channels), a central (CP1, Cz and CP2) and a parietal (P3, 
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POz and P4) location Finally, in order to examine the time course of spectral changes before and after the 

obstacle, the planning (from -1750 ms to -250 ms) and the resetting (from 250 ms to 1250 ms) periods were 

divided into a series of successive 500 ms time windows. Four different repeated measure ANOVAs with 

3-within factors (experimental condition, time window and location) were performed to examine the 

pattern of activity across the planning and the resetting phases for each frequency band. Significance level 

was set at p < .05 and where sphericity assumption was violated the Greenhouse-Geisser method was used  

to correct the degrees of freedom. Post-hoc paired samples t-tests were adjusted for multiple comparisons 

using Bonferroni correction. 

Results 

Midline time warped spectrograms (Figure 2) revealed a transient change in the spectral power of theta 

(4-7 Hz) and beta (13-35 Hz)1 frequency bands, occurring after the ‘Approach’ and before ‘Crossing’ 

and differently distributed across conditions. Below the results for each frequency band will be 

presented separately for the planning and the resetting phases.  

                                                
1 Analysis of alpha (8-12 Hz) oscillations is not included in this manuscript in order to focus on the predictions examined 

through analysis of the theta and beta bands. However for interest, alpha oscillations mirror the patterns of theta oscillations 

that we report here.  
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Fig. 2. Time warped spectrograms at electrodes Fz, Cz, and POz for each experimental condition. Vertical solid black lines 

represent the ‘Approach’ (APP) and the ‘Crossing’ (CR, time 0) events, respectively. Vertical dotted lines represent time 

windows included in the analysis. On the x-axis (time in ms), the median latencies of the timing of the Approach point are 

reported for each condition. The lowest frequency shown is 3 Hz, the highest is 35 Hz. Colors indicate the relative change of 

power from the baseline. Blue colors represent decrease of power; red colors indicate increase of power.  

Planning 

Theta. The ANOVA indicated that changes in the theta spectral power were significantly different across 

experimental conditions [F(1, 31) = 14.645, p < .001, ῃp
2 = .321]. Post-hoc paired sample t-tests revealed 

that the theta increase was significantly stronger both in the immediate adjustment [immediate vs no 

adjustment: t(31) = 6.150, p < .001; immediate vs preset: t(31) = 5.374, p < .001; immediate vs delayed : 

t(31) = 2.142, p < .05] and in the delayed adjustment condition [delayed vs no adjustment: t(31) = -4.235, p 

< .001; delayed vs preset: t(31)=-2.811, p < .01], but similar in the preset adjustment and no adjustment 

conditions (p = .375). A main effect of location [F (1, 31) = 8.302, p < .001, ῃp
2  = .211] revealed that the 
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increase in theta increase was more pronounced at frontal compared to parietal [t(31)= 3.733, p < .001] and 

central [t(31) = -2.154, p < .05] electrodes, and decreased strongly in parietal compared to central [t(31) = 

2.138, p <.05].  

A significant interaction between experimental condition and time window [F (1, 31) = 37.313, p < .001, 

ῃp
2  = .546; Fig. 2] confirmed that the timing of the increase in theta power was consistent with the 

appearance of the obstacle in the immediate and delayed adjustment conditions. As shown in Figure 3, a 

significant stronger theta increase occurred firstly in the delayed adjustment after the obstacle appeared [-

1750 ms to -1250 ms; delayed  vs no adjustment: t(31) = -6.007, p < .001; delayed  vs preset: t(31) = -

4.150, p < .001; delayed  vs immediate : t(31) = -5.598, p < .001] and decreased more in the immediate 

compared to preset adjustment condition [t(31) = -3.248, p < .01]. In the following time window (-1250 ms 

to -750 ms) the theta increase became stronger in the immediate adjustment condition [immediate  vs no 

adjustment: t(31) = 4.922, p < .001; immediate  vs preset: t(31) = 4.432, p < .001] but was still present in 

the delayed adjustment condition [delayed  vs no adjustment: t(31) = -6.052, p < .001; delayed  vs preset: 

t(31) = -3.345, p < .01]. In the last time window the theta increase was stronger in the immediate 

adjustment condition [immediate vs no adjustment: t(31) = 5.902, p < .001; immediate vs preset: t(31) = 

