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Performing Parentage Analysis for Polysomic Inheritances Based on Allelic Phenotypes1

2

September 13, 20203

Abstract4

Polyploidy poses several problems for parentage analysis. We present a new5

polysomic inheritance model for parentage analysis based on genotypes or allelic6

phenotypes to solve these problems. The effects of five factors are simultaneously7

accommodated in this model: (i) double-reduction, (ii) null alleles, (iii) negative am-8

plification, (iv) genotyping errors and (v) self-fertilization. To solve genotyping am-9

biguity (unknown allele dosage), we developed a new method to establish the likeli-10

hood formulas for allelic phenotype data and to simultaneously include the effects of11

our five chosen factors. We then evaluated and compared the performance of our new12

method with three established methods by using both simulated data and empirical13

data from the cultivated blueberry (Vaccinium corymbosum). We also developed14

and compared the performance of two additional estimators to estimate the geno-15

typing error rate and the sample rate. We make our new methods freely available in16

the software package polygene, at http://github.com/huangkang1987/polygene.17

Keywords: parentage analysis, polysomic inheritance, genotyping ambiguity, double-18

reduction, null alleles, self-fertilization.19

Introduction20

Parentage analysis is a common technique in plant ecology and selective breeding. This technique21

for identifying parents enables researchers to assess seed dispersal (Ismail et al., 2017), pollen dispersal22

(Bezemer et al., 2016), assortative mating (Monthe et al., 2017), isolation (Tambarussi et al., 2015), cur-23

rent gene flow (Duminil et al., 2016), mating systems (Tan et al., 2019), reproductive success (Watanabe24
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et al., 2018), functional sex (Oddou-Muratorio et al., 2018), and to increase genetic gain from selective25

breeding (Norman et al., 2018).26

A large proportion of plant species are polyploid, with 24% of all plant taxa exhibiting some form27

of polysomic inheritance (Barker et al., 2016), and at least 47% of angiosperm species having polyploidy28

in their ancestral lineage (Wood et al., 2009). Existing methods of parentage analysis for polyploids use29

the pseudo-dominant approach (Rodzen et al., 2004; Wang and Scribner, 2014) and exclusion approach30

(Zwart et al., 2016). In the pseudo-dominant approach, the polyploid genotypes or the allelic phenotypes31

are converted into pseudo-dominant phenotypes and use diploid likelihood equations to calculate the32

likelihood for parentage assignment (Gerber et al., 2000), in which each allele at a codominant locus33

is treated as an independent dominant ‘locus’. This approach enables rapid calculation but is inferior34

to that based on polysomic inheritance methods because any transformation of data will cause a loss35

of information and thus a reduction in accuracy (Wang and Scribner, 2014). The exclusion approach36

excludes the parents based on Mendelian incompatibility. However, due to the high gamete diversity37

(Pelé et al., 2018) and genotyping ambiguity (Huang et al., 2014), the exclusion rate is low in polyploid,38

especially for a parent-offspring pair. Thus, the development of more accurate methods of parentage39

analysis for polyploids is required.40

Several models for polysomic inheritance have been developed, such as double-reduction models41

(Muller, 1914; Haldane, 1930; Mather, 1935), genotypic frequencies (Fisher, 1943; Geiringer, 1949), and42

transitional probabilities from a zygote to a gamete (Fisher and Mather, 1943; Field et al., 2017). On43

the basis of these findings, Huang et al. (2019) derived the generalized genotypic frequency and gamete44

frequency for ploidy levels fewer than 12 and derived the generalized transitional probability from a zygote45

to a gamete for any ploidy level. These models provide a foundation on which to establish a method of46

parentage analysis for polyploids.47

A unique feature of polysomic inheritance is double-reduction such that a pair of sister chromatids48

are segregated into a single gamete (Parisod et al., 2010). Double-reduction arises from a combination of49

three major events during meiosis: (i) the crossing-over between non-sister chromatids, (ii) an appropriate50

pattern of disjunction, and (iii) the migration of chromosomal segments carrying a pair of sister chromatids51

to the same gamete (Darlington, 1929; Haldane, 1930). Geneticists have developed several mathematical52

models to simulate double-reduction: these are the random chromosome segregation (RCS) model (Muller,53
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1914), the pure random chromatid segregation (PRCS) model (Haldane, 1930), the complete equational54

segregation (CES) model (Mather, 1935) and the partial equational segregation (PES) model (Huang55

et al., 2019). A brief description of each of these models is given in Appendix A.56

There are two consequences of double-reduction that will influence parentage analysis: (i) the geno-57

typic frequencies will deviate from expected values, resulting in a bias of the estimated LOD scores and58

(ii) some unexpected offspring genotypes may be generated (e.g. an offspring genotype 𝐴𝐴𝐸𝐸 is pro-59

duced from 𝐴𝐵𝐶𝐷 ×𝐸𝐹𝐺𝐻) along with the true father being excluded. Therefore, the complete array60

of diverse polyploid offspring genotypes has to be accounted for in order to conduct a comprehensive and61

accurate paternity analysis (Stift et al., 2008, 2010).62

There are also several additional problems associated with PCR-based markers that need to account-63

ed for, irrespective of ploidy. One problem is the genotyping ambiguity of polyploids (Huang et al., 2014),64

in the sense that the allelic dosage of PCR-based markers cannot be determined. For example, the geno-65

type 𝐴𝐴𝐵𝐵 will appear to be identical to 𝐴𝐴𝐴𝐵. Another problem arises when using microsatellites,66

which are the genetic markers most frequently used for parentage analysis. Microsatellites can have null67

alleles (Ravinet et al., 2016) that cause both the lack of amplification of null allele homozygotes and68

the lack of detectability of null allele heterozygotes (Wagner et al., 2006). A third problem comes from69

genotyping errors, which may cause a true parent to be mistakenly excluded due to an observed lack of70

shared alleles with the offspring (Blouin, 2003). Finally, inbreeding will result in an excess of homozygotes71

in a population, such as when plants self-fertilize (Ritland, 2002). The genotypic frequencies used for a72

parentage analysis will thus be affected by any inbreeding.73

Here, we extend the disomic inheritance model of Kalinowski et al. (2007) to account for polysomic74

inheritance to enable accurate parentage analysis for polyploids based on genotypes or allelic phenotypes.75

Our new polysomic inheritance model accommodates the effects of five factors: (i) double-reduction,76

(ii) null alleles, (iii) negative amplification, (iv) genotyping errors and (v) self-fertilization. To solve the77

problem of genotyping ambiguity, we develop a new method so as to establish the likelihood formulas for78

allelic phenotype data, with the effects of our five factors of interest also being included in these formulas.79

We subsequently use a designated simulated dataset to evaluate and compare the performance of our new80

method with three other established methods. We also use an empirical microsatellite dataset from the81

cultivated blueberry (Vaccinium corymbosum) to test the performance of all four methods. Moreover,82
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we develop and evaluate two models to estimate the genotyping error rate and the sample rate. We have83

incorporated our new parentage analysis methods in to the software package polygene, which can be84

freely downloaded at http://github.com/huangkang1987/polygene.85

Theory and modelling86

Here we assume that our parentage analysis model satisfies four assumptions, which are also com-87

monly used for diploid population genetics methods. These four assumptions are: (i) the population is88

large enough to negate any effects of genetic drift and there is no population subdivision; (ii) the mating is89

not only random but also independent of both the genetic markers used and the parental mating system,90

(iii) the distributions of the genotypes are the same for males and females, and reach an equilibrium91

state (i.e. genotypic frequencies do not change among generations) and (iv) the genetic markers used are92

autosomal, codominant and unlinked.93

The multiset consisting of allele copies within an individual at a locus is called a genotype, denoted94

by 𝒢 or 𝐺, in which 𝒢 represents an observed genotype and 𝐺 represents a true genotype. For example,95

{𝐴,𝐴,𝐴,𝐵} is a genotype, abbreviated as 𝐴𝐴𝐴𝐵. The set consisting of alleles within an individual at96

a locus is called an allelic phenotype, or a phenotype for short, denoted by 𝒫. For instance, {𝐴,𝐵} is a97

phenotype, written as 𝐴𝐵 for short.98

Our methods are the extensions of Kalinowski et al.’s (2007) method. In the following text, we99

briefly describe the scheme of Kalinowski et al.’s (2007) method and its associated diploid model.100

Scheme of simulation-based likelihood approach101

The foundations for assigning parentage with confidence by a simulation-based likelihood approach102

were establish by Marshall et al. (1998). There are three typical categories in this approach: (i) identifying103

the father (or one parent) when the mother (or the other parent) is unknown; (ii) identifying the father104

(or one parent) when the mother (or the other parent) is known; and (iii) identifying the father and the105

mother (or parents) jointly. There are two situations in the third category, the first is for dioecious species106

and the sexes of individuals are recorded (termed sexes known), and the second is for monoecious species107

or the sexes of individuals are not recorded (termed sexes unknown). The procedures of a parentage108

analysis are broadly as follows.109

For each of the first two categories, two hypotheses are established: the first hypothesis is that the110
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alleged father is the true father, denoted by 𝐻1; the alternative hypothesis is that the alleged father is111

not the true father, denoted by 𝐻2. For the third category, ‘father’ needs to be changed to ‘parents’ in112

both hypotheses.113

Given a hypothesis 𝐻, the likelihood is defined as the probability of some observed data given 𝐻,114

written as ℒ(𝐻). Returning to 𝐻1 and 𝐻2 as described above, we call the natural logarithm of the ratio115

of ℒ(𝐻1) to ℒ(𝐻2) the LOD score, or LOD as the abbreviation, symbolically LOD = ln ℒ(𝐻1)
ℒ(𝐻2)

. Moreover,116

if a LOD is positive, it means that 𝐻1 is more likely to be true than 𝐻2. Similarly, a negative LOD117

means that 𝐻2 is more likely to be true than 𝐻1.118

Marshall et al. (1998) provided a statistic Δ for resolving paternity, the definition of which is:119

Δ =

⎧⎪⎪⎨⎪⎪⎩
LOD1 − LOD2 if 𝑛 > 2,

LOD1 if 𝑛 = 1,

undefined if 𝑛 = 0,

where LOD1 and LOD2 are respectively the LODs of the most-likely and the next most-likely alleged120

fathers, and 𝑛 is the number of all alleged fathers. For a practical application, the statistic Δ needs to be121

singly calculated for each individual offspring. Monte-Carlo simulations are subsequently used to assess122

the confidence level of Δ. The symbol Δ0.95 represents that the threshold of Δ reaches the confidence123

level 95%, in the sense that if Δ > Δ0.95, the probability that the assigned parent is the true parent is124

at least 0.95.125

The likelihood equations used in Marshall et al. (1998) to accommodate genotyping error miscalcu-126

late the probability of observing an erroneous genotype. Therefore, we applied the corrected equations127

in Kalinowski et al. (2007) in the following.128

Marshall et al.’s (1998) diploid model129

Marshall et al.’s (1998) diploid model (abbreviated as the Ma-model) accounts for any genotyping130

errors under the assumption that the genotype frequencies accord with the Hardy-Weinberg equilibrium131

(HWE). This model consists of some likelihood formulas (listed in the first half of Appendix B) together132

with the rules and methods for a general parentage analysis.133

The likelihood formulas of the Ma-modelare derived by using the transitional probability 𝑇 (𝒢 |𝐺)134

from a true genotype 𝐺 to an observed genotype 𝒢, whose expression is135

𝑇 (𝒢 |𝐺) = (1− 𝑒)ℬ𝐺=𝒢 + 𝑒Pr(𝒢), (1)
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where 𝑒 is the genotyping error rate, Pr(𝒢) is the frequency of 𝒢, and ℬ𝑋 is a binary variable, such that136

ℬ𝑋 = 1 if the expression 𝑋 is true, or ℬ𝑋 = 0 otherwise.137

As previously stated, the procedures underlying the Ma-modelto perform a parentage analysis are as138

follows: (i) calculating ℒ(𝐻1) and ℒ(𝐻2), (ii) finding the threshold of Δ, (iii) calculating the LOD and139

Δ, and (iv) using the values obtained in the previous three steps to assess the confidence level of this140

parentage analysis.141

In the following text, we will use the first category in a parentage analysis as an example to show142

how to calculate the likelihoods ℒ(𝐻1) and ℒ(𝐻2) in the Ma-model. The expressions of ℒ(𝐻1) and ℒ(𝐻2)143

are144

ℒ(𝐻1)= Pr(𝒢𝐴)
[︀
(1− 𝑒)2𝑇 (𝒢𝑂 | 𝒢𝐴) + 2𝑒(1− 𝑒) Pr(𝒢𝑂) + 𝑒2 Pr(𝒢𝑂)

]︀
,

ℒ(𝐻2)= Pr(𝒢𝐴) Pr(𝒢𝑂),
(2)

where 𝒢𝐴 and 𝒢𝑂 are respectively the observed genotypes of the alleged father and the offspring, Pr(𝒢𝐴)145

and Pr(𝒢𝑂) are their frequencies, and 𝑇 (𝒢𝑂 | 𝒢𝐴) is the transitional probability from 𝒢𝐴 to 𝒢𝑂.146

In the Ma-model, the genotyping error is considered as the replacement of a true genotype with a147

random genotype according to the genotypic frequencies. Thus the genotyping error does not change the148

distribution of the genotypes, i.e. Pr(𝒢) = Pr(𝐺 = 𝒢). Moreover, Pr(𝐺) can be directly calculated from149

the HWE prediction:150

Pr(𝐺) =

{︃
𝑝2𝑖 if 𝐺 = 𝐴𝑖𝐴𝑖,

2𝑝𝑖𝑝𝑗 if 𝐺 = 𝐴𝑖𝐴𝑗 .

