
1 
 

Title 

Difficulty in Cessation of Undesired Habits: Goal-Based Reduced Successor Representation and 

Reward Prediction Errors 

 

Short title 

Mechanisms for the Difficulty in Cessation of Undesired Habits 

 

Authors 

Kanji Shimomura1+, Ayaka Kato2,3,4+, & Kenji Morita1,5* 

  + These authors contribute equally to this work. 

 

Affiliations 
1 Physical and Health Education, Graduate School of Education, The University of Tokyo 
2 Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo 
3 Laboratory for Circuit Mechanisms of Sensory Perception, RIKEN Center for Brain Science 
4 Research Fellowship for Young Scientists, Japan Society for the Promotion of Science 
5 International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo 

 

*Corresponding author 

  Kenji Morita, Ph.D. 

  Physical and Health Education, Graduate School of Education, The University of Tokyo 

  7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 

  E-mail: morita@p.u-tokyo.ac.jp 

 

Author contributions 

  Conceptualization: K.M., K.S., A.K.; Formal Analysis: K.S.; Supervision: K.M.; Validation: A.K.; 

Visualization: K.S.; Writing – Original Draft Preparation: K.M.; Writing – Review & Editing: K.M., 

A.K., K.S.. 

Funding 

  K.M. is supported by Grant-in-Aid for Scientific Research (No. 20H05049) of the Ministry of 

Education, Culture, Sports, Science and Technology in Japan (http://www.mext.go.jp/en/). A.K. is 

supported by Grant-in-Aid for JSPS Fellows (No. 19J12156) of the Japan Society for the Promotion 

of Science (https://www.jsps.go.jp/english/). 

Acknowledgements 

  The authors thank Mr. Hirokazu Hatta for literature search on computational models of addiction. 

Conflicts of Interest 

  A.K. is an employee of CureApp, Inc, Japan.   

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.09.15.297655doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.297655
http://creativecommons.org/licenses/by/4.0/


2 
 

Abstract 

        Difficulty in cessation of drinking, smoking, or gambling, even with strong intention, has 

been widely recognized. Reasons for this, and whether there are reasons common to substance and 

non-substance reward, remain elusive. We present a computational model of common potential 

mechanisms underlying the difficulty in resisting habitual behavior to obtain reward. Consider that a 

person has long been regularly taking a series of actions leading to a purchase of alcohol, cigarette, or 

betting ticket without any hesitation. Referring to the recently suggested representation of states by 

their successors in human reinforcement learning as well as the dimension reduction in state 

representations in the brain, we assumed that the person has acquired a rigid representation of states 

along the series of habitual actions by the discounted future occupancy of the final successor state, 

namely, the rewarded goal state, under the established non-resistant policy. Then, we show that if the 

person takes a different policy to resist temptation of habitual behavior, negative reward prediction 

error (RPE) is generated when s/he makes "No-Go" decisions whereas no RPE occurs upon "Go" 

decisions, and a large positive RPE is generated upon eventually reaching the goal, given that the state 

representation acquired under the non-resistant policy is so rigid that it does not easily change. In the 

cases where the states are instead represented in the punctate manner or by the discounted future 

occupancies of all the states (i.e., by the genuine successor representation), negative and positive RPEs 

are generated upon "No-Go" and "Go" decisions, respectively, whereas no or little RPE occurs at the 

goal. We suggest that these RPEs, especially the large positive RPE generated upon goal reaching in 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.09.15.297655doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.297655
http://creativecommons.org/licenses/by/4.0/


3 
 

the case with the goal-based reduced successor representation, might underlie the difficulty in cessation 

of undesired habitual or addictive behavior to obtain substance and non-substance reward. 

 

Author Summary 

        Many people try to stop drinking, smoking, or gambling, but fail it. Why? In case of drinking 

or smoking, alcohol or nicotine could invade the brain and affect the neural circuits. But such 

substance-based explanations obviously do not hold for gambling or video gaming. A conceivable 

explanation, common for substance and non-substance, is that such behavior has become a habit, which 

is so rigidly established that it could not be changed. However, it has been shown that even those who 

are suffering from severe drug addiction can behave in a goal-directed, rather than habitual, manner in 

the sense that they can exhibit intact sensitivity to changes in the value of action outcomes. Meanwhile, 

recent work suggests that humans may develop a subtler "habit", where a particular type of internal 

representation of states (situations), rather than action itself, becomes rigidly formed. Here we show, 

through computational modeling, that if a similar type of, but dimension-reduced, state representation 

is formed, when people try to resist long-standing reward-obtaining behavior but eventually fail and 

reach the rewarded goal, a large positive "prediction error" of rewards would arise, and discuss that it 

might underlie the difficulty in cessation of undesired habitual behavior.  
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Introduction 

 

