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ABSTRACT 

The large number of existing databases provides a freely available independent source of 

information with a considerable potential to increase the likelihood of identifying genes for 

complex diseases. We developed a flexible framework for integrating such heterogeneous 

databases into novel large scale genetic studies and implemented the methods in a freely-

available, user-friendly R package called MIND. For each marker, MIND computes the posterior 

probability that the marker has effect in the novel data collection based on the information in all 

available data. MIND 1) relies on a very general model, 2) is based on the mathematical 

formulas that provide us with the exact value of the posterior probability, and 3) has good 

estimation properties because of its very efficient parameterization. For an existing data set, only 

the ranks of the markers are needed, where ties among the ranks are allowed. Through 

simulations, cross-validation analyses involving 18 GWAS, and an independent replication study 

of 6,544 SNPs in 6,298 samples we show that MIND 1) is accurate, 2) outperforms marker 

selection for follow up studies based on p-values, and 3) identifies effects that would otherwise 

require replication of over 20 times as many markers. 

 

AUTHOR SUMMARY 

The large number of existing databases provides a freely available independent source of 

information with a considerable potential to increase the likelihood of identifying genes for 

complex diseases. We developed a flexible framework for integrating such heterogeneous 

databases into novel large scale genetic studies and implemented the methods in a freely-

available, user-friendly R package called MIND. For each marker, MIND computes an estimate 

of the (posterior) probability that the marker has effect in the novel data collection based on the 
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information in all available data. For an existing data set, only the ranks of the markers are 

needed to be known, where ties among the ranks are allowed. MIND 1) relies on a realistic 

model that takes confounding effects into account, 2) is based on the mathematical formulas that 

provide us with the exact value of the posterior probability, and 3) has good estimation properties 

because of its very efficient parameterization. Simulation, validation, and a replication study in 

independent samples show that MIND is accurate and greatly outperforms marker selection 

without using existing data sets. 
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INTRODUCTION 

During the past decade, databases related to the genetic basis of complex diseases have grown 

dramatically. Typical examples are gene expression data repositories, meta-analyses of genome-

wide linkage scans, published candidate gene association studies, disease-specific biochemical 

pathways, and genome-wide association studies (GWAS). These databases provide a freely 

available independent source of information. Integrating this information in novel studies has 

great potential to increase the likelihood of identifying disease genes. First, the use of existing 

information may increase statistical power and reduce the risk of false discoveries through 

improving the prior probability that a marker is associated with the disease. Second, integrating 

data generated by other technologies may also reduce platform-specific errors and increase 

confidence in the robustness of the findings when multiple lines of evidence point to the same 

association. Third, because data integration considers multiple data sources, it may improve the 

understanding of disease mechanisms by informing the broader context in which disease genes 

operate1.  

Data integration may be particularly critical in large scale genetic studies of complex 

diseases. The reason is that rather than a few markers with large effects, many markers with 

small effects may be involved. Large sample sizes may therefore be required to find true 

positives while controlling false discoveries where the cost per sample in these high dimensional 

investigations is typically high. As a result, economic feasibility may interfere with designing 

adequately powered studies.  Furthermore, with the exception of traits that are routinely 

measured in control groups of genetic studies (e.g. smoking2-4), for many disorders and outcomes 

studied (e.g. drug response) very large sample size may simply not be available. The use of 
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existing information may then become the only readily available option to detect small effects in 

a cost-efficient manner. 

Because of their volume and heterogeneity, information from existing databases can no 

longer be integrated intuitively by investigators. This explains efforts towards developing more 

systematic data integration methods5-12. One limitation of these methods is that they lack a solid 

statistical basis. For example, most methods produce a cumulative measure of the biological 

relevance of genes after combining information across multiple sources. However, because it is 

usually very hard to asses the quality of that overall score, it is unclear how to use these scores in 

a way that information from different databases is used and combined optimally.  

In this article we present a rigorous and flexible framework for integrating multiple 

heterogeneous existing data sets into novel studies aimed at identifying genes affecting complex 

diseases. We implemented the method in a freely-available R package called MIND 

(Mathematically-based Integration of heterogeNeous Data), that allows researchers to perform 

all analyses discussed in this paper through a single command line with 8 parameters. MIND can 

integrate existing data sets generated by any kind of technology (e.g., expression arrays, 

proteomics, GWAS) or activity (e.g., actual data collection, literature search, construction of 

disease-specific biochemical networks). Furthermore, external data may provide information at 

any genetic level ranging from individual variants (e.g., SNPs), genes (e.g., literature search), 

groups of genes (e.g., pathways), or entire chromosomal segments (e.g., linkage studies or 

targeted next-generation sequencing).  

The end product of MIND is an estimate of the compound local true discovery rate 

(cℓTDR), which is the posterior probability that a genetic marker has an effect based on the 

information in the novel data collection and the existing data sets. The adjective “compound” 
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indicates that the cℓTDR capitalizes on (i.e. compounds) all disease relevant information present 

in the external data sets. The cℓTDR is a posterior probability because it also takes the results 

from the novel data collection into account. Finally, the term “local” reflects that the cℓTDR 

provides marker specific information. In scenarios where researchers are interested in groups of 

markers (e.g. pathways, top results) the cℓTDRs can simply be summed across all markers. The 

resulting cumulative cℓTDR is then the expected number of markers with effect in that group.  

A very important feature of MIND is that, accurately modeling the data integration 

process and properties of data bases (e.g. number of effects differs across data sets), it relies on a 

solid mathematical foundation that provide us with the exact posterior probability that a marker 

has effect in the novel data collection based on the information in all available data sets. This 

ensures that MIND is more accurate than any heuristic or ad-hoc method. Furthermore, while the 

exact value of cℓTDR depends on many unknown parameters, most of the unknows can be 

collapsed into a single parameter for which we developed a precise estimator. As a result, the 

deviation of the estimate of the cℓTDR from its real value is only due to sample fluctuation, 

which was also verified by simulation.  

A noteworthy property of MIND is that it merely requires that the information in existing 

data sets can be ranked. This ensures general applicability as ranks can almost always be 

calculated. For example, one could count the number of times genes co-occur with a specific 

disease in the literature or use only two ranks indicating whether a gene is implicated or not. 

Ranks also provide a robust method if there are concerns about the distributional assumptions of 

the test statistics in the external data sets.   
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We demonstrate MIND through simulations, cross-validation analyses involving 18 

GWAS, and an independent replication study of 6,544 SNPs in 6,298 samples. The markers 

included in the replication study were selected based on a meta-analysis of the 18 GWAS. The 

results obtained with the markers selected by MIND are compared with a traditional p-value 

based SNP selection.  

 

METHODS 

The goal of MIND is to identify markers that are associated with a complex disease based 

on the test statistic values in the novel data collection (NDC) and on their ranks in the existing 

data sets (EDSs). Figure 1 displays a schematic overview of the preparatory data transformation 

as well as the three major steps of the method. First, the existing data sets need to be transformed 

to the genetic level of the novel data collection if needed (e.g. assign the rank of a gene after an 

existing literature search to each SNP in that gene in the novel GWAS). The three major steps 

are 1) Compute for each existing data set the prior probabilities that markers are associated with 

the disease, 2) Combine the individual sets of prior probabilities into a single set of prior 

probabilities, and 3) Compute the cℓTDR for each marker.  

Before discussing each of these three steps, we note for every EDS we only need the rank 

of their genetic units, whereas for the NDC we need the null and the alternative p.d.f. of the test 

statistics, f0 and f1, as well as the number of alternative genetic units in the NDC, m1
**, or the 

estimates of them. Although estimating m1
**, f0 and f1 is not part of our framework, we 

developed the estimators of m1
**, f0 and f1 for the scenario where the test statistic is 

approximately normally distributed or its distribution is a mixture of normal distributions in the 

NDC. Furthermore, MIND allows genetic units to be different across the data sets involved. For 
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instance, if we have gene expression data, GWAS and linkage data as EDS, their genetic units 

are gene, SNP, and chromosomal segment, respectively. To handle these different units we first 

transform the EDSs into data sets based on the genetic unit of the NDC, which we call the test 

unit. For instance, a gene-based EDS can be transformed into SNP-based EDS by assigning to 

each SNP the smallest EDS rank (or p-value) of the genes that contain the SNP.  

In the rest of this section we describe the three major steps. For each step we also present 

the mathematical formula based on which the step is carried out. The mathematical proofs for the 

formulas are provided in the Supplemental Material, Appendix. 

Step 1: Obtaining prior probabilities of test units for each EDS: First we need two concepts to 

quantify information. We define the information parameter of an EDS to the NDC as 

,// 111 mmmmoverlap ∗−=κ  

where m denotes the number of test units that are both in the EDS and in the NDC, m1 is the 

number of test units alternative in the EDS, m1
* is the number of test units in the EDS that are 

alternative in the NDC, and m1
overlap is the number of test units that are alternative in the EDS and 

in the NDC. We will call an EDS informative to the NDC if its information parameter is positive. 

Note that κ is positive if, and only if, the number of test units alternative both in the NDC and the 

EDS is larger than it would by chance, i.e. when the alternative label would be randomly 

assigned to the test units of the EDS.  

For test unit i in an EDS, we define the contribution of test unit i from the EDS to the 

NDC as  

,/))(()( 01 mmrmico i κγ −=  

where ri  is the rank of test unit i in the EDS, γ(r) denotes the probability that a test unit ranked r 

in the EDS is alternative in the EDS, and m0=m-m1.  

(1) 

(2) 
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Based on the information in an EDS, for the prior probability that test unit i is alternative 

in the NDC, γ*(i), we have that  



 +
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where co(i) is the contribution of test unit i from the EDS to the NDC, m** and m1
** is the 

number of test units and the number of alternative test units in the NDC, respectively (for the 

proof see Theorem 3 and Corollary 4 in Appendix). We remark that the information parameter 

being 0 implies 0 contributions for all test units, which results in γ*(i)= m1
**/m** for every test 

unit. Note that this is exactly what we would have in case of no prior information. Another 

property of the γ*(i) formula is that, as all the contributions of an EDS sum up to zero on the test 

units of the EDS (see Lemma 8 in Appendix), γ*(i) sum up to m1
** on the test units for every 

EDS. In other words, using an EDS merely redistributes the total amount of prior probabilities 

among the test units.  

The contribution of a test unit depends on 3 factors: 1) the rank of the test unit in the 

EDS, 2) the information parameter of the EDS and 3) the effect sizes in the EDS (see (2)). These 

latter two, intuitively speaking, stretch out the contributions, and hence amplify the redistribution 

of the prior probabilities. Indeed, larger information parameter or average effect size of the EDS 

make the contributions differ from each other more within the EDS. It is an advantage of our 

method, however, that we do not need to know the information parameter and the average effect 

size separately to obtain the prior probabilities, because only their combined effects matter, 

which we can estimate from the data. 

To obtain (3) we utilized that in practice, we can approximate m1
*/m by m1

**/m**, where 

the rationale is that the group of test units in the NDC we have EDS information for should 

(3) 
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contain proportionally as many alternatives as the entire NDC does (see Corollary 4 in 

Appendix). On the other hand, if we think that the above assumption is violated, then we may be 

able to estimate m1
* in the same way as m1

** is estimated, and use Theorem 3 to obtain the prior 

probability estimates. 

Step 2: Combining the sets of prior probabilities into a single set of prior probabilities: Once we 

have the prior probabilities for every EDS, we calculate the combined prior odd  

( ) ( ) ( )( )prior combinedprior combinedprior combined 1/ iii γγβ −=  that test unit i is alternative in the NDC by  

( )

( ),)(1
)(

**
1

**
0

1
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0
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1prior combined
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∗
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where γ*j(i) is the jth EDS-based prior probability that test unit i is alternative in the NDC, and 

m0
** = m**- m1

* (see eq. 13 in Appendix). Note that if we have no prior information for a test 

unit in any EDS, then from the formula in (4) we obtain that the combined odd of this test unit is 

m1
**/ m0

**, which is exactly what we supposed to have in the case of no prior information. 

Moreover, according to the formula in (4), the combined odd of a test unit is proportional to the 

average of the prior odds of the test unit across the EDSs, where by the average we mean the 

geometrical mean. If a test unit performs better than a test unit with no information in an EDS 

(odd = m1
**/ m0

** ), then its odd in that EDS will have a positive (increasing) impact on its 

combined odd, and vice versa, i.e. if a test unit performs worse than a test unit with no 

information in an EDS, then its odd in that EDS will have a negative (decreasing) impact on its 

combined odd. 

