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Abstract 
Group-level cognitive performance differences are found in psychiatric disorders ranging from 

depression to autism to schizophrenia. To investigate the genetics of individual differences in 

fluid and crystallized cognitive abilities and their associations with psychiatric disorder risk, we 

conducted genome-wide association studies (GWAS) of a total of 335,227 consented 23andMe 

customers of European descent between the ages of 50 and 85, who completed at least one 

online test of crystallized cognitive ability (vocabulary knowledge, N=188,434) and/or fluid 

cognitive ability (visual change detection, N=158 888; digit-symbol substitution, N=132,807). All 

cognitive measures were significantly heritable (h2=0.10-0.16), and GWAS identified 25 novel 

genome-wide significant loci. Genetic correlation analyses highlight variable profiles of genetic 

relationships across tasks and disorders. While schizophrenia had moderate negative genetic 

correlations with tests of fluid cognition (visual change detection rg=-0.27, p<9.2e-24; digit-

symbol substitution rg=-0.26, p<5.2e-27), it was only weakly negatively associated with 

crystalized cognition (vocabulary knowledge rg=-0.07, p<0.004). Autism, in contrast, showed a 

robust positive genetic correlation with vocabulary knowledge (rg=0.30, p<5.6e-13) and little to 

no genetic correlation with either fluid cognition task (rg’s<0.08, p’s>0.005). Crystalized and fluid 

cognitive abilities thus have correlated but distinct genetic architectures that relate to those of 

psychiatric disorders. Understanding the genetic underpinnings of specific cognitive abilities, 

and their relationships to psychiatric disorder risk, can inform the understanding of disease 

biology nosology and etiology. 
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Introduction 

Accumulating evidence indicates that psychiatric disorders may be conceptualized as 

maladaptive extremes of population distributions of information processing mechanisms 

(hereafter: cognition), rather than in terms of distinct diagnostic categories.1–3 Cognitive 

differences in psychiatric disorders are frequently detectable before disorder onset,4,5 found to a 

lesser degree in relatives of those with a diagnosis,6,7 and associated with symptom severity, 

recovery, and recurrence in prospective studies.8 Disruptions in specific cognitive processes are 

observed across disorders and linked to group-level differences in neural structure and function 

(e.g., cognition control9 and emotion regulation10), suggesting both shared and unique cross-

disorder etiology.11–13 Variation in cognition thus provides a framework for understanding the 

biology, etiology, and nosology of psychiatric disorders. 

Cognition has typically been divided into two broad components: fluid and crystallized 

abilities.14–16 Fluid cognitive abilities are associated with tasks that require speed or novel 

problem solving, particularly those where no previous knowledge is required (e.g., reaction time 

or working memory tests). In contrast, crystallized cognitive abilities are associated with tasks 

that require semantic knowledge accumulated through previous learning experiences (e.g., 

general information, arithmetic, or vocabulary tests). Although more nuanced theories of 

cognitive abilities have been proposed,17,18 the distinction between fluid and crystallized 

cognitive abilities is supported by factor analysis across a large literature that has identified 

distinct developmental trajectories,19 genetic architectures,20 and neural substrates.21 

Understanding the genetic architecture of cognition and psychiatric disorders can 

provide clues about shared mechanisms that contribute to the etiology of these diseases.22 A 

substantial portion of risk for developing psychiatric disorders arises from genetic variation, with 

total heritability estimates as high as 80%,23,24 and common-variant heritability estimates of 

roughly 20%, for disorders such as schizophrenia and bipolar disorder.25 Genetic influences on 
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psychiatric disorders, as with cognitive and neural disruptions, show substantial cross-disorder 

overlap, indicating that at least some genetic risk is not diagnosis-specific.26–28  

Despite the explosion of psychiatric GWAS in recent years, the genetic architecture of 

specific aspects of cognition has remained largely unexplored. Though GWAS of individual 

cognitive mechanisms do exist (e.g., delay discounting,29 cognitive empathy,30 and executive 

function31,32), prior large-scale studies have focused primarily on a single measure of fluid 

cognitive abilities (e.g., in the UK Biobank33) or an aggregate “g” factor,34–36 or have used 

educational attainment (EA) as a proxy measure for cognition.37–39 The use of composite or 

proxy measures may obscure key differences in the genetic architecture of specific cognitive 

mechanisms and how they relate to disease. For example, the genetics of bipolar disorder and 

schizophrenia correlate positively with that of educational attainment, but negatively or 

nonsignificantly with that of aggregate cognitive measures;40 the use of EA as a proxy measure 

for cognition would thus lead to false conclusions about the disorder’s genetic relationship to 

cognition.  

Prior investigations of polygenic risk for psychiatric disorders and associations with 

general vs. specific cognitive domains have in fact revealed disorder- and domain-specific 

associations not captured by general factors.2,41–43 Additionally, a prior study in the UK Biobank 

which assessed genetic associations between three individual measures of fluid cognition (i.e., 

verbal-numerical reasoning, reaction time, and memory)44 and indicators of physical and mental 

health revealed varying association profiles across neuropsychiatric disorders.45 However, 

whether genetic risk for neuropsychiatric disorders is differentially associated with fluid versus 

crystallized cognitive ability measures remains an open question, despite the large literature 

suggesting that these two aspects of cognition may have dissociable etiologies.   

In the current study, we conducted genome-wide association analyses of a large 

population (N=335,227) of genotyped participants from the 23andMe personal genomics 

platform who participated in a suite of cognitive tests tapping fluid (i.e., processing speed and 
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visual change detection) and crystallized (i.e., vocabulary knowledge) cognitive domains. We 

then assessed genetic overlap between six major neuropsychiatric disorders (i.e., 

schizophrenia, bipolar disorder, autism spectrum disorder, major depressive disorder, attention-

deficit/hyperactivity disorder, and Alzheimer’s disease) and comparable cognitive and 

educational phenotypes (i.e., educational attainment and cognitive performance) with cognitive 

abilities in each domain in our study. These analyses provide insight into the genetic 

architecture of different cognitive processes and their relationships to each other and to 

psychiatric disease.  