        Difficulty in cessation of drinking, smoking, or gambling, even with strong intention, has 

been widely recognized. Reasons for this, and whether there are reasons common to substance and 

non-substance reward, remain elusive. Although much effort has been devoted to developing clinical 

programs including technology-based therapies (e.g. [1, 2]; reviewed in [3, 4]), the lack of mechanistic 

understanding of the undesired habit is an obstacle for further improvement. Computational modeling 

has become a powerful approach to elucidating the mechanisms of psychiatric disorders including 

addiction [5-8]. However, it appears that relatively less focus has been given to non-substance, 

compared to substance, addiction, although there have been proposals (e.g., [9-11]). Also, while 

previous computational studies appear to typically focus on the difficulty in withdrawal from severe 

addiction, including the problems of relapse, presumably a larger population has established milder, 

stable additive behavior for years but then decides to quit such behavior because it potentially causes 

health or socioeconomic problems rather than because the behavior itself is immediately problematic 

as pathological addiction. In the present study, we explored possible computational mechanisms for 

the difficulty in resisting such stably established habitual behavior to obtain reward, with the following 

four streams of findings and suggestions in mind: 

(1) Involvement of the dopamine (DA) system in both substance and non-substance addiction 

The DA system has been suggested to be crucially involved in substance addiction [12], possibly 
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through drug-induced DA acting as a fictitious RPE that cannot be canceled out by predictions [13, 

14]. However, there have also been implications of possible involvements of the DA system in non-

substance addiction, such as possible relations of medicines of Parkinson disease to pathological 

gambling [15, 16]. 

(2) Goal-directed and habitual behavior and their neural substrates, and their relations to addiction 

It has been suggested that there are two behavioral processes, namely, goal-directed and habitual 

behavior, which are sensitive or insensitive to changes in outcome values and/or action-outcome 

contingencies, respectively [17-19]. They are suggested to be hosted by distinct corticostriatal circuits, 

specifically, those including ventral/dorsomedial striatum (or caudate) and those including 

dorsolateral striatum (or putamen), respectively [20-22], where ventral-to-dorsal spiral influences 

have been anatomically suggested [23, 24]. Computationally, goal-directed and habitual behavior 

have been suggested to correspond to model-based reinforcement learning (RL) and model-free RL, 

respectively ([25]; but see [26] for a critique of model-free RL as a model of habitual behavior). It 

has been suggested that addiction can be caused by impaired goal-directed and/or excessive habitual 

control [27, 28]. This is supported by multitudes of animal experiments, and there also exist findings 

in humans in line with this [29]. However, it has also been shown that human addicts often do show 

goal-directed behavior, such as those sensitive to outcome devaluation [30]. Also, there have been 

proposals of many different possible causes for addiction, including those related to each of the two 

control systems and/or in their interactions, the way of state representation, or the hierarchical 
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organization of the learning system (e.g., [9, 11, 31-33]). 

(3) Intermediate of goal-directed and habitual behavior through successor representation of states 

A great mystery had been that how model-based and model-free RLs, whose typical algorithms are 

so different in formulae, can be both hosted by corticostriatal-DA circuits, different parts of which 

should still share basic architectures. Recent work [34, 35] has provided a brilliant potential solution 

to this by proposing that certain types of goal-directed (model-based) behavior, having sensitivity to 

changes in outcome values, can be achieved through a particular type of state representation called 

the successor representation [36], combined with the ever-suggested representation of RPE by DA 

[37, 38]. In the successor representation, individual states are represented by a sort of closeness to 

their successor states, or more accurately, by time-discounted cumulative future occupancies of these 

states. Behavior based on this representation is not fully goal-directed, having difficulty in revaluation 

of state transition or policy, which has been demonstrated in actual human behavior [39] referred to 

as "subtler, more cognitive notion of habit" by the authors [39]. Successor representation and value 

update based on it have been suggested to be implemented in the prefrontal/hippocampus-

dorsomedial/ventral striatum circuits [34, 40, 41], while circuits including dorsolateral striatum might 

implement habitual or model-free behavior through "punctate" representation of states. 

(4) Sustained DA response to predictable reward, possibly related to state representation 

The original experiments that led to the proposal of representation of RPE by DA [37, 38] have shown 

that DA response to reward disappears after monkeys repeatedly experienced the stimulus(-action)-
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reward association and the reward presumably became predictable for them. However, sustained, and 

often ramping, dopamine signals to/towards (apparently) predictable reward has been widely 

observed in recent years [42-49]. There are a number of possible accounts for such sustained DA 

signals, positing that they represent RPE [47, 50-54] or something different from RPE [42, 43, 45, 

46, 48, 49] or both [44, 55]. Of particular interest to our present work, one hypothesis [50] suggests 

that sustained (ramping) DA signals might represent sustained RPE generated due to imperfect 

approximation of value function in the system using representation of states by low-dimensional 

features. 

        Referring to these different streams of findings and suggestions, we propose a computational 

model of potential mechanisms underlying the difficulty in resisting undesired habitual behavior to 

obtain reward. We have found that a dimension-reduced successor representation of states leads to the 

generation of a distinct pattern of RPE, which might particularly underlie such difficulty. 
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Results 

 

Goal-based reduced successor representation of states under non-resistant policy 

        We modeled a person's series of actions to obtain a particular reward, such as alcohol, 

nicotine, or non-substance such as betting ticket or social interaction, by a series of modeled person's 

actions on a sequence of states from the start state to the goal state, where the reward is given (Fig. 