Step 3: Computing cℓTDR for each test unit: The cℓTDR of test unit i can be written as 

( )

( ) ,
)()(

)()(
1

prior combined
0

1
prior combined

iii

ii

tftf
tfiTDRc

β
β
+

=

 

(4) 

(5) 
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where f0 and f1 is the null and alternative p.d.f. in the NDC, respectively, and where ti is the 

observed test statistic value of test unit i in the NDC (see Claim 24 in Appendix). In summary, 

combining equations in (3), (4) and (5) we obtain the cℓTDR of a test unit as a function of m1
**, 

f0, f1, and the contributions of test units from each EDS. Instead of the terms cℓTDR depends on, 

we will use their estimates to obtain estimate of the cℓTDR. In the next section we present a 

method that estimates the contributions. 

 

Estimating the contributions 

As mentioned above, in order to estimate cℓTDR by our formulas we need to estimate the 

contributions of test units from an EDS to the NDC, defined in (2). Because we use the same 

procedure to estimate contributions for each EDS, throughout this subsection we assume that we 

have a single EDS, which we will refer to as the EDS. As we focus on the test units in the NDC, 

it is irrelevant whether the EDS contains test units not in the NDC or not, so for the sake of 

simplicity, we assume that the test units the EDS contains are also in the NDC. For estimating 

the contributions we will use the statistic 

{ } { } ,:#,:#, mMdtjMrdtjO jjjMd ≥−≤≥=
 

where #A denotes the number of elements in set A, tj is the NDC test statistic of test unit j, and rj 

is the rank of test unit j in the EDS. In Appendix (Theorem 25) we proved that for any positive 

integer M ≤ m and real number d ≥ 0 we have that 

( ) ( ) ( )( ) ( ),
,10, ∑ ≤

−=
MrjMd

j
jcodFdFOE

 
(7) 

(6) 
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where F0 and F1 is the null and alternative c.d.f. in the NDC, respectively. Based on eq (7), first 

we calculate a rough estimate of the cumulative contribution, defined as ( ) ( )∑ ≤
=

Mrj j
jcoMCO

,
 

by 

,
)()(#

1)(
10

,∑
∈ −

=
Dd

Md

dFdF
O

D
MCO

 

where D is a set of the positive real numbers, and #D denotes the number of elements in D. As 

the contribution of the test unit whose rank is r in the EDS can be obtained as 

),1()()( −−= rCOrCOrco  

we can calculate the contribution estimates from estimates of the cumulative contribution. To 

ensure that test units with smaller (better) ranks have larger contribution estimates, we need to 

use a cumulative estimate that is a concave function of M. For this we construct a concave 

function of M that fits )(MCOM → well (see Section 1.3 in Appendix for details).  

 

RESULTS 

Accuracy 

To study the accuracy of MIND, we simulated 500 studies with 3 existing data sets and a novel 

data collection consisting of one million markers of which 5,500 had a small effect (see 

Supplemental Material for details). In Figure 2, we show the estimates of the cumulative 

cℓTDR, defined as the sum of the k largest cℓTDRs as a function of k. The cumulative cℓTDR at 

k equals the expected number of markers with effect among the k markers with the largest 

cℓTDRs. For the sake of comparison, in the figure we also show the corresponding curves where 

no existing data sets were used to compute the cℓTDR estimates.  Each curve in Figure 2 is the 

average of the corresponding curves in the 500 simulation studies. The fact that the lines overlap 

(8) 
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perfectly implies that on average the estimated cumulative cℓTDRs are very precise indicators of 

the number of markers with effect in the novel data. Moreover, we found that the cumulative 

cℓTDR differs from the number of markers with effect among the markers with largest cℓTDRs 

by less than 9.6% of the number of markers with effect among the markers with largest cℓTDRs  

in 99% of the simulations studies, and the percentage difference gets smaller as the number of 

selected markers increases (see Supplemental Material for details). This shows that the 

estimated cumulative cℓTDR is an accurate predictor of the number of markers with effect 

among the markers with largest cℓTDRs . Comparing in Figure 2 results for the cℓTDR when 

the existing data sets were used versus when no existing data sets were used shows how data 

integration increases the proportion of markers with effect among markers selected by their 

cℓTDR.  

 

Illustration with empirical data  

We illustrate our framework using a meta-analysis of 18 schizophrenia GWAS studies 

comprising a total of 21,953 cases and controls. Even after including study-specific principal 

components to control for stratification, the meta-analyses suggested the presence of many SNPs 

with very small effects (consistent with a previous publication13). To distinguish and select these 

very small effects from the markers with no effects, we used MIND. Nine external data sets with 

potential relevance for schizophrenia were tested for information content 1) schizophrenia 

candidate genes14, 2) the top bins from a meta-analysis of linkage scans15, 3) results from an 

expression array meta-analysis using post-mortem brain tissue from schizophrenia cases16, 4) a 

global proteomic analysis in post-mortem prefrontal brain tissues17, 5) CNVs associated with 

schizophenia18, 6) disease genes in the OMIM database19, 7) gene length, 8) gene expression 
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quantitative trait loci (eQTLs)20-25, and 9) human orthologs of murine genes showing association 

with behavioral phenotypes relevant to neuropsychiatric outcomes26. Six (above data sets 1, 2, 3, 

6, 8, and 9) out of these 9 external data sets appeared informative for the GWAS meta-analyses 

and were included in subsequent analyses. We note that our finding that eQTL data are 

informative for GWAS is consistent with other reports in the literature27.   

In Figure 3 we use the (meta-analyses of) expression data to graphically illustrate 

informativeness. To each GWAS SNP that was ±50kb of a gene in the eQTL dataset, we 

assigned the rank of the p-value of that gene in the expression data. We picked the smallest p-

value if there were multiple p-values per gene. A total of 441,392 GWAS SNPs could be 

assigned a rank. The x-axis shows the top j SNPs according to their rank in the expression data 

set. The purple line gives the relation as observed in the data, and the many thin grey lines show 

results from 1,000 generated existing data sets obtained by randomly permuting the ranks of 

genes in the expression data set. The figure shows that up to about the first 40,000 SNPs, SNPs 

that are in genes that rank higher in the expression data also have better p-values in the GWAS 

and that this pattern is unlikely to occur by chance.  

As an initial “internal” validation, we compared the 5,000 SNPs with the best p-values 

versus the 5,000 SNPs with the best cℓTDRs in terms of the heterogeneity of effects and gene 

ontology (see Supplemental Material). The I2 index28 was used to study heterogeneity that 

could, for example, be increased due to technical errors affecting results from only one or a few 

GWAS. Integrating data generated by other technologies may reduce the effect of such technical 

errors. We therefore hypothesized that compared to p-value selected SNPs, the cℓTDR selects 

SNPs that show more consistent effects across the 18 GWAS in our meta-analysis. Results in 

Supplemental Figure 2 confirm that this is indeed the case. The gene ontology analysis is 
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motivated by the observation that most biological functions seem to be carried out by co-

regulated “modules” (e.g. pathways, complexes)29. Some of these modules could possibly be 

pathogenic, implying that disease genes may share gene ontology terms. For this specific 

analysis we only integrated the empirical external data sets (e.g. linkage analyses, expression 

array) to avoid that differences were introduced by using databases that we (partially) generated 

using biological knowledge (e.g. candidate gene studies). Results (see Supplemental Figure 3) 

support for the notion that data integration more successfully identifies gene ontology terms 

thereby improving our understanding of disease mechanisms.  

 

Validation 

We validated the ability of our data integration method to identify markers with effects via 1) 

simulation studies, 2) cross-validation, and 3) and actual replication study of 6,544 SNPs in a 

sample independent of the 18 GWAS studies that included 6,298 subjects from 1,811 nuclear 

families. In the simulation studies we used the same parameters as used in the accuracy section 

above. For cross-validation, presenting a more realistic test case (e.g. actual effects sizes, 

artifacts, LD among markers), we selected subsets from all 18 GWAS in such a way that the 

sample size available for selecting SNPs was 85-90% of the total sample size. The remaining 

studies were used for replication/cross-validation. For each of the 575 unique cross-validation 

combinations, we selected the 5,000 SNPs with the smallest p-values and the 5,000 SNPs with 

the best cℓTDR after integrating our six informative existing data sets. The replication study 

involving genotyping of 6,544 SNPs in independent samples was conducted using a custom 

Illumina iSelect chip. About half of the SNPs were selected based on having the smallest p-

values and the other half based on having the best cℓTDRs.  
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Results are shown in Figure 4a, b, and c. All three panels converge to the same 

conclusions. First, considering the cℓTDR (green and blue dots) always gives better results 

compared to SNP selection based on p-values alone. Second, although the success of MIND 

decreases as p-values increase, in many instances it still successfully identifies SNPs with effects 

that have large p-values with ranks >100,000 in the GWAS meta-analysis. Even if costs to 

follow up that many SNPs would not be an issue, it may still not produce equally good results 

because, compared to the much smaller set of cℓTDR selected SNPs, many more tests would 

need to be performed in the replication study. Third, these cℓTDR selected SNPs with p-value 

ranks >100,000 in the meta-analysis replicate as well as or better than SNPs with small p-values 

but poor cℓTDRs.   

 
DISCUSSION 

We developed a mathematically rigorous and flexible framework for integrating heterogeneous 

databases into large-scale genetic studies, and implemented our method in a freely available 

user-friendly R package called MIND. Through simulations, cross-validation analyses involving 

18 GWAS, and independent replication of 6,544 SNPs in 6,298 samples we show that MIND 1) 

is accurate, 2) outperforms marker selection for follow up studies based on p-values, and 3) is 

able to identify effects that would otherwise require replicating over 20 times more markers.   

 Although a main application of MIND involves integrating existing data in a novel data 

collection, it is applicable in other scenarios as well. For example, MIND can rank genes 

according to their relevance to a disease using only existing databases. However, it is typically 

difficult to assess the quality of such prioritization scores; our framework provides an estimate of 

the probability that a gene is associated with the disease of interest. This clear interpretation 

allows for more informed decisions about which genes to select for further study. A second 
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example involves questions related to similarities among multiple high dimensional data sets. 

For example, if we have datasets for different diseases in the same population, MIND can be 

used to study co-morbidity where a high concordance would indicate a substantial overlap in 

disease etiology. Alternatively, if we have datasets for the same disease in different populations, 

MIND would shed light on the overlap in the genetic disease architecture of the different 

populations.  

We should stress that MIND can handle novel data collections of any kind. Next-

generation DNA sequencing (NGS) has the potential to accelerate genetic research. However, 

because costs for NGS are still high and power to detect the (cumulative) effects of all rare 

variants low30, data integration could play an important role. Indeed, several methods have 

already been proposed that test for association using weights based on predictions of functional 

effects of (rare) variants (e.g. 31-32). However, as these weights do not take the strength of disease 

relevant information into account, our method could be used to further optimize these tests. A 

second example is that NGS enables a comprehensive analysis of not just genomes but also 

transcriptomes and methylomes. MIND offers the possibility to integrate all these different 

sources of information to improve statistical power, increase confidence in the robustness of the 

findings when multiple lines of evidence converge to the same genetic factors, and inform the 

broader context in which the disease genes operate. 
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SOFTWARE 

MIND has been made freely available as an R package at http://www.people.vcu.edu/~jbukszar/. 
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FIGURE LEGENDS 

 

Figure 1 A schematic overview of the MIND data integration framework. 

 

Figure 2 The estimated cumulative cℓTDR (black) as well as the number of markers with effect 

among the markers with the largest cℓTDRs (blue) curves are plotted. We also plotted the 

corresponding curves, where no existing data sets were used to compute the cℓTDR estimates 

(red and green).  Each curve is the average of the corresponding curves in the 500 simulation 

studies. 

 

Figure 3 Enrichment in GWAS p-values (y-axis) in the set of SNPs that are in genes with higher 

ranks in the expression data. The purple line represents the expression data set, and each of the 

thin grey lines shows results from 1,000 data sets generated by random permutation.  

 

Figure 4 Performance of p-value versus cℓTDR based selection by simulation (A), cross-

validation (B), and replication (C). All panels: p-value based results are red, cℓTDR based results 

are blue, overlap between both methods is green, and x-axis is rank of p-values in the meta-

analysis. Panels A and B: For each x-axis interval, the .05, .25, .75 and .95 quantiles of the 

proportion of SNPs with effect among those selected (A) or proportion of SNPs with cross-

validation p-value less than 0.01 among those selected (B) are reported. Center of the circles are 

located at the mean of the proportions, while the area of the circle is proportional to the number 

of SNPs selected. Panel C: all p-values less than 0.01 in the replication study are shown.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.15.298505doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.298505


Integrating heterogeneous databases 26 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.15.298505doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.298505


Integrating heterogeneous databases 27 

 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.15.298505doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.298505


Integrating heterogeneous databases 28 

 

 

 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.15.298505doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.298505


Integrating heterogeneous databases 29 

 

 

     

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.15.298505doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.298505


Supplemental material “A rigorous method for integrating multiple heterogeneous  

databases in genetic studies” 

 

1. Simulation study 

In order to study how accurately the cumulative cℓTDR predicts the number of selected 

SNPs that have effect in the novel data collection, we used 500 simulations. In each 

simulation, we generated 3 existing data sets and a novel data collection. For the novel 

data collection we simulated 1,000,000 test statistic values, 5,500 of which had effect.   