 

Methods 

Participants 

This study included 335,227 23andMe customers (58.6% female; Mage=64.43[8.19]) who 

provided written informed consent and completed at least one of the three online cognitive 

assessments. Sampling was biased towards participants 50 and older as part of a larger 

23andMe initiative. The study population was restricted to participants aged 50- 85 at the time of 

assessment who were residing within the United States and determined to be of European 

ancestry based 23andMe’s proprietary algorithm.46 Due to the visual nature of the computer-

based tasks, we excluded participants who self-reported serious and uncorrectable vision 

problems, including age-related macular degeneration, retinal vein occlusion, and retinitis 

pigmentosa. We also excluded participants who did not comply with the rules of each task, 

including those who walked away or skipped all trials. See Table 1 for additional demographic 

information, including demographics split by cognitive assessment. The protocol governing 

human subjects research involving 23andMe participants was approved by the accredited 

Ethical and Independent Review Services (www.eandireview.com).  
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Measures 

Vocabulary Knowledge (Vocab) 

Vocabulary Knowledge, or “Vocab,” is a test of verbal reasoning and long-term verbal memory, 

based on identification of word synonyms. In this test, which was modelled after the Wordsum 

task used in the General Social Surveys,47 participants have to select which of five words is 

most similar in meaning to a target word (Supplementary Figure 1). The primary outcome 

measure is the number of correct answers out of 20 questions. Internal split-half reliability in our 

sample was adequate (r=0.69). Vocabulary / synonym tests are widely used measures of 

crystallized cognitive ability, as they reflect accumulated word knowledge across the lifespan 

and are relatively insensitive to short-term changes in health.48 Similar to other tests of 

crystallized cognitive ability, performance tends to increase across early and middle adulthood 

with only modest decline in older age.17 Prior family studies have demonstrated moderate 

heritability (e.g., h2=50-63%) for measures of vocabulary knowledge.49,50  

 

Flicker Change Detection (Flicker) 

Flicker Change Detection, or “Flicker,” is a test of visual change detection, which loads on 

processing speed, visual search, and visual working memory aspects of fluid cognitive ability, 

and has been linked to neural activity in the frontoparietal networks.51 In this version, which is 

adapted from the Rensink change detection paradigm52 but with more tightly controlled stimuli, 

participants see a field of blue and yellow flashing dots (every 500ms; Supplementary Figure 

2) where one dot is changing color. The participant presses the space bar as soon as they find 

the changing dot, and then indicate which dot was changing with their mouse. There are 2 

training and 11 testing trials in total, and the primary outcome measure is median response time 

to accurately identify the changing dot on the 11 testing trials. Internal split-half reliability for this 

task in our sample was 0.49, which is low compared with traditional neuropsychological tasks, 
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but similar to other brief tasks derived from the experimental literature for understanding 

individual differences.53 One prior preliminary study in twins using a similar task estimated 

heritability of task performance to be 52%.54  

 

Digit-Symbol Substitution Test (DSST) 

The Digit-Symbol Substitution Test, or “DSST,” was modeled on the digit symbol substitution 

test (WAIS IV55), a widely used measure of processing speed and fluid cognitive ability. It 

requires participants to match as many symbols and numbers as possible in 90 seconds based 

on a provided symbol/number key. In the current version, participants were provided with a key 

of 9 symbols, each matched with the numbers 1, 2, or 3 (where each number was matched with 

three symbols). The participant then responded using their keyboard to indicate which number 

matched the symbol shown in the center of their screen (Supplementary Figure 3). The 

primary outcome measure was the number of correct trials in 90 seconds. This is a validated 

measure of processing speed and short-term memory, with an internal split-half reliability in our 

sample of 0.92. Prior twin studies have demonstrated moderate heritability (e.g., h2=48-67%) for 

DSST performance.56,57 

 

Genotyping, Imputation, and Quality Control 

DNA extraction and genotyping of 23andMe participants were performed on saliva samples by 

the National Genetics Institute (NGI), a clinical laboratory improvement amendments (CLIA) 

licensed laboratory and a subsidiary of Laboratory Corporation of America. Imputation and 

quality control were conducted by 23andMe.  

Saliva samples were genotyped on one of five Illumina genotyping platforms: 

HumanHap550+ Beadchip v1 and v2 platforms, OmniExpress+ BeadChip v3 platform, a 

customized array platform (v4), and the latest Illumina Infinium Global Screening array + 
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customized array (v5) platform. Samples had minimum call rates of 98.5%. Individuals whose 

analyses failed repeatedly were re-contacted to provide additional samples. For extended 

genotyping and sample quality control details, see58–60. 

Participant data for each genotyping platform was phased and imputed separately. As 

described previously,29 an internally-developed tool, Finch,61 was applied to generate phased 

participant data for the v1 to v4 platforms. For the X chromosome, separate haplotype graphs 

were built for the non-pseudoautosomal region and each pseudoautosomal region, which were 

phased separately. For the most recent v5 array, a similar approach was used with a new 

phasing algorithm, Eagle2.62
  In preparation for imputation, first a single unified imputation 

reference panel was created by combining May 2015 release of the 1000 Genomes Phase 3 

haplotypes63 with the UK10K imputation reference panel64 for better imputation performance in 

individuals of European descent.65 Second, each chromosome of the reference panel was split 

into segments of no more than 300,000 genotyped SNPs, with overlaps of 10,000 SNPs on 

each side. Finally, phased participant data was imputed against the merged reference panel 

using Minimac3,66 treating males as homozygous pseudodiploids for the non-pseudoautosomal 

region.  

QC of genotyped and imputed SNPs was performed separately and then merged. SNPs 

genotyped on v1 and/or v2 platforms were excluded because of small sample size, as were 

those on the sex chromosomes due to unreliability. SNPs that failed a test for parent-offspring 

transmission were also removed using trio data. SNPs were further excluded with a Hardy-

Weinberg p<10−20, a call rate of <90%, substantial sex effect (r2>0.1 by ANOVA), significant 

genotyping date effects (p<10−50 by ANOVA), or probes matching multiple genomic positions in 

the reference genome (‘self chain’). Imputed SNPs were excluded for having an average 

imputation r2<0.3 or a strong batch effect (p<10−50 by ANOVA). Across all SNPs, we additionally 

excluded SNPs with an available sample size of less than 20% of the total sample size as well 
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as those with MAF<0.1%. Post-QC, associations tests were performed on 13,806,893 SNPs for 

Vocab and on 13,806,898 SNPs for Flicker and DSST.    

 

Statistical Analyses 

Association Analyses 

Using the 23andMe internal pipeline,29 three genome-wide association studies (GWAS) were 

conducted among participants of European descent. For each, a maximal set of unrelated 

individuals was chosen using a segmental identity-by-descent (IBD) estimation algorithm.67  

Association tests were performed using linear regression and assuming additive allelic 

effects. Outcomes were defined as: 1) number of incorrect answers out of 20 questions for 

Vocab (square root transformed), 2) median response time of correct responses for Flicker (log-

transformed), and 3) number of correct trials in 90 seconds for DSST. When reporting all 

association results, the sign of regression coefficients was flipped for Vocab and Flicker such 

that a positive effect reflects better performance (i.e., less incorrect answers for Vocab and 

quicker response time for Flicker). Covariates included age (years), sex (male vs. female), 

age*sex interaction, 10 genetic principal components (PC), and genotyping platform. For both 

Flicker and DSST, we additionally adjusted for device (desktop vs. laptop) due to its significant 

influence on performance.  