This is because any null alleles, any negative amplification (i.e. amplification failure due to experimental151

error or a poor DNA quality, rather than a null allelic homozygote) and any inbreeding/selfing are not152

considered in the Ma-model.153

Next, the transitional probability 𝑇 (𝒢𝑂 | 𝒢𝐴) is calculated under the assumptions that 𝒢𝐴 and 𝒢𝑂 are154

correctly typed and that the alleged father is the true father, i.e. under the assumptions that 𝐺𝑂 = 𝒢𝑂155

and 𝐺𝐹 = 𝒢𝐴, where 𝐺𝑂 and 𝐺𝐹 are the true genotypes of the offspring and the true father, respectively.156

Therefore, 𝑇 (𝒢𝑂 | 𝒢𝐴) is the same as 𝑇 (𝐺𝑂 |𝐺𝐹 ) under these assumptions. Because one allele within 𝐺𝑂157

is randomly inherited from the parents, and the other is randomly sampled from the population according158

to the allele frequencies, the transitional probability 𝑇 (𝐺𝑂 |𝐺𝐹 ) can be expressed as159
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𝑇 (𝐺𝑂 |𝐺𝐹 ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑝𝑖 if 𝐺𝑂 = 𝐴𝑖𝐴𝑖 and 𝐺𝐹 = 𝐴𝑖𝐴𝑖,

𝑝𝑗 if 𝐺𝑂 = 𝐴𝑖𝐴𝑗 and 𝐺𝐹 = 𝐴𝑖𝐴𝑖,

1
2 (𝑝𝑖 + 𝑝𝑗) if 𝐺𝑂 = 𝐴𝑖𝐴𝑗 and 𝐺𝐹 = 𝐴𝑖𝐴𝑗 ,

1
2𝑝𝑘 if 𝐺𝑂 = 𝐴𝑖𝐴𝑘 and 𝐺𝐹 = 𝐴𝑖𝐴𝑗 ,

0 otherwise,

where 𝐴𝑖, 𝐴𝑗 and 𝐴𝑘 are distinct identical-by-state alleles, 𝑝𝑖, 𝑝𝑗 and 𝑝𝑘 are their frequencies.160

Now, we see that the two likelihood formulas in Equation (2) can be used for the actual calculation161

as long as the values of the genotyping error rate 𝑒 and those frequencies of alleles are given.162

For the second and third categories in a parentage analysis, to calculate the transitional probabili-163

ties 𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝑀 ) and 𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝐴𝑀 ) in the likelihood formulas in the Ma-model(see the first half of164

Appendix B), we need to apply the transitional probability 𝑇 (𝐺𝑂 |𝐺𝐹 , 𝐺𝑀 ) from a pair of true geno-165

types of the true parents to a true genotype of the offspring. Because the genotypic frequencies in the166

Ma-modelaccord with the HWE, according to the Mendelian segregation (i.e. each parent randomly167

contributes one allele to an offspring genotype), 𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝑀 ) can be calculated by168

𝑇 (𝐺𝑂 |𝐺𝐹 , 𝐺𝑀 ) =
1

4

2∑︁
𝑖=1

2∑︁
𝑗=1

ℬ𝐺𝑂=𝐴𝑖𝐵𝑗 ,

where 𝐴𝑖 (or 𝐵𝑗) is an allele within 𝐺𝐹 (or 𝐺𝑀 ).169

Polyploid model170

The polysomic inheritance model (abbreviated as the polyploid model) presented here is for use with171

even levels of ploidy, and consists of some likelihood formulas and some additional conditions along with172

the rules and methods for a general parentage analysis. These additional conditions are: (i) which of the173

two data types (genotypic and phenotypic) are to be selected, (ii) whether self-fertilization is considered,174

(iii) whether null alleles and/or negative amplifications are to be considered, and (iv) which of the four175

double-reduction models, listed in Table S1, is chosen.176

As for the Ma-model, our new model accommodates the effect of genotyping errors and the presence177

of these errors will not change the genotypic and phenotypic frequencies. Moreover, if self-fertilization is178

considered in our model, its effect will also be incorporated into the likelihood formulas.179

For the genotypic data, the likelihood formulas for all three categories in a parentage analysis,180

under either self-fertilization or not, are given in Appendix B. For polysomic inheritance, the genotypic181
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frequencies (Pr(𝒢)) and transitional probabilities (𝑇 (𝐺𝑂 |𝐺𝐹 ) and 𝑇 (𝐺𝑂 |𝐺𝐹 , 𝐺𝑀 )) need to be properly182

adjusted, where the formula of Pr(𝒢) under inbreeding and double-reduction is given in Appendix C (or183

in Huang et al. (2019)), and the formulas of 𝑇 (𝐺𝑂 |𝐺𝐹 ) and 𝑇 (𝐺𝑂 |𝐺𝐹 , 𝐺𝑀 ) are given in Appendix D.184

For the phenotypic data, the likelihood formulas for all three categories in a parentage analysis un-185

der the condition of either self-fertilization or not are given in Appendix E. In such circumstances, the186

phenotypic frequencies (Pr(𝒫)) in these formulas are calculated by Equation (A5), and the transitional187

probabilities (𝑇 (𝒫𝑂 | 𝒫𝐹 ) and 𝑇 (𝒫𝑂 | 𝒫𝐹 ,𝒫𝑀 )) by Equation (3) or (4). To solve the problem of geno-188

typing ambiguity, we develop a new method termed the phenotype method. In this method, the prior189

probabilities of phenotypes and the transitional probability from a phenotype to another phenotype will190

be used to establish various likelihood formulas.191

Phenotype method192

We begin our discussion with the symbol 𝒢 B𝒫, whose meaning is that 𝒢 is a genotype determining193

the phenotype 𝒫, i.e. 𝒢 ⊇ 𝒫 and ∀𝐴 ∈ 𝒢 → 𝐴 ∈ 𝒫, where ⊇ is the inclusion of multisets. If the null194

alleles (e.g. 𝐴𝑦) are considered, the conditions should be revised to 𝒢 ⊇ 𝒫 and ∀𝐴 ∈ 𝒢 → 𝐴 ∈ 𝒫 ∪ {𝐴𝑦}.195

Under the revised conditions, our models will accommodate the effect of null alleles.196

The formulas of transitional probabilities 𝑇 (𝒫𝑂 | 𝒫𝐹 ) and 𝑇 (𝒫𝑂 | 𝒫𝐹 ,𝒫𝑀 ) are first established, whose197

expressions are198

𝑇 (𝒫𝑂 | 𝒫𝐹 ) =
∑︁

𝒢𝐹B𝒫𝐹

∑︁
𝒢𝑂B𝒫𝑂

Pr(𝒢𝐹 | 𝒫𝐹 )𝑇 (𝒢𝑂 | 𝒢𝐹 )𝑇 (𝒫𝑂 | 𝒢𝑂), (3)

𝑇 (𝒫𝑂 | 𝒫𝐹 ,𝒫𝑀 ) =
∑︁

𝒢𝐹B𝒫𝐹

∑︁
𝒢𝑀B𝒫𝑀

∑︁
𝒢𝑂B𝒫𝑂

Pr(𝒢𝐹 | 𝒫𝐹 ) Pr(𝒢𝑀 | 𝒫𝑀 )𝑇 (𝒢𝑂 | 𝒢𝐹 ,𝒢𝑀 )𝑇 (𝒫𝑂 | 𝒢𝑂), (4)

where 𝒢𝐹 (𝒢𝑀 or 𝒢𝑂) is taken from all genotypes determining 𝒫𝐹 (𝒫𝑀 or 𝒫𝑂); Pr(𝒢𝐹 | 𝒫𝐹 ) and199

Pr(𝒢𝑀 | 𝒫𝑀 ) are two posterior probabilities, which can be calculated by the Bayes formula200

Pr(𝒢 |𝒫) =
𝑇 (𝒫 | 𝒢) Pr(𝒢)

Pr(𝒫)
;

and 𝑇 (𝒫𝑂 | 𝒢𝑂) is the transitional probability from 𝒢𝑂 to 𝒫𝑂, which is calculated by201

𝑇 (𝒫 | 𝒢) = ℬ𝒫=∅𝛽 + ℬ𝒢B𝒫(1− 𝛽),

in which 𝛽 is the negative amplification rate, and 𝒫 = ∅ means that 𝒫 is a negative phenotype (it may202

be caused by either a null allele homozygote or a negative amplification).203
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Because each genotype may encounter an amplification failure, the candidate genotypes determining204

a negative phenotype at a locus are, strictly speaking, all possible genotypes at this locus. This will205

create a problem for the calculations of the transitional probabilities. This is because there are up to206 (︀
𝑣+𝐾−1

𝑣

)︀
genotypes at a locus, where 𝑣 is the ploidy level and 𝐾 is the number of alleles at this locus.207

For example, the number of genotypes at an octo-allelic locus for tetrasomic (hexasomic, octosomic or208

decasomic) inheritance is up to 330 (1716, 6435 or 19448). For this reason, we do not consider the209

candidate genotypes determining any negative phenotypes. In other words, all negative phenotypes are210

discarded in the polysomic inheritance model during the analytical process. However, they will still be211

used in the allele frequency estimation so as to estimate the negative amplification rate 𝛽 and the null212

allele frequency 𝑝𝑦.213

Next, the likelihood formulas for all three categories are established. For example, if self-fertilization214

is not considered, the likelihoods ℒ(𝐻1) and ℒ(𝐻2) for the first category can be simply obtained by215

replacing 𝒢𝐴 with 𝒫𝐴 and 𝒢𝑂 with 𝒫𝑂 in Equation (2), whose expressions are216

ℒ(𝐻1)= Pr(𝒫𝐴)
[︀
(1− 𝑒)2𝑇 (𝒫𝑂 | 𝒫𝐴) + 2𝑒(1− 𝑒) Pr(𝒫𝑂) + 𝑒2 Pr(𝒫𝑂)

]︀
,

ℒ(𝐻2)= Pr(𝒫𝐴) Pr(𝒫𝑂),

where Pr(𝒫𝐴) and Pr(𝒫𝑂) are respectively the frequencies of 𝒫𝐴 and 𝒫𝑂, which can be calculated by217

Equation (A5), and the transitional probability 𝑇 (𝒫𝑂 | 𝒫𝐴) is calculated by replacing 𝒫𝐹 with 𝒫𝐴 in218

Equation (3), i.e. 𝑇 (𝒫𝑂 | 𝒫𝐴) = 𝑇 (𝒫𝑂 | 𝒫𝐹 = 𝒫𝐴). The likelihood formulas for each category under the219

condition of either self-fertilization or not are given in Appendix E.220

Estimation of genotyping error rate221

For a genotypic dataset, it is mathematically impossible to estimate the genotyping error rate 𝑒222

without any additional information (e.g. the information of pedigree or replication). We will develop223

a genotyping error rate estimator based on the pedigree data, including the known parents and the224

identified parents (at a high confidence level, e.g. 99%). We refer to a parent-offspring pair extracted225

from the pedigree data as a reference pair, and a father-mother-offspring trio as a reference trio.226

For genotypic data, we assume that the allelic dosage is known so there are no null alleles. For the227

phenotypic input, all candidate genotypes and their gametes will be extracted, including the genotypes228

with null alleles, and the pair (or trio) mismatch is identified by whether the parent (or the parents) is229

able to produce the offspring (see Appendix I for details). Therefore, each mismatch in our models can230
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only be caused by genotyping errors or the false parent(s). Pair mismatches can be used in all three231

categories, but trio mismatches can only be used in the second and the third categories. In this section,232

we will use pair mismatches to describe how to estimate the genotyping error rate.233

Let 𝛿 be the probability of observing a pair mismatch in a true parent-offspring pair under the234

condition that any individual has been erroneously genotyped. In our genotyping error model, 𝛿 is235

equal to the exclusion rate for the first category, i.e. the probability that two random genotypes are236

mismatched. We do not estimate 𝛿 by simulation or by allele frequencies because those approaches can237

be influenced by the errors in the estimated parameters. Instead, we directly estimate 𝛿 from the input238

genotypes/phenotypes with a Monte-Carlo algorithm, whose procedures are broadly as follows: randomly239

sample a large number of individual pairs from the input samples with replacement, and then treat each240

as a parent-offspring pair, and finally calculate the probability that their genotypes/phenotypes at a locus241

are mismatched, which is used as 𝛿 at this locus.242

Let 𝛾 be the probability of observing a pair mismatch in a true parent-offspring pair. Since each243

mismatch observed in the true parent-offspring pairs can only be caused by the genotyping error, if we244

denote 𝐸 for 1− (1−𝑒)2, then 𝛾 = 𝐸𝛿. Noticing that the estimate 𝛾 can be calculated from the reference245

pairs in a single application or in all available applications based on the same dataset, the single-locus246

estimate �̂�𝑙 of 𝐸 at the 𝑙th locus can be expressed as �̂�𝑙 = 𝛾𝑙/𝛿𝑙.247

If we assume that there are 𝑛𝑟𝑙 reference pairs at the 𝑙th locus and that 𝑛𝑚𝑙 is the number of pair248

mismatches in these reference pairs, then 𝑛𝑚𝑙 as a random variable obeys the binomial distribution249

B(𝑛𝑟𝑙, 𝛾𝑙), so Var(𝑛𝑚𝑙) = 𝑛𝑟𝑙𝛾𝑙(1 − 𝛾𝑙). Because 1 − 𝛾𝑙 is close to one, the variance Var(𝛾𝑙) can be250

approximately expressed as Var(𝛾𝑙) ≈ 𝛾𝑙/𝑛𝑟𝑙. Because �̂�𝑙 = 𝛾𝑙/𝛿𝑙 and 𝛾 = 𝐸𝛿, then Var(�̂�𝑙𝛿𝑙) ≈251

(𝐸𝛿𝑙)/𝑛𝑟𝑙. Now, by substituting 𝛿𝑙 with 𝛿𝑙, it follows that Var(�̂�𝑙) ≈ 𝐸/(𝑛𝑟𝑙𝛿𝑙). To minimize the variance252

of Var(�̂�), the inverse of Var(�̂�𝑙) can be used as the weight to calculate the multi-locus estimate �̂�.253

The unified weight 𝑤𝑙 is therefore equal to 𝑛𝑟𝑙𝛿𝑙/
(︀∑︀

𝑙′ 𝑛𝑟𝑙′𝛿𝑙′
)︀
, and �̂� =

∑︀
𝑙𝑤𝑙�̂�𝑙. Because the loci are254

unlinked, we have Var(�̂�) =
∑︀

𝑙𝑤
2
𝑙 Var(�̂�𝑙), hence Var(�̂�) ≈ 𝐸/

(︀∑︀
𝑙 𝑛𝑟𝑙𝛿𝑙

)︀
.255

The genotyping error rate 𝑒 can now be estimated by the formula 𝑒 = 1 −
√︀
1− �̂�. Moreover,256

because 𝑒 ≈ 𝐸/2, the variance Var(𝑒) can be approximately expressed as Var(𝑒) ≈ 𝑒/
(︀
2
∑︀

𝑙 𝑛𝑟𝑙𝛿𝑙
)︀
. As257

described above, the inverse of Var(𝑒) can be used to weight 𝑒 in multiple applications and datasets.258

When the polyploid phenotypes are used, pair mismatches will be rare. Specifically, they are rare for259
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the first category, because the single-locus exclusion rate is low (e.g. 0.01 for the hexaploid phenotypes260

at a hexa-allelic locus). Therefore, it is inaccurate to estimate 𝑒 by pair mismatches. Relative to the first261

category, the single-locus exclusion rate for the second or the third categories is high (e.g. 0.27 for the262

hexaploid phenotypes at a hexa-allelic locus). Hence, we can use trio mismatches to reliably estimate the263

genotyping error rates for the second and the third categories, and the details are described in Appendix264

F.265

Estimation of sample rate266

For an individual offspring, the probability that one of its true parents is sampled is defined as the267

sample rate, denoted by 𝑝𝑠. The probability that an alleged parent (or a pair of alleged parents) of an268

offspring is assigned at a confidence level is called the assignment rate, denoted by 𝑎. Specifically, we269

denote 𝑎𝑐 for the assignment rate when the true parent(s) is sampled, and 𝑎𝑢 for the assignment rate270

when the true parent(s) is not sampled. Therefore, 𝑎 is a weighted average of 𝑎𝑐 and 𝑎𝑢.271

We now develop a simple but robust estimator to estimate the sample rate from the assignment rate272

and begin our discussion with how to estimate the sample rate by using one application. For convenience,273

we will replace ‘the father’ with ‘one parent’ and ‘the mother’ with ‘the other parent’ in the first and the274

second categories in a parentage analysis.275

For the first and the second categories, we have 𝑎 = 𝑝𝑠𝑎𝑐 + (1− 𝑝𝑠)𝑎𝑢, so 𝑝𝑠 can be estimated by276