To generate an existing data set we randomly chose 500,000 of the 1,000,000 NDC SNPs 

to be matched and simulated  test statistic values for them, 50,000 of which had effect. 

The “alternative in the EDS” label was randomly assigned to SNPs in such a way that the 

number of SNPs alternative both in the NDC and EDS was 2,200.  We calculated the 

ranks of the test statistics in the EDSs, which were used for the data integration. The 

statistic values were drawn from the normal distribution with variance 1. The mean of the 

normal distribution was 1.6 and 2.0 for the SNPs with effect in the existing data sets and 

the novel data collection, respectively, and the mean was 0 for the null SNPs for every 

data set. As estimating the null and alternative distribution of the statistics as well as the 

number of SNPs with effect in the novel data collection is not part of our method, we 

used the ‘real’ functions and number of SNPs with effect for our procedures. 

The average of estimated cumulative cℓTDR (=after data integration) and ℓTDR 

(=before data integration) curves as well as the number of SNPs with effect in the NDC 

in the top SNPs for cℓTDR and ℓTDR – based selection are plotted in the left panel of  

Figure S1 (identical to Figure 1 in the article). Each curve is the average of the 

corresponding curves in the 500 simulation studies. The figure suggests that the 

cumulative cℓTDR and the cumulative ℓTDR curves are unbiased predictors of the 

number of SNPs with effect in the NDC that were selected by the corresponding method. 

To further study the accuracy of these predictors, we calculated the percentage difference 

between the cumulative cℓTDR/ℓTDR and the number of SNPs with effect selected by 

cℓTDR/ℓTDR, that is the absolute value of the difference between the two expressed with 

the percentile of the number of SNPs with effect selected by cℓTDR/ℓTDR. The quantiles 

of the percentage differences in the 500 simulation studies are plotted in the right panel in 

Figure S1.  For instance, the continuous black curve in the figure shows that in 99% of 

the simulation studies the percentage difference between the cumulative cℓTDR and the 

number of selected SNPs with effect in the NDC was always less than 9.6%, and less 

than 7.5% if more than 5,000 SNPs were selected.  The 50%, 75%, 90% and 99% 

quantile curves of the percentage difference between the cumulative cℓTDR/ℓTDR and 

the actual number of selected test units show that percentage difference 1) gets smaller as 

the number of selected markers gets larger and 2) is smaller for cℓTDR selection than for 

ℓTDR selection when the number of selected markers is small and comparable otherwise. 

We conclude that the estimated cumulative cℓTDR is a good predictor of the number of 

markers with effect among the selected ones and may be limited only by the imperfection 

of the estimate of the null and alternative distribution of the statistics and the number of 

markers with effect in the novel data collection, which estimate is, however, not part of 

our method. 
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16.4%, 9.9%, 6.1%, respectively, for the  99%, 90% and 75% confidence 

intervals.  

 
 

 
2. Data sets and QC 

GWAS meta-analysis: In our empirical example we used a meta-analysis we performed 

involving 18 schizophrenia GWAS studies. After stringent QC 1,085,772 (imputed) 

SNPs were available for 21,953 subjects (11,185 cases and 10,768 controls). To account 

for possible population stratification effects within each of the GWAS studies, we 

included the first 3 principal components obtained with EigenSoft14 plus any additional 

principal components if they significantly (p < 0.05) predicted case-control status.  

 

External data sets: Our external data sets included 1) schizophrenia candidate genes from 

the SZgene data base15 that summarizes the results of 1,617 studies reporting on 952 

candidate genes, 2) the top bins from a meta-analysis of 32 independent genome-wide 

linkage scans that included 3,255 pedigrees with 7,413 genotyped cases affected (see 

Table 2)16, 3) results from an expression array meta-analysis of 12 controlled studies 

across 6 different microarray platforms using brain tissue from schizophrenia, bipolar, 

and controls (about 35 subjects in each group)17, 4) a global proteomic analysis in post-

mortem prefrontal brain tissues of 9 schizophrenic patients and 7 controls18, and 5) 

replicated and significant CNVs (see Table 219) from 10 studies. Other data sets involve 

features of disease genes in general such as 1) genes present in the OMIM database, 2) 

Figure s1 Left panel: The estimated cumulative ℓTDR/cℓTDR (red and black) as well 

as the number of SNPs with effect among the ℓTDR/ cℓTDR selected ones (blue and 

green) curves are plotted. Each curve is the average of the corresponding curves 

in the in the 500 simulation studies. Right panel: Multiple quantiles of the 

absolute value of percentage difference between the estimated cumulative ℓTDR/ 

cℓTDR and the number of SNPs with effect among the cℓTDR selected ones are 

plotted. Black, red, green and blues curves represent the 99%, 90%, 75% and 50% 

quantiles, respectively, while continuous and dashed curves represent cℓTDR and 

ℓTDR selection,respectively. 
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gene length, disease genes are suggested to be longer20, 3) SNPs that are strongly 

associated with variation in transcript abundance in the following tissues: liver, cortex 

and large B-Cell lymphomas using the eQTL browser at U. Chicago21-26, and 4) human 

orthologs of  murine genes showing association with behavioral phenotypes relevant to 

neuropsychiatric outcomes27.  

 

3. Details results and items in the text 

Test results for informativeness: Test results for informativeness are shown in Table S1 

and indicate that six out of the 11 existing data sets appeared informative for the GWAS 

meta-analyses. The non-informative existing data sets are the ones with small samples 

sizes or not directly related to schizophrenia.  

 

  

Figure 2: Figure 2 allows a visual inspection of informativeness. The x-axis shows the 

top j SNPs according to their rank in the expression data set. The y-axis shows a measure 

of enrichment, indicating whether GWAS p-values of SNPs are better for the genes that 

rank higher in the expression data. More precisely, if pi indicates the p-value of SNP i in 

the GWAS, ri indicates the rank of SNP i in the expression data, and j is an arbitrary a 

cut-off for the rank of SNPs in the expression data, then enrichment (O statistic) is 

defined as  

 

 

where m is the number of SNPs in the expression data. Clearly, O(j) being positive 

suggests enrichment of GWAS p-values smaller than 0.01 among the SNPs ranked j or 

better in the expression data. The purple line in Figure 2 gives the observed relation and 

the many thin lines show results from 1,000 generated existing data sets obtained by 

randomly permuting the ranks of genes in the expression data set. The results show that 

up to the first ~40,000 SNPs, SNPs that are in genes that rank higher in the expression 

data also have better p-values in the GWAS and that this pattern is unlikely to occur by 

chance.  

Table S1. Information tests for existing data sets 
Data type Source Unit Informative? 

Meta-analysis expression studies      
     Schizophrenia Stanley Gene Yes  
     Bipolar  Stanley  Gene  No  
Candidate genes     
     Schizophrenia SZgene database  Gene  Yes  
     Bipolar  SLEP + literature Gene  No 
Disease genes  OMIM  Gene  Yes  
Meta-analysis schizophrenia linkage studies  Nga et al. (2009).  Region  Yes  
Human (neurological) genes with mouse orthologs   SLEP  Gene Yes  
Candidate schizophrenia CNV regions Sebat et al. (2009)  Region  No  
Gene length  ENSEMBL database  Gene  No  
Schizophrenia proteomics  de-Souza et al (2009)  Gene  No  
Expression QTLs  Browser at U. Chicago  SNP  Yes  

    
m

j
ppjrppjO iiiii 01.0:#,01.0:#)( 
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Heterogeneity: To study heterogeneity we used the index4 I2 = 100%×(Q - df)/Q , where 

(Cochran's) Q is computed by 

summing the squared deviations of 

each study's estimate from the 

overall meta-analytic estimate, 

weighting each study's contribution 

in the same manner as in the meta-

analysis. I2 describes the percentage 

of total variation across studies due 

to heterogeneity rather than chance. 

Larger values show increasing 

heterogeneity and the (lower 

bound) value of 0% indicates no 

heterogeneity.  

 Results in Figure S2 show 

the average I2 of the top SNPs, with 

the number of SNPs indicated on 

the x-axis, selected before and after 

data integration. As the number of 

SNPs used to calculate the average 

I2 is small at the left hand side of 

the figure, the results fluctuate 

initially. However, as the number 

of SNPs increases, the average I2 

values becomes better for the cℓTDR compared to the ℓTDR, implying that data 

integration results in the selection of SNPs with more consistent effects across the 18 

GWAS studies.  

 

GO analyses: We performed gene ontology (GO) analyses to establish whether genes 

selected through data integration show differences in terms of GO themes. For these 

analyses we only used empirical data sets (linkage analyses, expression array) to avoid 

that enrichment was introduced by using external data sets that are based on biological 

knowledge (e.g. candidate gene studies). We first selected SNPs based on having a good 

(n=1,435) with a larger posterior probability of belonging to the group of SNPs with 

small effects than the other two groups. Then we identified the genes in which these 

SNPs were located and subjected those SNPs to a GO analysis to search for biological 

themes. A similar number of genes were selected using the top ℓTDR results. As an 

additional control groups, we also selected a similar number of genes from the bottom 

(i.e. highest values) of the cℓTDR and ℓTDR distributions. 

For the GO analyses we used GOEAST2, a web based software toolkit. The 

ontology covers three domains: cellular component, the parts of a cell or its extracellular 

environment; molecular function, the elemental activities of a gene product at the 

molecular level, such as binding or catalysis; and biological process, operations or sets of 

molecular events with a defined beginning and end, pertinent to the functioning of 

integrated living units: cells, tissues, organs, and organisms. GOEAST uses an exact 

cℓTDR

ℓTDR 

Figure s2 Heterogeneity of SNP effects before and 

after data integration. The y-axis shows the average I2

index and the x-axis the top SNPs ranked in ascending 

order using either the ℓTDR (red) or cℓTDR (black). 

cℓTDR

ℓTDR 

cℓTDR

ℓTDR 

Figure s2 Heterogeneity of SNP effects before and 

after data integration. The y-axis shows the average I2

index and the x-axis the top SNPs ranked in ascending 

order using either the ℓTDR (red) or cℓTDR (black). 
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(hypergeometric) test to evaluate the null hypothesis that genes are picked at random 

from the total gene population. 

Figure S3 shows the results for the top (blue line) and bottom (green line) genes 

selected before (Fig. a) and after (Fig. b) data integration. The y-axis shows the p-values 

and the X-axis shows the number of genes with p-values smaller than 0.1 and then sorted 

in ascending order. Compared to the control group of genes selected from the bottom of 

the cℓTDR and ℓTDR distributions, there are many more genes with p-values smaller 

than 0.1 and the tests also indication much smaller p-values. Furthermore, this pattern is 

much more pronounced after the data integration. Thus, our top results differ from the 

bottom results in terms of gene ontology and data integration tends to increase the 

distinction between top and bottom genes.  

 

Figure S3. GO analysis on the top (blue line) and bottom (green line) genes selected before (Fig a) and 

after (Fig b) data integration. The y-axis shows the p-values testing the null hypothesis that the selected 

genes were picked at random from the total gene population and the X-axis shows the number of genes 

with p-values smaller than 0.1 and then sorted in ascending order.  

a                                              b 
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Appendix for "A rigorous method for integrating multiple heterogeneous
databases in large scale genetic studies"

1.1 Mathematical formulas for the exact computation of c`TDR

Step 1: Obtaining prior probabilities of test units for each EDS

The goal of this section is to derive the equation of prior probability (Theorem 3). Throughout this section we assume that
we have a single existing data set. For brevity we will use the notation r instead of (r) for the probability that a test unit
ranked r in the existing data set is alternative in the existing data set.

Theorem 1 Suppose we have only one existing data set. Denote the number of test units of NDC that are also in the
existing data set as m. Out of these m test units, denote the number of those alternative in the NDC, the existing data set
and in both data sets as m�

1, m1, and m
overlap
1 , respectively, and let m0 = m�m1. Then we have that

� (i) = � (ri) + � (1�  (ri)) =
moverlap
1

m1
 (ri) +

m�
1 �m

overlap
1

m0
(1�  (ri)) ; (1)

where ri is the rank of test unit i in the existing data set and

� = Pr
�
H
(NDC)
i = 1 j H(EDS)

i = 1
�
=

moverlap
1

m1

� = Pr
�
H
(NDC)
i = 1 j H(EDS)

i = 0
�
=

m�
1�m

overlap
1

m0
;

where H(NDC)
i = 1 or 0 if test unit i is alternative or null in the NDC, respectively, and H(EDS)

i = 1 or 0 if test unit i is
alternative or null in the existing data set, respectively.