 

Heritability and Genetic Correlation 

SNP-based heritability for each measure was calculated using LD score regression68 and the 

resultant summary statistics from each GWAS. Genetic correlations among these measures and 

with additional phenotypes (i.e., psychiatric disorders,25,69–72 Alzheimer's disease,73 educational 

attainment,38 and cognitive performance;38 Supplementary Table 1) were estimated using 

LDSR as well.  
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Results 

Phenotypic Assessment 

A total of 335,227 eligible participants met inclusion criteria: 188,434 for Vocab, 158,888 for 

Flicker, and 132,807 for DSST. The average number of correct responses on Vocab was 

16.7(2.5); average median response time to correctly identify the changing dot on Flicker across 

individuals (in milliseconds) was 8884(5136); and the average number of correct trials within 90 

seconds on DSST was 49.6(10.8). Among individuals who completed more than one cognitive 

task, performance was correlated across tasks when adjusted for all GWAS covariates, with 

both fluid cognitive ability measures correlated more strongly with each other (rFlicker-DSST=0.33, 

p<1e-300, N=91,774) than with the single measure of crystallized cognitive ability (rFlicker-

Vocab=0.10, p=9.48e-102, N=47,321; rDSST-Vocab=0.16, p=1.45e-217, N=35,976). Performance on 

all three measures was consistent with previous publications74 and data from Testmybrain.org,53 

with similar associations between performance and demographic characteristics.  

In the context of the null GWAS model, increased age was associated with better 

performance on Vocab (β=0.007, p=1.7e-96), but worse performance on Flicker (β=-0.02, p<10-

300) and DSST (β=-0.72, p<10-300). Female sex was associated with poorer performance on all 

tasks (βVocab=-0.39, p=7.4e-40; βFlicker=-0.18, p=4.1e-21; βDSST=-2.88, p=7.0e-12). Use of a 

laptop vs. desktop computer was associated with better performance on DSST (β=0.36, p=7.6e-

13) but worse performance on Flicker (β=-0.05, p=5.9e-94). Full association results for each null 

GWAS model are reported in Supplementary Tables 2-4.  

 

Heritability 

All three tests demonstrated significant SNP-based heritability as estimated using LDSR 

(Vocab: h2=0.101[0.005], Flicker: h2=0.120[0.006], DSST: h2=0.161[0.007]; all z>20).  
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Genome-wide Association Results 

Genome-wide association analyses yielded 11 novel significant (i.e., p<5e-8) loci for Vocab (λ= 

1.199, λ2000=1.002), and 7 loci each for Flicker (λ= 1.196, λ2000=1.002) and DSST (λ= 1.219, 

λ2000=1.003; Table 2; Figure 1; see Supplementary Tables 5-7 for all loci p<1e-6; see 

Supplementary Figures 4-6 for QQ plots).  

The top hit for Vocab, rs13107325 (p=7.1e-13; Supplementary Figure 7), is a missense 

variant within SLC39A8 that alters the amino acid at position 391. The top SNP for Flicker, 

rs11316974 (p=1.6e-09; Supplementary Figure 8), is an indel in an intergenic region between 

the genes DTHD1 and NWD2 that has not been previously associated with any traits. The top 

SNP for DSST, rs429358 (p=5.80E-13; Supplementary Figure 9), is a missense variant within 

APOE that alters the amino acid at position 130 and, in doing so, greatly increases the risk of 

Alzheimer’s disease.75  

 

Genetic Correlation 

Genetic correlation among the three cognition measures was moderate (rg=0.247-0.650), with a 

noticeably higher correlation between the two fluid cognitive ability measures (rg=0.650) than 

with the single measure of crystallized cognitive ability (rg_Flicker=0.247, rg_DSST=0.308). Using out-

of-sample EA and CP summary statistics, fluid ability measures were more highly related to CP 

(rg_Flicker=0.514, rg_DSST=0.562) than to EA (rg_Flicker=0.163, rg_DSST=0.317); vocabulary knowledge 

genetically correlated to both EA and CP at a similar magnitude (rg_EA=0.659, rg_CP=0.724). 

Genetic correlations with neuropsychiatric disorders revealed generally widespread 

negative associations with cognitive performance across domains, with some notable 

exceptions (Table 3). DSST performance was negatively associated with genetic risk for each 

neuropsychiatric disorder tested (rg=-0.187 to -0.265), with the exception of ASD (rg=0.024). 

Performance on Flicker, in contrast, was negatively genetically correlated with only BIP (rg=-
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0.183) and SCZ (rg=-0.269). Vocabulary knowledge was negatively associated with ADHD risk 

(rg=-0.234), but positively associated with ASD risk (rg=0.301).  

 

Discussion 

Here, we report results from the largest study to date on the genetics of fluid and crystallized 

cognitive abilities with respect to genetic risk for neuropsychiatric disorders. We conducted 

GWAS of performance on three cognitive tests tapping crystallized (i.e., vocabulary knowledge) 

and fluid (i.e., processing speed, visual change detection) cognitive abilities, based on data from 

335,227 genotyped 23andMe participants. These analyses 1) demonstrate heritability for and 

patterns of genetic overlap between all cognitive domains tested; 2) identify novel, biologically 

informative loci for each; and 3) reveal unique profiles of genetic association with 

neuropsychiatric disorders.  

Heritability analyses of all three measures confirm that they are influenced by common 

variants (h2=0.10-0.16) to a similar degree as other complex traits such as educational 

attainment (EA; h2=0.14738) and neuroticism (h2=0.10076). Furthermore, patterns of genetic 

overlap across measures are consistent with classical theories of intelligence proposing both a 

central “g” factor as well as separate components for fluid and crystallized abilities.14–16 Notably, 

the two fluid cognition measures (i.e., flicker change detection [Flicker] and the digit-symbol 

substitution test [DSST]) were more genetically correlated with each other (rg=0.650) than with 

the single measure of crystallized cognitive ability (i.e., vocabulary knowledge [Vocab]; 

rg_Flicker=0.247, rg_DSST=0.308). This pattern was further supported by genetic associations with 

EA and cognitive performance (CP),38 in which the two fluid measures were more highly related 

to CP (rg_Flicker=0.514, rg_DSST=0.562) than to EA (rg_Flicker=0.163, rg_DSST=0.317). Overall, while 

genetic overlap between the three measures (minimum rg=0.247) supports the theory of a 

shared underlying etiology or “g” factor, incomplete genetic overlap between measures 
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(maximum rg=0.650), along with different magnitudes of genetic correlation between fluid and 

crystallized measures, suggests that existing GWAS approaches that combine across measures 

and/or use EA as a proxy for cognitive abilities might obscure the unique genetic contributions 

to different facets of cognition.  