𝑝𝑠 =
�̂�− �̂�𝑢
�̂�𝑐 − �̂�𝑢

. (5)

For the third category, if the sexes are known, then 𝑎 = 𝑝2𝑠𝑎𝑐 +(1− 𝑝2𝑠)𝑎𝑢, so 𝑝𝑠 can be estimated by277

𝑝𝑠 =

√︂
�̂�− �̂�𝑢
�̂�𝑐 − �̂�𝑢

. (6)

If the sexes are unknown, then 𝑎 = 𝑝𝑐𝑎𝑐 + (1 − 𝑝𝑐)𝑎𝑢, where 𝑝𝑐 is the probability that the true parents278

are sampled, which can be expressed as 𝑝𝑐 = 𝑠𝑢𝑝𝑠 + (1 − 𝑠𝑢)𝑝
2
𝑠, in which 𝑠𝑢 is the proportion of selfed279

offspring in this application. Hence 𝑝𝑐 =
�̂�−�̂�𝑢

�̂�𝑐−�̂�𝑢
, and the sample rate 𝑝𝑠 can be estimated by280

𝑝𝑠 =
𝑠𝑢 −

√︀
𝑠2𝑢 + 4𝑝𝑐 − 4𝑠𝑢𝑝𝑐
2𝑠𝑢 − 2

. (7)

The value of 𝑝𝑠 may be less than zero or greater than one. If this happens, we will truncate the281

value into the acceptable range [0, 1]. We will also set multiple confidence levels to estimate the selfing282
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rate 𝑠𝑢 for increased accuracy. For the situations of multiple applications and multiple confidence levels,283

the estimation of the sampling rate is shown in Appendix G, along with the estimation of 𝑠𝑢.284

Data Availability285

polygene is written in C++ and C#, whose executables (Windows, Ubuntu and Mac OS X), source286

code and user manual are available on GitHub (http://github.com/huangkang1987/polygene).287

The simulation functions are ‘private void SIM_PARENT1()’ to ‘private void SIM_PARENT3()’288

in ‘Form1.cs’. The simulation parameters, output files, description of I/O format, figure plotting script289

and empirical dataset are available on the website of this journal.290

Evaluation291

In this study, we use a computer simulation to create the genotypic and phenotypic datasets with292

disomic, tetrasomic or hexasomic inheritance, and then perform our parentage analysis by using these293

datasets. The performances of four methods under the same conditions are compared by four typical294

applications, where one method is the phenotype method, and the others are named the dominant295

method (Rodzen et al., 2004) (named after the pseudo-dominant data used in this method), the sibship296

method (Wang, 2016) (originating from the application ‘sibship reconstruction’) and the exclusion297

method (Zwart et al., 2016). The accuracies of these four methods under natural conditions are tested298

with an empirical microsatellite dataset for the highbush blueberry (Huber, 2016). In addition, the299

performances of the genotyping error rate estimation and the sample rate estimation are also evaluated300

using the simulated datasets.301

Both the dominant and the sibship methods rely on first transforming the polyploid codominant302

phenotypic data into pseudo-dominant data. The same procedure as Kalinowski et al. (2007) is used303

for the dominant method, and the likelihood formulas under this method are listed in Appendix H,304

whose derivations are given by Gerber et al. (2000). Under the sibship method, a simulated-annealing305

algorithm is used to find the classification of optimal full-sib (or half-sib) families for the whole dataset by306

maximizing the likelihood, which is implemented in the software package colony (Wang and Scribner,307

2014). Under the exclusion method, the effects of double-reduction and null alleles are incorporated,308

and the details of this method are described in Appendix I.309
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Simulated data310

In order to evaluate these methods, we create some theoretical monoecious populations, each con-311

sisting only of individuals with disomic to decasomic inheritance for the genotypic data or disomic to312

hexasomic inheritance for the phenotypic data. We assumed that the population under scrutiny is geno-313

typed at 𝐿 unlinked loci under the PES model (Huang et al., 2019). The number of loci 𝐿 is set from314

three to 12 (genotypes) or three to 18 (phenotypes) at an interval of three. The distance (in centimor-315

gans) between each of these loci and its corresponding centromere is drawn from the uniform distribution316

U(0, 100). The single chromatid recombination rate 𝑟𝑠 is obtained by Haldane’s mapping function. Each317

locus is located with six amplifiable alleles that have uniform initial frequencies, with the initial null318

allele frequency set as 0.1 for the phenotypic data. For the genotypic data, null alleles are not simulated319

because the dosage of alleles within each genotype is known.320

Huang et al. (2019) derived the genotypic frequencies under each of the four double-reduction models321

listed in Table S1. However, the analytical solution of genotypic frequencies under inbreeding/selfing and322

double-reduction is still unknown. As an alternative, we give an approximated solution in Appendix C by323

using the inbreeding coefficient 𝐹 as an intermediate variable with the assumption that any inbreeding324

is only caused by self-fertilization. With this approximation, we generate the genotypes of the founder325

generation by Equation (A4). In order to let the genotypic frequencies reach their equilibrium state and326

avoid severe genetic drift, 2000 individuals are generated for the founder generation, and the population327

is allowed to reproduce for ten generations, each generation consisting of 2000 individuals.328

During reproduction, the parents of each offspring are either two distinct individuals randomly329

chosen from the previous generation at a probability of 1−𝑠, or the same individual (for self-fertilization)330

randomly chosen from the previous generation at a probability of 𝑠. The selfing rate 𝑠 is set as three levels331

(0, 0.1 and 0.3). The following three procedures are designed to simulate meiosis: (i) the chromosomes332

are randomly paired and the alleles are exchanged between the pairing chromosomes at a probability of333

𝑟𝑠; (ii) the chromosomes are randomly segregated into two secondary oocytes; and (iii) the alleles within334

a chromosome are randomly segregated into two gametes. Fertilization is then simulated by the merging335

of two gametes.336

Next, we reproduce two additional generations, each consisting of 100 individuals, to be used as the337

parents and offspring for the subsequent analyses. To simulate the missing parents, 90% of parents and all338
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offspring are sampled. To simulate the genotyping errors, each genotype is swapped with the genotype of339

another individual at the same locus at a probability of 1
2𝑒 (where 𝑒 is set as 0.01). To simulate negative340

amplification, each genotype is randomly set as ∅ at a probability of 𝛽 (where 𝛽 is set as 0.05). The341

phenotypes are obtained by removing both the null and the duplicated alleles within genotypes. Then342

the generated genotypic (or phenotypic) dataset is used to perform the parentage analysis. The allele343

frequency estimation is described in Appendix J.344

For the first two categories in a parentage analysis, each is designated its own application (named345

Application (i) or (ii)). Application (iii) refers to a third category in which the alleged fathers and346

the alleged mothers are drawn from two different collections (representing that the sexes are known).347

Application (iv) also refers to the third category in which the alleged fathers and the alleged mothers are348

drawn from the same collection (representing that the sexes are unknown).349

In Application (i), for each of the 100 offspring, 89 individuals from the parental generation are used350

as alleged fathers. Application (ii) is performed for the offspring with their mother sampled. In this351

application, for each offspring, the true mother is known, and 89 individuals from the parental generation352

are used as the alleged fathers. For Applications (i) and (ii), the alleged fathers will include the true353

father if sampled but will exclude the true mother (except the offspring is the product of self-fertilisation)354

to avoid interference. In Application (iii), for each offspring, 45 individuals (including the true father355

if sampled) from the parental generation are considered as the alleged fathers, with the remaining 45356

individuals (including the true mother if sampled) as the alleged mothers. In Application (iv), for each357

offspring, all 90 individuals in the parental generation are considered as the alleged parents. We perform358

100 replications for each of the three configurations: 𝑣, 𝐿 and 𝑠, and calculate the average correct359

assignment rate for each configuration. Here, a correct assignment means that the true parents have360

been assigned and the value of Δ is higher than the corresponding threshold.361

For the phenotype method, there are many models to estimate the allele frequencies and the related362

parameters, and the ideal way is to try each and then choose the optimal one with the smallest Bayesian363

information criterion (BIC) (as in Huang et al., 2020). However, it is time consuming to evaluate each364

of them in each simulation. As an alternative, we choose two models that work well in most situations:365

PES0.25+𝑝𝑦+𝛽+𝑠 for the phenotypic data and PES0.25+𝛽+𝑠 for the genotypic data. They denote the366

PES models with 𝑟𝑠 = 0.25 together with the considerations of null alleles (for phenotypes only), negative367
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amplification and self-fertilization. Because the estimations of genotyping error rate 𝑒 and sample rate368

𝑝𝑠 depend on the number of assigned parents, the performance of a less efficient method will be reduced369

again due to the inaccurate estimations of 𝑒 and 𝑝𝑠. Since the aim of our simulation is to evaluate the370

performance of four methods, not the influence of the estimations of 𝑒 and 𝑝𝑠, the true values of 𝑒 and 𝑝𝑠371

are used as the a priori information. We perform 2000 Monte-Carlo simulations to obtain various critical372

values of the statistic Δ, and the correct assignment rates under three critical values (0, Δ0.8 and Δ0.95)373

are recorded.374

For both the dominant and the sibship methods, the frequency 𝑝dom of the dominant allele at a375

pseudo-dominant marker is estimated by 𝑝dom = 1−
√
1− 𝑝tar, where 𝑝tar is the observed probability that376

a randomly sampled phenotype contains the target allele. For the dominant method, we implement the377

calculations of likelihood formulas listed in Appendix H in our simulation program. We also perform 2000378

Monte-Carlo simulations to obtain the thresholds of Δ, and record the correct assignment rates under379

the same thresholds as above. For the sibship method, we write the pseudo-dominant phenotypes, the380

allele frequency estimates and other necessary parameters into a colony V2.0.6.5 input file. To avoid381

interference by the other cases, a unique input file for each case is generated. After calling colony2p.exe382

by a command-line mode, the results can be read from the output files. The probability of the identified383

parent(s) is used as a confidence level to compare with the phenotype and dominant methods. The384

exclusion method is implemented in our simulation program. In this method, the alleged parent (or385

parent-pair) with the fewest mismatches is assigned. If multiple alleged parents (or parent-pairs) have386

the same number of mismatches, none of them is assigned. For this method, any confidence level is387

unavailable.388

For the four applications, each correct assignment rate as a function of 𝐿 is denoted by a section of389

the overlapped bar charts, shown in Figure 1 for the genotypic data or in Figures 2, S1 and S2 for the390

phenotypic data.391

For the genotypic data, it can be seen from Figure 1 that each correct assignment rate increases as392

the number of loci 𝐿 also increases, whose values reach a steady state if 𝐿 is large enough (e.g. 𝐿 > 12 for393

Application (i) or 𝐿 > 9 for the other applications). The correct assignment rate generally reduces as the394

ploidy level increases. Moreover, as the selfing rate increases the correct assignment rate also increases395

but the difference among different ploidy levels decreases.396
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For the phenotypic data, it can be seen from Figure 2 that the correct assignment rate reduces397

as the ploidy level increases. The phenotype method outperforms the other methods, whose correct398

assignment rate at 𝐿 = 9 is roughly the same as those of the other methods at 𝐿 = 18, indicating that399

the phenotype method can reduce the number of loci needed to achieve the same accuracy by 40% to400

60%. This method is also less sensitive to changes in the ploidy level, but an additional 23% and 45% loci401

are still required to reach the same correct assignment rate in tetraploids and hexaploids, respectively.402

Compared with the dominant method, the performance of the sibship method is improved in403

Applications (i) and (ii) at a high 𝐿 (> 15), but is inferior in the other scenarios. The performance of404

the exclusion methods is good in Applications (ii) to (iv) at a high 𝐿 (> 15) but is inapplicable in405

Application (i).406

It can be seen from Figures S2 and S3 that, like the results of genotypic data, the correct assignment407

rate is increased under most situations if the selfing rate is increased from 0 to 0.3. The assignment rate408

is reduced in Applications (ii) to (iv) under both the sibship and the exclusion methods.409

Empirical data410

We used a microsatellite dataset from the highbush blueberry (Vaccinium corymbosum) (Chapter 5,411

Huber, 2016) to test the same four methods. The highbush blueberry has tetrasomic inheritance with no412

evidence of fixed heterozygosity (that indicates disomic inheritance; Krebs and Hancock, 1989).413

The blueberry samples were collected from Agriculture Agri-Food Canada blueberry plots in Ab-414

botsford and Agassiz, BC., Canada (Huber, 2016). Five controlled crosses, each with 25 to 30 offspring,415

were collected, resulting in a collection of 150 individuals, 143 of which were offspring. All samples were416

successfully amplified at 15 microsatellite loci, with the number of alleles sampled ranging from three to417

ten (Mean± SD is 5.60± 2.33).418

Following the four applications for the simulated data, we designed four similar applications for these419

empirical data. Application (I) or (II) refers to identifying the father when the mother is either unknown420

or known. There are 286 cases for each application, and each case has either 60 alleged fathers (including421

the true father and 59 false fathers) for Application (I) or the known mother together with 60 alleged422

fathers (including the true father and 59 false fathers) for Application (II). Application (III) refers to423

identifying the father and the mother jointly in which the alleged fathers and the alleged mothers are424

drawn from two different collections. There are 143 cases for this application, each of which has 30 alleged425
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fathers (including the true father and 29 false fathers) and 30 alleged mothers (including the true mother426

and 29 false mothers). Application (IV) refers to identifying the father and the mother jointly in which427

the alleged fathers and the alleged mothers are drawn from the same collection. There are also 143 cases428

for this application, each of which has 60 alleged parents of unknown sex (including two true parents and429

58 false parents).430

There are altogether seven parents in these five controlled crosses. To increase the difficulty of our431

analysis, we also add 120 false parents which are generated by randomly copying the phenotypes from the432

real individuals. We randomly sample five to 15 loci from the dataset. For each value of 𝐿, 100 datasets433

are generated, each including 150 true individuals and 120 false parents. These datasets will be used to434

perform our parentage analysis by using the same four methods as described in the previous section. The435

analytical procedures are also the same as in the previous section except that the number of Monte-Carlo436

simulations to obtain the thresholds of Δ is 10,000 instead of 2000. The correct assignment rate will be437

used to measure the accuracy of each model.438

The parentage assignment results from using each of the four methods and applying the phenotypic439

dataset of Huber (2016) are shown in Figure 3. The results patterns are similar to those obtained from440

the simulated data. The phenotype method still outperforms the other three methods but to a lesser441

degree than when the simulated dataset was used, but the phenotype method can still achieve the442

same accuracy with only 75% of the loci needed for the other methods. The exclusion method is still443

inaccurate and cannot be applied to real data in Application (I), but its performance is relatively good444

for the other applications when 𝐿 > 10. The dominant method performs worse than the other three445

methods for Application (IV), as does the sibship method for Application (I).446

Evaluation of genotyping error rate and sample rate447

We use the simulated data to evaluate the performances of both estimators for the genotyping error448

rate and the sample rate. The same four applications are used as previously described, and are still449

referred to as Applications (i) to (iv). We estimate the genotyping error rate and the sample rate for each450

application. Two pairs of sampling and genotyping conditions, poor and good, are selected, which are451