6.904, p < .001; immediate vs delayed : t(31) = 10.882, p < .001], but the decrease was stronger in the 

delayed adjustment condition [delayed vs no adjustment: t(31) = 7.586, p < .001; delayed vs preset: t(31) = 

2.163, p < .05] and in the preset adjustment conditions [preset vs no adjustment: t(31) = 3.602, p < .001]. 

Post-hoc t-tests revealed no statistical differences between preset adjustment and no adjustment conditions 

during the first two time windows (p > .05) of the planning phase. No other main effect or interaction 

reached the statistical significance (p > .05). 
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Fig 3. Topographic maps illustrating the temporal dynamics of theta activity across conditions and time windows. The dotted 

rectangle around the scalp maps before time 0, indicates the time windows included in the planning phase. 

 

Fig. 4. The time course of changes in theta across the experimental conditions (group mean, with standard errors indicated by 

shading) shown for a representative electrode (FC1). Dotted lines represent the median latency of the ‘Approach’ event, that 
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matches the same color of the conditions indicated by the key. Solid vertical black line indicates the ‘Crossing’ event (time 

0). The black rectangle indicates the time windows included in the analysis of the planning phase.   

Beta. Although the ANOVA did not show a main effect of condition, beta decrease of power occurred 

stronger in the immediate adjustment condition (mean = -9.69 ± 7.09 µV), followed by the delayed 

adjustment condition (mean = -9.08 ± 6.73 µV), the preset adjustment condition (mean = -8.34 ± 6.72 µV) 

and no adjustment condition (mean = -5.43 ± 7.28 µV). A main effect of brain locations [F (1, 31) = 4.183, 

p < .05,  ῃp
2  = .119] revealed that a stronger decrease in beta frequency band occurred in central (mean = -

8.43 ± 4.66 µV)  and parietal (mean = -8.80 ± 5.03 µV),  areas compared to frontal (mean = -7.19 ± 4.82 

µV), although post-hoc paired sample t-tests showed only one statistically significant difference [parietal 

vs frontal: t(31) = 2.589, p < .05]. A significant interaction between time windows and conditions [F (2, 31) 

= 2.919, p < .05,  ῃp
2  = .086; Figure 6] showed that beta decrease was significantly stronger in all obstacle 

conditions compared to no adjustment in the last time window [-750 to -250 ms; no adjustment vs 

immediate: t(31) = -2.876, p < .01;  no adjustment vs delayed: t(31) = 4.997, p < .001; no adjustment vs 

preset: t(31) = 3.742, p < .001]. A significant interaction between brain locations and time windows [F (2, 

31) = 4,595, p < .01,  ῃp
2  = .129] revealed that firstly beta decrease was stronger in parietal areas [time -

1750 to -1250 ms; parietal vs frontal : t(31) = 2.219, p < .05] but later (-750 to -250 ms) when the 

participants were approaching the obstacle, became stronger in central areas compared to frontal [t(31) = -

3.395, p <. 01] and parietal [t(31) =-3.475, p <.01] areas.  No other main effect or interaction reached the 

statistical significance (p > .05). 
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Fig. 5. Topographic maps illustrating the temporal dynamics of beta activity across conditions and time windows. The dotted 

rectangles around the scalp maps before and after time 0, indicates the time windows included in the planning and in the 

resetting phase respectively. 

Resetting phase 

Beta. The ANOVA revealed a main effect of condition [F(1, 32) = 9.912, p < .001, ῃp
2  = .242] on beta 

modulation during the resetting phase. Beta increase of power was stronger in the all obstacle conditions 

compared to no adjustment [no adjustment vs immediate: t(31) = 4.525, p < .001; no adjustment vs 

delayed: t(31) = -5.113, p < .001; no adjustment vs preset:  t(31) = -4.062, p < .001] condition. 

