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Difficulties in advancing effective patient-specific therapies
for psychiatric disorders highlights a need to develop a
neurobiologically-grounded, quantitatively stable mapping be-
tween neural and symptom variation. This gap is particu-
larly acute for psychosis-spectrum disorders (PSD). Here, in
a sample of 436 cross-diagnostic PSD patients, we derived
and replicated a data-driven dimensionality-reduced symptom
space across hallmark psychopathology symptoms and cogni-
tive deficits, which was predictive at the single patient level. In
turn, these data-reduced symptom axes mapped onto distinct
and replicable univariate brain maps. Critically, we found that
multivariate brain-behavior mapping techniques (e.g. canoni-
cal correlation analysis) did not show stable results. Instead, we
show that a univariate brain-behavioral space (BBS) mapping
can resolve stable individualized prediction. Finally, we show
a proof-of-principle framework for relating personalized BBS
metrics with molecular targets via serotonin and glutamate re-
ceptor manipulations and gene expression maps. Collectively,
these results highlight a stable and data-driven BBS mapping
across PSD, which offers an actionable quantitative path that
can be iteratively optimized for personalized clinical biomarker
endpoints.
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Introduction

Mental health conditions cause profound disability with most
treatments yielding limited efficacy across psychiatric symp-
toms (1-4). A key step towards developing more effective
therapies for specific psychiatric symptoms is reliably map-
ping them onto underlying neural systems. This goal is
challenging because neuropsychiatric diagnostics still oper-
ate under “legacy” categorical constraints, which were not
informed by quantitative neural or symptom data.

Critically, diagnostic systems in psychiatry, such as the Di-
agnostic and Statistical Manual of Mental Disorders (DSM)
(5), were built to aid clinical consensus. However, they were
not designed to guide quantitative mapping of symptoms onto
neural alterations (6, 7). Consequently, the current diag-
nostic framework cannot, by definition, optimally map onto

patient-specific brain-behavioral alterations. This challenge
is particularly evident along the psychosis spectrum disor-
ders (PSD) where there is notable symptom variation across
what DSM considers distinct diagnostic categories (such as
schizophrenia (SZP), schizo-affective (SADP), bipolar disor-
der with psychosis (BPP)). For instance, despite BPP being a
distinct DSM diagnosis, BPP patients exhibit similar, but at-
tenuated psychosis symptoms and neural alterations similar
to SZP (e.g. thalamic functional connectivity (FC) (8)). It is
essential to quantitatively map such shared clinical variation
onto common neural alterations to circumvent constraints for
biomarker development (6, 7, 9) — a key goal for development
of neurobiologically-informed personalized therapies (8, 9).

Recognizing the limits of categorical frameworks the
NIMH'’s Research Domain Criteria (RDoC) initiative intro-
duced dimensional mapping of “functional domains” on to
neural circuits (10). This motivated cross-diagnostic multi-
site studies to map PSD symptom and neural variation (11—
14). In turn, multivariate neuro-behavioral analysis across
PSD and mood spectra observed brain-behavioral relation-
ships across diagnoses, with the goal of informing individu-
alized treatment (15). A key challenge that these studies at-
tempted to address is to move beyond a priori clinical scales,
which provide composite scores (16) that may not optimally
capture neural variation (7, 17). For instance, despite many
data-driven dimensionality reduction symptom studies (18—
24), a common approach in PSD neural research is still to
sum “positive” or “negative” psychosis symptoms into a sin-
gle score for mapping onto neural features. Importantly, al-
tered symptom-to-neural variation may reflect a more com-
plex weighted symptom combination beyond such composite
scores.

As noted, multivariate neuro-behavioral studies attempted
to address this, but have failed to replicate due to overfit-
ting resulting from high dimensionality of behavioral and
neural features (25). It is possible that a linearly-weighted
lower-dimensional symptom solution (capturing key disease-
relevant information) produces a replicable and robust uni-
variate brain-behavioral mapping. Indeed, recent work used
dimensionality reduction methods successfully to compute a
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neural mapping across canonical SZP symptoms (23). How-
ever, it unknown if this approach generalizes across PSD.
Moreover, it is unknown if incorporating cognitive assess-
ment, a hallmark and untreated PSD deficit (17), explains
neural feature variation that is distinct from canonical PSD
symptoms. Finally, prior work has not tested if a low-
dimensional symptom-to-neural mapping can be predictive
at the single patient level — a prerequisite for individualized
clinical endpoints.

To inform these gaps, we first tested two key questions:
i) Can data-reduction methods reliably map symptom axes
across PSD that include both canonical symptoms and
cognitive deficits? ii) Do these lower-dimensional symp-
tom axes map onto a replicable brain-behavioral solu-
tion across PSD? Specifically, we combined fMRI-derived
resting-state measures with psychosis and cognitive symp-
toms (26, 27) obtained from a public multi-site cohort of
436 PSD patients and 202 healthy individuals collected by
the Bipolar-Schizophrenia Network for Intermediate Pheno-
types (BSNIP-1) consortium across 6 sites in North America
(11). The dataset included included 150 patients formally di-
agnosed with BPP, 119 patients diagnosed SADP, and 167
patients diagnosed with SZP (Table S1). This cohort enabled
symptom-to-neural cross-site comparisons across multiple
psychiatric diagnostic categories, which we then mapped
onto specific neural circuits. We tested if PSD symptoms map
onto a low-dimensional solution that is stable for individual
patient prediction. Next, we tested if this low-dimensional
symptom solution yields novel and replicable neural mapping
compared to canonical psychosis composite scores or DSM
diagnoses. In turn, we tested if the computed symptom-to-
neural mapping is replicable across symptom axes and ac-
tionable for individual patient prediction. Finally, we ‘bench-
mark’ the derived symptom-relevant neural maps by comput-
ing their similarity against independently collected pharma-
cological fMRI maps from healthy adults in response to puta-
tive PSD receptor treatment targets (glutamate via ketamine
and serotonin via LSD) (28, 29). In turn, we used the Allen
Human Brain Atlas (AHBA) to compute gene expression
maps (30, 31) for targets implicated in PSD (i.e. interneu-
rons, serotonin and GABA receptor genes). In turn, we tested
if the gene targets map onto the derived symptom-relevant
neural targets. Collectively, this study used data-driven di-
mensionality reduction methods to map orthogonal and sta-
ble symptom dimensions across 436 PSD patients. In turn,
the goal was to map novel and replicable symptom-to-neural
relationships across the PSD derived from a low-dimensional
symptom solution. Finally, these effects were benchmarked
against molecular imaging targets that may be actionable for
individualized clinical endpoints. An overview is shown in
Fig. S1.