Proof. By de�nition
� (i)

def
= Pr

�
H
(NDC)
i = 1 j S = s

�
;

where S = s represents our information from the existing data set. Applying the well-known identity Pr (B j C) =P
i Pr (B j Ai; C) Pr (Ai j C),where fAig is a partition of the probability space, we obtain that

� (i) = Pr
�
H
(NDC)
i = 1 j H(EDS)

i = 1; S = s
�
Pr
�
H
(EDS)
i = 1 j S = s

�
+

Pr
�
H
(NDC)
i = 1 j H(EDS)

i = 0; S = s
�
Pr
�
H
(EDS)
i = 0 j S = s

�
=

Pr
�
H
(NDC)
i = 1 j H(EDS)

i = 1
�
Pr
�
H
(EDS)
i = 1 j S = s

�
+ Pr

�
H
(NDC)
i = 1 j H(EDS)

i = 0
�
Pr
�
H
(EDS)
i = 0 j S = s

�
=

� (ri) + � (1�  (ri)) :

Lemma 2 For test unit i in the existing data set we have that

�(i) = co (i) +
m�
1

m
;

1
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where

co (i) =
1

m0
(m (ri)�m1)

 
moverlap
1

m1
� m

�
1

m

!
;

and ri is the rank of test unit i in the existing data set, m is the number of test units of NDC that are also in the existing
data out of which m�

1, m1, and m
overlap
1 , is the number of test units alternative in the NDC, the existing data set and in both

data sets, respectively.

Proof. For brevity we will denote ri as j, hence  (ri) �  (j) � j . From (1) we have that

� (i) = � (ri) + � (1�  (ri)) = �j + � (1� j) =

moverlap
1

m1
j +

m�
1 �m

overlap
1

m0
(1� j) = 

moverlap
1

m1
� m

�
1 �m

overlap
1

m0

!
j +

m�
1 �m

overlap
1

m0
=

1

m0

" 
moverlap
1

m1
m�m�

1

!
j +m

�
1 �m

overlap
1

#
=

1

m0

" 
moverlap
1

m1
m�m�

1

!�
j �

m1

m

�
+

 
moverlap
1

m1
m�m�

1

!
m1

m
+m�

1 �m
overlap
1

#
=

1

m0

" 
moverlap
1

m1
m�m�

1

!�
j �

m1

m

�
+moverlap

1 �m�
1

m1

m
+m�

1 �m
overlap
1

#
=

1

m0

" 
moverlap
1

m1
m�m�

1

!�
j �

m1

m

�
+m�

1

m0

m

#
=

1

m0

 
moverlap
1

m1
m�m�

1

!�
j �

m1

m

�
+
m�
1

m
=

1

m0

 
moverlap
1

m1
� m

�
1

m

!
(mj �m1) +

m�
1

m
= co (i) +

m�
1

m
:

Theorem 3 For test unit i in the NDC we have that

�(i) =

(
co (i) +

m�
1

m if test unit i is in the existing data set
m
(NDC)
1 �m�

1

m(NDC)�m if test unit i is NOT in the existing data set,

where m is the number of test units of NDC that are also in the existing data set, out of which m�
1, m1, and m

overlap
1 is the

number of test units alternative in the NDC, the existing data set and in both data sets, respectively, m(NDC) and m(NDC)
1 is

the number of test units and the number of alternative test units in the NDC.

Proof. The statement of the theorem directly follows from Lemma 2 for test units in the existing data set. The number
of test units in the NDC and not in the existing data set is m(NDC)�m, m(NDC)

1 �m�
1 of which is alternative. Consequently,

�(i) =
m
(N D C )
1 �m�

1

m(N D C )�m for test unit i that is not in the existing data set, because we have no prior information for this test unit
from the existing data set.

2
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Corollary 4 Under the reasonable assumption that the concentration of the alternative test units is the same inside and

outside the region covered by the existing data set, i.e. m�
1

m =
m
(NDC)
1

m(NDC) , we have that

�(i) =

(
co (i) +

m
(NDC)
1

m(NDC) if test unit i is in the existing data set
m
(NDC)
1

m(NDC) if test unit i is NOT in the existing data set,

and co (i) can be calculated as

co (i) =
1

m0
(m (ri)�m1)

 
moverlap
1

m1
� m

(NDC)
1

m(NDC)

!
:

Proof. The statement of the corollary follows from Theorem 3 and from that m�
1

m =
m
(N D C )
1

m(N D C ) implies
m
(N D C )
1 �m�

1

m(N D C )�m =
m�
1

m =

m
(N D C )
1

m(N D C ) .

Some properties of rank-based probability, , prior probability, �, and the contribution First we derive
formulas for rank-based probabilities that we will use to obtain formulas for prior probabilities and contribution.

Theorem 5 Suppose that X1; :::; Xm0
are identically (not necessarily independently) distributed random variables, repre-

senting the true null statistics, and suppose that Y1; :::; Ym1
are identically (not necessarily independently) distributed random

variables, representing the true alternative statistics. Denote the kth largest random variable from fX1; :::; Xm0
; Y1; :::; Ym1

g
as Zk. Then for any �xed i, the probability that Yi is the kth largest test statistic value, Zk, is

Pr (Yi = Zk) =
k
m1

and the probability that Xi is the kth largest test statistic value is

Pr (Xi = Zk) =
1� k
m0

;

where k is the probability that Zk is alternative.

Proof.
k = Pr (Zk is alternative) =

Pm1

j=1 Pr (Yj = Zk) = m1 Pr (Yi = Zk) ;

from which the �rst statement follows. The second statement can be proven similarly.

Corollary 6 As a consequence of the above theorem we have thatPm
k=1k = m1; (2)

where m = m1 +m0.

Proof. For any �xed i, the events fYi = Zkgmk=1 is a partition of the the probability space, we have thatPm
k=1 Pr (Yi = Zk) =

Pm
k=1

k
m1

= 1;

which implies the statement of the corollary.

3
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Remark 7 Note that the analogous statement in Corollary 6 for parametric calculation is not valid. That is if the parametric
formula

parj = Pr (Hj = 1 j T = tj) =
m1f	 (tj)

m0f0 (tj) +m1f	 (tj)
: (3)

is used to calculate the probability that a test unit is alternative in the existing data set, where f0 and f	 are the null and
the alternative p.d.f., then

Pm
k=1

par
k may not be equal with m1. However, it is easy to see thatPm

k=1E (
par
k ) = m1:

Lemma 8 For any existing data set we have that Pm
i=1co (i) = 0;

where m is the number of test units in the existing data set.

Proof.Pm
i=1co (i) =

Pm
i=1

1

m0
(m (ri)�m1)

 
moverlap
1

m1
� m

�
1

m

!
=

1

m0

 
moverlap
1

m1
� m

�
1

m

!Pm
i=1 (m (ri)�m1) =

1

m0

 
moverlap
1

m1
� m

�
1

m

!�
m
Pm

j=1 (j)�m1

�
=
m

m0

 
moverlap
1

m1
� m

�
1

m

!
(m1 �m1) = 0;

where we used (2).

Corollary 9 If we have a single existing data set, thenPm(NDC)

i=1 �(i) = m
(NDC)
1 ;

where m(NDC) and m(NDC)
1 is the number of test units and the number of alternative test units in the NDC, respectively.

That is the sum of the prior probabilities is the same as the one without prior information.

Proof. We have that
m(N D C )P
i=1

�(i) =
P

i is a test unit in
the existing data set

�(i) +
P

i is not a test unit in
the existing data set

�(i) =
mP
i=1

�
co (i) +

m�
1

m

�
+
m(N D C )�mP

i=1

 
m
(NDC)
1 �m�

1

m(NDC) �m

!
=

�
mP
i=1

co (i) = 0

�
= m�

1 +
�
m
(NDC)
1 �m�

1

�
= m

(NDC)
1 :

Claim 10 We have that
mm1

m0
� � moverlap

1 ; (4)

and equality holds if and only if moverlap
1 = m�

1.

Proof.

mm1

m0
� =

mm1

m0

 
moverlap
1

m1
� m

�
1

m

!
=
m

m0
moverlap
1 � m1

m0
m�
1 =

m

m0
moverlap
1 � m1

m0
moverlap
1 +

m1

m0
moverlap
1 � m1

m0
m�
1 =�

m

m0
� m1

m0

�
moverlap
1 � m1

m0

�
m�
1 �m

overlap
1

�
= moverlap

1 � m1

m0

�
m�
1 �m

overlap
1

�
:

Clearly,

moverlap
1 � m1

m0

�
m�
1 �m

overlap
1

�
� moverlap

1 ;

and equality holds if and only if moverlap
1 = m�

1.

4
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Existing data sets with ties Suppose we have t groups of test units and the ranks of all test units in a group are
identical. Let Ri be the number of test units whose rank is the ith largest one or smaller for i = 1; :::; t, and let R0 = 0.
Clearly, Ri �Ri�1 is the number of test units in the ith group for all i = 1; :::; t. Denote the probability that a test unit in
the ith group is alternative in the existing data set as �i.

Claim 11 �i can be calculated by
�i = Pr (Zr is alternative j Ri�1 < r � Ri) =

1

Ri �Ri�1

XRi

r=Ri�1+1
(r) =

1

Ri �Ri�1
fRi Pr (Zr is alternative j r � Ri)�Ri�1 Pr (Zr is alternative j r � Ri�1)g ;

where Zr and (r) are de�ned above.

Corollary 12 Denote the probability that a test unit in the ith group is alternative in the NDC as ��i . Then we have that

��i =
m�
1

m
+

1

Ri �Ri�1
PRi

rj=Ri�1+1
co (j) =

m�
1

m
+

1

Ri �Ri�1
(CO (Ri)� CO (Ri�1)) ; (5)

where we de�ne CO (R) =
PR

rj=1
co (j).

Proof. We prove �rst that

1

Ri �Ri�1

XRi

j=Ri�1+1
�j =

1

Ri �Ri�1

XRi

rj=Ri�1+1

moverlap
1

m1
 (rj) +

m�
1 �m

overlap
1

m0
(1�  (rj)) =

moverlap
1

m1
�i +

m�
1 �m

overlap
1

m0
(1� �i) = ��i ;

where the last step can be proved analogously to (1). Then it readily follows from Lemma 2 that

��i =
1

Ri �Ri�1

XRi

rj=Ri�1+1
�j =

m�
1

m
+

1

Ri �Ri�1

XRi

rj=Ri�1+1
co (j) :

The statement analogous to the one in Corollary 6 is also valid:

Claim 13 The sum of the prior probabilities will be m1, i.e.Xt

i=1
(Ri �Ri�1) �i = m1:

Proof. Xt

i=1
(Ri �Ri�1) �i =

Xt

i=1
(Ri �Ri�1) Pr (Zr is alternative j Ri�1 < r � Ri) =Xt

i=1
fRi Pr (Zr is alternative j r � Ri)�Ri�1 Pr (Zr is alternative j r � Ri�1)g =

fR0 = 0g = Rt Pr (Zr is alternative j r � Rt) = fRt = mg = mPr (Zr is alternative j r is anything) = m
m1

m
= m1:

5
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Claim 14 Suppose that X1; :::; Xm0
are i.i.d. random variables with F0 and Y1; :::; Ym1

are i.i.d. random variables with F	.
Suppose that X1; :::; Xm0 ; Y1; :::; Ym1 are independent, and denote the rth largest random variable among them as Zr. Then
the probability that Ys is in the ith (largest) group of test units is

Pr (Ys is in the ith group) =
�i
m1

and the probability that Xs is in the ith (largest) group of test units is

Pr (Xs is in the ith group) =
1� �i
m0

;

where �i is the probability that Zk is alternative given it is in the ith group.

Proof. The probability that Ys is in the ith (largest) group of test units is

Pr (Ys is in the ith group) =
1

Ri �Ri�1

XRi

j=Ri�1+1

j
m1

=
�i
m1

and the probability that Xs is in the ith (largest) group of test units is

Pr (Xs is in the ith group) =
1

Ri �Ri�1

XRi

j=Ri�1+1

1� j
m0

=
1

m0
� 1

Ri �Ri�1

XRi

j=Ri�1+1

j
m0

=
1

m0
� �i
m0

=
1� �i
m0

:

Remark 15 Note that the distribution in Theorem (5) and that in Claim 14) is formally the same. As a result, for multiple
instances we do not need to distinguish the case ties from that of no ties.