Additionally, beta increase of power was stronger in the delayed adjustment condition compared to the 

immediate adjustment condition [t(31) = -2.461, p < .05] but not compared to preset adjustment condition 

[immediate vs preprogrammed: p = .839; delayed vs preset: p = .258]. A main effect of brain location [F(1, 

32) = 4.028, p < .05, ῃp
2  = .115] revealed that the beta increase was stronger in parietal compared to 

central [t(31) = -2.143, p <. 05] and frontal [t(31) = -2.143, p < .01] areas. No other main effect or 

interaction reached the statistical significance (p > .05).  
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Fig. 6. The time course of changes in beta across the experimental conditions (group mean, with standard errors indicated by 

shading) shown for a representative electrode (Cz). Solid vertical black line indicates the ‘Crossing’ event (time 0). The black 

rectangles indicate the time windows in which we found significant significant differences between conditions (-750 ms to -

250 ms and 250 ms to 1250 ms respectively).  

Discussion  

To our knowledge, this is the first mobile EEG investigation of real-world ambulatory obstacle avoidance. 

Our aim was to assess whether we can identify proactive and reactive forms of cognitive control during 

naturalistic movements, revealed through theta and beta spectral modulation, and to dissociate the 

cognitive processes involved. 

The results showed greater transient theta spectral changes over frontal areas during the planning phase, 

consistent with the timing of the unexpected obstacles’ appearance on the path. The increase in theta power 

was larger when participants had less time and space available to change their gait before stepping over an 

obstacle (i.e. immediate adjustment condition). This pattern of modulation was substantially absent when 
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participants walked without encountering any obstacle (i.e. no adjustment condition) or when they could 

see the obstacle in advance (i.e. preset adjustment condition). This novel investigation of real-world 

ambulatory obstacle avoidance, identifies increased theta as a marker of proactive cognitive control 

mechanisms when dealing with unexpected stimuli while walking.  

The temporal dynamics of spectral power changes showed that the increase of theta power was linked to 

the appearance of the obstacle, suggesting the ‘early’ component of the proactive control is at play 

(Pezzullo & Ognibene, 2012) rather than a ‘late’, ‘just in time’ strategy (Braver, 2012). Nordin and 

colleagues (2019) investigated the brain dynamics during obstacle avoidance, and concluded that neural 

oscillatory activity in a similar frequency range (i.e. 3-13 Hz) increased two steps before the obstacle, 

pointing to a late correction mode of control. Instead, the present study shows that increases in frontal theta 

are not related to the time that an obstacle is tackled, but instead to the time that one becomes aware of an 

obstacle. Thus, the present results demonstrate that ambulatory obstacle avoidance relies on early selection 

models of proactive control.  

According to the dual model theory, proactive control operates through mechanisms which maintain the 

relevant information actively in the brain until the behavior is accomplished (Braver, 2012). However, the 

continuous maintenance of goal-relevant information supporting complex behavior in the real world 

requires the recruitment of a large amount of cognitive resources. In situations where a planned action 

should not be immediately performed, proactive control ensures the flexible and cost-efficient updating of 

relevant information that ensures that the appropriate action will take place at the right time (Pezzullo & 

Ognibene, 2012). Indeed, recent evidence (Cooper et al., 2015; 2017, 2019) suggests that proactive control 

can be further divided in two stage-preparation processes: an early component, which ensure the 

preparation and the updating of relevant information to face a change, and a later component, that reflects 

motor readiness (Cooper et al., 2015, 2017, 2019). Our findings are a close fit with such a dual model 

account, as the brain dynamics in our study reveal a dissociation demonstrating that ambulatory avoidance 
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of a partially unexpected obstacle relies on the earlier of the two stages of preparation processes. Increased 

frontal theta activity then serves an index of an ‘early’ proactive mechanism that prepares for an upcoming 

change, regardless of when the action is to be executed. 