Results

Dimensionality-Reduced PSD Symptom Variation is
Stable and Replicable. First, to evaluate PSD symptom
variation we examined two instruments: the Brief Assess-
ment of Cognition in Schizophrenia (BACS) and Positive
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and Negative Syndrome Scale (PANSS) instruments to cap-
ture “core” PSD psychopathology dimensions (Fig. 1A-
B). We observed differences across DSM diagnoses (Fig.
1A, p<0.05, Bonferroni corrected), however, symptom dis-
tributions revealed notable overlap across the PSD sample
that crossed diagnostic boundaries (11, 32). Furthermore,
we observed marked collinearity between symptom items
across the PSD sample (Fig. 1B), indicating that a lower-
dimensional solution may better capture this symptom space.
Specifically, we hypothesized that such a lower-dimensional
symptom solution may improve PSD brain-behavior map-
ping as compared to a high-dimensional solution or pre-
existing symptom scales. Here we report results from a prin-
cipal component analysis (PCA) as it produces a determin-
istic solution with orthogonal axes (i.e. no a priori number
of factors needs to be specified) and captures all symptom
variance.

Results were highly consistent with prior symptom-reduction
studies in PSD: we identified 5 PCs (Fig. 1C), which cap-
tured 750.93% of all variance (see Methods & Fig. S2) (23).
Notably, complementary data-reduction procedures produced
similar effects for this PSD sample (e.g. independent compo-
nent analysis (ICA), see Supplementary Note 1 & Fig. S3).
The key innovation here is the combined analysis of canoni-
cal psychosis symptoms (i.e. positive and negative) and cog-
nitive deficits, which are a fundamental PSD feature (17).
The 5 PCs revealed few distinct boundaries between DSM
categories (Fig. 1D). Fig. 1E highlights symptom configura-
tions forming each PC, which drove their naming via the pat-
tern of the most strongly weighted individual symptoms (e.g.
PC3 — “Psychosis Configuration"; see see Supplementary
Note 2). Critically, PC axes were not parallel with traditional
aggregate symptom scales. For instance, PC3 is angled at
"45° to the dominant direction of PANSS Positive and Nega-
tive symptom variation (purple and blue arrows respectively
in Fig. 1F).

Next, we show that the PCA solution was highly stable when
tested across sites, k-fold cross-validations, and split-half
replications (see see Supplementary Note 3 & Fig. S4-S5).
Importantly, results were not driven by medication status or
dosage (Fig. S7). Collectively, these data-reduction analyses
strongly support a stable and replicable low-rank PSD symp-
tom geometry.

Dimensionality-Reduced PSD Symptom Geometry Re-
veals Novel and Robust Neuro-Behavioral Relation-
ships. Next, we tested if the dimensionality-reduced symp-
tom geometry can identify robust and novel patterns of neural
variation across the PSD. Across all neural analyses we used
global brain connectivity (GBC), the column-wise mean of
the full FC matrix because it yields a parsimonious metric re-
flecting how “globally” coupled a particular area is to the rest
of the brain (34) (see Methods). Furthermore, we selected
GBC because: i) the metric is agnostic regarding the loca-
tion of “dysconnectivity” as it weights each area equally; ii)
it yields an interpretable dimensionality-reduction of the full
FC matrix; iii) unlike the full FC matrix or other abstracted
measures, GBC produces a neural map, which can be related
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Fig. 1. Quantifying data-driven low-dimensional variation of cross-diagnostic psychosis spectrum disorder symptoms and cognitive deficits. (A) Distributions
of symptom severity for each of the DSM diagnostic groups across core psychosis symptoms (PANSS positive, negative, and general symptoms tracking overall illness)
and cognitive deficits (BACS composite cognitive performance). BPP: bipolar disorder with psychosis (yellow, N=150); SADP: schizo-affective disorder (orange, N=119);
SZP - schizophrenia (red, N=167); All PSD patients (black, N=436); Controls (white, N=202). Bar plots show group means; error bars show standard deviations. (B)
Correlations between 36 psychosis and cognitive deficit symptoms for all PSD patients (N=436). (C) Screeplot showing the % variance explained by each of the principal
components (PCs) from a principal component analysis performed using all 36 symptom measures across all 436 PSD patients. The size of each point is proportional to the
variance explained. The first five PCs (green) survived permutation testing (p<0.05, 5,000 permutations). Together they capture 50.93% of all symptom variance (inset). (D)
Distribution plots showing subject scores for the 5 significant PCs for each of the clinical groups, normalized relative to the control group. Note that control subjects (CON)
were not used to derive the PCA solution. However, all subjects, including controls, can in principle be projected into the data-reduced symptom geometry. (E) Loading
profiles for the 36 PANSS/BACS symptom measures on the 5 significant PCs. Each PC ("Global Dysfunction”, “Cognition”, “Psychosis Configuration”, “Affective Valence”,
“Agitation/Excitement”) was labeled according to the pattern of symptom loadings (see see Supplementary Note 2). See Fig. S2G for numerical values of the PC loadings.
(F) PCA solution projected into a 3D coordinate space defined by the first three significant PC axes. Colored arrows show a priori aggregate PANSS/BACS vectors projected
into the data-reduced PC1-3 coordinate space. The a priori aggregate symptom vectors do not directly align with data-driven PC axes, highlighting that PSD symptom
variation is not captured fully by any one aggregate a priori symptom score. Spheres denote centroids (i.e. center of mass) for each of the patient diagnostic groups and
control subjects. Alternative views showing individual patients and controls projected into the PCA solution are shown in Fig. S2A-F.
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Fig. 2. Dimensionality-reduced symptom variation reveals robust neuro-behavioral mapping. (A) Distributions of total PANSS Positive symptoms for each of the clinical
diagnostic groups normalized relative to the control group (white=CON; black=all PSD patients; yellow=BPP; orange=SADP; red=SZP). (B) Bpositive GBC map showing
the relationship between the aggregate PANSS Positive symptom score for each patient regressed onto global brain connectivity (GBC) across all patients (N=436). (C) No
regions survived non-parametric family-wise error (FWE) correction at p<0.05 using permutation testing with threshold-free cluster enhancement (TFCE). (D) Distributions of
scores for PC3 “Psychosis Configuration” across clinical groups, again normalized to the control gsroup. (E) 8pc3GBC map showing the relationship between the PC3
“Psychosis Configuration” score for each patient regressed onto GBC across all patients (N=436). (F) Regions surviving p<0.05 FWE whole-brain correction via TFCE showed
clear and robust effects. (G) Comparison between the Psychosis Configuration symptom score versus the aggregate PANSS Positive symptom score GBC map for every
datapoint in the neural map (i.e. greyordinate in the CIFTI map). The sigmoidal pattern indicates an improvement in the Z-statistics for the Psychosis Configuration symptom
score map (panel E) relative to the aggregate PANSS Positive symptom map (panel B). (H) A similar effect was observed when comparing the Psychosis Configuration GBC
map relative to the PANSS Negative symptoms GBC map (Fig. S8). (I) Comparison of the variances for the Psychosis Configuration, PANSS Negative and PANSS Positive
symptom map Z-scores. (J) Comparison of the ranges between the Psychosis Configuration, Negative and Positive symptom map Z-scores. Behavior-to-neural maps for all
5 PCs and all 4 traditional symptom scales (BACS and PANSS subscales) are shown in Fig. S8.