1A). At each state except for the goal state, the person can take either of two actions, "Go": proceed to 

the next state, and "No-Go": stay at the same state (as considered in our previous work [52] in a 

different context). We considered a case that the person has long been regularly taking behavior to 

obtain the reward without resisting temptation. In the model, it corresponds to that the person has long 

experienced transitions towards the rewarded goal according to a policy that takes only "Go" at any 

state, which we refer to as the Non-Resistant policy. We assumed that, through such long-standing 

experiences of behavior according to the Non-Resistant policy, the person has established a particular 

state representation, where each state is represented by the discounted future occupancy of the final 

successor state, namely, the rewarded goal state, under that policy. Specifically, we considered a single 

(i.e., scalar) feature x and assumed that the k-th state, Sk (k = 1, ..., n; S1 is the start state and Sn is the 

goal state), is represented by: 

 x(Sk) = γn−k,   (Eq. 1) 

where γ is the time discount factor. The number of states (n) was set to 10, and the time discount factor 
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(γ) was assumed to be 0.97, resulting in that the discounted value at the start state was 0.979 ≈ 0.76 

times of the value at the goal, unless otherwise mentioned (Fig. 1B) (see the Methods for rationale for 

these parameter values). 

        This representation, which we will refer to as the goal-based representation, can be said to 

be a dimension-reduced version of successor representation; in the genuine successor representation 

[34-36], every state is represented by a vector of expected cumulative discounted future state 

occupancies for all the states, whereas in the above goal-based representation, every state is represented 

by the discounted future occupancy of only the goal state. Because the genuine successor 

representation requires the number of features equal to the number of states, dimension reduction has 

been considered (c.f., [56-58]). Given the general suggestion of dimension reduction in state 

representations in the brain [59, 60], it would be conceivable that the brain adopts dimension-reduced 

versions of successor representation, such as the goal-based representation assumed above. Notably, 

the state value function under the Non-Resistant policy in the case of the assumed structure of state 

transitions and rewards (Fig. 1A) can be precisely represented as a linear function of the scalar feature 

of the assumed goal-based representation. Specifically, the state value for Sk is given by 

 VNon-Resistant(Sk) = Rnγn−k = Rnx(Sk),   (Eq. 2) 

where Rn is the reward value obtained at the goal state, which was assumed to be 1. Therefore, the 

assumed goal-based representation can be said to be a minimal representation for achieving accurate 

state values, and it would thus be conceivable that such a representation has been acquired through 
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long-lasting behavior. 

        Regarding implementation in the brain, a finding that the BOLD signal in the ventromedial 

prefrontal cortex and hippocampus was negatively correlated with the distance to the goal in a 

navigation task [61] appears to be in line with such a goal-based representation; if those regions 

engaged predominantly in the genuine successor representation in that task, their overall activity may 

not show a monotonic increase towards the goal. It is conceivable that the genuine successor 

representation can be encoded in the hippocampus [40], but the reduced goal-based representation can 

become dominant through intensive training on a particular task or through long-lasting habitual 

behavior towards a particular goal. Another study [62] has shown that the BOLD signal in the posterior 

hippocampus was positively correlated with the path distance to the goal (increased as the path became 

farther) during travel periods whereas it was negatively correlated with an interaction between the 

distance and direction to the goal (increased as the path became closer and more direct) at decision 

points (and prior studies potentially in line with either of these results are cited therein [63-66]). The 

goal-based representation that we assumed can potentially be in line with the activity at decision points, 

rather than during travel periods, in that study. 

 

RPEs under resistant policy, with state representation under non-resistant policy 

        We then modeled a situation where the person decides to attempt cessation of the habitual 
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reward-obtaining behavior by assuming that the person starts to take a new policy, referred to as the 

Resistant policy, in which not only "Go" but also "No-Go" action is chosen with a certain probability, 

PNo-Go, at each state preceding the goal. Crucially, we assumed that the goal-based state representation 

has been established so rigidly through long-standing behavior under the Non-Resistant policy that the 

representation does not change after the person changes the policy to the Resistant policy. We therefore 

assumed that the person tries to approximate the state value function under the new, Resistant policy 

by a linear function of the abovementioned scalar feature, x(Sk), with a coefficient w: 

 VResistant(Sk) ≈ Vapproximate
Resistant(Sk) = wx(Sk),   (Eq. 3) 

by updating the coefficient w using the temporal-difference (TD) RPE at every time step: 

 δ = R(S(t)) + γwx(S(t+1)) − wx(S(t)),   (Eq. 4) 

where S(t) and S(t+1) are the states at time t and t+1, respectively, and if S(t) is the goal state, the term 

γwx(S(t+1)) is dropped. R(S(t)) is the reward value obtained at S(t), which was assumed to be 0 except 

for the goal state. Specifically, w was assumed to be updated as follows: 

 w → w + αx(S(t))δ,   (Eq. 5) 

where α is the learning rate, which was set to 0.5. This way of linear function approximation and TD-

RPE-based update [67, 68] has been typically assumed in neuro-computational models and is 

considered to be implementable through synaptic plasticity depending on DA, which represents δ, and 

presynaptic activity, which represents x(S(t)) [34, 37]. The initial value of w was set to Rn (= 1), with 

which the approximate value function exactly matches the true value function under the Non-Resistant 
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policy; notably, we did not simulate the person's behavior under the Non-Resistant policy, but we 

instead just assumed this initial value of w and simulated the person's behavior under the Resistant 

policy only. The probability of "No-Go" choice (PNo-Go) was set to 0.75; later we also describe results 

with different values of PNo-Go. 