A stronger beta suppression during the planning phase was observed over sensorimotor areas only when 

the participants had to step over obstacles but not when there was no obstacle to avoid. As unobstructed 

walking involves a more basic negotiation of one’s environment, the greater beta band suppression over 

sensorimotor areas likely reflects a state of increased motor readiness, which is needed in order to negotiate 

the obstacle, without interrupting the walking cycle. Furthermore, we observed that beta suppression was 

initially stronger over parietal areas, but as the participants were closing on the obstacle the focus of beta 

suppression moved over central areas. Parietal beta suppression has been observed during visually guided 

step adjustments (Wagner et al., 2012) and motor programming of finger movements (Mars et al., 2007). 

The parietal cortex is associated with sensorimotor integration as well as spatial representation of ongoing 

movements (Buneo & Andersen, 2006; Andersen & Cui, 2009). Moreover, studies in cats (Drew et al., 

2008; Drew & Marigold, 2015; Marigold & Drew, 2017) revealed neuronal populations involved in 

computing and approximating the time and space available to avoid contact with objects while walking. A 

central beta power decrease has been observed during active walking (Wieser et al., 2010; Presacco et al., 

2011; Wagner et al., 2012; Seeber et al., 2014) and cycling (Jain et al., 2013; Storzer et al., 2016). It is well 

established that beta suppression over sensorimotor brain regions is an index of motor activation thought to 

reflect the planning and the execution of voluntary movements (Neuper et al., 2006; Pfurtscheller & 

Berghold, 1989; Pfurtscheller & Lopes da Silva, 1999). The temporal evolution of beta suppression in the 

present study points towards the operation of a sequential mechanism which initially recruits sensorimotor 

integration and spatial representation processes and at a later stage movement planning processes. Notably, 

the temporal evolution as well as the magnitude of beta suppression were similar when the gait adjustments 

were either preset or triggered by the presentation of the unexpected obstacle. This may be due to the 

relatively low difficulty of stepping over the obstacle in the present study and also suggests that updating of 
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a motor plan, presumably reflected in theta increase, is not necessarily reflected in a greater activation of 

primary sensorimotor areas. 

With regards to reactive control once the obstacle is tackled, and in addition to changes during the planning 

phase, we observed transient power changes in the beta and theta frequency bands also during the resetting 

phase. Consistent to our hypothesis, an increase in beta power, the so called post-movement beta rebound 

(Pfurtscheller et al., 2005; Pfurtscheller & Solis-Escalante, 2009; Jurkiewicz et al., 2009) was present only 

when gait adjustments were required in order to step over the obstacle, but absent when there was no 

obstacle to avoid. The beta rebound is typically observed generally over sensorimotor areas after motor 

execution or motor imagery (Pfurtscheller et al., 2005; Pfurtscheller & Solis-Escalante, 2009) and it is 

believed  to reflect an active recalibration process that takes place after a change in the state of  the motor 

system (Pfurtscheller et al., 1996; Engel & Fries, 2010; Kilavik et al., 2013). Notably, the beta rebound 

over prefrontal and sensorimotor areas is considered a possible index of reactive control (Cooper et al., 

2019; Liebrand et al., 2017). Accordingly, the presence of the beta rebound in our study only after a gait 

adjustment was required in order to step over an obstacle, provides a marker of the reactive process that 

needs to take place in order to restore the motor system to its previous state.  

We also predicted that the beta rebound should be stronger when participants had less time to adjust their 

gait. However, although the beta rebound was clearly present after tackling the obstacle, this index of 

recovery was not more pronounced when obstacles appeared while walking compared to when the obstacle 

was present at the start of the journey. Therefore, the beta rebound as an index of recovery is not modulated 

by the cognitive demands placed when adapting gait with limited time and space to do so. Interestingly, the 

beta rebound was prolonged when the participants had more time to adjust their gait before stepping over 

the obstacle. A recent study has suggested that the duration of the beta rebound is increased after 

temporally protracted movements (Fry et al., 2016). Accordingly, the prolonged beta rebound could be 
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related to the longer engagement of the motor system when a partially unexpected obstacle appeared at a 

greater distance from the participants.  