to other independent neural maps (e.g. gene expression or
pharmacology maps, discussed below).

positively or negatively are symptomatic. Therefore, a high
positive PC3 score was associated with both reduced GBC

All 5 PCs captured unique GBC variation patterns across the across insular and superior dorsal cingulate cortices, thala-

PSD (Fig. S8). We highlight the PC3 solution (i.e. PC3
“Psychosis Configuration”) to illustrate the benefit of the
low-rank PSD symptom geometry for neuro-behavioral map-
ping relative to traditional aggregate PANSS symptom scales.
The relationship between total PANSS Positive scores and
GBC across N=436 PSD patients (Fig. 2A)was statistically
modest (Fig. 2B) and surprisingly no areas survived whole-
brain type-I error protection (Fig. 2C, p<0.05). In contrast,
regressing PC3 data-driven scores onto GBC across N=436
patients revealed a robust symptom-to-neural SpcsGBC
map (Fig. 2E-F), which survived whole-brain type-I error
protection. Of note, the PC3 “Psychosis Configuration” axis
is bi-directional whereby individuals who score either highly
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mus, and anterior cerebellum and elevated GBC across pre-
cuneus, medial prefrontal, inferior parietal, superior tempo-
ral cortices and posterior lateral cerebellum — consistent with
the “default-mode network™ (35). A high negative PC3 score
would exhibit the opposite pattern. Critically, this robust
symptom-to-neural mapping emerged despite no DSM diag-
nostic group differences in PC3 scores (Fig. 2D). The diverg-
ing nature of this axis may be captured in the ICA solution,
when orthogonality is not enforced (Fig. S11).

Moreover, the PC3 neuro-behavioral map exhibited im-
proved statistical properties relative to other GBC maps com-