        We then examined RPEs generated upon each decision, "Go" or "No-Go", at each state 

before the goal state or upon reaching the goal state. Figure 2Aa shows a single simulation example of 

RPEs generated at each state in the first episode. In this episode, the person chose "No-Go" once at S3, 

twice at S5 and S6, four times at S4, seven times at S1, S2, and S9, nine times at S8, and never at S7. The 

blue crosses indicate RPEs generated upon "Go" decisions, whereas the red crosses indicate the means 

of RPEs generated upon "No-Go" decisions, and the black cross indicates RPE generated at the goal 

state. The magenta circles indicate the summation of RPEs generated upon "No-Go" decisions at the 

same states. As shown in the figure, when the person chose "No-Go", negative RPEs were generated, 

whereas theoretically no RPE is generated upon choosing "Go" (though tiny numerical errors existed 

(the same applies throughout)), and when the person eventually reached the rewarded goal state, a 

positive RPE was generated. Figure 2Ab shows the mean and standard deviation across simulations. 

The same features as observed in the example simulation are observed. 

        Figure 2B shows the over-episode change of the coefficient w of the approximate value 

function at the end of each episode, averaged across simulations. As shown in the figure, w decreases 

from its initial value, Rn (= 1), and becomes (almost) stationary, meaning that the negative and positive 
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RPE-based updates become overall balanced. We examined RPEs after the coefficient w becomes 

nearly stationary, in particular, in the 25th episode. Figure 2C shows the results averaged across 

simulations. As shown in the figure, negative RPEs were generated upon "No-Go" decisions, whereas 

theoretically no RPE is generated upon "Go" decisions, and a large positive RPE was generated upon 

reaching the rewarded goal state. We also examined how the amplitudes of RPEs change over episodes, 

specifically for RPEs generated upon "Go" or "No-Go" decisions at the start state and RPE generated 

at the goal state (Fig. 2D). As shown in the figure, after a few initial episodes, the amplitudes, averaged 

across simulations, become nearly stationary. 

        We also examined the cases with different parameters, in particular, with the probability of 

"No-Go" choice (PNo-Go) varied over 0.5, 0.75 (assumed above), and 0.9, and the time discount factor 

(γ) varied over 0.95, 0.97 (assumed above), and 0.99. Figure 3 shows the results for RPEs in the 25th 

episode (Fig. 3A) and over-episode changes of RPEs upon "Go" or "No-Go" decisions at the start state 

and RPE at the goal state (Fig. 3B) (the center panels of Fig. 3A,B show the same data as shown in 

Fig. 2C,D, respectively). As shown in the figures, basic features mentioned above are largely preserved 

over these parameter ranges. The sustained negative RPEs generated upon "No-Go" decisions are 

considered to potentially deteriorate the propensity to resist temptation of habitual behavior to obtain 

reward. Also, the sustained large positive RPE generated at the rewarded goal state is considered to 

potentially reinforce a final reward-taking behavior, although it is not included in our model. Therefore, 

we propose that these RPEs can be potential mechanisms underlying the difficulty in resisting habitual 
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behavior to obtain reward. 

        If the person continues to take the Resistant policy for a number of times, it can be expected 

that the goal-based representation of states established under the Non-Resistant policy slowly changes, 

and gradually approaches the representation under the Resistant policy, particularly through TD 

learning of state representation itself [58, 69]. We thus examined how RPEs become if it occurs. 

Specifically, we came back to the original parameters considered in Fig. 2, i.e., PNo-Go = 0.75 and γ = 

0.97, and conducted simulations in the same way as above, except that this time we also updated the 

scalar feature of the state (i.e., x(S(t))) at every time step by using the TD error of the goal-based 

representation: 

 δGR = 0 + γx(S(t+1)) − x(S(t)).   (Eq. 6) 

Specifically, the scalar feature was updated as follows: 

 x(S(t)) → x(S(t)) + αGRδGR,   (Eq. 7) 

where αGR is the learning rate for this update and was set to 0.05, except for the goal state, for which 

the TD error of the goal-based representation should be theoretically 0 and thus no update was 

implemented. Figure 4A shows the scalar feature of each state (i.e., x(Sk)) after 50, 100, and 200 

episodes (black dotted, dashed, and solid lines, respectively), averaged across simulations, in 

comparison to the original ones (gray line). As shown in the figure, the curve became steeper as 

episodes proceeded. This is considered to reflect that longer time is required, on average, for goal 

reaching under the Resistant policy than under the Non-Resistant policy and thus the expected 
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discounted future occupancy of the goal state should be smaller for the Resistant policy. Figure 4B 

shows the RPEs generated in the 200th episode, averaged across simulations, and Figure 4C shows the 

over-episode changes in the RPEs generated upon "Go" or "No-Go" decisions at the start state and the 

RPE generated at the goal state. As shown in these figures, the large positive RPE generated upon goal 

reaching observed in the case with the original state representation (Fig. 2C) gradually decreased, while 

positive RPEs with smaller amplitudes gradually appeared upon "Go" decisions in the states other than 

the goal. This indicates that if the large positive RPE upon goal reaching is especially harmful, it can 

be resolved if the person does not give up resisting temptation, even with the help of clinical 

intervention such as alternative reward upon "No-Go" choices, until the state representation 

considerably changes. 