Step 2: Combining the sets of prior probabilities into a single set of prior probabilities

De�nition 16 Suppose we have k existing data sets with (ranks of) test statistic values Si1; :::; S
i
m. The combined prior

probability that a test unit is alternative in the novel data collection based on the information in the existing data sets is
de�ned as


(combined prior)
j

def
= Pr

�
H
(NDC)
j = 1 j Sij = sij ; i = 1; :::; k

�
:

Theorem 17 Suppose we have k existing data sets, and Si1; :::; S
i
m are the test statistic values or the ranks of the test statistic

values in the ith existing data set, i = 1; :::; k, where some Sij may be missing. Denote the number of alternative test units
in the ith existing data set as mi

1. Then we have that


(combined prior)
j =

P
(�1;:::;�k)2f0;1gk

hQk
i=1 Pr

�
Sij = s

i
j j H

(i)
j = �i

�i
Pr
�
H
(NDC)
j = 1;H

(i)
j = �i; i = 1; :::; k

�
P

(�1;:::;�k)2f0;1gk
hQk

i=1 Pr
�
Sij = s

i
j j H

(i)
j = �i

�i
Pr
�
H
(i)
j = �i; i = 1; :::; k

� (6)

where m1 and m0 is the number of alternative and null test units, respectively, in the novel data collection. Notation f0; 1gk
means all the 0-1 vectors of length k. Moreover,

�
(combined prior)
j =

P
(�1;:::;�k)2f0;1gk

hQk
i=1 Pr

�
Sij = s

i
j j H

(i)
j = �i

�i
Pr
�
H
(NDC)
j = 1;H

(i)
j = �i; i = 1; :::; k

�
P

(�1;:::;�k)2f0;1gk
hQk

i=1 Pr
�
Sij = s

i
j j H

(i)
j = �i

�i
Pr
�
H
(NDC)
j = 0;H

(i)
j = �i; i = 1; :::; k

� ; (7)

where �(combined prior)j := 
(combined prior)
j =

�
1� (combined prior)j

�
.

6
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Proof. We have that

(combined prior)
j

def
= Pr

�
H
(NDC)
j = 1 j Sij = sij ; i = 1; :::; k

�
�
=X

(�1;:::;�k)2f0;1gk
Pr
�
H
(NDC)
j = 1 j H(i)

j = �i; i = 1; :::; k
�
Pr
�
H
(i)
j = �i; i = 1; :::; k j Sij = sij ; i = 1; :::; k

�
=

X
(�1;:::;�k)2f0;1gk

n
Pr
�
H
(NDC)
j = 1 j H(i)

j = �i; i = 1; :::; k
�

Pr
�
Sij = s

i
j ; i = 1; :::; k j H

(i)
j = �i; i = 1; :::; k

�
Pr
�
H
(i)
j = �i; i = 1; :::; k

�
P

(�1;:::;�k)2f0;1gk Pr
�
Sij = s

i
j ; i = 1; :::; k j H

(i)
j = �i; i = 1; :::; k

�
Pr
�
H
(i)
j = �i; i = 1; :::; k

�
9=; =

n
Pr
�
H
(NDC)
j = 1 j H(i)

j = �i; i = 1; :::; k
�
Pr
�
H
(i)
j = �i; i = 1; :::; k

�
= Pr

�
H
(NDC)
j = 1; H

(i)
j = �i; i = 1; :::; k

�o
=

X
(�1;:::;�k)2f0;1gk

Pr
�
Sij = s

i
j ; i = 1; :::; k j H

(i)
j = �i; i = 1; :::; k

�
Pr
�
H
(NDC)
j = 1; H

(i)
j = �i; i = 1; :::; k

�
P

(�1;:::;�k)2f0;1gk Pr
�
Sij = s

i
j ; i = 1; :::; k j H

(i)
j = �i; i = 1; :::; k

�
Pr
�
H
(i)
j = �i; i = 1; :::; k

� =
P

(�1;:::;�k)2f0;1gk
hQk

i=1 Pr
�
Sij = s

i
j j H

(i)
j = �i

�i
Pr
�
H
(NDC)
j = 1; H

(i)
j = �i; i = 1; :::; k

�
P

(�1;:::;�k)2f0;1gk
hQk

i=1 Pr
�
Sij = s

i
j j H

(i)
j = �i

�i
Pr
�
H
(i)
j = �i; i = 1; :::; k

� :

At � we used that
Pr (B j C) =

P
i Pr (B j Ai; C) Pr (Ai j C)

if Ai, i = 1; 2::: is a partition of the probability space. Moreover, we used the reasonable assumption that

Pr
�
H
(NDC)
j = 1 j H(i)

j = �i; S
i
j = s

i
j ; i = 1; :::; k

�
= Pr

�
H
(NDC)
j = 1 j H(i)

j = �i; i = 1; :::; k
�
.

As it is unknown in practice how the sets of alternative test units in the existing data sets and novel data collection overlap,

the probabilities Pr
�
H
(i)
j = �i; i = 1; :::; k

�
and Pr

�
H
(NDC)
j = 1; H

(i)
j = �i; i = 1; :::; k

�
in (6) are unknown. Therefore, we

need to use some mild assumptions to provide some practically useful and su¢ ciently accurate methods to combine prior
probabilities from several existing data sets.

Theorem 18 Suppose we have k existing data sets. Suppose that

Pr
�
H
(i)
j = �i; i = 1; :::; k j H(NDC)

j = 1
�
=
Qk
i=1 Pr

�
H
(i)
j = �i j H(NDC)

j = 1
�
a
Pk

t=1(1��t)

Pr
�
H
(i)
j = �i; i = 1; :::; k j H(NDC)

j = 0
�
=
Qk
i=1 Pr

�
H
(i)
j = �i j H(NDC)

j = 0
�
b
Pk

t=1�t ;
(8)

hold for every (�1; :::; �k) 2 f0; 1gk, where 0 � a; b � 1 and we de�ne 00 = 1. Then

�
(combined prior)
j =

�
m0

m1

�k�1 kY
i=1


(i)
j �

(i) +
�
1� (i)j

�
�(i)a


(i)
j

�
1� �(i)

�
b+

�
1� (i)j

� �
1� �(i)

� =
�
m0

m1

�k�1 kY
i=1

�i (j)� (1� a)
�
1� (i)j

�
�(i)

1� �i (j)� (i)j (1� b)
�
1� �(i)

� ; (9)
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where m1 is the number of alternative test units in the novel data collection, m0 = m�m1,

�(i) = Pr
�
H
(NDC)
j = 1 j H(i)

j = 1
�

�(i) = Pr
�
H
(NDC)
j = 1 j H(i)

j = 0
�

for i = 1; :::; k,

�i (j) = �(i)
(i)
j + �(i)

�
1� (i)j

�
is the prior probability that test unit j is alternative in the NDC based on the ith EDS (see (1)), and (i)j is the probability
that test unit j is alternative the ith EDS, i.e.


(i)
j = Pr

�
H
(i)
j = 1 j Sij = sij

�
=

Pr
�
Sij = s

i
j j H

(i)
j = 1

�
Pr
�
H
(i)
j = 1

�
Pr
�
Sij = s

i
j j H

(i)
j = 0

�
Pr
�
H
(i)
j = 0

�
+ Pr

�
Sij = s

i
j j H

(i)
j = 1

�
Pr
�
H
(i)
j = 1

� ;
where Si1; :::; S

i
m are the test statistic values or the ranks of the test statistic values in the ith existing data set, i = 1; :::; k.

Proof. Applying criterion in (8) for the formula in (7) we obtain that

�
(combined prior)
j =

P
(�1;:::;�k)2f0;1gk

hQk
i=1 Pr

�
Sij = s

i
j j H

(i)
j = �i

�i
Pr
�
H
(NDC)
j = 1;H

(i)
j = �i; i = 1; :::; k

�
P

(�1;:::;�k)2f0;1gk
hQk

i=1 Pr
�
Sij = s

i
j j H

(i)
j = �i

�i
Pr
�
H
(NDC)
j = 0;H

(i)
j = �i; i = 1; :::; k

� =
P

(�1;:::;�k)2f0;1gk
hQk

i=1 Pr
�
Sij = s

i
j j H

(i)
j = �i

�i
Pr
�
H
(i)
j = �i; i = 1; :::; k j H(NDC)

j = 1
�
Pr
�
H
(NDC)
j = 1

�
P

(�1;:::;�k)2f0;1gk
hQk

i=1 Pr
�
Sij = s

i
j j H

(i)
j = �i

�i
Pr
�
H
(i)
j = �i; i = 1; :::; k j H(NDC)

j = 0
�
Pr
�
H
(NDC)
j = 0

� =
Pr
�
H
(NDC)
j = 1

�
Pr
�
H
(NDC)
j = 0

�P(�1;:::;�k)2f0;1gk
hQk

i=1 Pr
�
Sij = s

i
j j H

(i)
j = �i

�iQk
i=1 Pr

�
H
(i)
j = �i j H(NDC)

j = 1
�
a
Pk

t=1(1��t)P
(�1;:::;�k)2f0;1gk

hQk
i=1 Pr

�
Sij = s

i
j j H

(i)
j = �i

�iQk
i=1 Pr

�
H
(i)
j = �i j H(NDC)

j = 0
�
b
Pk

t=1�t

=

Pr
�
H
(NDC)
j = 1

�
Pr
�
H
(NDC)
j = 0

�
kY
i=1

Pr
�
Sij = s

i
j j H

(i)
j = 1

�
Pr
�
H
(i)
j = 1 j H(NDC)

j = 1
�
+ Pr

�
Sij = s

i
j j H

(i)
j = 0

�
Pr
�
H
(i)
j = 0 j H(NDC)

j = 1
�
a

Pr
�
Sij = s

i
j j H

(i)
j = 1

�
Pr
�
H
(i)
j = 1 j H(NDC)

j = 0
�
b+ Pr

�
Sij = s

i
j j H

(i)
j = 0

�
Pr
�
H
(i)
j = 0 j H(NDC)

j = 0
� =

24Pr
�
H
(NDC)
j = 0

�
Pr
�
H
(NDC)
j = 1

�
35k�1

kY
i=1

Pr
�
Sij = s

i
j j H

(i)
j = 1

�
Pr
�
H
(i)
j = 1;H

(NDC)
j = 1

�
+ Pr

�
Sij = s

i
j j H

(i)
j = 0

�
Pr
�
H
(i)
j = 0;H

(NDC)
j = 1

�
a

Pr
�
Sij = s

i
j j H

(i)
j = 1

�
Pr
�
H
(i)
j = 1;H

(NDC)
j = 0

�
b+ Pr

�
Sij = s

i
j j H

(i)
j = 0

�
Pr
�
H
(i)
j = 0;H

(NDC)
j = 0

� =
24Pr

�
H
(NDC)
j = 0

�
Pr
�
H
(NDC)
j = 1

�
35k�1 kY

i=1

Pr
�
Sij = s

i
j j H

(i)
j = 1

�
Pr
�
H
(i)
j = 1

�
Pr
�
H
(NDC)
j = 1 j H(i)

j = 1
�
+

Pr
�
Sij = s

i
j j H

(i)
j = 1

�
Pr
�
H
(i)
j = 1

�
Pr
�
H
(NDC)
j = 0 j H(i)

j = 1
�
b+
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+Pr
�
Sij = s

i
j j H

(i)
j = 0

�
Pr
�
H
(i)
j = 0

�
Pr
�
H
(NDC)
j = 1 j H(i)

j = 0
�
a

+Pr
�
Sij = s

i
j j H

(i)
j = 0

�
Pr
�
H
(i)
j = 0

�
Pr
�
H
(NDC)
j = 0 j H(i)

j = 0
� =

24Pr
�
H
(NDC)
j = 0

�
Pr
�
H
(NDC)
j = 1

�
35k�1

kY
i=1

Pr
�
Sij = s

i
j j H

(i)
j = 1

�
Pr
�
H
(i)
j = 1

�
�(i) + Pr

�
Sij = s

i
j j H

(i)
j = 0

�
Pr
�
H
(i)
j = 0

�
�(i)a

Pr
�
Sij = s

i
j j H

(i)
j = 1

�
Pr
�
H
(i)
j = 1

� �
1� �(i)

�
b+ Pr

�
Sij = s

i
j j H

(i)
j = 0

�
Pr
�
H
(i)
j = 0

� �
1� �(i)

� =
8<:(i)j =

Pr
�
Sij = s

i
j j H

(i)
j = 1

�
Pr
�
H
(i)
j = 1

�
Pr
�
Sij = s

i
j j H

(i)
j = 0

�
Pr
�
H
(i)
j = 0

�
+ Pr

�
Sij = s

i
j j H

(i)
j = 1

�
Pr
�
H
(i)
j = 1

�
9=; =

24Pr
�
H
(NDC)
j = 0

�
Pr
�
H
(NDC)
j = 1

�
35k�1 kY

i=1


(i)
j �

(i) +
�
1� (i)j

�
�(i)a


(i)
j

�
1� �(i)