puted from traditional aggregate PANSS symptom scales
(Fig. 2G-J).
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Fig. 3. Parcellated neuro-behavioral GBC maps reflecting psychosis configuration are statistically robust and replicable. (A) Z-scored PC3 Psychosis Configuration
GBC neural map at the ‘dense’ (full CIFTI resolution) level. (B) Neural data were parcellated using a whole-brain functional parcellation (33) before computing GBC at
the patient level, which yields stronger statistical values in the Z-scored Psychosis Configuration GBC neural map as compared to when parcellation was performed after
computing GBC for each patient. (C) A comparison of pre- and post-GBC parcellation Psychosis Configuration GBC maps shows a statistical improvement if parcellation is
applied prior to computing GBC at the single patient level. This effects indicates neural feature data reduction via a functional neural parcellation (33) improves signal-to-noise
for the group-level statistical map. (D) Summary of similarity for all symptom-to-GBC maps (PCs and traditional symptom scales) across 5-fold cross-validation. Boxplots
show the range of r values between coefficient maps for each fold and the full model. (E) Normalized coefficient map from regression of individual patients’ Psychosis
Configuration scores onto parcellated GBC data, shown here for a subset of patients from Fold 1 out of 5 (N=349). The greater the magnitude of the coefficient for a parcel,
the stronger the statistical relationship between GBC of that parcel and Psychosis Configuration PC score. (F) Correlation between the value of each parcel in the regression
model computed using patients in Fold 1 and the full PSD sample (N=436) model. Each point is a single parcel (718 parcels total). The resulting normalized coefficient
map from the leave-one-fold-out model was highly similar to the map obtained from the full PSD sample model (r=0.924). (G) Summary of leave-one-site-out regression for
all symptom-to-GBC maps. Regression of symptom scores onto parcellated GBC data, each time leaving out subjects from one site, resulted in highly similar maps. This
highlights that the relationship between Psychosis Configuration and GBC variation is robust and not driven by a specific site. (H) Normalized coefficient map from regression
of individual subject scores along Psychosis Configuration onto neural parcellated GBC data for all patients except one site. For example, Site 3 is excluded here given that
it recruited the most patients (and therefore may have the greatest statistical impact on the full model). (I) Correlation between the value of each parcel in the regression
model computed using all patients minus Site 3, and the full PSD sample model, again indicating a consistent neuro-behavioral relationship. (J) Split-half replication of
Psychosis Configuration-to-GBC mapping. For each stratified split-half replication run, the full sample was randomly split into two halves (H1 and H2) with the proportion of
each diagnostic group (BPP, SADP, SZP) preserved within each half. PCA scores for subjects in each half are computed using the PC loadings from the PCA conducted
using subjects in the other half. Observed PCA scores are computed from a PCA on the same half-sample of subjects. Each set of scores were then regressed against
parcellated GBC for subjects in a given half, resulting in a coefficient map for each PC (as in Fig. 2) reflecting the strength of the relationship between PC score and GBC
across subjects. The coefficient maps for predicted and observed scores were then cross-correlated for PCs 1-5. This process was repeated 1,000 times. Bar plots show the
mean correlation across the 1,000 runs; error bars show standard error of the mean. Note that the split-half effect for PC1 was exceptionally robust. The split-half consistency
for PC3, while lower, was still highly robust and well above chance. (K) Normalized coefficient map from Psychosis Configuration-to-GBC regression for the first half (H1)
patients, shown here for one exemplar run out of 1000 split-half validations. (L) Correlation across 718 parcels between the H1 predicted coefficient map (i.e. panel K) and
the observed coefficient map for H1 patient sample. (M-N) The same analysis as K-L is shown for patients in H2, indicating a striking consistency in Psychosis Configuration
neural map correspondence.
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Fig. 4. Multivariate behavioral-to-neural feature mapping using canonical correlation analysis (CCA). (A) CCA computes a relationship between two sets of observed
variables (in this case, a matrix B of behavioral measures and a matrix N of neural measures across all patients), by solving for two transformation matrices ¥ and © such
that the correlations between the latent variables are maximized (represented as columns along the transformed ‘latent’ matrices U and V). Here each columnin U and V is
referred to as a canonical variate (CV); each corresponding pair of CVs (e.g. Uy and Vy) is referred to as a canonical mode. (B) CCA maximized correlations between the
CVs (i.e. matrices U and V) (C) Screeplot showing canonical modes for the CVs obtained from 180 neural features (cortical GBC symmetrized across hemispheres) and
36 single-item PANSS and BACS symptom measures. Inset illustrates the correlation (r=0.85) between the CV of the first mode, Us and V; (note that the correlation was
not driven by a separation between diagnoses). Correlations between each subsequent pair of variates is computed from the residuals of the previous pair. Modes 9 and 12
remained significant after FDR correction across all 36 modes. (D) CCA was obtained from 180 neural features and 5 low-dimensional symptom scores derived via the PCA
analysis. Here all modes remained significant after FDR correction. Dashed black line shows the null calculated via a permutation test with 5,000 shuffles; grey bars show
95% confidence interval. (E) Correlation between the behavioral data matrix B and the neural data matrix weighted by the transformation matrix (N©) reflects the amount of
variance in B that can be explained by the final latent neural matrix V. Put differently, this transformation calculates how much of the symptom variation can be explained by
the latent neural features. (F) Proportion of symptom variance explained by each of the neural CVs in a CCA performed between 180 neural features and all 36 behavioral
measures. Inset shows the total proportion of behavioral variance explained by the neural variates. (G) Proportion of total behavioral variance explained by each of the neural
CVs in a CCA performed between 180 neural features and the 5 low-dimensional symptom scores derived via the PCA analysis. While CCA using symptom PCs has fewer
dimensions and thus lower total variance explained (see inset), each neural variate explains a higher amount of symptom variance than seen in F, suggesting that CCA could
be further optimized by first obtained a principled low-rank symptom solution. Dashed black line shows the null calculated via a permutation test with 5,000 shuffles; grey bars
show 95% confidence interval. Behavioral-to-neural mapping is shown in Fig. S14. (H) Characterizing CV symptom configurations using CV3 as an example. Distributions
of CV3 scores by each DSM diagnostic group. All scores are normalized to controls. (I) Behavioral canonical factor loadings for CV3. (J) Loadings of the original symptom
items for CV3. (K) Neural canonical factor loadings for CV3. (L) Within-sample CCA cross-validation appeared robust (see Fig. S16). However, a split-half CCA replication
using two independent non-overlapping patient samples was not reliable. Bar plots show the mean correlation for each CV between the first half (H1) and the second half (H2)
CCA, each computed across 1,000 runs. Left: split-half replication of the behavioral PC loadings matrix ¥; Middle: individual behavioral item loadings; and Right: the neural
loadings matrix ©. Error bars show the standard error of the mean. The neural loadings matrix © in particular was not stable. Scatterplot shows the correlation between CV3
neural loadings for H1 vs. H2 for one example CCA run, illustrating lack of reliability. (M) Leave-one-subject-out cross-validation further highlights CCA instability. Here, CCA
was computed for all except one patient (N=435). The loadings matrices were then used to compute the predicted neural (N) and behavioral (B) scores for the left-out patient.
This was repeated across all patients. This yielded predicted neural and predicted behavioral scores for each patient for each of the five CVs. These correlations were far
lower than the canonical correlation values obtained in the full CCA model (shown as red lines). This is highlighted in the scatterplot at far right for CV3 (r=0.12, whereas the
full sample CCA was r=0.68). CCA solutions for subcortex parcels only (Fig. $S12) and network-level neural feature reduction Fig. S13 are shown in the Supplement.
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Univariate Neuro-Behavioral Map of Psychosis Config-
uration is Reproducible. After observing improved PC3
neuro-behavioral statistics, we tested if these symptom-to-
neural map patterns replicate. Recent attempts to derive
stable symptom-to-neural mapping using multivariate tech-
niques, while inferentially valid, have not replicated (25).
This fundamentally relates to the tradeoff between the sam-
ple size needed to resolve multivariate neuro-behavioral so-
lutions and the size of the feature space. To mitigate the
feature size issue we re-computed the SpcGBC maps us-
ing a functionally-derived whole-brain parcellation via the
recently-validated CAB-NP atlas (33, 36) (Methods). Here,
a functional parcellation is a principled way of neural fea-
ture reduction (to 718 parcels) that can also appreciably
boost signal-to-noise (33, 36). Indeed, parcellating the full-
resolution “dense” resting-state signal for each subject prior
to computing GBC statistically improved the group-level
neuro-behavioral maps compared to parcellating after com-
puting GBC (Fig. 3A-C, all maps in Fig. S9). Results
demonstrate that the univariate symptom-to-neural mapping
was indeed stable across 5-fold bootstrapping, leave-site-out,
and split-half cross-validations (Fig. 3D-N, see Supple-
mentary Note 4), yielding consistent neuro-behavioral PC3
maps. Importantly, the neuro-behavioral maps computed us-
ing ICA showed comparable results (Fig. S11).

A Multivariate PSD Neuro-Behavioral Solution Can be
Computed but is Not Reproducible with the Present
Sample Size. Several studies have reported “latent” neuro-
behavioral relationships using multivariate statistics (15, 37,
38), which would be preferable because they maximize co-
variation across neural and behavioral features simultane-
ously. However, concerns have emerged whether such mul-
tivariate results will replicate due to the size of the feature
space (25). Nevertheless, we tested if results improve with
canonical correlation analysis (CCA) (39) which maximizes
relationships between linear combinations of symptom (B)
and neural measures (N) across all subjects (Fig. 4A).

We examined two CCA solutions using symptom scores in
relation to neural features: i) all item-level scores from the
PANSS/BACS (Fig. 4C&F); ii) data-reduced PC scores (Fig.
4D &G, see Methods). In turn, to evaluate if the number of
neural features affects the solution we computed CCA using:
1) 718 bilateral whole-brain parcels derived from the brain-
wide cortico-subcortical CAB-NP parcellation (33, 36); ii)
359 bilateral subcortex-only parcels; iii) 192 symmetrized
subcortical parcels; iv) 180 symmetrized cortical parcels; v)
12 functional networks defined from the parcellation (33, 36).
Notably, 4 out of the 5 CCA solutions were not robust: 718
whole-brain & 359 subcortex-only parcel solutions did not
produce stable results according to any criterion (Fig. S14),
whereas the symmetrized subcortical (192 features, Fig. S12)
and network-level (12 features, Fig. S13) solutions captured
statistically modest effects relative to the 180 symmetrized
cortical CCA results (Fig. 4B-D). Therefore, we character-
ized the 180-parcel CCA solution further. Only 2 out of 36
CCA modes for the item-level symptom solution survived
permutation testing and false discovery rate (FDR) correction
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(Fig. 4C). In contrast, all 5 modes computed using PC scores
survived both permutation and FDR correction (Fig. 4D).
Critically, we found that no single CCA mode computed on
item-level symptoms captured more variance than the CCA
modes derived from PC scores, suggesting that the PCA-
derived dimensions capture more neurally-relevant variation
than any one single clinical item (Fig. 4E-G). Additional de-
tailed CCA results are presented in see Supplementary Note
5 and Fig. S14.