The consequences of this incomplete pattern of genetic overlap can be seen in an 

examination of the top loci for each measure in our study, which revealed no common 

significant or suggestive loci across measures. The top hit for Vocab, rs13107325 (p=7.1e-13), 

is a missense variant within SLC39A8 that alters the amino acid at position 391 that has been 

previously linked to a host of complex traits including intelligence,36 autism,77 and 

schizophrenia69,78 and has been functionally associated with altered glycosylation in the brain, 

which is critical to neurodevelopment.79 Similarly, the top hit for DSST, rs429358 (p=5.80E-13), 

is a known pathogenic missense variant within APOE that alters the amino acid at position 130 

and, in doing so, greatly increases the risk of Alzheimer’s disease.75 It and nearby variants in 

high linkage disequilibrium (LD; r2>0.70) have also been linked to biomarkers of Alzheimer’s 

disease including tau80 and amyloid-β levels.81 In addition to Alzheimer’s disease, it has been 

previously associated with measures of age-related cognitive decline82 and verbal memory.83,84 

The top SNP for Flicker, rs11316974 (p=1.6e-09), is an indel in an intergenic region between 

the genes DTHD1 and NWD2 that has not been previously associated with any traits. Among 

the other significant variants across the three measures, many were in high LD with variants 

previously linked to relevant phenotypes such as general cognitive function,39,8537 intelligence,36 

educational attainment,86 schizophrenia,69 and autism.77 The lack of overlap in top loci across 

domains, combined with the known neural and prior genetic associations of these loci, suggest 

that parsing the genetic influences on different domains of cognition could prove fruitful in 

providing mechanistic insight.  

Furthermore, aside from examining the top loci, genetic correlation analyses with GWAS 

of six major neuropsychiatric disorders25,69–73 reveal robust, dissociable association patterns for 
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autism versus bipolar disorder and schizophrenia, with 1) moderate positive genetic correlations 

between autism and crystallized (rg=0.301), but not fluid (rg=0.024 to 0.080, all p’s>0.04), 

cognitive abilities; and 2) significant negative genetic correlations between both schizophrenia 

and bipolar disorder and fluid (rg=-0.187 to -0.269), but not crystallized (rg=-0.074 to 0.048, all 

p’s>0.002), abilities. These differential associations are notable given consistent positive genetic 

associations,40,45 but negative diagnostic associations (perhaps with the exception of BIP87),88,89 

between these disorders and EA. Our results suggest that the etiology of schizophrenia and 

bipolar disorder involves the impairment of fluid cognitive abilities, while genetically conferred 

risk for autism generally spares fluid cognitive abilities and in fact confers greater potential to 

accumulate knowledge (here: verbal knowledge). These findings are consistent with prior 

studies suggesting that the genetics underlying autism and schizophrenia have distinct 

influences on neural and cognitive development.43,90 Understanding the genetic architecture of 

fluid and crystallized abilities, and pathways that differentially contribute to each, thus has the 

potential to provide greater clarity on the mechanisms that influence development of these 

disorders.   

 

Limitations 

A noteworthy limitation of the current study is sample ascertainment and inclusion criteria. Our 

age range was restricted (i.e., 50-85), and, as such, the results may not generalize to other age 

strata or may be contaminated by cognitive decline. This is particularly true of the fluid cognition 

measures, performance on which is known to decline with age,17,91 versus the crystallized 

cognition measure, which has been shown to be relatively immune to the effects of aging.17 

Notably, the top locus for our measure of processing speed is a known marker for Alzheimer’s 

disease that has been previously linked to age-related cognitive decline.82 However, the use of 

a restricted age range is not unique to our study; notably, the age range of the UK Biobank, in 
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which previous GWAS of specific cognitive abilities have been conducted,31,44,45 is similarly 

restricted to 40-70 at recruitment.33 Furthermore, while the 23andMe platform provides an 

engaging means of participant recruitment for genetics research, participants self-selection may 

bias results. For example, older adults with lower cognitive functioning are unlikely to have 

participated in the study due to the reliance on web-based recruitment, engagement, and 

testing. Similarly, participants from lower socioeconomic status groups are unlikely to have paid 

to receive personalized genetic results from 23andMe. While the impact of such biases on our 

results is difficult to quantify, it is reassuring that our results are consistent with a prior study of 

genetic correlations between cognitive measures and neuropsychiatric disorders in the UK 

Biobank,45 and also that we observed expected genetic correlations with cognitive performance 

and educational attainment as estimated in other, younger and non-age-restricted samples.38   

 

Conclusions & Future Directions 

Our results build on a growing literature investigating the genetic architecture of cognitive 

abilities and their relationship to neuropsychiatric disorders. While we propose and provide 

evidence for a general distinction between fluid and crystallized cognition, our measures also 

differ in their reliance on visual versus verbal information, and measurement of speed versus 

accuracy as the primary outcome of interest. It is possible that these distinctions are 

meaningfully associated with disease mechanisms; future work extending these analyses to 

other objectively measured cognitive domains would clarify which are most informative. Future 

studies might also investigate specific variants and pathways driving the genetic overlap across 

measures and disorders, as well as how they relate to neural structure and function. Overall, our 

results argue for a more nuanced treatment of cognitive abilities in psychiatric genetics that 

reflects the architecture of cognition beyond the general “g” factor. In an era where digital 

cognitive assessment is low-cost and accessible, achieving the sample sizes necessary to 
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generate new knowledge at the intersection of psychiatric and cognitive genetics is important 

and feasible.   

 

Acknowledgements 

CEC is funded by 5R01MH111813 (PI Robinson). This work was funded by a Milken Institute 

grant to 23andMe, Inc. 

We would also like to thank the following members of the 23andMe Research Team: Michelle 

Agee, Babak Alipanahi, Adam Auton, Robert K. Bell, Katarzyna Bryc, Dennis Byrne, Sarah L. 

Elson, Anna Faaborg, Pierre Fontanillas, Nicholas A. Furlotte, Pooja Gandhi, Travis Hairfield, 

Eric Hall, Barry Hicks, David A. Hinds, Karen E. Huber, Ethan M. Jewett, Yunxuan Jiang, Aaron 

Kleinman, Keng-Han Lin, Nadia K. Litterman, Bo Lopker, Jennifer C. McCreight, Matthew H. 

McIntyre, Kimberly F. McManus, Joanna L. Mountain, Elizabeth S. Noblin, Carrie A.M. 

Northover, Steven J. Pitts, G. David Poznik, J. Fah Sathirapongsasuti, Janie F. Shelton, Suyash 

Shringarpure, Chao Tian, Joyce Y. Tung, Vladimir Vacic, Xin Wang, Catherine Weldon, and 

Catherine H. Wilson. 

Conflict of Interest Statement 
JWS is an unpaid member of the Bipolar/Depression Research Community Advisory Panel of 

23andMe. YH, SA, and RCG report equity and employment at 23andMe, Inc. 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.16.297408doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.297408
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

References 

1.  Insel T, Cuthbert B, Garvey M, et al. Research Domain Criteria (RDoC): Toward a new 

classification framework for research on mental disorders. Am J Psychiatry. 2010;167(7):748-751. 

doi:10.1176/appi.ajp.2010.09091379 

2.  Robinson EB, St Pourcain B, Anttila V, et al. Genetic risk for autism spectrum disorders and 

neuropsychiatric variation in the general population. Nat Genet. 2016;48(5):552-555. 

doi:10.1038/ng.3529 

3.  Taylor MJ, Martin J, Lu Y, et al. Association of Genetic Risk Factors for Psychiatric Disorders and 

Traits of These Disorders in a Swedish Population Twin Sample. JAMA Psychiatry. 