�
b+

�
1� (i)j

� �
1� �(i)

� = �m0

m1

�k�1 kY
i=1


(i)
j �

(i) +
�
1� (i)j

�
�(i)a


(i)
j

�
1� �(i)

�
b+

�
1� (i)j

� �
1� �(i)

� ;
which proves the �rst equality in (9). Moreover, we have that

�
m0

m1

�k�1 kY
i=1


(i)
j �

(i) +
�
1� (i)j

�
�(i)a


(i)
j

�
1� �(i)

�
b+

�
1� (i)j

� �
1� �(i)

� =
�
m0

m1

�k�1 kY
i=1


(i)
j �

(i) +
�
1� (i)j

�
�(i)a

1�
n

(i)
j � (i)j b+

�

(i)
j �

(i)b+
�
1� (i)j

�
�(i)
�o =

�
m0

m1

�k�1 kY
i=1


(i)
j �

(i) +
�
1� (i)j

�
�(i)a

1�
n

(i)
j

�
1� b+ �(i)b

�
+
�
1� (i)j

�
�(i)
o =

�
m0

m1

�k�1 kY
i=1


(i)
j �

(i) +
�
1� (i)j

�
�(i) � (1� a)

�
1� (i)j

�
�(i)

1�
n

(i)
j

�
1� b+ �(i)b� �(i)

�
+ 

(i)
j �

(i) +
�
1� (i)j

�
�(i)
o =

�
m0

m1

�k�1 kY
i=1


(i)
j �

(i) +
�
1� (i)j

�
�(i) � (1� a)

�
1� (i)j

�
�(i)

1�
n

(i)
j (1� b)

�
1� �(i)

�
+ 

(i)
j �

(i) +
�
1� (i)j

�
�(i)
o =

n
�i (j) = �(i)

(i)
j + �(i)

�
1� (i)j

�o
=

�
m0

m1

�k�1 kY
i=1

�i (j)� (1� a)
�
1� (i)j

�
�(i)

1�
n

(i)
j (1� b)

�
1� �(i)

�
+ �i (j)

o =
�
m0

m1

�k�1 kY
i=1

�i (j)� (1� a)
�
1� (i)j

�
�(i)

1� �i (j)� (i)j (1� b)
�
1� �(i)

� ;
which proves the second equality in (9).
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Corollary 19 Suppose we have k existing data sets. Suppose that

Pr
�
H
(i)
j = �i; i = 1; :::; k j H(NDC)

j = 1
�
=
Qk
i=1 Pr

�
H
(i)
j = �i j H(NDC)

j = 1
�

Pr
�
H
(i)
j = �i; i = 1; :::; k j H(NDC)

j = 0
�
=
Qk
i=1 Pr

�
H
(i)
j = �i j H(NDC)

j = 0
�
;

(10)

for every (�1; :::; �k) 2 f0; 1gk, then

�
(combined prior)
j =

�
m0

m1

�k�1 kY
i=1

�i (j)

1� �i (j) =
m1

m0

kY
i=1

m0
�i (j)

m1 (1� �i (j))
; (11)

where m1 is the number of alternative test units in the novel data collection, m0 = m�m1, and �i (j) is the prior probability
that test unit j is alternative in the NDC based on the ith EDS.

Proof. The condition in (10) is equivalent to (8) with a = b = 1. Therefore, substituting a = b = 1 in (9) we obtain that

�
(combined prior)
j =

�
m0

m1

�k�1 kY
i=1

�i (j)

1� �i (j) =
m1

m0

kY
i=1

m0
�i (j)

m1 (1� �i (j))
:

Corollary 20 If
H
(NDC)
j = 1, H

(1)
j = 1, :::, H

(k)
j = 1; (12)

then

�
(combined prior)
j =

�
m0

m1

�k�1 kY
i=1

�i (j)

1� �i (j) =
m1

m0

kY
i=1

m0
�i (j)

m1 (1� �i (j))
;

where m1 is the number of alternative test units in the novel data collection, m0 = m�m1, and �i (j) is the prior probability
that test unit j is alternative in the NDC based on the ith EDS.

Proof. First we need to see that the condition in (12) is equivalent to (8) for a = b = 0. Indeed, substituting a = b = 0
in (8) we obtain that

Pr
�
H
(i)
j = �i; i = 1; :::; k j H(NDC)

j = 1
�
=

( Qk
i=1 Pr

�
H
(i)
j = 1 j H(NDC)

j = 1
�

if �i = 1 for every i

0 otherwise

and

Pr
�
H
(i)
j = �i; i = 1; :::; k j H(NDC)

j = 0
�
=

( Qk
i=1 Pr

�
H
(i)
j = 0 j H(NDC)

j = 0
�

if �i = 0 for every i

0 otherwise.

As
1 =

P
(�1;:::;�k)2f0;1gk Pr

�
H
(i)
j = �i; i = 1; :::; k j H(NDC)

j = 1
�
=
Qk
i=1 Pr

�
H
(i)
j = 1 j H(NDC)

j = 1
�
;

we have that Pr
�
H
(i)
j = 1 j H(NDC)

j = 1
�
= 1 for every i, hence H(NDC)

j = 1 =) H
(i)
j = 1 for every i. Similarly as

1 =
P

(�1;:::;�k)2f0;1gk
Qk
i=1 Pr

�
H
(i)
j = �i j H(NDC)

j = 0
�
=
Qk
i=1 Pr

�
H
(i)
j = 0 j H(NDC)

j = 0
�
;

we have that Pr
�
H
(i)
j = 0 j H(NDC)

j = 0
�
= 1 for every i, hence H(NDC)

j = 0 =) H
(i)
j = 0 for every i. These two together

implies H(NDC)
j = 1, H

(i)
j = 1 for every i.
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Also the condition in (12) implies �(i) = Pr
�
H
(NDC)
j = 1 j H(i)

j = 1
�
= 1 and �(i) = Pr

�
H
(NDC)
j = 1 j H(i)

j = 0
�
= 0.

Therefore, substituting a = b = 0, �(i) = 1 and �(i) = 0 in (9) we obtain that

�
(combined prior)
j =

�
m0

m1

�k�1 kY
i=1


(i)
j �

(i) +
�
1� (i)j

�
�(i)a


(i)
j

�
1� �(i)

�
b+

�
1� (i)j

� �
1� �(i)

� = �m0

m1

�k�1 kY
i=1


(i)
j�

1� (i)j
� = �m0

m1

�k�1 kY
i=1

�i (j)

1� �i (j) ;

where the last equation holds because �i (j) = �(i)(i)j + �(i)
�
1� (i)j

�
= 

(i)
j , as �

(i) = 1 and �(i) = 0. This completes the

proof of the Corollary.

Remark 21 Note that the conditions in (10) and (12) represent the two extrema of (8), and in both cases the combined
odds can be calculated as

�
(combined prior)
j =

�
m0

m1

�k�1 kY
i=1

�i (j)

1� �i (j) =
m1

m0

kY
i=1

m0
�i (j)

m1 (1� �i (j))
=
m1

m0

kY
i=1

m0

m1
��i (j) (13)

where m1 is the number of alternative test units in the novel data collection, m0 = m�m1, �i (j) is the prior probability that
test unit j is alternative in the NDC based on the ith EDS, and the odd ��i (j) is de�ned as ��i (j) = �i (j) =

�
1� �i (j)

�
.

Moreover, the terms in the product in (9) can be approximated with ��i (j) even if (10) and (12) do not hold, suggesting that
the formula in (13) is reasonable even for the general case. For the general formula (6) the structure of how the sets of test
units alternative in the EDSs as well as the set of test units alternative in the NDC overlap each other need to be known,
which may be di¢ cult to estimate.

Remark 22 Recall that from (1) we have that

�i (j) = �(i)
(i)
j + �(i)

�
1� (i)j

�
;

where
�(i) = Pr

�
H
(NDC)
j = 1 j H(i)

j = 1
�

�(i) = Pr
�
H
(NDC)
j = 1 j H(i)

j = 0
�

for i = 1; :::; k,(see (1)), and (i)j is the probability that test unit j is alternative the ith EDS, i.e.


(i)
j = Pr

�
H
(i)
j = 1 j Sij = sij

�
=

Pr
�
Sij = s

i
j j H

(i)
j = 1

�
Pr
�
H
(i)
j = 1

�
Pr
�
Sij = s

i
j j H

(i)
j = 0

�
Pr
�
H
(i)
j = 0

�
+ Pr

�
Sij = s

i
j j H

(i)
j = 1

�
Pr
�
H
(i)
j = 1

� ;
where Si1; :::; S

i
m are the test statistic values or the ranks of the test statistic values in the ith existing data set, i = 1; :::; k.

Step 3: Computing c`TDR for each test unit

The compound `TDR (c`TDR) of a test unit is de�ned as the posterior probability that the test unit is alternative in
the novel data collection based on the information we have from the existing data sets and the novel data collection. The
mathematical de�nition of the c`TDR of a test unit is the following.
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De�nition 23 The compound `TDR (c`TDR) of test unit j is de�ned as

c`TDR(j) = Pr
�
H
(NDC)
j = 1 j T = tj ; S(i)j = s

(i)
j ; i = 1; :::; k

�
;

where tj is the observed test statistic value of test unit j in the novel data collection and S
(i)
j is the test statistic value or the

rank of the test statistic value of test unit j in the ith existing data set, i = 1; :::; k.

Claim 24 The c`TDR of a test unit can be calculated as

c`TDR(j) =

(combined prior)
j f1 (t)

f0 (t)
�
1� (combined prior)j

�
+ 

(combined prior)
j f1 (t)

=
�
(combined prior)
j f1 (tj)

f0 (tj) + �
(combined prior)
j f1 (tj)

; (14)

where f0 and f1 is the null and alternative p.d.f. in the novel data collection, respectively, 
(combined prior)
j is the combined

prior probability (from the existing data sets) that test unit j is alternative in the novel data collection, and �(combined prior)i =


(combined prior)
i =

�
1� (combined prior)i

�
.

Proof. We have that
c`TDR (j) = Pr

�
H
(NDC)
j = 1 j T = tj ; S = s

�
=

Pr
�
T = tj j H(NDC)

j = 1
�
Pr
�
H
(NDC)
j = 1 j S = s

�
Pr
�
T = tj j H(NDC)

j = 0
�
Pr
�
H
(NDC)
j = 0 j S = s

�
+ Pr

�
T = tj j H(NDC)

j = 1
�
Pr
�
H
(NDC)
j = 1 j S = s

� =

(combined prior)
j f1 (tj)

f0 (tj)
�
1� (combined prior)j

�
+ 

(combined prior)
j f1 (tj)

=
�
(combined prior)
j f1 (tj) =

f0 (tj) + �
(combined prior)
j f1 (tj)

:

The estimator of the c`TDR can be obtained by substituting �(combined prior)j , f0 (t) and f1 (t) and with their estimates
in (14).