We highlight an example canonical variate (CV) solution
across both behavioral and neural effects for CV3. We show
the CV3 scores across diagnostic groups normalized to con-
trols Fig. 4H as well as how the CV3 loads onto each PC
(Fig. 41, full results are shown in Fig. S15). The negative
loadings on to PCs 1, 4, and 5 and the high positive load-
ings on to PC3 in Fig. 4I indicate that CV3 captures some
shared variation across PCs. This can also be visualized by
computing how the CV3 projects onto the original 36 behav-
ioral items (Fig. 4J). Finally, the neural loadings for CV3 are
shown in Fig. 4K and data for all 5 CVs are shown in Fig.
S14.

Next, we tested if the 180-parcel CCA solution is stable and
replicable, as done with PC-to-GBC univariate results. The
CCA solution was robust when tested with k-fold and leave-
site-out cross-validation (Fig. S16) because these methods
use CCA loadings derived from the full sample. However, the
CCA loadings did not replicate in non-overlapping split-half
samples (Fig. 4L, see see Supplementary Note 6). More-
over, a leave-one-subject-out cross-validation revealed that
removing a single subject from the sample affected the CCA
solution such that it did not generalize to the left-out subject
(Fig. 4M). As noted, the PCA-to-GBC univariate mapping
was substantially more reproducible for all attempted cross-
validations relative to the CCA approach, reflecting the fact
that substantially more power is needed to resolve a stable
multi-variate neuro-behavioral effect with this many features
(40). Therefore, we leverage the univariate neuro-behavioral
result for subsequent subject-specific model optimization and
comparisons to molecular neuroimaging maps.

A Major Proportion of Overall Neural Variance May Not
be Relevant for Psychosis Symptoms. Most studies look
for differences between clinical and control groups, but to
our knowledge no study has tested whether both PSD and
healthy controls actually share a major portion of neural vari-
ance that may be present across all people. If the bulk of the
neural variance is similar across both PSD and CON groups
then including this clinically-irrelevant neural signal might
obscure neuro-behavioral relationships that are clinically rel-
evant. To test this, we examined the shared variance struc-
ture of the neural signal for all PSD patients (N=436) and
all controls (N=202) independently by conducting a PCA on
the GBC maps (see Methods). Patients’ and controls’ neural
signals were highly similar for each of the first 3 neural PCs
(>30% of all neural variance in each group) (Fig. S17A-]).
These PCs may reflect a “core” shared symptom-irrelevant
neural variance that generalizes across all people. These data
suggest that the bulk of neural variance in PSD patients may
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Fig. 5. Optimizing neural feature selection to inform single-subject prediction via a low-dimensional symptom solution. (A) Leave-one-out cross-validation for
the symptom PCA analyses indicates robust individual score prediction. Top panel: Scatterplot shows the correlation between each subject’s predicted PC3 score from a
leave-one-out PCA model and their observed PC3 score from the full-sample PCA model, r=0.99. Bottom panel: Correlation between predicted and observed individual PC
scores was above 0.99 for each of the significant PCs (see Fig. 1). The red line indicates r=1. (B) We developed a univariate step-down feature selection framework to obtain
the most predictive parcels using a subject-specific approach via the dpGBC index. Specifically, the "observed’ patient-specific dpGG BC°*® was calculated using each
patients AGBC°®? (i.e. the patient-specific GBC map vs. the group mean GBC for each each parcel) and the ‘reference’ symptom-to-GBC PC3 map (described in Fig. 3B)
[dpGBC°% = AGBC®®® . Bpc3GBC°?]. See Methods & Fig. S18 for complete feature selection procedure details. In turn, we computed the predicted dpG BC index
for each patient by holding their data out of the model and predicting their score (dpG BCP™*?). We used two metrics to evaluate the maximally predictive feature subset: i)
The correlation between PC3 symptom score and dpG BC°* across all N=436, which was maximal for P = 39 parcels [r=0.36, purple arrow]; i) The correlation between
dpGBC°* and dpGBCP"?, which also peaked at P = 39 parcels [r=0.31, purple arrow]. (C) The P = 39 maximally predictive parcels from the BpcsGBC’ map
are highlighted (referred to as the “selected” map). (D) Across all n=436 patients we evaluated if the selected parcels improve the statistical range of similarities between
the AGBC®®® and the 8pcsGBC°® reference for each patient. For each subject the value on the X-axis reflects a correlation between their AGBC°*® map and
the BPCgGBCObS map across all 718 parcels; the Y-axis reflects a correlation between their AGBC°b® map and the Bpcs GBC°b® map only within the “selected” 39
parcels. The marginal histograms show the distribution of these values across subjects. (E) Each DSM diagnostic group showed comparable correlations between predicted
and observed dpG BC values. (F) Scatterplot for a single patient with a positive behavioral loading (PC'3 score= 1.42) and also with a high correlation between predicted
AGBCP™*? versus observed AG BC°?® values for the “selected” 39 parcels (p = 0.825). Right panel highlights the observed vs. predicted AG BC map for this patient,

indicating that 94.9% of the parcels were predicted in the correct direction (i.e. in the correct quadrant).

actually not be symptom-relevant, which highlights the im-
portance of optimizing symptom-to-neural mapping.