2019;76(3):280-289. doi:10.1001/jamapsychiatry.2018.3652 

4.  Meier MH, Caspi A, Reichenberg A, et al. Neuropsychological decline in schizophrenia from the 

premorbid to the postonset period: Evidence from a population-representative longitudinal study. 

Am J Psychiatry. 2014;171(1):91-101. doi:10.1176/appi.ajp.2013.12111438 

5.  Welham J, Scott J, Williams GM, et al. The antecedents of non-affective psychosis in a birth-

cohort, with a focus on measures related to cognitive ability, attentional dysfunction and speech 

problems. Acta Psychiatr Scand. 2010;121(4):273-279. doi:10.1111/j.1600-0447.2009.01470.x 

6.  Snitz BE, MacDonald  III AW, Carter CS. Cognitive Deficits in Unaffected First-Degree Relatives of 

Schizophrenia Patients: A Meta-analytic Review of Putative Endophenotypes. Schizophr Bull. 

2005;32(1):179-194. doi:10.1093/schbul/sbi048 

7.  Bora E, Yucel M, Pantelis C. Cognitive endophenotypes of bipolar disorder: A meta-analysis of 

neuropsychological deficits in euthymic patients and their first-degree relatives. J Affect Disord. 

2009;113(1-2):1-20. doi:10.1016/j.jad.2008.06.009 

8.  Sheffield JM, Karcher NR, Barch DM. Cognitive Deficits in Psychotic Disorders: A Lifespan 

Perspective. Neuropsychol Rev. 2018;28(4):509-533. doi:10.1007/s11065-018-9388-2 

9.  McTeague LM, Goodkind MS, Etkin A. Transdiagnostic impairment of cognitive control in mental 

illness. J Psychiatr Res. 2016;83:37-46. doi:10.1016/j.jpsychires.2016.08.001 

10.  McTeague LM, Rosenberg BM, Lopez JW, et al. Identification of Common Neural Circuit 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.16.297408doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.297408
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

Disruptions in Emotional Processing Across Psychiatric Disorders. Am J Psychiatry. 

2020;177(5):411-421. doi:10.1176/appi.ajp.2019.18111271 

11.  Etkin A, Gyurak A, O’Hara R. A neurobiological approach to the cognitive deficits of psychiatric 

disorders. Dialogues Clin Neurosci. 2013;15(4):419-429. 

12.  Zald DH, Lahey BB. Implications of the Hierarchical Structure of Psychopathology for Psychiatric 

Neuroimaging. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(4):310-317. 

doi:10.1016/j.bpsc.2017.02.003 

13.  Opel N, Goltermann J, Hermesdorf M, Berger K, Baune BT, Dannlowski U. Cross-Disorder 

Analysis of Brain Structural Abnormalities in Six Major Psychiatric Disorders – A Secondary 

Analysis of Mega- and Meta-Analytical Findings from the ENIGMA Consortium. Biol Psychiatry. 

Published online May 11, 2020. doi:10.1016/j.biopsych.2020.04.027 

14.  Cattell RB. The measurement of adult intelligence. Psychol Bull. 1943;40(3):153-193. 

doi:10.1037/h0059973 

15.  Cattell RB. Theory of fluid and crystallized intelligence: A critical experiment. J Educ Psychol. 

1963;54(1):1-22. doi:10.1037/h0046743 

16.  Horn JL, Cattell RB. Refinement and test of the theory of fluid and crystallized general 

intelligences. J Educ Psychol. 1966;57(5):253-270. doi:10.1037/h0023816 

17.  Hartshorne JK, Germine LT. When Does Cognitive Functioning Peak? The Asynchronous Rise 

and Fall of Different Cognitive Abilities Across the Life Span. Psychol Sci. 2015;26(4):433-443. 

doi:10.1177/0956797614567339 

18.  Johnson W, Bouchard TJ. The structure of human intelligence: It is verbal, perceptual, and image 

rotation (VPR), not fluid and crystallized. Intelligence. 2005;33(4):393-416. 

doi:10.1016/j.intell.2004.12.002 

19.  Li SC, Lindenberger U, Hommel B, Aschersleben G, Prinz W, Baltes PB. Transformations in the 

Couplings Among Intellectual Abilities and Constituent Cognitive Processes Across the Life Span. 

Psychol Sci. 2004;15(3):155-163. doi:10.1111/j.0956-7976.2004.01503003.x 

20.  Christoforou A, Espeseth T, Davies G, et al. GWAS-based pathway analysis differentiates 

between fluid and crystallized intelligence. Genes, Brain Behav. 2014;13(7):663-674. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.16.297408doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.297408
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

doi:10.1111/gbb.12152 

21.  Colom R, Haier RJ, Head K, et al. Gray matter correlates of fluid, crystallized, and spatial 

intelligence: Testing the P-FIT model. Intelligence. 2009;37(2):124-135. 

doi:10.1016/j.intell.2008.07.007 

22.  Smoller JW, Andreassen OA, Edenberg HJ, Faraone S V., Glatt SJ, Kendler KS. Psychiatric 

genetics and the structure of psychopathology. Mol Psychiatry. 2019;24(3):409-420. 

doi:10.1038/s41380-017-0010-4 

23.  Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a Complex Trait: Evidence from a Meta-

analysis of Twin Studies. Arch Gen Psychiatry. 2003;60(12):1187-1192. 

doi:10.1001/archpsyc.60.12.1187 

24.  McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A. The heritability of bipolar affective 

disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry. 2003;60(5):497-

502. doi:10.1001/archpsyc.60.5.497 

25.  Ruderfer DM, Ripke S, McQuillin A, et al. Genomic Dissection of Bipolar Disorder and 

Schizophrenia, Including 28 Subphenotypes. Cell. 2018;173(7):1705-1715.e16. 

doi:10.1016/j.cell.2018.05.046 

26.  Kendler KS, Gardner CO. The risk for psychiatric disorders in relatives of schizophrenic and 

control probands: A comparison of three independent studies. Psychol Med. 1997;27(2):411-419. 

doi:10.1017/S003329179600445X 

27.  Lee PH, Anttila V, Won H, et al. Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms 

across Eight Psychiatric Disorders. Cell. 2019;179(7):1469-1482.e11. 

doi:10.1016/j.cell.2019.11.020 

28.  Lee SH, Ripke S, Neale BM, et al. Genetic relationship between five psychiatric disorders 

estimated from genome-wide SNPs. Nat Genet. 2013;45(9):984-994. doi:10.1038/ng.2711 

29.  Sanchez-Roige S, Fontanillas P, Elson SL, et al. Genome-wide association study of delay 

discounting in 23,217 adult research participants of European ancestry. Nat Neurosci. 