1.2 Estimating the contributions

Theorem 25 Denote the number of test units that are both in the NDC and the existing data set as m. For a positive
integer M � m and real d � 0 we have that

E (Od;M ) = (F0 (d)� F1 (d))
X

j;rj�M
co (j) ; (15)

where

Od;M = Qd;M � M
m
m0(d)

and Qd;M and m0(d) are de�ned as

Qd;M = # fj : jtj j � d; rj �Mg and m0(d) = # fj : jtj j � dg ;

and co (j) denotes the contribution of test unit j.
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Proof. Denote the set of test units alternative in the EDS and the ones alternative in the NDC as E1 and N1, respectively.
Moreover, denote the set of test units that are null in the EDS and the ones null in the NDC as E0 and N0, respectively.
We have that

E (Qd;M \ E1 \N1) = moverlap
1 (1� F1 (d))

PM
i=1

i
m1

=

�
�1 =

1

M

PM
i=1i

�
= moverlap

1 (1� F1 (d))
M

m1
�1;

E (Qd;M \ E1 \N0) =
�
m1 �moverlap

1

�
(1� F0 (d))

PM
i=1

i
m1

=
�
m1 �moverlap

1

�
(1� F0 (d))

M

m1
�1

E (Qd;M \ E0 \N1) =
�
m�
1 �m

overlap
1

�
(1� F1 (d))

PM
i=1

1� i
m0

=�
m�
1 �m

overlap
1

�
(1� F1 (d))

1

m0

�
M �

PM
i=1i

�
=
�
m�
1 �m

overlap
1

�
(1� F1 (d))

1

m0
(M �M�1) =�

m�
1 �m

overlap
1

�
(1� F1 (d))

M

m0
(1� �1) ;

E (Qd;M \ E0 \N0) =
�
m�m1 �m�

1 +m
overlap
1

�
(1� F0 (d))

PM
i=1

1� i
m0

=�
m�m1 �m�

1 +m
overlap
1

�
(1� F0 (d))

M

m0
(1� �1) :

Therefore, we have that

E (Qd;M ) = E (Qd;M \ E1 \N1 +Qd;M \ E1 \N0 +Qd;M \ E0 \N1 +Qd;M \ E0 \N0) =

moverlap
1 (1� F1 (d))

M

m1
�1 +

�
m1 �moverlap

1

�
(1� F0 (d))

M

m1
�1+�

m�
1 �m

overlap
1

�
(1� F1 (d))

M

m0
(1� �1) +

�
m�m1 �m�

1 +m
overlap
1

�
(1� F0 (d))

M

m0
(1� �1) :

Moreover, we have that

E

�
M

m
m0(d)

�
=
M

m
m�
1 (1� F1 (d)) +

M

m
(m�m�

1) (1� F0 (d)) :

Combining the above two we obtain

E

�
Qd;M � M

m
m0(d)

�
=

moverlap
1 (1� F1 (d))

M

m1
�1 +

�
m1 �moverlap

1

�
(1� F0 (d))

M

m1
�1+�

m�
1 �m

overlap
1

�
(1� F1 (d))

M

m0
(1� �1) +

�
m�m1 �m�

1 +m
overlap
1

�
(1� F0 (d))

M

m0
(1� �1)�

M

m
m�
1 (1� F1 (d))�

M

m
(m�m�

1) (1� F0 (d)) =

(1� F1 (d))
�
moverlap
1

M

m1
�1 +

�
m�
1 �m

overlap
1

� M
m0

(1� �1)�
M

m
m�
1

�
+

(1� F0 (d))
��
m1 �moverlap

1

� M
m1
�1 +

�
m�m1 �m�

1 +m
overlap
1

� M
m0

(1� �1)�
M

m
(m�m�

1)

�
=

(1� F1 (d))M
��
moverlap
1

1

m1
�
�
m�
1 �m

overlap
1

� 1

m0

�
�1 +

�
m�
1 �m

overlap
1

� 1

m0
� 1

m
m�
1

�
+
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(1� F0 (d))M
���

m1 �moverlap
1

� 1

m1
�
�
m�m1 �m�

1 +m
overlap
1

� 1

m0

�
�1+�

m�m1 �m�
1 +m

overlap
1

� 1

m0
� 1

m
(m�m�

1)

�
=

(1� F1 (d))M
(�

moverlap
1

m

m1m0
� m

�
1

m0

�
�1 +

m�
1m1

mm0
� m

overlap
1

m0

)
+

(1� F0 (d))M
(��

m1 �moverlap
1

� m

m1m0
� (m�m

�
1)

m0

�
�1 + (m�m�

1)
m1

mm0
� m1 �moverlap

1

m0

)
=

(1� F1 (d))
M

m0

��
moverlap
1

m

m1
�m�

1

�
�1 +

m�
1m1

m
�moverlap

1

�
+

(1� F0 (d))
M

m0

���
m1 �moverlap

1

� m
m1

� (m�m�
1)

�
�1 + (m�m�

1)
m1

m
�m1 +m

overlap
1

�
=

(1� F1 (d))
M

m0

��
moverlap
1

m

m1
�m�

1

�
�1 +

m�
1m1

m
�moverlap

1

�
+

(1� F0 (d))
M

m0

��
m�moverlap

1

m

m1
�m+m�

1

�
�1 +m1 �m�

1

m1

m
�m1 +m

overlap
1

�
=

(1� F1 (d))
M

m0

��
moverlap
1

m

m1
�m�

1

�
�1 +

m�
1m1

m
�moverlap

1

�
+

(1� F0 (d))
M

m0

��
m�
1 �m

overlap
1

m

m1

�
�1 �m�

1

m1

m
+moverlap

1

�
=

(F0 (d)� F1 (d))
M

m0

��
moverlap
1

m

m1
�m�

1

�
�1 +

m�
1m1

m
�moverlap

1

�
=

(F0 (d)� F1 (d))
M

m0

( 
moverlap
1

m1
� m

�
1

m

!
m�1 +

 
m�
1

m
� m

overlap
1

m1

!
m1

)
=

(F0 (d)� F1 (d))
M

m0

 
moverlap
1

m1
� m

�
1

m

!
fm�1 �m1g =

(F0 (d)� F1 (d)) (mM�1 �Mm1)

"
1

m0

 
moverlap
1

m1
� m

�
1

m

!#
=

�
�1 =

1

M

XM

j=1
 (j)

�

(F0 (d)� F1 (d))
XM

j=1
(m (j)�m1)

"
1

m0

 
moverlap
1

m1
� m

�
1

m

!#
= (F0 (d)� F1 (d))

XM

j=1
co (j) ;

which concludes the proof of the theorem.
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1.3 Smoother

In this section we present a method that smooths the M ! gCO (M) to a concave curve. In particular, we will choose the
best �tting curve from the family of all M ! CO (M) curves that can be attained by a suitable selection of parameters. We
emphasize that our goal is not to �nd accurate estimates of the parameters, but to estimate the contributions accurately by
a curve-�tting method. As a matter of fact, we may obtain similar curves by in�nite many choices of parameter sets, thus,
it is possible to approximate the true M ! CO (M) curve very well while the parameters of the approximating curve may
be far from the real parameter values.
From (15) and the de�nition of gCO (M) and the contribution we have that

E
�gCO (M)� = X

j;rj�M
co (j) =

m�

m0

X
j;rj�M

�
 (rj ;m1;	)�

m1

m

�
; (16)

where the term on the right-hand side depends on three unknown parameters, �, 	 and m1, as m0 = m�m1. We will use
the approximation

(r;m1;	) �
m1em1
(r; em1;	) (17)

where em1 is an arbitrary choice, say our guess for the number of alternatives in the existing data set. By applying approxi-
mation (17) to the term on the right-hand side in (16), we obtain

E
�gCO (M)� � mem1

�m1

m0

X
j;rj�M

�
(r; em1;	)�

em1

m

�
: (18)

where the term on the right-hand side depends on only two unknown parameters, �� = �m1=m0 and 	, thus, it will be
denoted as CO (M ;��;	). By a curve-�tting method, we �nd �� and 	 that provides the best �tting curve toM !gCO (M)
from the family of curves fM ! CO (M ;��;	) ; 0 < ��;	g. Finally, CO

�
M ;��;	

�
will be our estimate of the cumulative

contribution, CO (M) =
PM

j=1co (j). In the course of the algorithm, the term (r; em1;	) is computationally evaluated by
the method described in section 1.3. In principle, we could use (20) or (21) to compute s, however, the numerical integration
required is computationally very intensive, especially for large em1, say 1,000 or larger. We remark that �� and 	 are not
meant to be the estimator of �� and 	, as a matter of fact they may be far from the real �� and 	. Note that this is not
a problem as long as CO

�
M ;��;	

�
is an accurate estimator of the cumulative contribution. We remark that we have an

estimator of 	, which plugged in (20) provides the estimator c�� by a curve-�tting method. From (4) we have that mc�� is a
tight lower bound estimate of moverlap

1 .

Computation of the rank-based probability that a test unit has an e¤ect in the existing data set, 

In this subsection �rst we present an algorithm that computes the probability that a test unit is alternative in a data set, ,
utilizing the rank of the test statistic of the test unit in the data set. For completeness we will also present the formulas of
, although using the algorithm is computationally much faster and not less accurate than applying numerical integrals to
evaluate the formulas. We assume that the c.d.f. of the test statistic values is F0 and F	 under the null and the alternative
hypothesis, respectively. First we deal with the case when there are no ties in the ranking, then we deal with the case when
there are ties in the ranking. Ties occur when the test units are sorted in a couple of categories, and our prior information
does not distinguish between test units in the same category. For instance, we have only two categories if we have a candidate
gene list, the test units that are on the list and those that are not on the list.
More formally, suppose that X1; :::; Xm0

are identically distributed random variables with c.d.f. F0, and Y1; :::; Ym1
are

identically distributed random variables with F	. Suppose that X1; :::; Xm0
; Y1; :::; Ym1

are independent, and denote the rth
largest random variable among them as Zr. The probability that Zr is an alternative will be denoted as (r;m1;	), or
shortly r. In this section we give an algorithm and formulas in order to compute r.
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Algorithmic computation of the probability that a test unit is alternative in the a data set based on its rank,
 Based on the following theorem,

Pk
i=1i can be computed algorithmically, from which is can readily be calculated.

Theorem 26 For an integer k = 1; :::;m we have thatPk
i=1i =

�
a if k < m
m1 if k = m;

where a is the solution of the equation

m1M

�
k � a
m0

�
= a;

where M (p) denotes the c.d.f. of the alternative p-values, i.e. M (p) = 1� F1
�
F�10 (1� p)

�
. Moreover,

a 2 (max (k �m0; 0) ;min (k;m1)).

Proof. For k = m, the statement of the theorem follows from (2). Therefore, for the rest of the proof we can assume
that k < m. By de�nition of i, we have thatPk

i=1i = E (#alternatives in the top k test statistic values) = E
�
#
�
p : p 2 Palt; p <

k � a
m0

��
; (19)

where Palt denotes the set of p-values of true alternative test units and a is selected in such a way that

a = E
�
#
�
p : p 2 Palt; p < k�a

m0

��
. The equation in (2) holds because the expected number of alternative and null p-values

smaller than k�a
m0

is a and k � a, respectively. Also, as we have that

E

�
#
�
p : p 2 Palt; p <

k � a
m0

��
= m1 Pr

�
p <

k � a
m0

j p 2 Palt
�
= m1M

�
k � a
m0

�
;

where M (p) denotes the c.d.f. of alternative p-values. In order to obtain
Pk

i=1i we need to solve

m1M

�
k � a
m0

�
= a

for a.
From (2) we have that

0 < a =
Pk

i=1i < m1;

for k = 1; :::;m�1, and, clearly a =
Pk

i=1i <
Pk

i=11 = k, thus, a < min (k;m1). Asm1 > a = E
�
#
�
p : p 2 Palt; p < k�a

m0

��
,

we have that k�a
m0

< 1; which implies k �m0 < a. As 0 < a, we have that max (k �m0; 0) < a, which completes the proof
of the theorem.

Mathematical formulas of the probability that a test unit is alternative in the a data set based on its rank,
 Now we give formulas of  for the case when there are ties,and the case when there are no ties among the ranks.

Theorem 27 Suppose that X1; :::; Xm0 are i.i.d. random variables with F0 and Y1; :::; Ym1 are i.i.d random variables with
F	. Suppose that X1; :::; Xm0

; Y1; :::; Ym1
are independent, and denote the rth largest random variable among them as Zr.

Then the probability that Zr is an alternative can be calculated as

(r;m1;	) := Pr (Zr is alternative) =

m1

Z 1

�1

�Pmin(m1�1;r�1)
j=max(0;r�m0�1)

�
m1 � 1
j

�
(1� F	 (x))j Fm1�1�j

	 (x)

�
m0

r � 1� j

�
(1� F0 (x))r�1�j Fm0�(r�1�j)

0 (x)

�
f	 (x) dx:

(20)
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To prove the theorem we need the following lemma.

Lemma 28 The marginal density function of Zr intersected with the event that Zr is alternative can be obtained as

gr (x) := Pr (Zr = x; Zr is alternative) =

m1f	 (x)
Pmin(m1�1;r�1)

i=max(0;r�m0�1)

�
m1 � 1
i

�
(1� F	 (x))i Fm1�1�i

	 (x)

�
m0

r � 1� i

�
(1� F0 (x))r�1�i Fm0�(r�1�i)

0 (x) :

Proof.

gr (x) = lim
�!0

Gr (x+ �)�Gr (x)
�

= lim
�!0

Pr
�
Z(r) 2 (x; x+ �)

�
�

=

lim
�!0

Pr (# fZj < xg = n� r; Pr (Y 2 (x; x+ �)) ;# fZj > x+ �g = r � 1)
�

=

lim
�!0

m1 Pr (Y 2 (x; x+ �))
�

Pmin(m1�1;r�1)
i=max(0;r�m0�1) Pr (f# fYj > x+ �g = i; # fYj < xg = m1 � 1� ig\

f# fXj > x+ �g = r � 1� i; # fXj < xg = m0 � (r � 1� i)g) =

lim
�!0

m1 Pr (Y 2 (x; x+ �))
�

Pmin(m1�1;r�1)
i=max(0;r�m0�1)

�
m1 � 1
i

�
(1� F	 (x))i Fm1�1�i

	 (x)

�
m0

r � 1� i

�
(1� F0 (x))r�1�i Fm0�(r�1�i)

0 (x) =

m1f	 (x)
Pmin(m1�1;r�1)

i=max(0;r�m0�1)

�
m1 � 1
i

�
(1� F	 (x))i Fm1�1�i (x)

�
m0

r � 1� i

�
(1� F0 (x))r�1�i Fm0�(r�1�i)

0 (x) :

Proof of the Theorem. Utilizing the lemma we have that

r = Pr (Zr is alternative) =
Z 1

�1
Pr (Zr = x; Zr is alternative) dx =

Z 1

�1
gr (x) dx =

m1

Z 1

�1

�Pmin(m1�1;r�1)
j=max(0;r�m0�1)

�
m1 � 1
j

�
(1� F	 (x))j Fm1�1�j

	 (x)

�
m0

r � 1� j

�
(1� F0 (x))r�1�j Fm0�(r�1�j)

0 (x)

�
f	 (x) dx;

which completes the proof of the theorem.