𝑒 = 0.1 and 𝑝𝑠 = 0.5 for poor, or 𝑒 = 0.02 and 𝑝𝑠 = 0.8 for good. The remaining parameters are almost452

the same as those in the section Simulated data, in which 𝑠 = 0.1, 𝑝𝑦 = 0.1 and 𝐿 is taken from six to 24453

at an interval of three. We then perform 100 simulations for each configuration. The phenotype method454
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is used to perform the parentage analysis with a priori genotyping error rate 𝑒 = 0.01 and sample rate455

𝑝𝑠 = 0.9. The allele frequencies are estimated under the PES0.25 + 𝑝𝑦 + 𝛽 + 𝑠 model. The performances456

of both estimators are evaluated by the RMSE.457

For the estimation of the genotyping error rate, the identified pairs (or trios) with a confidence level458

of 99% are considered as the reference pairs (or trios), with 𝛿 estimated by randomly sampling 10,000459

pairs (or trios). In Application (i), 𝑒 is estimated from the pair mismatch, whilst for the remaining460

applications 𝑒 is estimated from the pair or the trio mismatches.461

For the estimation of sample rate, we use the weighted average of 𝑝𝑠 across three confidence levels462

(80%, 95% and 99%) for each application. Because �̂�𝑐 and �̂�𝑢 are obtained from the simulation, they may463

be influenced by any inaccurate simulation parameters, such as the sample rate, the selfing rate and the464

genotyping error rate. To improve the accuracy of these simulation parameters, we perform two rounds465

of analyses. The estimated sample rate and genotyping error rate in the first round are used as the a466

priori values in the second round. The results of the second round are used to evaluate the performance.467

The results under both poor and good conditions are shown in Figures 4 and S4, respectively. For468

the estimation of the genotyping error rate, it can be seen that the results are good due to the RMSE469

being reduced to a low level. For example, the RMSE at 𝐿 = 24 is able to reach 0.02 in poor conditions or470

0.005 in good conditions. The RMSE for Application (i) performs worse than for the other applications,471

and increases greatly as the ploidy level also increases. This is because only the pair mismatch can be472

used for this application, and the single-locus exclusion rate for the first category is small. The RMSE473

for Application (ii) preforms better than for the other applications, because both the pair and the trio474

mismatches are used for this application, and the single-locus exclusion rate for the second category is475

usually higher than the other applications. The RMSE curves of Applications (iii) and (iv) are similar.476

For the estimation of the sample rate, Figures 4 and S4 show that the results are inferior to those for477

the estimation of the genotyping error rate. For example, the RMSE at 𝐿 = 24 is only able to reach 0.05478

in poor conditions or 0.02 in good conditions. Unlike the estimation of the genotyping error rate, the479

results for Application (i) are not obviously inferior to those for the other applications. This is because480

the assignment rate rather than the reference pairs is used to estimate the sample rate, causing the results481

influenced less by the low single-locus exclusion rate.482

The results for Application (ii) are poorer than those for estimating the genotyping error rate because483
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fewer cases (≈ 50 cases) are used (about half of the true mothers are not sampled). If Applications (i)484

and (ii) use the same number of cases, then the performance of Application (ii) would be better than485

Application (i). Because Application (ii) also uses the mother’s data, which can better distinguish the486

true and the false fathers, the difference between 𝑎𝑐 and 𝑎𝑢 in Application (ii) is larger than that in487

Application (i) under the same conditions (e.g. Figure S3).488

The results for Application (iii) are usually better than those for the other applications. This is489

because Application (iii) does not need to estimate the selfing rate and has a larger sample size (100490

cases). However, the selfing rate has to be estimated for Application (iv), and thus the results are less491

accurate than for Application (iii).492

Discussion493

Inheritance model494

Meiosis in polyploids is complex. Disomic and polysomic inheritances are two extremes, and many495

autopolyploid taxa represent the intermediate stages (Butruille and Boiteux, 2000). Allopolyploids (such496

as the segmental allopolyploids) can also display intermediate inheritance at some loci (Stift et al., 2008).497

In addition, some autopolyploid species can also form bivalent, univalent and other types of valents during498

meiosis (Lloyd and Bomblies, 2016). The formation of different types of valents may influence the sterility499

of the gametes or the seeds (Soĺıs Neffa and Fernández, 2000)500

For the autopolyploids with pure disomic inheritance, we can adopt the RCS model to simulate501

disomic inheritance. This is because the genotypic frequencies, gamete frequencies and transitional prob-502

abilities in the RCS model are the same as those for disomic inheritance. These probabilities are of503

interest for parentage analysis. The difference between the RCS model and disomic inheritance is that504

100% multivalent formation is assumed in the former, whilst 100% bivalent formation is assumed in505

the latter. For the allopolyploids with pure disomic inheritance, all diploid methods including those of506

parentage analysis can be used if the genotypes at different isoloci are identified.507

For intermediate inheritance, e.g. 50% bivalent and 50% multivalent gamete formation, regardless508

of how complex the nature of meiosis, identical-by-double-reduction (IBDR) alleles will be present in509

the resulting fertile gametes (Huang et al., 2019). For this reason, a generalized model was proposed,510

which uses ⌊𝑣/4⌋ double-reduction rates in the calculation of genotypic frequencies and is able to describe511

21

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.15.297812doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.297812
http://creativecommons.org/licenses/by-nc-nd/4.0/


meiosis patterns including that for intermediate inheritance (Huang et al., 2019). However, this model512

is too complex because it has ⌊𝑣/4⌋ more degrees of freedom than the RCS (PRCS or CES) model. It is513

difficult to accurately estimate each double-reduction rate and thus is unrealistic to apply to many actual514

conditions. Even if these double-reduction rates are estimated, this model will often be suboptimal to515

other models because of the requirement for more degrees-of-freedom to explain various trends in a data516

set resulting in a higher BIC.517

To better approximate the natural patterns, a simplified version of the generalized model was de-518

veloped, named the PES model, which accommodates the single chromatid recombination rate 𝑟𝑠 as an519

additional parameter to calculate the genotypic frequencies (Huang et al., 2019). Especially, this model520

is equivalent to either the RCS model if 𝑟𝑠 = 0, or the CES model if 𝑟𝑠 = 1. Our software provides three521

PES-related models, which are the PES0.25, the PES0.5 and the PES estimate 𝑟𝑠. The former two models522

do not increase their degrees-of-freedom because they use a fixed value of 𝑟𝑠. We suggest to evaluate523

candidate models by the BIC and chose the optimal model with the lowest BIC (as in Huang et al., 2020).524

Performance of parentage analysis525

For the genotypic data, the results for polyploids are generally similar to those for diploids (Figure526

1). The correct assignment rate tends to increase if the ploidy level ranges from two to four, whilst527

the assignment rate decreases with a ploidy level that ranges from four to ten. However, this trend is528

weakened as the selfing rate increases.529

These phenomena have at least three not necessarily mutually exclusive explanations. (i) At a high530

polyploid level, a genotype has more allele copies and so contains more genetic information (Huang et al.,531

2014). This can improve the performance of parentage analysis and many other population genetics anal-532

yses (e.g. the estimation of allele frequencies, genetic diversity, 𝐹 -statistics, and relatedness coefficients).533

(ii) At a high polyploid level, the false parents are more likely to share the same alleles with the offspring,534

which may reduce the correct assignment rate. For example, if the ploidy level is high, reaching 1000,535

the false parents will share the same alleles with the offspring at a hexa-allelic locus. This is similar to536

when biallelic loci are used in tetraploids or hexaploids, the details of which are discussed in the following537

section. (iii) Selfing is able to reduce the difference among ploidy levels and improve the performance of538

our parentage analysis. Each of these three explanations will also be reflected in the phenotype results539

and are described at the end of this section.540
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For the phenotypic data, the results for polyploids are generally inferior to those for diploids for each541

application and for each method (e.g. see Figure 2). The phenotype method performs best among all542

four methods, saving at least 25% more loci than the other methods (e.g. see Figures 2 and 3), whose543

performances are stable for all applications.544

For the four applications, the results of the phenotype method for diploids (Figures 2, S2 and S3)545

are slightly inferior to those for the genotypic data (Figure 1). This is because null alleles are simulated546

for the phenotypic data. In the absence of null alleles, each phenotype is only determined by one genotype547

for diploids. Therefore, both results under such condition are identical (data not shown).548

For the dominant (Rodzen et al., 2004) and sibship (Wang and Scribner, 2014) methods, the results549

are suboptimal to those of the phenotype method (e.g. see Figures 3 and S2). In both the dominant and550

sibship methods, the polyploid codominant phenotypic data are transformed into the pseudo-dominant551

data, and the diploid procedures for a parentage analysis are subsequently used to perform an analysis.552

During transformation, genetic information is lost (Wang and Scribner, 2014) and some noise is also553

introduced. For example, in the pseudo-dominant approach the pseudo-dominant loci are assumed to554

be unlinked. In fact, because there are at most 𝑣 alleles in a phenotype, the presence of an allele in a555

phenotype will reduce the probability of observing the other alleles in this phenotype, and so these loci are556

negatively correlated rather than unlinked. In addition, for the pseudo-dominant approach, many factors557

that affect the parentage analysis are not considered, such as double-reduction, null alleles, negative558

amplification, and inbreeding/selfing.559

The exclusion method (Zwart et al., 2016) performs well in Applications (ii) to (iv), and the results560

are better than those for both the dominant and the sibship methods but only if 𝐿 is high (e.g. see561

Figures 3 and S3). However, the exclusion method cannot be used for Application (i) because the562

single-locus exclusion rate in the first category is too low (e.g. 0.01 for hexaploid phenotypes at a hexa-563

allelic locus). Therefore, hundreds of loci are needed in order to exclude the false parents. This feature564

also influences the estimation of the genotyping error rate, such that the RMSE for Application (i) is565

highest (Figure 4).566

From our simulation results, self-fertilization improves the accuracy of a parentage analysis, and567

reduces the variation of accuracies among different ploidy levels (Figures 1, 2, S2 and S3). This is568

because the genotypes become more homozygous as the selfing rate increases. If the selfing rate is one,569
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all genotypes will become homozygotes at an equilibrium state. In such a case, each individual can be570

regarded as a haploid, and the ploidy level will not affect the accuracy of a parentage analysis.571

Genotyping error rate and sample rate572

Our estimator for the genotyping error rate 𝑒 is asymptotically unbiased as the number of loci573

increases. The bias of 𝑒 is from the estimation of 𝛾. Because 𝛾 is estimated from any mismatches in the574

reference pairs or trios that are extracted from the identified parent(s), the confidence level of the true575

parents with few mismatches are successfully identified at a high probability. As a result, the value of 𝛾576

may be underestimated.577

The estimation of the genotyping error rate does not use any simulation (𝛾 is estimated from the578

reference pairs or trios, and 𝛿 is estimated from the distribution of the observed genotypes/phenotypes).579

This means that the estimator is not only robust but also insensitive to any errors in the simulation580

parameters (such as the allele frequency, negative amplification rate, selfing rate, sample rate, or the581

genotyping error rate). Any errors in these simulation parameters can only slightly affect the identified582

parents, which will not significantly affect the accuracy of 𝑒. However, this estimator needs sufficient loci583

to identify the reference pairs or trios. For instance, if 𝑒 = 0.1 and 𝑝𝑠 = 0.5, at least 15 loci are required584

in order to estimate the genotyping error rate for hexaploids in Application (i) (Figure 4).585

Compared with the genotyping error rate, the estimation of the sample rate 𝑝𝑠 is less accurate and586

more sensitive to errors in the simulation parameters. There are at least three not necessarily mutually587

independent explanations for these patterns. (i) The estimate of the genotyping error rate is the weighted588

average of single-locus estimated values across all loci, where the actual sample size is
∑︀

𝑙 𝑛𝑟𝑙. Whilst589

the sample rate is estimated only once for all loci, the actual sample size is the number of cases 𝑛𝑐 (see590

Appendix G). (ii) The sample rate estimator is biased in all categories in a parentage analysis because 𝑝𝑠591

is truncated into the range [0, 1] and the operation of the square root is used in the third category. (iii)592

The simulation is used to obtain �̂�𝑐 and �̂�𝑢 for the estimation of the sample rate, whilst the parameters593

used for simulation may be inaccurate (e.g. a prior 𝑒 and 𝑝𝑠). Any errors in �̂�𝑐 and �̂�𝑢 can be passed594

to 𝑝𝑠, but such errors can be eliminated by increasing the number of loci. When the number of loci are595

sufficient, �̂�𝑐 will be close to one, and �̂�𝑢 to zero. We suggest that users perform two rounds of estimation596

so as to reduce such errors as we have in the evaluation above.597
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Polymorphism of loci598

Because polyploids have more allele copies in a genotype, the false parents are more likely to share599

the same alleles with the offspring. Therefore, data resulting from the use of biallelic markers, e.g. single600

nucleotide polymorphism (SNPs), are unsuitable for performing a polyploid parentage analysis.601

We will illustrate this by using the exclusion approach for the first category. For a given alleged602

parent, if its phenotype 𝒫𝐴 does not share any allele with its offspring phenotype 𝒫𝑂, then it can be603

excluded as a true parent. If we assume that the double-reduction model is the RCS model, and that604

there are no interference factors (such as genotyping errors, self-fertilization, null alleles or negative605

amplification), then the exclusion rate Excl1 at a biallelic locus for the first category is606

Excl1 = Pr(𝒫𝑂 = 𝐴,𝑃𝐴 = 𝐵) + Pr(𝒫𝑂 = 𝐵,𝒫𝐴 = 𝐴) = 0.52𝑣−1,

where 𝐴 and 𝐵 are the two alleles at this locus. The values of Excl1 from disomic to decasomic inher-607

itances are in turn 0.125, 7.813 × 10−3, 4.883 × 10−4, 3.052 × 10−5 and 1.907 × 10−6. This sequence608

decreases exponentially, indicating that the false parents become less likely to be excluded as the ploidy609

level increases. Moreover, the number of loci required to achieve the combined exclusion rate 0.95 is610

ln(0.05)/ ln(1 − Excl1), whose values from disomic to decasomic inheritances are in turn 22, 382, 6134,611

98163 and 1570625.612

Although next-generation sequencing (NGS) is able to segregate millions of SNPs, two reasons make613

it difficult to directly perform a parentage analysis with data obtained by using SNPs. First, the allele614

frequencies of most SNPs are not uniform, which reduces the exclusion rate. Second, adjacent SNPs are615

closely linked. This will reduce the accuracy of results because the genetic markers are assumed to be616

unlinked in all parentage analysis models.617

Fortunately, haplotype assembly (Aguiar and Istrail, 2013), phased sequencing (Yang et al., 2011;618

Manching et al., 2017) and haplotype inference (Neigenfind et al., 2008) can all help to maintain the619

efficiency of NGS data, and can segregate multi-allelic loci by combining the closely linked variants so620

as to increase the single-locus polymorphism. Additionally, polyploid genotype calling can directly call621

back the genotypes but can currently only be applied to the biallelic variants (Carley et al., 2017; Weiß622

et al., 2018).623

Multi-allelic markers can also be influenced by the same problem. We perform a simple simulation624
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to describe the influence of the number of amplifiable alleles on the correct assignment rate, in which625