2018;21(1):16-20. doi:10.1038/s41593-017-0032-x 

30.  Warrier V, Grasby KL, Uzefovsky F, et al. Genome-wide meta-analysis of cognitive empathy: 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.16.297408doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.297408
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

Heritability, and correlates with sex, neuropsychiatric conditions and cognition. Mol Psychiatry. 

2018;23(6):1402-1409. doi:10.1038/mp.2017.122 

31.  Hagenaars SP, Cox SR, Hill WD, et al. Genetic contributions to Trail Making Test performance in 

UK Biobank. Mol Psychiatry. 2018;23(7):1575-1583. doi:10.1038/mp.2017.189 

32.  Hatoum AS, Mitchell EC, Morrison CL, Evans LM, Keller MC, Friedman NP. GWAS of Over 

427,000 Individuals Establishes GABAergic and Synaptic Molecular Pathways as Key for 

Cognitive Executive Functions. bioRxiv. Published online June 19, 2019:674515. 

doi:10.1101/674515 

33.  Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and 

genomic data. Nature. 2018;562(7726):203-209. doi:10.1038/s41586-018-0579-z 

34.  Davies G, Lam M, Harris SE, et al. Study of 300,486 individuals identifies 148 independent genetic 

loci influencing general cognitive function. Nat Commun. 2018;9(1):1-16. doi:10.1038/s41467-018-

04362-x 

35.  Savage JE, Jansen PR, Stringer S, et al. Genome-wide association meta-analysis in 269,867 

individuals identifies new genetic and functional links to intelligence. Nat Genet. 2018;50(7):912-

919. doi:10.1038/s41588-018-0152-6 

36.  Hill WD, Marioni RE, Maghzian O, et al. A combined analysis of genetically correlated traits 

identifies 187 loci and a role for neurogenesis and myelination in intelligence. Mol Psychiatry. 

2019;24(2):169-181. doi:10.1038/s41380-017-0001-5 

37.  Lam M, Trampush JW, Yu J, et al. Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-

Specific Neural Expression and Potential Nootropic Drug Targets. Cell Rep. 2017;21(9):2597-

2613. doi:10.1016/j.celrep.2017.11.028 

38.  Lee JJ, Wedow R, Okbay A, et al. Gene discovery and polygenic prediction from a genome-wide 

association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50(8):1112-

1121. doi:10.1038/s41588-018-0147-3 

39.  Rietveld CA, Esko T, Davies G, et al. Common genetic variants associated with cognitive 

performance identified using the proxy-phenotype method. Proc Natl Acad Sci U S A. 

2014;111(38):13790-13794. doi:10.1073/pnas.1404623111 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.16.297408doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.297408
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

40.  Anttila V, Bulik-Sullivan B, Finucane HK, et al. Analysis of shared heritability in common disorders 

of the brain. Science (80- ). 2018;360(6395). doi:10.1126/science.aap8757 

41.  Germine L, Robinson EB, Smoller JW, et al. Association between polygenic risk for schizophrenia, 

neurocognition and social cognition across development. Transl Psychiatry. 2016;6(10):e924. 

doi:10.1038/tp.2016.147 

42.  Krapohl E, Euesden J, Zabaneh D, et al. Phenome-wide analysis of genome-wide polygenic 

scores. Mol Psychiatry. 2016;21(9):1188-1193. doi:10.1038/mp.2015.126 

43.  Pourcain BS, Robinson EB, Anttila V, et al. ASD and schizophrenia show distinct developmental 

profiles in common genetic overlap with population-based social communication difficulties. Mol 

Psychiatry. 2018;23(2):263-270. doi:10.1038/mp.2016.198 

44.  Davies G, Marioni RE, Liewald DC, et al. Genome-wide association study of cognitive functions 

and educational attainment in UK Biobank (N=112 151). Mol Psychiatry. 2016;21(6):758-767. 

doi:10.1038/mp.2016.45 

45.  Hagenaars SP, Harris SE, Davies G, et al. Shared genetic aetiology between cognitive functions 

and physical and mental health in UK Biobank (N=112 151) and 24 GWAS consortia. Mol 

Psychiatry. 2016;21(11):1624-1632. doi:10.1038/mp.2015.225 

46.  Hu Y, Shmygelska A, Tran D, Eriksson N, Tung JY, Hinds DA. GWAS of 89,283 individuals 

identifies genetic variants associated with self-reporting of being a morning person. Nat Commun. 

2016;7(1):1-9. doi:10.1038/ncomms10448 

47.  Smith T, Marsden P, Hout M, Chicago JK-, Research INO, 2013  undefined. General social 

surveys, 1972-2012: Cumulative codebook. 

48.  Lezak MD, Howieson DB, Bigler ED, Tranel D. Neuropsychological Assessment, 5th Ed. Oxford 

University Press; 2012. 

49.  Van Den Berg SM, Posthuma D, Boomsma DI. A longitudinal genetic study of vocabulary 

knowledge in adults. Twin Res. 2004;7(3):284-291. doi:10.1375/136905204774200569 

50.  Bratko D. Twin study of verbal and spatial abilities. Pers Individ Dif. 1996;21(4):621-624. 

doi:10.1016/0191-8869(96)00091-8 

51.  Mayer JS, Bittner RA, Nikolić D, Bledowski C, Goebel R, Linden DEJ. Common neural substrates 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.16.297408doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.297408
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

for visual working memory and attention. Neuroimage. 2007;36(2):441-453. 

doi:10.1016/j.neuroimage.2007.03.007 

52.  Rensink RA, O’Regan JK, Clark JJ. To See or not to See: The Need for Attention to Perceive 

Changes in Scenes. Psychol Sci. 1997;8(5):368-373. doi:10.1111/j.1467-9280.1997.tb00427.x 

53.  Passell E, Dillon DG, Baker JT, et al. Digital Cognitive Assessment: Results from the TestMyBrain 

NIMH Research Domain Criteria (RDoC) Field Test Battery Report. doi:10.31234/OSF.IO/DCSZR 

54.  Wilmer JB, Germine L, Ly R, et al. The heritability and specificity of change detection ability. J Vis. 

2012;12(9):1275-1275. doi:10.1167/12.9.1275 

55.  Wechsler D, Corporation. P, (Firm) P. WAIS-IV Technical and Interpretive Manual. Pearson; 2008. 

56.  Carmelli D, Reed T, Harshfield GA, Fabsitz RR, Eslinger PJ, Swan GE. Heritability of Cognitive 

Performance in Aging Twins the National Heart, Lung, and Blood Institute Twin Study. Arch 

Neurol. 1990;47(3):259-262. doi:10.1001/archneur.1990.00530030025010 

57.  Rijsdijk F V., Vernon PA, Boomsma DI. Application of hierarchical genetic models to raven and 

WAIS subtests: A Dutch twin study. Behav Genet. 2002;32(3):199-210. 