 

Comparison to the cases with punctate representation or genuine successor representation of states 

        For comparison, we considered a case where each state is represented in the "punctate" 

manner. For this case, we assumed that each state has its own state value, Vpunctate(Sk), and it is updated 

using TD-RPE in the punctate system, δpunctate: 

 δpunctate = R(S(t)) + γVpunctate(S(t+1)) − Vpunctate(S(t)),   (Eq. 8) 

where if S(t) is the goal state, the term γVpunctate(S(t+1)) is dropped. Specifically, Vpunctate was assumed 

to be updated as follows: 

 Vpunctate(S(t)) → Vpunctate(S(t)) + αpunctateδpunctate,   (Eq. 9) 
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where αpunctate is the learning rate for the punctate system, which was set to 0.5. The initial values for 

the punctate state values were assumed to be: 

 Vpunctate(Sk) = Rnγn−k,   (Eq. 10) 

which are the state values under the Non-Resistant policy as considered in Eq. 2. 

        Figure 5 shows the RPEs generated in the punctate system in the same various conditions as 

examined for the system with the goal-based representation (Fig. 3). Comparing these two figures, 

prominent differences are that whereas theoretically no RPE occurs upon "Go" decisions and a large 

positive RPE is generated upon goal reaching in the case with the goal-based representation, (relatively 

small) positive RPEs are generated upon "Go" decision and theoretically no RPE occurs at the goal in 

the case with punctate representation. These differences are considered to reflect different 

characteristics of updates done with the different ways of state representation. Specifically, in the case 

with the goal-based representation, only the coefficient of approximate value function was updated 

and the state representation established under the Non-Resistant policy was (assumed to be) unchanged, 

resulting in sustained mismatch between the true and approximate value functions. In contrast, in the 

case with punctate state representation, the value of each state was directly updated so that there is no 

such sustained mismatch. 

        We also considered a case where the states are represented by the genuine successor 

representation. Specifically, we assumed that each state Sk is represented by n features xj(Sk) (j = 1, ..., 

n) indicating the time-discounted future occupancy of Sj under the Non-Resistant policy: 
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 xj(Sk) = γj−k (j ≥ k) or 0 (j < k), 

and the value function under the Resistant policy is approximated by a linear function of them: 

 VResistant(Sk) ≈ Σj=1:n {wjxj(Sk)}. 

The coefficients wj (j = 1, ..., n) are updated by using the TD RPE: 

 δ = R(S(t)) + γΣj=1:n {wjxj(S(t+1))} − Σj=1:n {wjxj(S(t))}, 

where the middle term including S(t+1) is dropped if S(t) is the goal state, according to the following 

rule: 

 wj → wj + αxj(S(t))δ. 

The initial values of wj were set to 0 for j = 1, ..., n−1 and Rn (= 1) for j = n, with which the approximate 

value function exactly matches the true value function under the Non-Resistant policy. Figure 6A 

shows the RPEs generated at each state in the 25th episode, and Figure 6B shows the over-episode 

changes in the RPEs generated upon "Go" or "No-Go" decisions at the start state and the RPE generated 

at the goal state, both with the original parameters considered in Fig. 2, i.e., PNo-Go = 0.75 and γ = 0.97. 

As shown in the figures, the patterns of RPEs are similar to those in the case of punctate representation 

(the center panels of Fig. 5A,B) and differ from those in the case of the goal-based representation. 

Figure 6C shows the coefficients wj of the approximate value function after the 1st episode (Fig. 6Ca) 

and 25th episode (Fig. 6Cb), and Figure 6D shows the over-episode changes of the coefficients for the 

features corresponding to the start state (red line), the state preceding the goal (S9) (blue line), and the 

goal state (black line). As shown in these figures, the coefficients for the features corresponding to the 
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states preceding the goal became negative. It is considered that because of these negative coefficients, 

the true value function under the Resistant policy could be well approximated even by a linear function 

of the features (discounted occupancies) under the Non-Resistant policy.  
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Discussion 

 

        Previous studies have suggested that the DA system is involved in both substance and non-

substance addictions [12-16]. Also, while impaired goal-directed and/or excessive habitual control 

have been suggested for addiction [27-29], human addicts often show intact sensitivity to outcome 

devaluation [30], and many different possible causes for addiction have also been proposed (e.g., [9, 