Theorem 29 With the reasonable assumption that m1 � m0 we have that

Pr (Zi is alternative j i � R) =

1

R
m1

Z 1

�1

nPmin(m1;R)�1
j=0 b (j;m1 � 1; 1� F	 (x))B (min (m0; R� 1� j) ;m0; 1� F0 (x))

o
f	 (x) dx; (21)

where b (x; n; p) and B (x; n; p) are the binomial density and the distribution function values, respectively, at point x.

Proof.

Pr (Zi is alternative j i � R) =
PR

r=1r
R

=

1

R

PR
r=1m1

Z 1

�1

�Pmin(m1�1;r�1)
j=max(0;r�m0�1)

�
m1 � 1
j

�
(1� F	 (x))j Fm1�1�j

	 (x)

�
m0

r � 1� j

�
(1� F0 (x))r�1�j Fm0�(r�1�j)

0 (x)

�
f	 (x) dx =

17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.15.298505doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.298505


1

R

PR
r=1m1

Z 1

�1
:::dx =

1

R

Pmin(m0;R)
r=1 m1

Z 1

�1
:::dx+ � (R � m0 + 1)

1

R

PR
r=m0+1

m1

Z 1

�1
:::dx = �; (22)

where � (A) is the indicator function, i.e. � (A) = 1 if A holds, and � (A) = 0 otherwise. First we calculate the �rst sum.
The rationale is that for r � min (m0; R) we have max(0; r �m0 � 1) = 0.

1

R

Pmin(m0;R)
r=1

m1

Z 1

�1

�Pmin(m1�1;r�1)
j=max(0;r�m0�1)

�
m1 � 1
j

�
(1� F	 (x))j Fm1�1�j

	 (x)

�
m0

r � 1� j

�
(1� F0 (x))r�1�j Fm0�(r�1�j)

0 (x)

�
f	 (x) dx =

1

R

Pmin(m0;R)
r=1

m1

Z 1

�1

�Pmin(m1�1;r�1)
j=0

�
m1 � 1
j

�
(1� F	 (x))j Fm1�1�j

	 (x)

�
m0

r � 1� j

�
(1� F0 (x))r�1�j Fm0�(r�1�j)

0 (x)

�
f	 (x) dx = �

for the change of the sumPR
r=1

Pmin(m1�1;r�1)
j=0 =

Pmin(m1;R)
r=1

Pr�1
j=0 + � (R > m1)

PR
r=m1+1

Pm1�1
j=0 =Pmin(m0;R)

r=1

Pmin(m1�1;r�1)
j=0 =

Pmin(m1;R)
r=1

Pr�1
j=0 + � (R > m1)

Pmin(m0;R)
r=m1+1

Pm1�1
j=0 =( PR

r=1

Pr�1
j=0 if R � m1Pm1

r=1

Pr�1
j=0 +

Pmin(m0;R)
r=m1+1

Pm1�1
j=0 if R > m1

= fsum changeg =

( PR�1
j=0

PR
r=j+1 if R � m1Pm1�1

j=0

Pm1

r=j+1 +
Pm1�1

j=0

Pmin(m0;R)
r=m1+1

if R > m1

=

( PR�1
j=0

PR
r=j+1 if R � m1Pm1�1

j=0

Pmin(m0;R)
r=j+1 if R > m1

= fm1 � m0g =
Pmin(m1;R)�1

j=0

Pmin(m0;R)
r=j+1

� = 1

R
m1

Z 1

�1

�Pmin(m1;R)�1
j=0

Pmin(m0;R)
r=j+1

�
m1 � 1
j

�
(1� F	 (x))j Fm1�1�j

	 (x)

�
m0

r � 1� j

�
(1� F0 (x))r�1�j Fm0�(r�1�j)

0 (x)

�
f	 (x) dx =

1

R
m1

Z 1

�1

�Pmin(m1;R)�1
j=0

�
m1 � 1
j

�
(1� F	 (x))j Fm1�1�j

	 (x)
Pmin(m0;R)

r=j+1

�
m0

r � 1� j

�
(1� F0 (x))r�1�j Fm0�(r�1�j)

0 (x)

�
f	 (x) dx = fs = r � 1� jg =

1

R
m1

Z 1

�1

�Pmin(m1;R)�1
j=0

�
m1 � 1
j

�
(1� F	 (x))j Fm1�1�j

	 (x)

�Pmin(m0;R)�1�j
s=0

�
m0

s

�
(1� F0 (x))s Fm0�s

0 (x)

��
f	 (x) dx =

1

R
m1

Z 1

0

nPmin(m1;R)�1
j=0 b (j;m1 � 1; 1� F	 (x))B (min (m0; R)� 1� j;m0; 1� F0 (x))

o
f	 (x) dx:

For the second sum in (22), as r � m0 + 1 implies max(0; r �m0 � 1) = r �m0 � 1, we have that

1

R

PR
r=m0+1

m1

Z 1

�1

�Pmin(m1�1;r�1)
j=max(0;r�m0�1)

�
m1 � 1
j

�
(1� F	 (x))j Fm1�1�j

	 (x)

�
m0

r � 1� j

�
(1� F0 (x))r�1�j Fm0�(r�1�j)

0 (x)

�
f	 (x) dx =
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1

R

PR
r=m0+1

m1

Z 1

�1

�Pmin(m1�1;r�1)
j=r�m0�1

�
m1 � 1
j

�
(1� F	 (x))j Fm1�1�j

	 (x)

�
m0

r � 1� j

�
(1� F0 (x))r�1�j Fm0�(r�1�j)

0 (x)

�
f	 (x) dx = �

for the change of the sum we use that m1 � m0PR
r=m0+1

Pmin(m1�1;r�1)
j=r�m0�1 =

PR
r=m0+1

Pm1�1
j=r�m0�1 = fsum changeg =

Pm1�1
j=0

Pmin(j+m0+1;R)
r=m0+1

� = 1

R
m1

Z 1

�1

�Pm1�1
j=0

Pmin(j+m0+1;R)
r=m0+1

�
m1 � 1
j

�
(1� F	 (x))j Fm1�1�j

	 (x)

�
m0

r � 1� j

�
(1� F0 (x))r�1�j Fm0�(r�1�j)

0 (x)

�
f	 (x) dx = fs = r �m0 � 1g =

1

R
m1

Z 1

�1

�Pm1�1
j=0

Pmin(j;R�m0�1)
s=0

�
m1 � 1
j

�
(1� F	 (x))j Fm1�1�j

	 (x)

�
m0

s+m0 � j

�
(1� F0 (x))s+m0�j F j�s0 (x)

�
f	 (x) dx =

1

R
m1

Z 1

�1

�Pm1�1
j=0

�
m1 � 1
j

�
(1� F	 (x))j Fm1�1�j

	 (x)

�Pmin(j;R�m0�1)
s=0

�
m0

s+m0 � j

�
(1� F0 (x))s+m0�j F j�s0 (x)

��
f	 (x) dx =

1

R
m1

Z 1

�1

nPm1�1
j=0 b (j;m1 � 1; 1� F	 (x)) [B (min (m0; R� 1� j) ;m0; 1� F0 (x))�B (m0 � j � 1;m0; 1� F0 (x))]

o
f	 (x) dx:

Putting the two sums together, from (22) we have that

1

R
m1

Z 1

0

nPmin(m1;R)�1
j=0 b (j;m1 � 1; 1� F	 (x))B (min (m0; R)� 1� j;m0; 1� F0 (x))

o
f	 (x) dx+

� (R � m0 + 1)
1

R
m1Z 1

�1

nPm1�1
j=0 b (j;m1 � 1; 1� F	 (x)) [B (min (m0; R� 1� j) ;m0; 1� F0 (x))�B (m0 � j � 1;m0; 1� F0 (x))]

o
f	 (x) dx:

If R � m0 + 1, then we have that

1

R
m1

Z 1

0

nPm1�1
j=0 b (j;m1 � 1; 1� F	 (x))B (m0 � 1� j;m0; 1� F0 (x))

o
f	 (x) dx+

1

R
m1

Z 1

�1

nPm1�1
j=0 b (j;m1 � 1; 1� F	 (x)) [B (min (m0; R� 1� j) ;m0; 1� F0 (x))�B (m0 � j � 1;m0; 1� F0 (x))]

o
f	 (x) dx =

1

R
m1

Z 1

�1

nPm1�1
j=0 b (j;m1 � 1; 1� F	 (x))B (min (m0; R� 1� j) ;m0; 1� F0 (x))

o
f	 (x) dx:

If R � m0, then we have that

1

R
m1

Z 1

0

nPmin(m1;R)�1
j=0 b (j;m1 � 1; 1� F	 (x))B (R� 1� j;m0; 1� F0 (x))

o
f	 (x) dx:
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1.4 Overview of the algorithm that computes the estimates of c`TDR

First we give the algorithm supposing that we have no ties in the ranks of the existing data sets, then we show how this
needs to be modi�ed for the existing data in which there are ties in the ranks.

1. First we need to estimate F0 (d) and F1 (d) in the novel data collection. (Note that here both F0 (d) and F1 (d) can
be a mixture distribution, i.e. F0 (d) and F1 (d) merely denotes the null and alternative distribution in the novel data
collection.)

2. We estimate the cumulative contribution, CO (M) =
XM

j=1
co (j) by �rst calculating

gCO (M) = 1
jDj
P

d2D (Od;M )

F0 (d)� F1 (d)
(23)

for M = 1; :::;m, where D is a set of the positive real numbers, jDj is the number of elements in D. Then we apply a
smoother method (see section 1.3) to �t M !gCO (M) curve with a concave M !dCO (M) a concave function of M .

3. From dCO (M) we calculate the estimator
bco (i) =dCO (i)�dCO (i� 1)

for i = 1; :::;m, where we de�ne dCO (0) = 0.
4. Then bco (i) is used to calculate b�i = bco (i) + m�

1

m

for every existing data set.

5. Then we use b�(combined prior)i =

�
m�
0

m�
1

�k�1 kY
i=1

b� ji
1� b� ji (24)

to calculate the estimates of combined prior odd for test unit i (see formula 13), where m�
0=m

�
1 is the ratio of the null

and alternative test units (markers) in the novel data collection, and b� ji is the prior probability estimate of test unit
i from the jth existing data set obtained in step 4.

6. The estimate of c`TDR of test unit i will be calculated by

c`TDR(i) =
�
(combined prior)
i f1 (t) =f0 (t)

1 + �
(combined prior)
i f1 (t) =f0 (t)

=
�
(combined prior)
i f1 (t)

f0 (t) + �
(combined prior)
i f1 (t)

;

where f0 and f1 is the null and alternative p.d.f. in the novel data collection.

If there are ties among the ranks in an EDS, then Step 2 and 3 are modi�ed
for that EDS in the following way.
Suppose we have t groups of test units and the ranks of all test units in a group are identical, but they are di¤erent across

the groups. Let Rj be the number of test units whose rank is the jth smallest one or smaller than that for j = 1; :::; t. Then
we calculate gCO (M) only for M = R1; :::; Rt in Step 2, and in Step 3 the estimator bco is obtained as

bco (i) = 1

Rj �Rj�1

�dCO (Rj)�dCO (Rj�1)�
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for every test unit i in group j, j = 1; :::; t, where we de�ne R0 = 0 and dCO (0) = 0 for the sake of simplicity (see (5) for
justi�cation).
We remark that in order to decrease computational burden, this modi�cation in Step 2 and 3 can be used for the case of

no ties as well. Note that in case of no ties, the choice of R1 < ::: < Rt is not determined by the groups of ties in the rank
of test units in the EDS, but the desired accuracy of the contribution estimator.
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