doi:10.1023/A:1016021128949 

58.  Hyde CL, Nagle MW, Tian C, et al. Identification of 15 genetic loci associated with risk of major 

depression in individuals of European descent. Nat Genet. 2016;48(9):1031-1036. 

doi:10.1038/ng.3623 

59.  Eriksson N, Macpherson JM, Tung JY, et al. Web-based, participant-driven studies yield novel 

genetic associations for common traits. PLoS Genet. 2010;6(6):1-20. 

doi:10.1371/journal.pgen.1000993 

60.  Lo MT, Hinds DA, Tung JY, et al. Genome-wide analyses for personality traits identify six genomic 

loci and show correlations with psychiatric disorders. Nat Genet. 2017;49(1):152-156. 

doi:10.1038/ng.3736 

61.  Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for 

whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 

2007;81(5):1084-1097. doi:10.1086/521987 

62.  Loh PR, Palamara PF, Price AL. Fast and accurate long-range phasing in a UK Biobank cohort. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.16.297408doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.297408
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

Nat Genet. 2016;48(7):811-816. doi:10.1038/ng.3571 

63.  Auton A, Abecasis GR, Altshuler DM, et al. A global reference for human genetic variation. Nature. 

2015;526(7571):68-74. doi:10.1038/nature15393 

64.  Walter K, Min JL, Huang J, et al. The UK10K project identifies rare variants in health and disease. 

Nature. 2015;526(7571):82-89. doi:10.1038/nature14962 

65.  Huang J, Howie B, McCarthy S, et al. Improved imputation of low-frequency and rare variants 

using the UK10K haplotype reference panel. Nat Commun. 2015;6(1):1-9. 

doi:10.1038/ncomms9111 

66.  Das S, Forer L, Schönherr S, et al. Next-generation genotype imputation service and methods. 

Nat Genet. 2016;48(10):1284-1287. doi:10.1038/ng.3656 

67.  Henn BM, Hon L, Macpherson JM, et al. Cryptic distant relatives are common in both isolated and 

cosmopolitan genetic samples. PLoS One. 2012;7(4). doi:10.1371/journal.pone.0034267 

68.  Bulik-Sullivan B, Loh PR, Finucane HK, et al. LD score regression distinguishes confounding from 

polygenicity in genome-wide association studies. Nat Genet. 2015;47(3):291-295. 

doi:10.1038/ng.3211 

69.  Ripke S, Neale BM, Corvin A, et al. Biological insights from 108 schizophrenia-associated genetic 

loci. Nature. 2014;511(7510):421-427. doi:10.1038/nature13595 

70.  Demontis D, Walters RK, Martin J, et al. Discovery of the first genome-wide significant risk loci for 

attention deficit/hyperactivity disorder. Nat Genet. 2019;51(1):63-75. doi:10.1038/s41588-018-

0269-7 

71.  Grove J, Ripke S, Als TD, et al. Identification of common genetic risk variants for autism spectrum 

disorder. Nat Genet. 2019;51(3):431-444. doi:10.1038/s41588-019-0344-8 

72.  Wray NR, Ripke S, Mattheisen M, et al. Genome-wide association analyses identify 44 risk 

variants and refine the genetic architecture of major depression. Nat Genet. 2018;50(5):668-681. 

doi:10.1038/s41588-018-0090-3 

73.  Jansen IE, Savage JE, Watanabe K, et al. Genome-wide meta-analysis identifies new loci and 

functional pathways influencing Alzheimer’s disease risk. Nat Genet. 2019;51(3):404-413. 

doi:10.1038/s41588-018-0311-9 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.16.297408doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.297408
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

74.  Hoyer WJ, Stawski RS, Wasylyshyn C, Verhaeghen P. Adult Age and Digit Symbol Substitution 

Performance: A Meta-Analysis. psycnet.apa.org. Published online 2004. doi:10.1037/0882-

7974.19.1.211 

75.  Rubinsztein DC, Easton DF. Apolipoprotein E Genetic Variation and Alzheimer’s Disease. Dement 

Geriatr Cogn Disord. 1999;10(3):199-209. doi:10.1159/000017120 

76.  Nagel M, Jansen PR, Stringer S, et al. Meta-analysis of genome-wide association studies for 

neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat Genet. 

2018;50(7):920-927. doi:10.1038/s41588-018-0151-7 

77.  Consortium TASDWG of TPG. Meta-analysis of GWAS of over 16,000 individuals with autism 

spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with 

schizophrenia. Mol Autism. 2017;8:21. doi:10.1186/s13229-017-0137-9 

78.  Goes FS, Mcgrath J, Avramopoulos D, et al. Genome-wide association study of schizophrenia in 

Ashkenazi Jews. Am J Med Genet Part B Neuropsychiatr Genet. 2015;168(8):649-659. 

doi:10.1002/ajmg.b.32349 

79.  Mealer RG, Jenkins BG, Chen C-Y, et al. A schizophrenia risk locus alters brain metal transport 

and plasma glycosylation. bioRxiv. Published online September 6, 2019:757088. 

doi:10.1101/757088 

80.  Deming Y, Li Z, Kapoor M, et al. Genome-wide association study identifies four novel loci 

associated with Alzheimer’s endophenotypes and disease modifiers. Acta Neuropathol. 

2017;133(5):839-856. doi:10.1007/s00401-017-1685-y 

81.  Ramanan VK, Risacher SL, Nho K, et al. APOE and BCHE as modulators of cerebral amyloid 

deposition: A florbetapir PET genome-wide association study. Mol Psychiatry. 2014;19(3):351-

357. doi:10.1038/mp.2013.19 

82.  Raj T, Chibnik LB, McCabe C, et al. Genetic architecture of age-related cognitive decline in African 

Americans. Neurol Genet. 2016;3(1). doi:10.1212/NXG.0000000000000125 

83.  Arpawong TE, Pendleton N, Mekli K, et al. Genetic variants specific to aging-related verbal 

memory: Insights from GWASs in a population-based cohort. PLoS One. 2017;12(8). 

doi:10.1371/journal.pone.0182448 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.16.297408doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.297408
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

84.  Debette S, Ibrahim Verbaas CA, Bressler J, et al. Genome-wide studies of verbal declarative 

memory in nondemented older people: The Cohorts for Heart and Aging Research in Genomic 

Epidemiology Consortium. Biol Psychiatry. 2015;77(8):749-763. 

doi:10.1016/j.biopsych.2014.08.027 

85.  Davies G, Armstrong N, Bis JC, et al. Genetic contributions to variation in general cognitive 

function: A meta-analysis of genome-wide association studies in the CHARGE consortium (N=53 

949). Mol Psychiatry. 2015;20(2):183-192. doi:10.1038/mp.2014.188 

86.  Rietveld CA, Medland SE, Derringer J, et al. GWAS of 126,559 individuals identifies genetic 

variants associated with educational attainment. Science (80- ). 2013;340(6139):1467-1471. 

doi:10.1126/science.1235488 

87.  Morgan VA, Mitchell PB, Jablensky A V. The epidemiology of bipolar disorder: Sociodemographic, 

disability and service utilization data from the Australian National Study of Low Prevalence 

(Psychotic) Disorders. Bipolar Disord. 2005;7(4):326-337. doi:10.1111/j.1399-5618.2005.00229.x 

88.  Billstedt E, Gillberg C, Gillberg C. Autism after adolescence: Population-based 13- to 22-year 

follow-up study of 120 individuals with autism diagnosed in childhood. J Autism Dev Disord. 