11, 31-33]). Meanwhile, recent neuroscience research has suggested that partially goal-directed but 

partially habitual behavior is realized through successor representation coupled with DA-RPE [34, 35, 

39], and also that sustained DA response to predictable reward might occur depending on state 

representation [50]. Referring to these different streams of suggestions, we have proposed a 

computational model of potential mechanisms underlying the difficulty in resisting habitual behavior 

to obtain reward. In particular, in the model consisting of a series of state transitions towards the 

rewarded goal, we have shown that negative RPEs upon "No-Go" decisions and a large positive RPE 

upon goal reaching are generated in the system with the goal-based representation established under 

the Non-Resistant policy, whereas negative and positive RPEs upon "No-Go" and "Go" decisions, 

respectively, but no RPE at the goal, are generated in the system with punctate representation or 

genuine successor representation. Below we discuss how these RPEs, especially the large positive RPE 

upon goal reaching in the case with the goal-based representation, could underlie the difficulty in 

cessation of long-standing habitual behavior to obtain reward. Successor representation is a neurally 
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implementable way of partially model-based RL, but one of its critical drawbacks is policy-dependence 

[34, 39, 70]. Dimension reduction in state representation in the brain is generally suggested [59, 60], 

but it is inevitably accompanied by the risk of inaccuracy. The present work proposes that these 

negative sides are related to the difficulty in the cessation of undesired habits. 

 

Possible effects of generated RPEs on behavior 

        The negative RPEs upon "No-Go" decisions appeared with all the examined types of state 

representations, as well as positive RPEs upon "Go" decisions appeared in the punctate or genuine 

successor representation system, are considered to potentially deteriorate the propensity to resist 

temptation of habitual behavior to obtain reward. For example, if the probabilities of "Go" and "No-

Go" choices are not fixed as assumed in the present work but determined by action preferences, which 

are updated by RPEs according to the actor-critic method [71-73], it is expected that the preference of 

"No-Go" action will decrease (and the preference of "Go" action will increase in the punctate or 

genuine successor representation case) so that the probability of "No-Go" choice will decrease, 

returning back to the original Non-Resistant policy. Also, the negative RPEs upon "No-Go" decisions 

might potentially cause subjective negative feelings in real humans, given the suggestion that 

subjective momentary happiness of humans could be explained by reward expectations and RPEs [74]. 

        On the other hand, the sustained large positive RPE generated at the rewarded goal state in 
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the system with the goal-based representation might potentially cause subjective positive feelings. Also, 

whether linked to subjective feelings or not, the large positive RPE upon goal reaching is considered 

to potentially reinforce reward-taking behavior, although it is not included in our model. In our model, 

as in the previous model considering successor representation [34], RPE generated at state S(t) (Eq. 4) 

was assumed to contain the reward value obtained at that state (R(S(t))), rather than at the state after 

transition (R(S(t+1))), and also the time-discounted estimated value of the state after transition 

(γwx(S(t+1))). If RPE-based update of action preference is introduced into the model, it is natural to 

consider updating, using the RPE at S(t), the preference of action at S(t) that causes the transition to 

S(t+1). But then, the preference of "Go" action at the state preceding the goal state will be updated by 

RPE at that state, which is theoretically 0, rather than by the positive RPE at the goal state. However, 

if we assume multi-step eligibility trace (c.f., [67, 68]) for actions, i.e., assume that RPE is used to 

update the preference of not only the immediate action but also, to a lesser degree, the preceding action, 

the preference of "Go" action at the state preceding the goal state is expected to be increased by the 

positive RPE at the goal state. 

        We also think of another possible way for the large positive RPE at the rewarded goal state 

to affect behavior. As mentioned in the Results, RPEs generated in the case with the goal-based 

representation continuously update the coefficient w of the approximate value function, but negative 

and positive updates are overall balanced so that w can remain stationary across episodes. However, 

as mentioned in the Introduction, it is suggested that there exist multiple value learning systems in the 
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brain, with the system employing successor representation residing in the prefrontal/hippocampus-

dorsomedial/ventral striatum circuits, whereas another system adopting punctate representation might 

locate in the circuits including dorsolateral striatum. Moreover, there are anatomical suggestions of 

ventral-to-dorsal spiral influences in the striatum-midbrain system [23, 24], and a theoretical proposal 

that the effect of drug-induced DA accumulates through the spiraling circuit and causes undesired 

compulsive drug taking in long-term addicts [32]. Given these, and if the prefrontal/hippocampus-

dorsomedial/ventral striatum circuits encode the goal-based representation, rather than the genuine 

successor representation, RPEs generated in that system might not only train the values in itself but 

also affect the system with punctate representation. If this is the case, the large positive RPEs generated 

at the goal state in the goal-based representation system is expected to increase the value of the goal 

state, or of a reward-taking action, in the punctate system, resulting in that resisting temptation could 

ironically cause more compulsive reward taking. In the worst case, such large positive RPEs, coming 

from the outside of the punctate system, could potentially even act as fictitious RPEs that cannot be 

canceled out by predictions within the punctate system and thereby causes unbounded value increase 

and compulsion, similarly to what has been suggested for drug-induced DA [13]. But this last case is 

not very likely, given that the suggested ventral-to-dorsal spiral influences [23, 24] in fact indicate 

projections of more ventral parts of striatum to more dorsal parts of midbrain rather than projections 

of more ventral parts of midbrain to more dorsal parts of striatum, the latter of which would cause 

direct DA inflow. Nonetheless, we speculate that direct DA invasion from the goal-based 
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representation system to the punctate system might still potentially occur if there exist dorsolateral 

striatum-projecting DA neurons that receive (direct or indirect) inputs only from the 

ventral/dorsomedial striatum (so that cancelation by inputs from the dorsolateral striatum cannot occur) 

and the amplitude of the positive RPE is so large. 