Practical implications of the current study 

An objective of the present study was to demonstrate the relevance and utility of using mobile EEG in real-

world investigations, that allows the detection of neural correlates of human natural behavior that cannot be 

captured in the traditional laboratory settings, as we proposed already (Ladouce et al., 2017; 2019). Our 

data revealed the neuro-cognitive indices of proactive and reactive control during natural human 

ambulation, indicating that control of walking requires a sophisticated system emerging when negotiating 

complex real-world dynamics. Despite extensive development of new hardware solutions (i.e. dry 

electrodes, Lopez-Gordo et al., 2014, or dual-layer EEG caps, Nordin et al., 2019) and tools for signal 

processing (i.e. independent component analysis, Makeig et al., 1996) mobile technologies have not 

typically been utilised to provide exhaustive explanations of the human cognition of moving in natural 

contexts. The technical challenges of reducing motion artifacts during natural movements and the physical 

constraints of multiple portable devices, are still demanding much attention as these continue to present 

significant barriers for neuroscientific research. However the validity of our data is encouraging, and 

demonstrates a readiness for example for enhancing the use of the Mobile Brain/Body Imaging (MoBi) 

approach (Makeig et al., 2009) by combining the recording of neural activity through the mobile EEG with 

body signals (i.e. muscle activity, kinematics and eye movements) through portable devices. Using this 

approach, EEG brain activity is time-stamped with behavioral indexes, like heel strikes while walking. 

Although previous MoBi investigations provided significant insights on the coupling between gait rhythms 

and intracortical patterns (Severens et al., 2012; Gwin et al., 2010; Gramann et al., 2011; Wagner et al., 

2012, 2016; Seeber et al., 2014, 2015; Bruijn et al., 2015), our study aimed to understand the nature of 

cognitive processes that guide behavior in real-world environments, rather than explaining the relation 

between gait parameters and cortical activity. Importantly, our goal was to highlight that the mobile 
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approach of studying human behavior in real world environments may have important implications for the 

understanding of neurodegenerative disorders, such as Parkinson’s disease, and developmental disorders 

such as dyspraxia. Negotiating obstacles in the real-world requires us to allocate attention, detect relevant 

constraints and flexibly  adapt motor behaviors, which is challenging for elderly or Parkinson’s disease 

patients who usually experience gait impairments that increase the risk of falls and mortality (Tinetti et al., 

1988; Kovacs, 2005; Weerdesteyn et al., 2006). Studies that aimed to identify neural markers of 

Parkinson’s disease and gait dynamics are still limited, being restricted to simple tasks (i.e. finger tapping, 

Stegemöller et al.. 2016, 2017) or to kinematics recording (Vitório et al., 2010; Galna et al., 2010).  

Conclusion 

Our study demonstrates that mobile EEG can be reliably utilised to capture the dynamic oscillatory 

responses associated with the neuro-cognitive indices of negotiating real-world environments. We 

demonstrated that naturalistic obstacle avoidance is mediated by proactive and reactive cognitive 

processes, reflected in the dynamics of theta and beta oscillations over frontal and sensorimotor brain areas. 

Temporal brain dynamics of frontal theta revealed that proactive control during unexpected obstacle 

avoidance is mainly supported by an early selection mechanism. Furthermore, we showed that motor 

readiness is mediated by beta power suppression over sensorimotor areas, that was present when preset or 

externally triggered gait adjustments were needed in order to step over an obstacle. With regard to reactive 

control, we identify a robust beta rebound after crossing an obstacle, demonstrating that real-world 

negotiation of the environment requires finely-tuned resetting of the motor system. What this shows is that 

by using mobile EEG, neuro-cognitive processes supporting walking can now be studied in the real-world, 

offering an entirely new embodied perspective to the understanding of human behavior and motor 

impairments and benefit the innovation of neuro-rehabilitation approaches.  
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