Optimizing Neuro-Behavioral Mapping Features for
Personalized Prediction via Dimensionality-reduced
Symptoms. Above we demonstrate that PC scores can be re-
liably predicted across sites and cross-validation approaches
(Fig. S4). Here we show that leave-one-subject-out cross-
validation yields reliable effects for the low-rank symptom
PCA solution (Fig. SA). This stable single-subject PC score
prediction provides the basis for testing if the derived neural
maps can yield an individually-reliable subset of features. To
this end, we developed a univariate quantitative neural fea-
ture selection framework (Fig. S18) based on data-reduced
PC scores (i.e. PC3 score). Specifically, we computed a
dot product GBC metric (dpGBC') that provides an index
of similarity between an individual AGBC' topography rela-
tive to a “reference” group-level PC GBC map (see Methods
and Fig. S18). Using this dpGBC index we found, via a
feature selection step-down regression, a subset of parcels
for which the symptom-to-neural feature statistical associ-
ation was maximal (Fig. 5A). For PC3 we found P = 39
maximally predictive parcels out of the group map. Specif-
ically, the relationship between PC3 symptom scores and
dpGBC values across subjects was maximal (Fig. 5B, top
panel, » = 0.36) as was the relationship between predicted
dpGBCPe? vs. observed dpGBC°" (Fig. 5B, bottom
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panel, » = 0.31) (see Fig. S19 for all PCs). Importantly,
the “subset” feature map (i.e. [Bpc3GBC*$1P=39, Fig.
5C) exhibited improved statistical properties relative to the
full map (i.e. [Bpc3GBC°P*)P=718, Fig. 5D). Further-
more, the relationship between observed vs. predicted subset
feature maps (i.e. r[dpGBC° dpGBCP %)) was highly
consistent across DSM diagnoses (Fig. 5E). Finally, a sin-
gle patient is shown for whom the correlation between their
predicted and observed subset feature maps was high (i.e.
r[AGBCp“’d, AGBCObS], Fig. 5F), demonstrating that the
dimensionality-reduced symptom scores can be used to quan-
titatively optimize individual neuro-behavioral map features.

Single Patient Evaluation via Neuro-Behavioral Target
Map Similarity. We demonstrated a quantitative framework
for computing neuro-behavioral model at the single-patient
level. This brain-behavior space (BBS) model was optimized
along a single dimensionality-reduced symptom axis (i.e. PC
score). Next, we tested a hybrid patient selection strategy
by first imposing a PC-based symptom threshold, followed
by a target neural similarity threshold driven by the most
highly predictive neuro-behavioral map features. Specifi-
cally, the “neural similarity prediction index (NSPI)" com-
putes a patient-specific Spearman’s p between that patient’s
AGBC® and the group reference pc3GBC°P map us-
ing the maximally predictive P = 39 parcels (see Fig. S20 for
whole-brain results and alternative similarity metrics). Fig.
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Fig. 6. Evaluating patient-specific similarity to derived neuro-behavioral targets via data-reduced symptom scores. (A) Scatterplot of PC3 symptom score (X-axis)
versus PC3 neural similarity prediction index (NSPI, Y-axis) for all 436 PSD subjects. The NSPI is defined as the Spearman’s correlation between AGBC®®® and the
BpcsGBC° map of the maximally-predictable “selected” P = 39 parcels. Alternative metrics are shown in Fig. $20. (B) Bins across axes express subject counts within
each cell as a heatmap, indicating a high similarity between symptom PC score and PC3 NSPI for a number of patients. (C) Mean NSPI is computed for a given bin along
the the X-axis to visualize patient clustering. Note the sigmoidal shape of the distribution reflecting greater neural similarity at more extreme values of the PC3 score. (D) The
absolute value of the mean NSPI reflects the magnitude irrespective of neural similarity direction. This highlights a quadratic effect, showing that patients with higher PC3
symptom scores (either positive/negative) exhibited higher neural correspondence of their maps with the target neural reference map. (E) Using the NSPI and PC scores
we demonstrate one possible brain-behavioral patient selection strategy. We first imposed a PC score symptom threshold to select patients at the extreme tails (i.e. outside
of the 10th — 90th%tile behavioral range [>+2.17 or <-2.41]). Note that this patient selection strategy excludes patients (shown in grey) below the PC symptom score
threshold. This yielded n=38 patients. Next, for each patient we predicted the sign of their individual NSPI based on their individual PC3 score, which served as the basis for
the neural selection. Next, at each NSPI threshold we evaluated the proportion of patients correctly selected until there were no inaccurately selected patients in at least one
PC3 direction (green line or higher). The number of accurately (A) vs. inaccurately (I) selected patients within each bin is shown in red and blue respectively. Note that as the
neural p threshold increases the A/l ratio increases. (F) The neural and behavioral thresholds defined in the “discovery” sample were applied to an independent “replication”
dataset (N=69, see Methods), yielding a similar final proportion of accurately selected patients. (G) The same brain-behavioral patient selection strategy was repeated for
PCS5 in the discovery sample (thresholds of 10" %tile=-1.89 and 90" %tile= +1.47; NSPI threshold of p=0.4 optimized for PC5). Results yielded similar A/l ratios as found
for PC3. (H) The neural and behavioral thresholds for PC5 defined in the discovery sample were applied to the replication sample. Here the results failed to generalize due
true clinical differences between the discovery and replication samples.

6A shows a significant relationship between each patient’s
PC3 symptom score (X-axis) and the neural similarity index
(Y-axis). In turn, Fig. 6B shows binned results, which pro-
vides a visual intuition for patient segmentation across both
the neural and behavioral indices (Fig. 6A, right: binned by
p=0.1 & PC3s.0re = 0.5). For patients at either tail, the
neuro-behavioral relationship was robust. Conversely, pa-
tients with a low absolute PC3 score showed a weak relation-
ship with symptom-relevant neural features. This is intuitive
because these individuals do not vary along the selected PC
symptom axis.

Fig. 6C shows the mean NSPI across subjects within each PC
symptom bin along the X-axis. The resulting sigmoid cap-
tures that patients exhibit greater neural similarity if their PC
symptom scores are more extreme. To evaluate if this rela-
tionship can yield a personalized patient selection, we com-
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puted the absolute NSPI Fig. 6D). The effect was approxi-
mated by a quadratic function, highlighting that patients with
extreme PC3 scores (either positive or negative) exhibited a
stronger NSPI (i.e. personalized neural effects that strongly
resembled the reference (Bpc3GBC?*)F = 39 map). Fig.
6E shows the application of this neuro-behavioral selection
procedure, demonstrating that PSD patients with extreme
PC3 scores (defined at the top/bottom 10th percentile of the
“discovery” sample, +2.17 < PC3score < —2.41) exhibit
high NSPI values. We observed an inherent trade-off such
that if the PC score threshold was raised then neural target
similarity confidence goes up, but fewer patients will be se-
lected. In the discovery PSD sample, all patients were accu-
rately selected above the following neuro-behavioral thresh-
olds: 90" %tile < PC3gcore < 10"%tile and |p| > 0.4
(Fig. 6E, 34/436 patients selected, green line). We show
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consistent effects for when the selection was applied to PC5
(Fig. 6F; results for all PCs in Fig. S21).