 

Possible experimental validation, and clinical implication 

        Our model predicts that distinct patterns of RPEs are generated at each state leading to the 

rewarded goal in the systems with the goal-based representation (Fig. 3) and punctate representation 

(Fig. 5) or genuine successor representation (Fig. 6), which are presumably encoded by DA released 

in different parts of the striatum and cortex. This prediction can potentially be tested by fMRI 

experiments and model-based analyses [75, 76]. There are, however, two anticipated problems. First, 

we assumed that the goal-based representation under the Non-Resistant policy has been so rigidly 

established through long-standing, e.g., years of, habitual behavior that it does not change after the 

policy is changed to the Resistant policy. It would be not easy to create a situation that can mimic such 

a long-standing habitual behavior in laboratory experiments, even with some (e.g., weeks of) pre-

training before entering the scanner. Second, we aimed to model a series of actions leading to reward 

such as alcohol, nicotine, or betting ticket, which typically take dozens to tens of minutes and are 

presumably accompanied with some time discounting (see the Methods for rationale for the parameter 

values assumed for this aim). In laboratory experiments consisting of trials lasting for seconds with 
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monetary rewards, time discounting may have less effects. However, this could be overcome, given 

that time discounting was actually measured in experimental task in humans [77]. 

        From clinical perspectives, it is essential to know whether the phenomena described by the 

present model, either those with the goal-based representation or those with punctate or genuine 

successor representation, or both, actually occur in people who are trying to resist long-standing 

behavior to obtain reward, and whether the generated RPEs indeed underlie, at least partly, the 

difficulty in cessation of such behavior. A possible way is to conduct brain imaging for those people 

executing a task that simulates their daily struggles against reward-obtaining behavior, including 

failures to resist temptation, although it is again necessary to overcome the second problem mentioned 

above. If it is then suggested that the large positive RPE upon goal reaching generated in the system 

with the goal-based representation is an important cause of the difficulty, a possible intervention that 

is potentially effective is to provide alternative reward (physical, social, or internal) upon "No-Go" 

decisions until the state representation changes and approaches the one under the Resistant policy.
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Methods 

 

        Equations and parameters used are described in the Results. As described there, we set the 

number of states (n) to 10, and the time discount factor (γ) was varied over 0.97 ± 0.02, resulting in 

that the value at the start state was 0.959 (≈ 0.63), 0.979 (≈ 0.76), or 0.999 (≈ 0.91) times of the value 

at the goal. We assumed 10 states because it seems intuitively reasonable to assume that the long-

standing daily behavior to obtain a particular reward, such as going to a favorite pub for a beer after 

work, consists of around several to 10 distinct actions, e.g., clean the desktop, wear the jacket, wait for 

and get on the elevator, walk to the subway station, wait for and get on a train, walk to the pub, call 

the waitstaff, and order the beer. These series of actions would typically take dozens to tens of minutes. 

Given this, we determined the abovementioned range of time discount factor in reference to a study 

[78], which examined temporal discounting for video gaming and found that the subjective value of 

video gaming 1 hour later was on average around 0.65 ~ 0.8 times of the value of immediate video 

gaming. Notably, however, the temporal discounting reported in that study appears to have near flat 

tails, indicating that it would not be well approximated by exponential functions, whereas we assumed 

exponential discounting. 

        In order to examine average behavior of the model across simulations, simulations were 

conducted 100 times for each condition. Among the 100 simulations, there were likely to be 

simulations, where "No-Go" choice was not taken at some state(s) at some episode(s). Such 
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simulations, different from case to case, were not included in the calculations of the average and 

standard deviation of RPEs across simulations. There were also likely to be simulations, where "No-

Go" choice was taken more than once at some state(s) at some episode(s). In such cases, generated 

RPEs were first averaged within an episode, and that value (i.e., a single value for each simulation) 

was used for the calculations of the average and standard deviation of RPEs across simulations. 

Simulations and figure drawing were conducted by using Python (3.7.2) and R (4.0.0), respectively. 

Program codes for generating all the data presented in the figures are planned to be made available at 

the GitHub after acceptance for journal publication. 
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Figure legends 

 

Figure 1 

Schematic diagram of the model and the assumed goal-based representation of states under the Non-

Resistant policy. (A) Schematic diagram of the model, adapted, with alterations, from Fig. 1 of [52]. 