20 loci with uniform amplifiable allele frequencies are used to perform our parentage analysis under626

the phenotype method (Figure 5). The correct assignment rate is much increased if the number of627

amplifiable alleles equates broadly to the ploidy level 𝑣, indicating that to achieve the optimal result, the628

number of amplifiable alleles should be greater than or equal to 𝑣 (Figure 5). More loci are required if629

loci with relatively low levels of polymorphism are used. We suggest therefore to use highly polymorphic630

loci to perform parentage analysis.631

Optimization and complexity632

We use multi-threading, dynamic programming and genotype/phenotype indexing to optimize com-633

putational speed. The dynamic programming stores the likelihoods or LODs into a table so as to avoid634

repeated calculations. The genotype/phenotype indexing only records the hash values of genotypes /phe-635

notypes for each individual, and the information of genotypes/phenotypes are saved in a hash table, that636

also includes the alleles, various frequencies (or prior/posterior probabilities), possible gametes and the637

number of occurrences.638

All of these simulations took a total of three weeks to compute using a powerful workstation (Xeon639

E5 2699V4 36 cores). Computing efficiency will also be affected by the ploidy level 𝑣 and the number640

of alleles 𝐾 due to four main reasons: (i) the number of phenotypes increases as 𝑣 and 𝐾 increase,641

which reduces the efficiency of dynamic programming because more memory is required to store the642

likelihoods or LODs; (ii) the average number of genotypes determining a phenotype increases as 𝑣 and643

𝐾 increase, which decelerates the calculation of likelihoods or LODs; (iii) the average number of gametes644

produced by a zygote increases as 𝑣 and 𝐾 increase, which decelerates the calculation of 𝑇 (𝐺𝑂 |𝐺𝐹 )645

and 𝑇 (𝐺𝑂 |𝐺𝐹 , 𝐺𝑀 ) in Equation (A6); (iv) the number of terms in Equation (A7) increases as 𝑣 and 𝐾646

increase, which decelerates the calculation of 𝑇 (𝑔 |𝐺) in Equation (A7). These four factors collectively647

and multiplicatively increase the complexity of the calculations. It is therefore not possible to perform648

an extensive simulation for highly polymorphic loci (e.g. 𝐾 > 7) or for high ploidy levels (e.g. 𝑣 = 8 or649

𝑣 = 10).650
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genomic divergence in parallel ecotypes of Littorina saxatilis at a local scale. Molecular Ecology 25:741

287–305.742

Ritland, K., 2002 Extensions of models for the estimation of mating systems using 𝑛 independent loci.743

Heredity 88: 221–228.744

Rodzen, J. A., T. R. Famula, and B. May, 2004 Estimation of parentage and relatedness in the poly-745

ploid white sturgeon (Acipenser transmontanus) using a dominant marker approach for duplicated746

microsatellite loci. Aquaculture 232: 165–182.747
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Figure Legends783

Figure 1. The correct assignment rate as a function of the number of loci 𝐿 by using the genotypic784

data. Each row is designated an application and each column shows the simulation results for a different785

rate of selfing. Every correct assignment rate is denoted by a section of overlapping bar charts. The results786

of disomic to decasomic inheritances are shown by red, green, blue, yellow and azure bars, respectively.787

The bars with light, medium and bright colors denote in turn the correct assignment rates with the788

thresholds 0, Δ0.80 and Δ0.95.789

Figure 2. The correct assignment rates as a function of the number of loci 𝐿 by using the phenotypic790

data at a selfing rate of 0.1. Each row is designated an application and each column shows the simulation791

results for a different ploidy level. The results for the phenotype, dominant, sibship and exclusion792

methods are shown by the red, green, blue and gray bars, respectively. The bars with light, medium and793

bright colors denote in turn the correct assignment rates with the confidence levels 0, 80% and 95%.794

Figure 3. The correct assignment rates as a function of the number of loci 𝐿 by using the phenotypic795

dataset of Huber (2016). Each row denotes an application. The methods, confidence levels and the796

definitions of bars together with their shading are as for Figure 2.797

Figure 4. The RMSE of the estimated genotyping error rate 𝑒 or the estimated sample rate 𝑝𝑠 as798

a function of the number of loci 𝐿 at 𝑒 = 0.1 and 𝑝𝑠 = 0.5. Each column shows the results for a different799

ploidy level. The curves with circular, rhombic, triangular and squared markers denote the results for800

Applications (i), (ii), (iii) and (iv), respectively.801

Figure 5. The correct assignment rates as a function of the number of amplifiable alleles under802

the phenotype method. Twenty loci with uniform allele frequencies of amplifiable alleles are used. The803

threshold and the selfing rate are set as Δ0.95 and 0.1, respectively. The remaining parameters and804
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configurations are as for the simulated dataset. Each column shows the results for either tetrasomic or805

hexasomic inheritance. Each curve denotes the result for an application, whose definitions are as for806

Figure 4.807
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Supplementary materials of ‘Performing Parentage Anal-

ysis for Polysomic Inheritances Based on Allelic Phe-

notypes’

Appendices

A Double-reduction models

In the presence of double-reduction, a gamete will carry some identical-by-double-reduction (IBDR)

alleles. For tetrasomic and hexasomic inheritances, there are only two and three allele copies within a

gamete, respectively. Hence, there is at most one pair of IBDR alleles within a gamete. Therefore, we

only need to use a single parameter to measure the degree of double-reduction.

For polysomic inheritance with a high ploidy level 𝑣, there may be more than one pair of IBDR

alleles within a gamete. Therefore, it is necessary to add some additional parameters to measure the

degree of double-reduction. Let 𝛼𝑖 be the probability that a gamete carries 𝑖 pairs of IBDR alleles. Then∑︀⌊𝑣/4⌋
𝑖=0 𝛼𝑖 = 1, where ⌊𝑣/4⌋ is the greatest integer not more than 𝑣/4. We call each 𝛼𝑖 a double-reduction

rate.

Geneticists have developed several simplified models to simulate double-reduction. In the random

chromosome segregation (RCS) model, the crossing over between the target locus and the corresponding

centromere is ignored. Therefore, there cannot be any IBDR allele in a gamete, and the genotypic

frequencies accord with the HWE (Figure S1(A), Muller, 1914).

The pure random chromatid segregation (PRCS) model accounts for such crossings over, and assumes

that the chromatids behave independently in the meiotic anaphase, and are randomly segregated into

some gametes (Figure S1(B), Haldane, 1930). When a pair of sister chromatids are segregated into the

same gamete, the double-reduction occurs.

In the complete equational segregation (CES) model, the whole arms of two pairing chromatids are

supposed to be exchanged between the pairing chromosomes (Figure S1(C), Mather, 1935). Subsequently,

the chromosomes are randomly segregated into the secondary oocytes in Metaphase I. If the pairing chro-

mosomes are segregated into the same secondary oocyte, the duplicated alleles may be further segregated

into a single gamete.

The probability that an allele within a chromatid is exchanged with a pairing chromatid is called

the single chromatid recombination rate, denoted by 𝑟𝑠. In the CES model, the rate 𝑟𝑠 is assumed to be

one. This is an ideal assumption. In fact, the maximum value of 𝑟𝑠 is 50% whenever the locus is located

far from the centromere. Huang et al. (2019) presented a model by incorporating 𝑟𝑠 into CES, called the

partial equational segregation (PES) model. Let 𝑑 be the distance (in centimorgans) from the target locus

to its corresponding centromere. According to the Haldane’s mapping function, the relational expression

between 𝑟𝑠 and 𝑑 is as follows:
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Figure S1: Diagram of double-reduction models under tetrasomic inheritance. The left column shows
three primary oocytes, the middle column shows two secondary oocytes (in the rows marked (A) and (C))
or one tetrad (in the row marked (B)), and the right column shows three gametes. The gametes with a gray
background carry IBDR alleles. We denote the cellular fissions by dashed lines, the arms of chromosomes
by solid lines, and the centromeres by circles connecting solid lines. Each locus is located in a long arm of
chromosomes and the identical-by-descent allele is denoted by the same letter as the corresponding locus.
The row marked (A) is the sketch of RCS model. In this model, the crossing over between the target
locus and its corresponding centromere is ignored (Muller, 1914). In the absence of crossing over, gametes
may originate from any combination of homologous chromosomes, and two sister chromatids are never
sorted into the same gamete (Parisod et al., 2010). The row marked (B) is the sketch of PRCS model.
This model accounts for the crossing over between the target locus and its corresponding centromere, and
assumes that the chromatids behave independently in the meiotic anaphase, and are randomly segregated
into the gametes (Haldane, 1930). When a pair of sister chromatids are segregated into the same gamete,
the double-reduction occurs. The probability that two chromatids within the same gamete are a pair of
sister chromatids is 4/

(︀
8
2

)︀
, i.e. 1/7, where 4 is the number of pairs of sister chromatids, and

(︀
8
2

)︀
is the

number of ways to sample two chromatids from eight chromatids. The row marked (C) is the sketch of
CES model. In this model, the pairs of homologous chromosomes are exchanged with the chromatids
via recombination (Mather, 1935). The whole arms of sister chromatids are exchanged into different
chromosomes. The probability that two homologous chromosomes within a single secondary oocyte are
previously paired at a locus in Prophase I is 1/3. In this case, the fragments of these sister chromatids will
be segregated into a single gamete at the ratio of 1/2, so the double-reduction rate is 1/6 for tetrasomic
inheritance.
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𝑟𝑠 =
1

2
[1− exp(−2𝑑/100)] .

In summary, different models are required to satisfy different conditions and their dimensions are

also not the same. For example, there is an additional parameter 𝑟𝑠 (or 𝑑) in the PES model, and

thus the number of degrees of freedom in PES is higher. It is noteworthy that all of the four models

mentioned above can be incorporated into a generalized framework (i.e. the double-reduction rates are

used as the parameters to express the phenotypic probabilities for some models). Comparing with the

RCS, PRCS and CES models, the number of parameters for such generalized model increases by ⌊𝑣/4⌋.

The double-reduction rates in four models are shown in Table S1.

Table S1: The double-reduction rates in four models

Model Alpha
Ploidy level

4 6 8 10 12

RCS
𝛼1 0 0 0 0 0
𝛼2 0 0 0
𝛼3 0

PRCS
𝛼1 1/7 3/11 24/65 140/323 1440/3059
𝛼2 1/65 15/323 270/3059
𝛼3 5/3059

CES
𝛼1 1/6 3/10 27/70 55/126 285/616
𝛼2 3/140 5/84 65/616
𝛼3 5/1848

PES
𝛼1 𝑟𝑠/6 3𝑟𝑠/10

3
70𝑟𝑠(10− 𝑟𝑠)

5
126𝑟𝑠(14− 3𝑟𝑠)

5
616𝑟𝑠(84− 28𝑟𝑠 + 𝑟2𝑠)

𝛼2
3

140𝑟
2
𝑠

5
84𝑟

2
𝑠

5
616𝑟

2
𝑠(14− 𝑟𝑠)

𝛼3
5

1848𝑟
3
𝑠

B Likelihoods for genotypic data

The likelihood formulas stated in this section are applicable to the genotypic data of both diploids

and autopolyploids.

We will first give the likelihood formulas in the absence of self-fertilization, and these formulas

are identical to those in Kalinowski et al. (2007). For the first category in a parentage analysis (i.e.

identifying the father when the mother is unknown), the likelihoods can be expressed as

ℒ(𝐻1)= Pr(𝒢𝐴)
[︀
(1− 𝑒)2𝑇 (𝒢𝑂 | 𝒢𝐴) + 2𝑒(1− 𝑒) Pr(𝒢𝑂) + 𝑒2 Pr(𝒢𝑂)

]︀
,

ℒ(𝐻2)= Pr(𝒢𝐴)
[︀
(1− 𝑒)2 Pr(𝒢𝑂) + 2𝑒(1− 𝑒) Pr(𝒢𝑂) + 𝑒2 Pr(𝒢𝑂)

]︀
.

(A1)

These two formulas are already listed in Equation (2), in which the second formula can be rewritten as

ℒ(𝐻2) = Pr(𝒢𝐴) Pr(𝒢𝑂) by merging similar terms.

For the second category (i.e. identifying the father when the mother is known), the likelihoods can

be expressed as

3
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ℒ(𝐻1) = Pr(𝒢𝑀 ) Pr(𝒢𝐴)
{︀
(1− 𝑒)3𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝑀 )

+𝑒(1− 𝑒)2
[︀
𝑇 (𝒢𝑂 | 𝒢𝑀 ) + 𝑇 (𝒢𝑂 | 𝒢𝐴) + Pr(𝒢𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒢𝑂) + 𝑒3 Pr(𝒢𝑂)

}︀
, (A2)

ℒ(𝐻2) = Pr(𝒢𝑀 ) Pr(𝒢𝐴)
{︀
(1− 𝑒)3𝑇 (𝒢𝑂 | 𝒢𝑀 ) + 𝑒(1− 𝑒)2

[︀
𝑇 (𝒢𝑂 | 𝒢𝑀 ) + 2Pr(𝒢𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒢𝑂) + 𝑒3 Pr(𝒢𝑂)

}︀
,

where 𝒢𝑀 is the observed genotype of the true mother.

For the third category (i.e. identifying the father and the mother jointly), the likelihoods can be

expressed as

ℒ(𝐻1) =Pr(𝒢𝐴𝑀 ) Pr(𝒢𝐴)
{︀
(1− 𝑒)3𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝐴𝑀 )

+𝑒(1− 𝑒)2
[︀
𝑇 (𝒢𝑂 | 𝒢𝐴𝑀 ) + 𝑇 (𝒢𝑂 | 𝒢𝐴) + Pr(𝒢𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒢𝑂) + 𝑒3 Pr(𝒢𝑂)

}︀
,

ℒ(𝐻2) =Pr(𝒢𝐴𝑀 ) Pr(𝒢𝐴) Pr(𝒢𝑂),

(A3)

where 𝒢𝐴𝑀 is the observed genotype of the alleged mother.

We will now give the likelihood formulas in the presence of self-fertilization. For the first category,

the offspring is produced by selfing at a probability of 𝑠 and by outcrossing at a probability of 1− 𝑠. So,

if we denote 𝑇𝑠1 for (1− 𝑠)𝑇 (𝒢𝑂 | 𝒢𝐴)+ 𝑠𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝐴), then the likelihood formulas can be obtained by

replacing 𝑇 (𝒢𝑂 | 𝒢𝐴) with 𝑇𝑠1 in the first formula in Equation (A1), whose expressions are as follows:

ℒ(𝐻1) = Pr(𝒢𝐴)
[︀
(1− 𝑒)2𝑇𝑠1 + 2𝑒(1− 𝑒) Pr(𝒢𝑂) + 𝑒2 Pr(𝒢𝑂)

]︀
,

ℒ(𝐻2) = Pr(𝒢𝐴) Pr(𝒢𝑂).