To test if the neuro-behavioral selection is generalizable,
we used an independent cross-diagnostic sample of 30 pa-
tients diagnosed with SZP and 39 diagnosed with obsessive-
compulsive disorder (OCD) (Fig. 6G, see Methods and
Table S3 for details). Applying the “discovery” selec-
tion thresholds yielded similar results for 6% of the cross-
diagnostic “replication” sample for PC3 (Fig. 6G, full anal-
yses in Fig. S20C). Notably, no replication sample patients
were selected along the neuro-behavioral thresholds for PC5
(Fig. 6H). While there are SZP patients in the replication
cross-diagnostic sample, few scored highly on PC5 and none
met the neural similarity threshold, emphasizing that not
all patients within the same DSM-based diagnosis will ex-
hibit variation along the same neuro-behavioral axis. Col-
lectively, these results show that data-driven symptom scores
can pinpoint individual patients for whom their neural varia-
tion strongly maps onto a target neural reference map. These
data also highlight that both symptom and neural information
for an independent patient can be quantified in the reference
"discovery’ BBS using their symptom data alone.

Subject-Specific PSD Neuro-Behavioral Features
Track Neuropharmacological Map Patterns. Next, we
use the personalized BBS selection in a proof-of-concept
framework for informing molecular mechanism of possible
treatment response by relating subject-specific BBS to
independently-acquired  pharmacological neuroimaging
maps. Here we examine two mechanisms implicated in
PSD neuropathology via ketamine, a N-methyl-D-aspartate
(NMDA) receptor antagonist (42), and lysergic acid di-
ethylamide (LSD), primarily a serotonin receptor agonist
(28, 43, 44). We first quantified individual subjects’ BBS
“locations” in the established reference neuro-behavioral
geometry. The radarplot in Fig. 7A shows original symptoms
whereas Fig. 7B shows AGBC°® maps for two patients
from the replication dataset (denoted here with X pcs3 and
Ypcs, see Fig. S10 for other example patients). Both
of these patients exceeded the neural and behavioral BBS
selection indices for PC3 (defined independently in the
“discovery” dataset, Fig. 6C). Furthermore, both patients
exhibited neuro-behavioral variation in line with their
expected locations in the BBS geometry. Specifically, patient
X pcs from the replication dataset scored highly negatively
on the PC3 axis defined in the “discovery” PSD sample (Fig.
7A). In contrast, patient Ypc3 scored positively on the PC3
axis. Importantly, the correlation between the AGBC°?S
map for each patient and the group-reference SpcsGBC
was directionally consistent with their symptom PC score
Fig. 7B-C).

We then tested if the single-subject BBS selection could be
quantified with respect to a neural map reflecting glutamate
receptor manipulation, a hypothesized mechanism underly-
ing PSD symptoms (45). Specifically, we used an inde-
pendently collected ketamine infusion dataset, collected in
healthy adult volunteers during resting-state fMRI (46). As
with the clinical data, here we computed a AGBC' map re-
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flecting the effect of ketamine on GBC relative to placebo
(Methods). The maximally-predictive PC3 parcels exhibited
high spatial similarity with the ketamine map (p=0.76, see
Methods), indicating that the AG BC pattern induced by ke-
tamine tracks with the GBC pattern reflecting PC3 symptom
variation.

Critically, because X pcs is negatively loaded on the PC3
symptom axis, an NMDA receptor antagonist like ketamine
may modulate symptom-relevant circuits in a way that re-
duces similarity with the PC3 map. This may in turn have an
impact on the PC3-like symptoms. Consistent with this hy-
pothesis, X pc3 expresses predominantly depressive symp-
toms (Fig. 7A), and ketamine has been shown to act as an
anti-depressant (41). This approach can be applied for pa-
tients that load along another axis, such as PC5. Fig. 7D-E
shows the symptom and neural data for two patients whom
met thresholds for PC5 selection (Fig. 6C). Notably, the se-
lected PC5 map is anti-correlated with a AG BC' map reflect-
ing LSD vs. placebo effects (28) (p=-0.44, Fig. 7F). Hence
areas modulated by LSD may map onto behavioral variation
along PC5. Consequently, serotonergic modulation may be
effective for treating Q pcs and Zpcs, via an antagonist or
an agonist respectively. These differential similarities be-
tween pharmacological response maps and BBS maps (Fig.
S22) can be refined for quantitative patient segmentation.

Group-Level PSD Neuro-Behavioral Features Track
Neural Gene Expression Patterns.To further inform
molecular mechanism for the derived BBS results, we com-
pared results with patterns neural gene expression profiles
derived from the Allen Human Brain Atlas (AHBA) (30,
31)(Fig. 8A, Methods). Specifically, we tested if BBS cor-
tical topographies, which reflect stable symptom-to-neural
mapping along PSD, covary with the expression of genes
implicated in PSD neuropathology. We focus here on sero-
tonin and GABA receptors as well as interneuron markers
(SST, somatostatin; PVALB, parvalbumin). Fig. 8B shows
the distribution of correlations between the PC3 map and the
cortical expression patterns of 20,200 available AHBA genes
(other PCs shown in Fig. S23). Seven genes of interest are
highlighted, along with their cortical expression topographies
and their similarity with the PC3 BBS map (Fig. 8C-E).
This BBS-to-gene mapping can potentially reveal novel ther-
apeutic molecular targets for neuro-behavioral variation. For
example, the HTR1E gene, which encodes the serotonin 5-
HT g receptor, is highly correlated with the PC3 BBS map.
This could drive further development of novel selective lig-
ands for this receptor, which are not currently available (47).