(B) Assumed representation of states by the discounted future occupancy of the final successor state, 

namely, the rewarded goal state, under the Non-Resistant policy, in which only "Go" is chosen at any 

state, except for the goal state. 

 

Figure 2 

RPEs generated under the Resistant policy, with the goal-based representation under the Non-Resistant 

policy. (A) (a) A single simulation example of RPEs generated at each state in the first episode. The 

blue crosses indicate RPEs generated upon "Go" decisions, whereas the red crosses indicate the means 

of RPEs generated upon "No-Go" decisions, and the black cross indicates RPE generated at the goal 

state. The magenta circles indicate the summation of RPEs generated upon "No-Go" decisions at the 

same states. (b) The average across simulations. The error bars indicate ± standard deviation (SD); this 

is also applied to the following figures. (B) Over-episode change of the coefficient w of the 

approximate value function at the end of each episode, averaged across simulations, and the shading 

indicates ± SD (this is also applied to the following figures); the assumed initial value (w = 1) is also 
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plotted at episode = 0 with SD = 0. (C) RPEs generated at each state in the 25th episode, where the 

coefficient w has become nearly stationary, averaged across simulations (± SD). (D) The changes of 

RPEs over episodes, averaged across simulations (± SD). RPEs generated upon "Go" decisions (blue) 

and "No-Go" decisions (mean (red) and summation (magenta) per episode) at the start state, and RPE 

generated at the goal state (black). 

 

Figure 3 

Cases with different parameters. The probability of "No-Go" choice (PNo-Go) was set to 0.5, 0.75 (the 

value assumed in Fig. 2), and 0.9. The time discount factor (γ) was set to 0.95, 0.97 (the value assumed 

in Fig. 2), and 0.99. (A) RPEs generated at each state in the 25th episode, averaged across simulations 

(± SD). Notations are the same as those in Fig. 2C (blue: "Go", red cross: "No-Go" mean, magenta 

circle: "No-Go" sum, black: goal), and the center panel shows the same data as shown in Fig. 2C. (B) 

Over-episode changes of RPEs upon "Go" and "No-Go" decisions at the start state, and RPE generated 

at the goal state, averaged across simulations (± SD). Notations are the same as those in Fig. 2D (blue: 

"Go" at the start, red: "No-Go" mean at the start, magenta: "No-Go" sum at the start, black: at the goal), 

and the center panel shows the same data as shown in Fig. 2D. 

 

Figure 4 

RPEs generated under the Resistant policy, in the case where the goal-based state representation itself 
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slowly changed and approached the goal-based representation under the Resistant policy. The 

probability of "No-Go" choice (PNo-Go) was set to 0.75, and the time discount factor (γ) was set to 0.97. 

(A) Scalar feature of each state (i.e., x(Sk)) after 50, 100, and 200 episodes (black dotted, dashed, and 

solid lines, respectively), averaged across simulations (± SD), in comparison to the original ones (gray 

line) that are the same as those shown in Fig. 1B. (B) RPEs generated at each state in the 200th episode, 

averaged across simulations (± SD). Notations are the same as those in Fig. 2C (blue: "Go", red cross: 

"No-Go" mean, magenta circle: "No-Go" sum, black: goal). (C) Over-episode changes of RPEs upon 

"Go" and "No-Go" decisions at the start state, and RPE generated at the goal state, averaged across 

simulations (± SD). Notations are the same as those in Fig. 2D (blue: "Go" at the start, red: "No-Go" 

mean at the start, magenta: "No-Go" sum at the start, black: at the goal). 

 

Figure 5 

RPEs generated in the system with punctate representation of states. The conditions, parameters, and 

notations are the same as those in Fig. 3. (A) RPEs generated at each state in the 25th episode, averaged 

across simulations (± SD) (blue: "Go", red cross: "No-Go" mean, magenta circle: "No-Go" sum, black: 

goal). (B) Over-episode changes of RPEs upon "Go" and "No-Go" decisions at the start state, and RPE 

generated at the goal state, averaged across simulations (± SD) (blue: "Go" at the start, red: "No-Go" 

mean at the start, magenta: "No-Go" sum at the start, black: at the goal). 
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Figure 6 

Case with genuine successor representation. The probability of "No-Go" choice (PNo-Go) was set to 

0.75, and the time discount factor (γ) was set to 0.97. (A) RPEs generated at each state in the 25th 

episode, averaged across simulations (± SD). Notations are the same as those in Fig. 2C (blue: "Go", 

red cross: "No-Go" mean, magenta circle: "No-Go" sum, black: goal). (B) Over-episode changes of 

RPEs upon "Go" and "No-Go" decisions at the start state, and RPE generated at the goal state, averaged 

across simulations (± SD). Notations are the same as those in Fig. 2D (blue: "Go" at the start, red: "No-

Go" mean at the start, magenta: "No-Go" sum at the start, black: at the goal). (C) Coefficients wj of 

the approximate value function after the 1st episode (a) and 25th episode (b), averaged across 

simulations (± SD). (D) Over-episode changes of the coefficients wj for the features corresponding to 

the start state (red line), the state preceding the goal (S9) (blue line), and the goal state (black line), 

averaged across simulations (± SD). 
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