For the second category, if the alleged father is not the same individual as the true mother, selfing

cannot occur in 𝐻1 but may occur in 𝐻2. Thus, if we denote 𝑇𝑠2 for (1−𝑠)𝑇 (𝒢𝑂 | 𝒢𝑀 )+𝑠𝑇 (𝒢𝑂 | 𝒢𝑀 ,𝒢𝑀 ),

then the likelihood formulas can be obtained by replacing 𝑇 (𝒢𝑂 | 𝒢𝑀 ) with 𝑇𝑠2 in the second formula in

Equation (A2), whose expressions are as follows:

ℒ(𝐻1) = Pr(𝒢𝑀 ) Pr(𝒢𝐴)
{︀
(1− 𝑒)3𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝑀 )

+𝑒(1− 𝑒)2
[︀
𝑇 (𝒢𝑂 | 𝒢𝑀 ) + 𝑇 (𝒢𝑂 | 𝒢𝐴) + Pr(𝒢𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒢𝑂) + 𝑒3 Pr(𝒢𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒢𝑀 ) Pr(𝒢𝐴)
{︀
(1− 𝑒)3𝑇𝑠2 + 𝑒(1− 𝑒)2

[︀
𝑇𝑠2 + 2Pr(𝒢𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒢𝑂) + 𝑒3 Pr(𝒢𝑂)

}︀
.

Moreover, if the alleged father is the same individual as the true mother, selfing must have occurred in

𝐻1 and could not have occurred in 𝐻2. Therefore, the likelihood formulas can be obtained by replacing
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(1− 𝑒)2𝑇 (𝒢𝑂 | 𝒢𝐴) with (1− 𝑒)2𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝐴) and (1− 𝑒)2 Pr(𝒢𝑂) with (1− 𝑒)2𝑇 (𝒢𝑂 | 𝒢𝐴) in Equation

(A1), whose expressions are as follows:

ℒ(𝐻1) = Pr(𝒢𝐴)
{︀
(1− 𝑒)2𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝐴) + 2𝑒(1− 𝑒) Pr(𝒢𝑂) + 𝑒2 Pr(𝒢𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒢𝐴)
{︀
(1− 𝑒)2𝑇 (𝒢𝑂 | 𝒢𝐴) + 2𝑒(1− 𝑒) Pr(𝒢𝑂) + 𝑒2 Pr(𝒢𝑂)

}︀
.

For the third category, if the alleged father is not the same individual as the alleged mother, selfing

cannot happen in 𝐻1 but may happen in 𝐻2. In this situation, the likelihood formulas are the same as

those in Equation (A3). Moreover, if the alleged father is the same individual as the alleged mother,

selfing must have occurred in 𝐻1 but could not have occurred in 𝐻2. Therefore, the likelihood formulas

can be obtained by replacing 𝑇 (𝒢𝑂 | 𝒢𝐴) with 𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝐴) in the first formula in Equation (A1), whose

expressions are as follows:

ℒ(𝐻1) = Pr(𝒢𝐴)
{︀
(1− 𝑒)2𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝐴) + 2𝑒(1− 𝑒) Pr(𝒢𝑂) + 𝑒2 Pr(𝒢𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒢𝐴) Pr(𝒢𝑂).

For the transitional probability 𝑇 (𝒢𝑂 | 𝒢𝐴) or 𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝑀 ) and so on in this section, it should be

calculated by 𝑇 (𝐺𝑂 |𝐺𝐹 ) or 𝑇 (𝐺𝑂 |𝐺𝐹 , 𝐺𝑀 ) because these genotypes are assumed correctly genotyped

in calculating these transitional probabilities, i.e. 𝒢𝑂 = 𝐺𝑂, 𝒢𝐹 = 𝐺𝐹 , 𝒢𝑀 = 𝐺𝑀 . Similarly, for

the genotypic frequency Pr(𝒢𝐴) or Pr(𝒢𝑂) and so on in some formula listed in this section, it should

be calculated by Pr(𝐺𝐴) or Pr(𝐺𝑂) because the genotyping errors does not change the distribution of

genotypes, i.e. Pr(𝒢) = Pr(𝐺 = 𝒢).

For diploids without self-fertilization, the formulas of genotypic frequency and two transitional prob-

abilities have been given in the section Marshall et al.’s (1998) diploid model.

For diploids with self-fertilization, the transitional probabilities do not change, but the genotypic

frequency is related to the inbreeding coefficient 𝐹 , denoted by Pr(𝐺 |p, 𝐹 ), which can be calculated by

Pr(𝐺 |p, 𝐹 ) =

{︃
𝐹𝑝𝑖 + (1− 𝐹 )𝑝2𝑖 if 𝐺 = 𝐴𝑖𝐴𝑖,

2(1− 𝐹 )𝑝𝑖𝑝𝑗 if 𝐺 = 𝐴𝑖𝐴𝑗 ,

where 𝐹 can be converted from the selfing rate 𝑠 by the relational expression

𝐹 =
𝑠

2− 𝑠
.

Above two formulas will be extended from disomic to polysomic inheritances in Appendix C.

For autopolyploids without self-fertilization, the genotypic frequency Pr(𝐺) from tetrasomic to de-

casomic inheritances for each double-reduction model has been derived in Huang et al. (2019), and the

transitional probabilities 𝑇 (𝐺𝑂 |𝐺𝐹 ) and 𝑇 (𝐺𝑂 |𝐺𝐹 , 𝐺𝑀 ) are given in Appendix D.

For autopolyploids with self-fertilization, the transitional probabilities do not change, but the exact

genotypic frequency is unavailable. As an alternative, we give its approximate solution, whose derivation
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is given in Appendix C.

C Genotypic and phenotypic frequencies

We have previously discussed the generalized genotypic frequencies from tetrasomic to decasomic

inheritances under any double-reduction model (Huang et al., 2019). We will further incorporate self-

fertilization into these genotypic frequencies.

In the presence of self-fertilization, if the ploidy level is high, the calculation of the genotypic fre-

quencies from their analytical expressions is problematic (see Appendix K for details). As an alternative,

we give an approximate solution by using the inbreeding coefficient 𝐹 as an intermediate variable under

the assumption that the inbreeding is only caused by both self-fertilization and double-reduction. The

analytical expression of 𝐹 at an equilibrium state under both double-reduction and selfing was derived

in Huang et al. (2019), which is

𝐹 =
8𝛼+ 𝑠𝑣

8𝛼+ 𝑣(𝑠+ 𝑣 − 𝑠𝑣)
,

where 𝑠 is the selfing rate, 𝑣 is the ploidy level, and 𝛼 is the expected number of pairs of IBDR alleles

within a gamete. The value of 𝛼 can be calculated by 𝛼 =
∑︀

𝑖 𝑖𝛼𝑖, in which 𝛼𝑖 is a double-reduction rate,

whose value is listed in Table S1.

Let’s now consider the genotypic frequencies incorporating both inbreeding and double-reduction.

Let 𝑝1, 𝑝2, · · · , 𝑝𝐾 be all allele frequencies in a population, and let 𝛾𝑘 be (1/𝐹 − 1)𝑝𝑘, 𝑘 = 1, 2, · · · ,𝐾.

Denote p = [𝑝1, 𝑝2, · · · , 𝑝𝐾 ] and 𝛾 =
∑︀𝐾

𝑘=1 𝛾𝑘. Assume that 𝑞1, 𝑞2, · · · , 𝑞𝐾 are all allele frequencies of

an individual, which are drawn from the Dirichlet distribution 𝒟(𝛾1, 𝛾2, · · · , 𝛾𝐾) (Pritchard et al., 2000).

Denote q = [𝑞1, 𝑞2, · · · , 𝑞𝐾 ]. Then the probability density function of q is

𝑓(q |p, 𝐹 ) = Γ(𝛾)
𝐾∏︁

𝑘=1

𝑝𝛾𝑘−1
𝑘

Γ(𝛾𝑘)
,

the expectation E(𝑞𝑘) is 𝑝𝑘, and the variance Var(𝑞𝑘) is 𝐹𝑝𝑘(1− 𝑝𝑘), 𝑘 = 1, 2, · · · ,𝐾. Moreover, for any

𝑞𝑘, its standardized variance is exactly 𝐹 . From this, we see that these conditions accord with those of the

definition of Wright’s 𝐹 -statistics. Hence the inbreeding coefficient 𝐹 can be defined as the standardized

variance of allele frequencies among individuals in the same population.

Because the correlation between alleles within the same individual relative to the population is

explained by the divergence from p to q, the alleles within the same genotype are independent relative to

q. Therefore, the frequency Pr(𝐺 |q) of a genotype 𝐺 conditional on q is one of terms in the expansion

of polynomial (𝑝1 + 𝑝2 + · · ·+ 𝑝𝐾)𝑣, i.e. the following term:

Pr(𝐺 |q) =
(︂

𝑣

𝑛1, 𝑛2, · · · , 𝑛𝐾

)︂ 𝐾∏︁
𝑘=1

𝑞𝑛𝑘

𝑘 ,
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where 𝑛𝑘 is the number of copies of the 𝑘th allele in 𝐺, 𝑘 = 1, 2, · · · ,𝐾.

Next, the frequency Pr(𝐺 |p, 𝐹 ) of 𝐺 conditional on q and 𝐹 is the weighted average of all frequencies

in the form of Pr(𝐺 |q), with 𝑓(q |p, 𝐹 )dq as a weight, that is

Pr(𝐺 |p, 𝐹 ) =

∫︁
Ω

Pr(𝐺 |q)𝑓(q |p, 𝐹 )dq,

where the integral domain Ω can be expressed as

Ω = {(𝑞1, 𝑞2, · · · , 𝑞𝐾) | 𝑞1 + 𝑞2 + · · ·+ 𝑞𝐾 = 1, 𝑞𝑘 > 0, 𝑘 = 1, 2, · · · ,𝐾}.

Such integral can be converted into the following repeated integral with the multiplicity 𝐾 − 1:

Pr(𝐺 |p, 𝐹 ) =

∫︁ 1

0

∫︁ 1−𝑞1

0

· · ·
∫︁ 1−𝑞1−𝑞2−···−𝑞𝐾−2

0

Pr(𝐺 |q)𝑓(q |p, 𝐹 )d𝑞1d𝑞2 · · · d𝑞𝐾−1.

It can now be calculated from the expressions of Pr(𝐺 |q) and 𝑓(q |p, 𝐹 ) mentioned above that

Pr(𝐺 |p, 𝐹 ) =

(︂
𝑣

𝑛1, 𝑛2, · · · , 𝑛𝐾

)︂ 𝐾∏︁
𝑘=1

𝑛𝑘−1∏︁
𝑗=0

(𝛾𝑘 + 𝑗)

⧸︃
𝑣−1∏︁
𝑗′=0

(𝛾 + 𝑗′). (A4)

Equation (A4) is the approximate solution with 𝐹 as an intermediate variable. Here, if self-fertilization is

considered, the genotypic frequency Pr(𝒢) should be calculated by Equation (A4), otherwise, the formula

of Pr(𝒢) under each double-reduction model is given in Huang et al. (2019).

Based on the derivation above, we are now able to express the phenotypic frequencies whilst con-

sidering the presence of negative amplifications. If 𝛽 is the negative amplification rate, the frequency

Pr(𝒫) for each phenotype 𝒫 is the weighted average of ℬ𝒫=∅ and
∑︀

𝒢B𝒫 Pr(𝒢) with 𝛽 and 1−𝛽 as their

weights, i.e.

Pr(𝒫) = 𝛽 ℬ𝒫=∅ + (1− 𝛽)
∑︁
𝒢B𝒫

Pr(𝒢). (A5)

Besides, if the negative amplifications are not considered, it only needs to set 𝛽 as zero in Equation (A5).

D Transitional probabilities

In our model with a ploidy level greater than two, we establish two formulas of transitional proba-

bilities 𝑇 (𝐺𝑂 |𝐺𝐹 ) and 𝑇 (𝐺𝑂 |𝐺𝐹 , 𝐺𝑀 ), whose expressions are as follows:

𝑇 (𝐺𝑂 |𝐺𝐹 )=
∑︁

𝑔𝐹⊂𝐺𝐹⊎𝐺𝐹

𝑇 (𝑔𝐹 |𝐺𝐹 ) Pr(𝐺𝑂 ∖ 𝑔𝐹 ),

𝑇 (𝐺𝑂 |𝐺𝐹 , 𝐺𝑀 )=
∑︁

𝑔𝐹⊂𝐺𝐹⊎𝐺𝐹

𝑇 (𝑔𝐹 |𝐺𝐹 )𝑇 (𝐺𝑂 ∖ 𝑔𝐹 |𝐺𝑀 ),
(A6)

where the operations ⊎ and ∖ are respectively the union and difference of multisets, 𝐺𝑂, 𝐺𝐹 and 𝐺𝑀

are in turn the genotypes of the offspring, the father and the mother at a locus, 𝑔𝐹 and 𝐺𝑂 ∖ 𝑔𝐹 are the
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genotypes of the sperm and the egg that form the offspring, Pr(𝐺𝑂 ∖ 𝑔𝐹 ) is gamete frequency of the egg,

and 𝑇 (𝑔𝐹 |𝐺𝐹 ) and 𝑇 (𝐺𝑂 ∖ 𝑔𝐹 |𝐺𝑀 ) are two transitional probabilities from a zygote to a gamete, which

have been derived in Equation (A7).

It is noteworthy that there cannot be any double-reduction under the RCS model or the PES model

with 𝑟𝑠 = 0 (see Table S1), then the double-reduction should not be considered. In other words, the

expression 𝑔𝐹 ⊂ 𝐺𝐹 ⊎𝐺𝐹 in Equation (A6) has to be replaced by 𝑔𝐹 ⊂ 𝐺𝐹 under these situations.

Huang et al. (2019) derived the generalized gamete frequency Pr(𝑔) and zygote frequency Pr(𝐺)

(Huang et al., 2019). They also derived the generalized transitional probability 𝑇 (𝑔 |𝐺) from a zygote

𝐺 to a gamete 𝑔, which can be used at any even ploidy level 𝑣 and under any double-reduction model,

whose expression is

𝑇 (𝑔 |𝐺) =

⌊𝑣/4⌋∑︁
𝑖=0

∑︁
𝑗1+𝑗2+...+𝑗𝐾=𝑖

∏︀𝐾
𝑘=1 𝛿𝑘

(︀
𝑛𝑘

𝑗𝑘

)︀(︀
𝑛𝑘−𝑗𝑘
𝑚𝑘−2𝑗𝑘

)︀(︀
𝑣
𝑖

)︀(︀
𝑣−𝑖

𝑣/2−2𝑖

)︀ 𝛼𝑖, (A7)

where 𝑛𝑘 (or 𝑚𝑘) is the number of copies of the 𝑘th allele in 𝐺 (or in 𝑔), 𝛼𝑖 is a double-reduction rate,

and 𝛿𝑘 is a binary variable, which is used to exclude the values outside the variation range 𝐷 of 𝑗𝑘, such

that 𝛿𝑘 = 1 if 𝑗𝑘 ∈ 𝐷, or 𝛿𝑘 = 0 if 𝑗𝑘 /∈ 𝐷. The variation range 𝐷 of 𝑗𝑘 can be expressed as

max(0,𝑚𝑘 − 𝑛𝑘) 6 𝑗𝑘 6 min(𝑛𝑘,𝑚𝑘/2).