2005;35(3):351-360. doi:10.1007/s10803-005-3302-5 

89.  Hollis C. Adult outcomes of child- and adolescent-onset schizophrenia: Diagnostic stability and 

predictive validity. Am J Psychiatry. 2000;157(10):1652-1659. doi:10.1176/appi.ajp.157.10.1652 

90.  Crespi B, Stead P, Elliot M. Comparative genomics of autism and schizophrenia. Proc Natl Acad 

Sci U S A. 2010;107(SUPPL. 1):1736-1741. doi:10.1073/pnas.0906080106 

91.  Costello MC, Madden DJ, Mitroff SR, Whiting WL. Age-related decline of visual processing 

components in change detection. Psychol Aging. 2010;25(2):356-368. doi:10.1037/a0017625 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.16.297408doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.297408
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

Tables  

Table 1. Demographic information for individuals completing each 
of the 3 tasks 
 

 
FLICKER VOCAB DSST 

N 158888 188434 132807 

Age, M(SD) 64.2 (7.9) 64.8 (8.4) 64.2 (7.9) 

Female (%) 55.5% 62.1% 55.7% 

Years of Education M(SD) 16.2 (2.6) 16.1 (2.6) 16.1 (2.6) 

Missing, N(%) 5992 (3.7%) 16796 (8.9%) 5506 (4.1%) 

Type of Device 
   Laptops (%) 48.8% NA 48.6% 

Desktops (%) 51.2% NA 51.4% 
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Table 2. Genome-wide significant loci for each task 
 

 
rsID chromosome position alleles EAF p-value effect 95% CI gene context 

VOCAB rs13107325 4 103188709 C/T 0.082 7.10E-13 -0.038 [-0.028,-0.049] [SLC39A8] 

 
rs11124994 2 44831633 A/G 0.657 8.90E-10 -0.018 [-0.013,-0.024] [CAMKMT] 

 
rs7531118 1 72837239 C/T 0.447 3.10E-09 -0.017 [-0.011,-0.022] NEGR1--[] 

 
rs11316117 3 48911402 D/I 0.260 4.90E-09 0.022 [0.029,0.014] [SLC25A20] 

 
rs34211268 1 109996534 D/I 0.292 2.10E-08 0.018 [0.024,0.012] PSMA5--[]--SYPL2 

 
rs2067783 2 100877370 C/T 0.525 2.20E-08 -0.016 [-0.01,-0.022] AFF3---[]--LONRF2 

 
rs485161 4 17262432 C/T 0.610 3.00E-08 -0.016 [-0.01,-0.022] LDB2---[]---QDPR 

 
rs62123617 19 18276300 A/C 0.599 3.40E-08 0.016 [0.022,0.01] [PIK3R2,AC007192.4] 

 
rs13217795 6 108974098 C/T 0.702 4.20E-08 0.017 [0.023,0.011] [FOXO3] 

 
rs61160783 16 71925885 A/C 0.839 4.20E-08 0.022 [0.029,0.014] ZNF821-[]-IST1 

 
rs34601789 6 128322437 C/T 0.679 4.80E-08 -0.017 [-0.011,-0.023] [PTPRK] 

FLICKER rs11316974 4 36833394 D/I 0.214 1.60E-09 0.014 [0.018,0.009] DTHD1---[]---NWD2 

 
rs11712982 3 48938762 C/T 0.154 2.60E-09 0.015 [0.020,0.010] SLC25A20-[]--ARIH2OS 

 
rs10490071 2 60668890 A/G 0.742 1.70E-08 -0.012 [-0.008,-0.016] []--BCL11A 

 
rs651001 6 11569402 A/G 0.558 1.70E-08 -0.011 [-0.007,-0.014] [TMEM170B] 

 
rs11335392 19 31922627 D/I 0.408 2.20E-08 -0.011 [-0.007,-0.014] TSHZ3--[]---ZNF507 

 
rs575398780 2 73656407 D/I 0.730 3.90E-08 0.012 [0.016,0.008] [ALMS1] 

 
rs203768 2 200901427 C/T 0.830 3.90E-08 0.013 [0.018,0.008] C2orf47--[]---SPATS2L 

DSST rs429358 19 45411941 C/T 0.860 5.80E-13 0.416 [0.303,0.529] [APOE] 

 
rs7156389 14 33308918 A/G 0.516 1.90E-10 0.254 [0.176,0.332] AKAP6-[]--NPAS3 

 
rs926552 6 29548089 A/G 0.893 9.10E-10 -0.392 [-0.517,-0.266] UBD--[]-OR2H2 

 
rs6918506 6 26577857 C/G 0.459 2.40E-09 -0.242 [-0.322,-0.163] HMGN4--[]--ABT1 

 
rs2675972 2 2.34E+08 A/G 0.626 3.20E-09 -0.243 [-0.324,-0.163] GIGYF2-[]-C2orf82 

 
rs1824578 14 98552165 A/T 0.785 1.60E-08 0.282 [0.184,0.379] []---C14orf177 

 
rs10200379 2 1.44E+08 A/C 0.489 4.70E-08 -0.221 [-0.300,-0.142] [ARHGAP15] 
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Table 3. Genetic correlations with published summary statistics 
 

 
Vocab 

 
Flicker 

 
DSST 

 trait/disorder rg p-value rg p-value rg p-value 

attention deficit hyperactivity disorder -0.234 1.19E-11 -0.047 1.94E-01 -0.208 3.23E-09 

autism spectrum disorders 0.301 7.37E-13 0.079 4.37E-02 0.024 5.48E-01 

bipolar disorder 0.048 1.90E-01 -0.183 2.90E-08 -0.187 1.24E-09 

major depressive disorder -0.071 5.06E-02 -0.105 2.88E-03 -0.222 2.72E-12 

schizophrenia -0.074 2.63E-03 -0.269 9.19E-24 -0.265 1.02E-26 

Alzheimer's disease -0.111 5.63E-02 -0.041 4.45E-01 -0.221 9.90E-05 

educational attainment 0.659 2.87E-278 0.163 1.58E-14 0.317 7.36E-65 

cognitive performance 0.724 0.00E+00 0.514 2.83E-118 0.562 2.83E-170 

 
Bold values indicate significant correlations after correction for multiple testing 
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Figures 

Figure 1. Manhattan plots for all GWAS performed in this study 
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