In fact, for the binomial coefficient
(︀
𝑛𝑘

𝑗𝑘

)︀
, 𝑛𝑘 and 𝑗𝑘 should satisfy the condition 0 6 𝑗𝑘 6 𝑛𝑘. Similarly,

for
(︀

𝑛𝑘−𝑗𝑘
𝑚𝑘−2𝑗𝑘

)︀
, we have 0 6 𝑚𝑘 − 2𝑗𝑘 6 𝑛𝑘 − 𝑗𝑘, or equivalently 𝑚𝑘 − 𝑛𝑘 6 𝑗𝑘 6 𝑚𝑘/2. Therefore, the

expression of 𝐷 holds.

E Likelihoods under phenotype method

Under the phenotype method, if self-fertilization is not considered, the likelihoods for the first

category in a parentage analysis can be expressed as

ℒ(𝐻1) = Pr(𝒫𝐴)
[︀
(1− 𝑒)2𝑇 (𝒫𝑂 | 𝒫𝐴) + 2𝑒(1− 𝑒) Pr(𝒫𝑂) + 𝑒2 Pr(𝒫𝑂)

]︀
,

ℒ(𝐻2) = Pr(𝒫𝐴) Pr(𝒫𝑂).

For the second category, the likelihoods can be expressed as

ℒ(𝐻1) = Pr(𝒫𝑀 ) Pr(𝒫𝐴)
{︀
(1− 𝑒)3𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝑀 )

+𝑒(1− 𝑒)2
[︀
𝑇 (𝒫𝑂 | 𝒫𝑀 ) + 𝑇 (𝒫𝑂 | 𝒫𝐴) + Pr(𝒫𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒫𝑂) + 𝑒3 Pr(𝒫𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒫𝑀 ) Pr(𝒫𝐴)
{︀
(1− 𝑒)3𝑇 (𝒫𝑂 | 𝒫𝑀 ) + 𝑒(1− 𝑒)2

[︀
𝑇 (𝒫𝑂 | 𝒫𝑀 ) + 2Pr(𝒫𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒫𝑂) + 𝑒3 Pr(𝒫𝑂)

}︀
.
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For the third category, they can be expressed as

ℒ(𝐻1) = Pr(𝒫𝐴𝑀 ) Pr(𝒫𝐴)
{︀
(1− 𝑒)3𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝐴𝑀 )

+𝑒(1− 𝑒)2
[︀
𝑇 (𝒫𝑂 | 𝒫𝐴𝑀 ) + 𝑇 (𝒫𝑂 | 𝒫𝐴) + Pr(𝒫𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒫𝑂) + 𝑒3 Pr(𝒫𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒫𝐴𝑀 ) Pr(𝒫𝐴) Pr(𝒫𝑂),

where Pr(𝒫𝐴), Pr(𝒫𝑂), Pr(𝒫𝑀 ) and Pr(𝒫𝐴𝑀 ) are calculated by Equation (A5), 𝑇 (𝒫𝑂 | 𝒫𝐴), 𝑇 (𝒫𝑂 | 𝒫𝑀 )

and 𝑇 (𝒫𝑂 | 𝒫𝐴𝑀 ) by Equation (3), and 𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝑀 ) and 𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝐴𝑀 ) by Equation (4).

If self-fertilization is considered, like the situations of Appendix B, each pair of likelihood formulas

can be obtained by modifying the existing formulas. For the first category, the likelihood formulas are

ℒ(𝐻1) = Pr(𝒫𝐴)
[︀
(1− 𝑒)2𝑇𝑠1 + 2𝑒(1− 𝑒) Pr(𝒫𝑂) + 𝑒2 Pr(𝒫𝑂)

]︀
,

ℒ(𝐻2) = Pr(𝒫𝐴) Pr(𝒫𝑂),

where 𝑇𝑠1 = (1− 𝑠)𝑇 (𝒫𝑂 | 𝒫𝐴) + 𝑠𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝐴). For the second category, if 𝐴 ̸≡ 𝑀 , then

ℒ(𝐻1) = Pr(𝒫𝑀 ) Pr(𝒫𝐴)
{︀
(1− 𝑒)3𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝑀 )

+𝑒(1− 𝑒)2
[︀
𝑇 (𝒫𝑂 | 𝒫𝑀 ) + 𝑇 (𝒫𝑂 | 𝒫𝐴) + Pr(𝒫𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒫𝑂) + 𝑒3 Pr(𝒫𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒫𝑀 ) Pr(𝒫𝐴)
{︀
(1− 𝑒)3𝑇𝑠2 + 𝑒(1− 𝑒)2

[︀
𝑇𝑠2 + 2Pr(𝒫𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒫𝑂) + 𝑒3 Pr(𝒫𝑂)

}︀
,

where 𝑇𝑠2 = (1− 𝑠)𝑇 (𝒫𝑂 | 𝒫𝑀 ) + 𝑠𝑇 (𝒫𝑂 | 𝒫𝑀 ,𝒫𝑀 ); if 𝐴 ≡ 𝑀 , then

ℒ(𝐻1) = Pr(𝒫𝐴)
{︀
(1− 𝑒)2𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝐴) + 2𝑒(1− 𝑒) Pr(𝒫𝑂) + 𝑒2 Pr(𝒫𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒫𝐴)
{︀
(1− 𝑒)2𝑇 (𝒫𝑂 | 𝒫𝐴) + 2𝑒(1− 𝑒) Pr(𝒫𝑂) + 𝑒2 Pr(𝒫𝑂)

}︀
,

where 𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝐴) and 𝑇 (𝒫𝑂 | 𝒫𝑀 ,𝒫𝑀 ) are calculated by Equation (4). For the third category, if

𝐴 ̸≡ 𝐴𝑀 , then

ℒ(𝐻1) = Pr(𝒫𝐴𝑀 ) Pr(𝒫𝐴)
{︀
(1− 𝑒)3𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝐴𝑀 )

+𝑒(1− 𝑒)2
[︀
𝑇 (𝒫𝑂 | 𝒫𝐴𝑀 ) + 𝑇 (𝒫𝑂 | 𝒫𝐴) + Pr(𝒫𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒫𝑂) + 𝑒3 Pr(𝒫𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒫𝐴𝑀 ) Pr(𝒫𝐴) Pr(𝒫𝑂);

if 𝐴 ≡ 𝐴𝑀 , then
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ℒ(𝐻1) = Pr(𝒫𝐴)
{︀
(1− 𝑒)2𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝐴) + 2𝑒(1− 𝑒) Pr(𝒫𝑂) + 𝑒2 Pr(𝒫𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒫𝐴) Pr(𝒫𝑂).

F Estimation of genotyping error rate (continuous)

In this appendix, we will use the trio mismatches to describe how to estimate the genotyping error

rate. The trio mismatch in a true parents-offspring trio may be caused by the genotyping errors in this

offspring or in the parents. If the offspring or if both parents are erroneously genotyped, the probability

of observing a trio mismatch is equal to the exclusion rate for the third category, denoted by 𝛿𝑜. If only

one parent is erroneously genotyped, the probability of observing a trio mismatch is equal to the exclusion

rate for the second category, denoted by 𝛿𝑝. Moreover, if each individual in a selfed trio is erroneously

genotyped, the probability of observing a trio mismatch is denoted by 𝛿𝑠. Therefore, the probability 𝛾 of

observing a trio mismatch in a true parents-offspring trio can be expressed as

𝛾 = 𝑒[(1− 𝑠𝑡)(𝛿𝑜 + 2𝛿𝑝) + 2𝑠𝑡𝛿𝑠] + 𝑒2[(1− 𝑠𝑡)(𝛿𝑜 − 4𝛿𝑝)− 𝑠𝑡𝛿𝑠] + 𝑒3(1− 𝑠𝑡)(𝛿𝑜 − 2𝛿𝑝), (A8)

where 𝑠𝑡 is the frequency of selfing in the reference trios.

The values of 𝑠𝑡 and 𝛾 can be estimated from the reference trios identified from a single application

or from multiple applications based on the same dataset, and 𝛿𝑜 and 𝛿𝑠 can be estimated from a similar

Monte-Carlo algorithm mentioned above. The procedures are broadly as follows: randomly sample three

(or two) individuals, considering them as a trio (or a selfed trio), and next calculate the probability that

the genotypes/phenotypes at a locus of this trio (or this selfed trio) are mismatched, which is used as 𝛿𝑜

(or 𝛿𝑠) at this locus.

Under the assumption of random mating, the joint distribution of parental genotypes/phenotypes is

the product of two observed genotypic/phenotypic frequencies, such that we can randomly sample two

individuals and assume they are parents in the estimation of 𝛿𝑜. However, in the estimation of 𝛿𝑝, the

joint distribution of parent-offspring genotypes/phenotypes cannot be estimated via this method. That is

because the parent-offspring genotypes are correlated. As an alternative, we use the empirical distribution

of genotypes/phenotypes of reference pairs to approximate the joint distribution of parent-offspring geno-

types/phenotypes. More specifically, we randomly sample a matched pair (as a mother-offspring pair)

from the reference pairs and an individual (as an alleged father) from all samples, considering them as a

trio, and calculate the probability that the genotypes/phenotypes at a locus of this trio are mismatched,

which is used as 𝛿𝑝 at this locus.

The single-locus estimate 𝑒𝑙 at the 𝑙th locus can be obtained by solving Equation (A8), whose

variance Var(𝑒𝑙) can be approximately expressed as Var(𝑒𝑙) ≈ 𝑒/(𝑛𝑟𝑙𝛿𝑙). Moreover, the multi-locus

estimate 𝑒 is the weighted average of single-locus estimates across all loci, that is 𝑒 =
∑︀

𝑙 𝑤𝑙𝑒𝑙, where

𝑤𝑙 = 𝑛𝑟𝑙𝛿𝑙/
(︀∑︀

𝑙′ 𝑛𝑟𝑙′𝛿𝑙′
)︀
. The variance Var(𝑒) can be approximately expressed as Var(𝑒) ≈ 𝑒/

(︀∑︀
𝑙 𝑛𝑟𝑙𝛿𝑙

)︀
.
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G Estimation of sample rate (continuous)

Assume that the assignment rates 𝑎𝑐 and 𝑎𝑢 as well as the selfing rate 𝑠𝑢 can be reliably estimated

under an application and a confidence level, and that 𝑛𝑐 is the number of cases. Because the number of

assigned cases 𝑛𝑎 obeys the binomial distribution B(𝑛𝑐; 𝑎), the assignment rate 𝑎 can be estimated by

�̂� = 𝑛𝑎/𝑛𝑐. Therefore, the sample rate 𝑝𝑠 can be estimated by Equation (5), (6) or (7), and the variance

Var(𝑝𝑠) can be calculated by the formula Var(𝑝𝑠) = E(𝑝2𝑠)− [E(𝑝𝑠)]
2.

However, it is unfortunate that the true value of 𝑎 is unknown, then we cannot directly apply the

binomial distribution B(𝑛𝑐; 𝑎) to perform various calculations. As an alternative, we select the uniform

distribution U(0, 1) as the prior distribution obeyed by 𝑎, and then give the posterior distribution obeyed

by 𝑎 according to the Bayes formula, where the expected value E(𝑎) for the posterior distribution is

E(𝑎) =
𝑛𝑎 + 1

𝑛𝑐 + 2
.

Now, we can perform various calculations so long as we let the value of 𝑎 in B(𝑛𝑐; 𝑎) be equal to 𝑛𝑎+1
𝑛𝑐+2 .

In actual conditions, multiple applications and multiple confidence levels will be used jointly to

increase the accuracy of sample rate estimation. For convenience, we denote 𝑝𝑠𝑖 for the estimated value

of 𝑝𝑠 under an application and a confidence level. According to the previous derivations, 𝑝𝑠𝑖 together with

its variance can be calculated under the assumption that 𝑎𝑐, 𝑎𝑢 and 𝑠𝑢 can be reliably estimated. Like the

estimation of genotyping error rate, the estimate 𝑝𝑠 is the weighted average of the estimated values of 𝑝𝑠

under all selected applications and all selected confidence levels, symbolically 𝑝𝑠 =
(︀∑︀

𝑖 𝑤𝑖𝑝𝑠𝑖
)︀
/
(︀∑︀

𝑖 𝑤𝑖

)︀
,

where 𝑤𝑖 = 1/Var(𝑝𝑠𝑖).

Finally, let’s consider the estimation of selfing rate 𝑠𝑢 under multiple confidence levels. In actual

conditions, the loci may be insufficient, causing that there are only few cases to assign the parent at a

high confidence level (e.g. Δ > Δ0.99). Besides, the genotyping error rate may be high, causing that the

false parent may be assigned at a low confidence level (e.g. Δ > 0) when the true parent is not sampled.

To avoid these problems, we jointly use three confidence levels (80%, 95% and 99%) in polygene for

each application.

The estimated value 𝑠𝑢 is the ratio of 𝑛𝑠 to 𝑛𝑎, i.e. 𝑠𝑢 = 𝑛𝑠/𝑛𝑎 under an application and a confidence

level, where 𝑛𝑠 is the number of selfing cases. If we select the three confidence levels 99%, 95% and 80%,

then 𝑠𝑢 is the weighted average of the corresponding ratio values of 𝑛𝑠 to 𝑛𝑎, that is

𝑠𝑢 =
𝑛𝑠,0.99 + 𝑛𝑠,0.95 + 𝑛𝑠,0.80

𝑛𝑎,0.99 + 𝑛𝑎,0.95 + 𝑛𝑎,0.80
.

H Pseudo-dominant approach

The pseudo-dominant approach was used in Rodzen et al. (2004) and Wang and Scribner (2014). In

this approach, the codominant data are converted into the dominant data. More specifically, each visible

11

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.15.297812doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.297812
http://creativecommons.org/licenses/by-nc-nd/4.0/


allele is defined as a virtual dominant marker, whose observed phenotype is either present (denoted

by {𝐴}) if this allele is detected, or absent (denoted by ∅) if this allele is not detected. We denote

𝒫𝐷 for the phenotype at a dominant marker. Moreover, the LOD scores are calculated by the diploid

likelihood formulas listed below. These formulas are originally derived in Gerber et al. (2000) by using

the transitional probability 𝑇 (𝒢 |𝐺) from a true genotype 𝐺 to an observed genotype 𝒢 based on an

alternative genotyping error model, where

𝑇 (𝒢 |𝐺) = (1− 𝑒) Pr(𝒢)ℬ𝐺=𝒢 + 𝑒ℬ𝐺 ̸=𝒢 .

The above formula is different to that listed in Equation (1). Because the possible phenotypes at a

dominant marker are {𝐴} and ∅, the degree-of-freedom is only one. Therefore, the null allele frequency,

the selfing rate and the negative amplification rate cannot be estimated. Besides, we will use the formulas

and the model given in Rodzen et al. (2004) to evaluate the efficiency of this approach.

Next, the transitional probability from one phenotype or a pair of phenotypes to another phenotype

at a dominant marker is described in Tables 1 and 2 in Gerber et al. (2000).

The phenotypic frequency at a dominant marker in diploids is

Pr(𝒫𝐷) =

{︃
(1− 𝑝)2 if 𝒫𝐷 = ∅,

1− (1− 𝑝)2 if 𝒫𝐷 = {𝐴},

where 𝑝 is the frequency of the dominant allele 𝐴 at this dominant marker, and 𝑝 is estimated from the

observed phenotypic frequencies, whose estimated expression is 𝑝 = 1−
√︁̂︀Pr(𝒫𝐷 = ∅).

Now, the likelihood formulas listed below can be used for the actual calculation by using these

transitional probabilities and phenotypic frequencies: for the first category in a parentage analysis,

ℒ(𝐻1) = (1− 𝑒)2𝑇 (𝒫𝐷
𝑂 | 𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝐴 ) + 𝑒(1− 𝑒)

[︀
Pr(𝒫𝐷

𝑂 ) + Pr(𝒫𝐷
𝐴 )

]︀
+ 𝑒2,

ℒ(𝐻2) = (1− 𝑒)2 Pr(𝒫𝐷
𝑂 ) Pr(𝒫𝐷

𝐴 ) + 𝑒(1− 𝑒)
[︀
Pr(𝒫𝐷

𝑂 ) + Pr(𝒫𝐷
𝐴 )

]︀
+ 𝑒2;

for the second category,

ℒ(𝐻1) = (1− 𝑒)3𝑇 (𝒫𝐷
𝑂 | 𝒫𝐷

𝐴 ,𝒫𝐷
𝑀 ) Pr(𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝑀 ) +

𝑒(1− 𝑒)2
[︀
Pr(𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝑀 ) + 𝑇 (𝒫𝐷

𝑂 | 𝒫𝐷
𝑀 ) Pr(𝒫𝐷

𝑀 ) + 𝑇 (𝒫𝐷
𝑂 | 𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝐴 )

]︀
+

𝑒2(1− 𝑒)
[︀
Pr(𝒫𝐷

𝑂 ) + Pr(𝒫𝐷
𝐴 ) + Pr(𝒫𝐷

𝑀 )
]︀
+ 𝑒3,

ℒ(𝐻2) = (1− 𝑒)3𝑇 (𝒫𝐷
𝑂 | 𝒫𝐷

𝑀 ) Pr(𝒫𝐷
𝐴 ) Pr(𝒫𝐷

𝑀 ) +

𝑒(1− 𝑒)2
[︀
Pr(𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝑀 ) + 𝑇 (𝒫𝐷

𝑂 | 𝒫𝐷
𝑀 ) Pr(𝒫𝐷

𝑀 ) + Pr(𝒫𝐷
𝑂 ) Pr(𝒫𝐷

𝐴 )
]︀
+

𝑒2(1− 𝑒)
[︀
Pr(𝒫𝐷

𝑂 ) + Pr(𝒫𝐷
𝐴 ) + Pr(𝒫𝐷

𝑀 )
]︀
+ 𝑒3;

for the third category,
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ℒ(𝐻1) = (1− 𝑒)3𝑇 (𝒫𝐷
𝑂 | 𝒫𝐷

𝐴 ,𝒫𝐷
𝑀 ) Pr(𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝑀 ) +

𝑒(1− 𝑒)2
[︀
Pr(𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝑀 ) + 𝑇 (𝒫𝐷

𝑂 | 𝒫𝐷
𝑀 ) Pr(𝒫𝐷

𝑀 ) + 𝑇 (𝒫𝐷
𝑂 | 𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝐴 )

]︀
+

𝑒2(1− 𝑒)
[︀
Pr(𝒫𝐷

𝑂 ) + Pr(𝒫𝐷
𝐴 ) + Pr(𝒫𝐷

𝑀 )
]︀
+ 𝑒3,

ℒ(𝐻2) = (1− 𝑒)3 Pr(𝒫𝐷
𝑂 ) Pr(𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝑀 ) +

𝑒(1− 𝑒)2
[︀
Pr(𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝑀 ) + Pr(𝒫𝐷

𝑂 ) Pr(𝒫𝐷
𝑀 ) + Pr(𝒫𝐷

𝑂 ) Pr(𝒫𝐷
𝐴 )

]︀
+

𝑒2(1− 𝑒)
[︀
Pr(𝒫𝐷

𝑂 ) + Pr(𝒫𝐷
𝐴 ) + Pr(𝒫𝐷

𝑀 )
]︀
+ 𝑒3.

I Exclusion approach

Although the exclusion approach is not as accurate as the likelihood approach, the number of mis-

matches can be used as a reference. Here, we extend the exclusion approach to polysomic inheritances,

and this extended approach can be incorporated into our framework, such that the effects of double-

reduction, null alleles, negative amplifications and self-fertilization can all be freely accommodated.

The logic of the exclusion approach is relatively simple: if the alleged parents are able to produce

the offspring, they cannot be excluded. We will here give two extended definitions of matches by using

the genotypic data.

Given an alleged parent-offspring pair, if there exists a gamete 𝑔𝐴 produced by the alleged parent

at a locus, such that 𝑔𝐴 is a subset of the offspring genotype 𝒢𝑂 at this locus, then such a pair is

termed matched at this locus. The condition in this definition can be described by symbols as follows:

∃𝑔𝐴 ⊂ 𝒢𝐴 ⊎ 𝒢𝐴, such that 𝑔𝐴 ⊂ 𝒢𝑂; or equivalently, max
{︀
ℬ𝑔′

𝐴⊂𝒢𝑂
| 𝑔′𝐴 ⊂ 𝒢𝐴 ⊎ 𝒢𝐴

}︀
= 1, where 𝒢𝐴 is the

genotype of the alleged parent at this locus.

Given an alleged parents-offspring trio, if there exist two gametes 𝑔𝐹 and 𝑔𝑀 produced by the alleged

father and the alleged mother at a locus, respectively, such that the fusion of 𝑔𝐹 and 𝑔𝑀 results in the

offspring genotype 𝒢𝑂 at this locus, then such a trio is termed matched at this locus. Similarly, the

conditions in this definition can be described as follows: ∃𝑔𝐹 ⊂ 𝒢𝐴𝐹 ⊎ 𝒢𝐴𝐹 , ∃𝑔𝑀 ⊂ 𝒢𝐴𝑀 ⊎ 𝒢𝐴𝑀 , such

that 𝑔𝐹 ⊎ 𝑔𝑀 = 𝒢𝑂; or equivalently,

max
{︀
ℬ𝑔′

𝐹⊎𝑔′
𝑀=𝒢𝑂

| 𝑔′𝐹 ⊂ 𝒢𝐴𝐹 ⊎ 𝒢𝐴𝐹 , 𝑔
′
𝑀 ⊂ 𝒢𝐴𝑀 ⊎ 𝒢𝐴𝑀

}︀
= 1,

where 𝒢𝐴𝐹 (or 𝒢𝐴𝑀 ) is the genotype of the alleged father (or the alleged mother) at this locus.

Finally, it is important to highlight that under the RCS model or the PES model with 𝑟𝑠 = 0, the

expressions, used to describe the two definitions and involved in the double-reduction, should be revised,

i.e. we must replace 𝑔𝐴 ⊂ 𝒢𝐴 ⊎ 𝒢𝐴 by 𝑔𝐴 ⊂ 𝒢𝐴, 𝑔𝐹 ⊂ 𝒢𝐴𝐹 ⊎ 𝒢𝐴𝐹 by 𝑔𝐹 ⊂ 𝒢𝐴𝐹 and 𝑔𝑀 ⊂ 𝒢𝐴𝑀 ⊎ 𝒢𝐴𝑀

by 𝑔𝑀 ⊂ 𝒢𝐴𝑀 .
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J Allele frequency estimation

We adopt an expectation-maximization (EM) algorithm (Dempster et al., 1977) to estimate the allele

frequencies for phenotypic data. This algorithm follows the methods of Kalinowski and Taper (2006),

which is an iterative algorithm used to maximize the genotypic likelihood. The genotypic likelihood at a

locus is defined as the product of genotypic frequencies of all individuals at this locus, denoted by ℒgeno,

whose logarithmic expression is

lnℒgeno =
∑︁
𝒫

∑︁
𝒢B𝒫

Pr(𝒢 |𝒫) ln[Pr(𝒢)],

in which 𝒫 is taken from the phenotypes of all individuals at this locus, 𝒢 is taken from all genotypes

determining 𝒫 at the same locus, Pr(𝒢 |𝒫) is the posterior probability of 𝒢 determining 𝒫, and Pr(𝒢) is

the frequency of 𝒢.

The initial frequencies of amplifiable alleles are assumed to be equal to 1/𝐾, where 𝐾 is the number

of alleles, including the null allele 𝐴𝑦. The updated frequency 𝑝′𝑘 of the 𝑘th allele 𝐴𝑘 is the weighted

average of frequencies of 𝐴𝑘 in all genotypes at a locus, with the posterior probabilities of these genotypes

as their weights, whose expression is

𝑝′𝑘 =

∑︀
𝒫
∑︀

𝒢B𝒫 Pr(𝒢 |𝒫) Pr(𝐴𝑘 | 𝒢)∑︀
𝒫
∑︀

𝒢B𝒫 Pr(𝒢 |𝒫)
, 𝑘 = 1, 2, · · · ,𝐾,

where Pr(𝐴𝑘 | 𝒢) is the frequency of 𝐴𝑘 in 𝒢.

Our algorithm also includes simultaneously the estimation of negative amplification rate 𝛽. Because

the final estimated value of 𝛽 is independent to the initial value, the initial value can be arbitrarily

selected (e.g. 0.05). The updated negative amplification rate 𝛽′ can be expressed as

𝛽′ =
𝑁∅𝛽/Pr(𝒫 = ∅)

𝑁
,

where 𝑁∅ is the number of negative phenotypes at this locus, 𝑁 is the number of all individuals, 𝛽 is

the current negative amplification rate, and 𝛽/Pr(𝒫 = ∅) is the posterior probability that a negative

phenotype is the result of negative amplification.

If max{|𝑝𝑘 − 𝑝′𝑘| | 𝑘 = 1, 2, · · · ,𝐾} and |𝛽 − 𝛽′| are less than a predefined threshold (e.g. 10−5) or if

the iterative times reach 2000, the iteration is terminated, where 𝑝𝑘 is the current frequency of 𝐴𝑘.

Null alleles and negative amplifications can both be freely incorporated into our model. If the null

alleles are not considered, the candidate genotypes extracted from a phenotype only need to be set as

‘not containing 𝐴𝑦’. If the negative amplifications are not considered, the initial value of 𝛽 only needs to

be set as zero. If both factors are not considered, the negative phenotype cannot be explained, and so ∅

is discarded in the allele frequency estimation together with the subsequent analyses.

We also nest a downhill simplex algorithm (Nelder and Mead, 1965) outside the EM algorithm to

estimate the selfing rate 𝑠. The estimated value 𝑠 is obtained by maximizing the phenotypic likelihood
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ℒpheno, that is 𝑠 = argmax
𝑠∈[0,1]

ℒpheno, where ℒpheno =
∏︀
𝒫
Pr(𝒫).

K Reasons for computational difficulty

In the absence of selfing, the generalized form of genotypic frequencies can be obtained by two

methods (Huang et al., 2019). The first method is the non-linear method. In this method, we estab-

lish a non-linear equation set with the frequencies Pr(𝐺1),Pr(𝐺2), · · · ,Pr(𝐺𝐼),Pr(𝑔1), · · · ,Pr(𝑔𝐽) as the

unknowns and the frequencies 𝑝1, 𝑝2, · · · , 𝑝𝐾 as the parameters, whose expression is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr(𝐺𝑖) =
𝐽∑︁

𝜇=1

Pr(𝑔𝜇) Pr(𝐺𝑖 ∖ 𝑔𝜇), 𝑖 = 1, 2, · · · , 𝐼,

Pr(𝑔𝑗) =
𝐼∑︁

𝜈=1

Pr(𝐺𝜈)𝑇 (𝑔𝑗 |𝐺𝜈), 𝑗 = 1, 2, · · · , 𝐽,

𝑝𝑘 =
𝐼∑︁

𝜈=1

Pr(𝐺𝜈) Pr(𝐴𝑘 |𝐺𝜈), 𝑘 = 1, 2, · · · , 𝐾,

(A9)

where 𝐼 =
(︀
2𝑣
𝑣

)︀
, 𝐽 =

(︀
𝑣/2+𝑣
𝑣/2

)︀
, 𝐾 = 𝑣 + 1 (𝐼, 𝐽 and 𝐾 are the numbers of zygotes, gametes and alleles at

a locus, respectively), Pr(𝐺𝑖 ∖ 𝑔𝜇) = Pr(𝑔 = 𝐺𝑖 ∖ 𝑔𝜇), 𝑇 (𝑔𝑗 |𝐺𝜈) is the transitional probability from 𝐺𝜈

to 𝑔𝑗 , and 𝑝𝑘 and Pr(𝐴𝑘 |𝐺𝜈) are the frequencies of 𝐴𝑘 in the population and in 𝐺𝜈 , respectively. If the

ploidy level 𝑣 is equal to 4, 6, 8 or 10, the number of equations in Equation set (A9) is 90, 1015, 13374 or

187770, and the number of unknowns is 85, 1008, 12265 or 187759. We now see that these numbers will

increase rapidly with an increase in ploidy level. Therefore, this will cause a computational difficulty for

Equation set (A9) at a high ploidy level.

In order to overcome such a computational difficulty, we adopt another method, named the linear

method, to obtain the zygote frequencies. For this method, briefly speaking, we will first use Equation

set (A9) to calculate the gamete frequencies at a biallelic locus. Next, we split these alleles one by one at

this locus until they are split into 𝑣/2 + 1 alleles so as to more expediently obtain the zygote frequencies

at a multi-allelic locus. Finally, we use the former 𝐼 equations in Equation set (A9), i.e.

Pr(𝐺𝑖) =
𝐽∑︁

𝜇=1

Pr(𝑔𝜇) Pr(𝐺𝑖 ∖ 𝑔𝜇), 𝑖 = 1, 2, · · · , 𝐼,

to calculate the zygote frequencies. This method can be described by a linear equation set Ax = b.

Because there are no sufficient constraint conditions to obtain a unique solution for such linear equation

set when 𝑣 > 12, this method can only be applied from tetrasomic to decasomic inheritances (Huang

et al., 2019).

In the presence of selfing, for the linear method, although the gamete frequencies can be solved for

𝑣 < 12, the zygote frequencies cannot be easily calculated from the gamete frequency. That is because

for any 𝑖 ∈ 𝐼, the 𝑖th equation in Equation set (A9) should be modified as
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Pr(𝐺𝑖) = (1− 𝑠)
𝐽∑︁

𝜈=1

Pr(𝑔𝜈) Pr(𝐺𝑖 ∖ 𝑔𝜈) + 𝑠
𝐼∑︁

𝜇=1

𝐽∑︁
𝜈=1

Pr(𝐺𝜇)𝑇 (𝑔𝜈 |𝐺𝜇)𝑇 (𝐺𝑖 ∖ 𝑔𝜈 |𝐺𝜇).

For the non-linear method, the calculation is more difficult when the ploidy level is high.
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Figure S2: The correct assignment rate as a function of the number of loci 𝐿 by using the phenotypic
data at the selfing rate 0. The ploidy levels, applications, methods, confidence levels and the definitions
of bars together with their shading are as for Figure 2.
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Figure S3: The correct assignment rate as a function of the number of loci 𝐿 by using the phenotypic
data at the selfing rate 0.3. The remaining are as for Figure 2.
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Figure S4: The RMSE of the estimated genotyping error rate 𝑒 or the estimated sample rate 𝑝𝑠 as a
function of the number of loci 𝐿 at 𝑒 = 0.02 and 𝑝𝑠 = 0.8. The remaining are as for Figure 4.
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