Discussion

We found a robust and replicable symptom-to-neural map-
ping across the psychosis spectrum that emerged from a
low-dimensional symptom solution. Critically, this low-rank
symptom solution was predictive of a neural circuit pattern,
which reproduced at the single-subject level. In turn, we
show that the derived PSD symptom-to-neural feature maps
exhibit spatial correspondence with independent pharmaco-
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Fig. 7. Leveraging subject-specific brain-behavioral maps for molecular neuroimaging target selection. (A) Data for two individual patients from the replication dataset
are highlighted for PC3: X pc3 (blue) and Ypc3 (yellow). Both of these patients scored above the neural and behavioral thresholds for PC3 defined in the “discovery” PSD
dataset. Patient X pc3 loads highly negatively on the PC5 axis and Patient Y3 loads highly positively. Density plots show the projected PC scores for Patients X pc3
and Yp 3 overlaid on distributions of PC scores from the discovery PSD sample. (B) Neural maps show cortical and subcortical AGBC®°® for the two patients X pcs
and Yp 3 specifically reflecting a difference from the mean PC3. The similarity of AGBC°"® and the chgGBC"bS map within the most predictive neural parcels for
PC3 (outlined in green). Note that the sign of neural similarity to the reference PC3 map and the sign of the PC3 score is consistent for these two patients. (C) The selected
PC3 map (parcels outlined in green) is spatially correlated to the neural map reflecting the change in GBC after ketamine administration (p=0.76, Methods). Note that Patient
X po3 who exhibits AGBC®°Y that is anti-correlated to the ketamine map also expresses depressive moods symptoms (panel A). This is consistent with the possibility
that this person may clinically benefit from ketamine administration, which may elevate connectivity in areas where they show reductions (41). In contrast, Patient Ypc3 may
exhibit an exacerbation of their psychosis symptoms given that their AGBC°® is positively correlation with the ketamine map. (D) Data for two individual patients from the
discovery dataset are highlighted for PC5: Q pcs (blue) and Zp 5 (yellow). Note that no patients in the replication dataset were selected for PC5 so both of these patients
were selected from “discovery” PSD dataset for illustrative purposes. Patient Q pcs loads highly negatively on the PC5 axis and Patient Zpc5 loads highly positively.
Density plots show the projected PC scores for Patients Q pc5 and Z pc5 overlaid on distributions of PC scores from the discovery PSD sample. (E) Neural maps show
cortical and subcortical AGBC°%* for Patients Qpcs and Zpcs, which are highly negatively and positively correlated with the selected PC5 map respectively. (F) The
selected PC5 map (parcels outlined in green) is spatially anti-correlated with the LSD response map (p=-0.44, see Methods), suggesting that circuits modulated by LSD (i.e.
serotonin, in particular 5-HT2A) may be relevant for the PC5 symptom expression. Here a serotonin receptor agonist may modulate the neuro-behavioral profile of Patient
Q pcs, whereas an antagonist may be effective for Patient Zpcs.
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Fig. 8. Psychosis spectrum neuro-behavioral maps track neural gene expression patterns computed from the Allen Human Brain Atlas (AHBA). (A) The symptom
loadings and the associated neural map jointly reflect the PC3 brain-behavioral space (BBS) profile, which can be quantitatively related to human cortical gene expression
patterns obtained from the AHBA (31). (B) Distribution of correlation values between the PC3 BBS map and "20,000 gene expression maps derived from the AHBA dataset.
Specifically, AHBA gene expression maps were obtained using DNA microarrays from six postmortem brains, capturing gene expression topography across cortical areas.
These expression patterns were then mapped onto the cortical surface models derived from the AHBA subjects’ anatomical scans and aligned with the Human Connectome
Project (HCP) atlas, described in prior work and methods (31). Note that because no significant inter-hemispheric differences were found in cortical gene expression all results
were symmetrized to the left hemisphere, resulting in 180 parcels. We focused on a select number of psychosis-relevant genes — namely genes coding for the serotonin and
GABA receptor subunits and interneuron markers. Seven genes of interest are highlighted with dashed lines. Note that the expression pattern of HTR2C (green dashed line)
is at the low negative tail of the entire distribution, i.e. highly anti-correlated with PC3 BBS map. Conversely, GABRA1 and HTR1E are on the far positive end, reflecting a
highly similar gene-to-BBS spatial pattern. (C) Upper panels show gene expression patterns for two interneuron marker genes, somatostatin (SST) and parvalbumin (PVALB).
Positive (yellow) regions show areas where the gene of interest is highly expressed, whereas negative (blue) regions indicate low expression values. Lower panels highlight
all gene-to-BBS map spatial correlations where each value is a symmetrized cortical parcel (180 in total) from the HCP atlas parcellation. (D) Gene expression maps and
spatial correlations with the PC3 BBS map for two GABAa receptor subunit genes: GABRA1 and GABRA5. (E) Gene expression maps and spatial correlations with the PC3
BBS map for three serotonin receptor subunit genes: HTR1E, HTR2C, and HTR2A.

logical and gene expression neural maps that are directly rel-
evant for PSD neurobiology.

Deriving an Individually Predictive Low-Dimensional
Symptom Representation Across the Psychosis Spec-
trum. Psychosis spectrum is associated with notable clinical
heterogeneity such deficits in cognition as well as altered be-
liefs (i.e. delusions), perception (i.e. hallucinations), and
affect (i.e. negative symptoms) (24). This heterogeneity is
captured by clinical instruments that quantify PSD symptoms
across dozens of specific questions and ratings. This yields
a high-dimensional symptom space that is intractable for re-
liable mapping of neural circuits (40). Here we show that a
low-rank solution captures principal axes of PSD symptom
variation, a finding in line with prior work in schizophrenia
(18-24, 48).

These results highlights two key observations: 1) Exist-
ing symptom reduction studies (even those in schizophrenia
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specifically) have not evaluated solutions that include cog-
nitive impairment — a hallmark deficit across the psychosis
spectrum (17). Here we show that cognitive function cap-
tures a notable portion of the symptom variance indepen-
dent of other axes. We observed that cognitive variation
captured 10% of PSD sample variance even after account-
ing for ‘General’ psychopathology. ii) No study has quanti-
fied cognitive deficit variation via dimensionality reduction
across multiple PSD diagnoses along with core psychosis
symptoms. We found that cognitive deficits load across sev-
eral PCs, but the pattern of loading was particularly evident
for executive function sub-scores on certain axes (e.g. PC5
symptom axis solution was not stable if a single compos-
ite cognitive score was used). While existing studies evalu-
ated stability of data-reduced solutions within a single DSM
category (18, 24, 49, 50), current results show that lower-
dimensional PSD symptoms solutions can be reproducibly
obtained across DSM diagnoses. For each data-reduced axis
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some PSD patients received a score near zero. This does not
imply that these patients were unimpaired; rather, the symp-
tom configurations for these patients were orthogonal to vari-
ation along this specific symptom axis. The observation that
PSD is associated with multiple complex symptom dimen-
sions highlights an important intuition that may extend to
other mental health spectra. Also, the PSD symptom axes
reported here are neither definitive nor exhaustive. In fact,
close to 50% of all clinical variance was not captured by the
symptom PCA — an observation often overlooked in symp-
tom data-reduction studies, which focus on attaining ‘pre-
dictive accuracy’. Such studies rarely consider how much
variance remains unexplained in the final data-reduced model
and, relatedly, if the proportion of explained variance is re-
producible across samples. This is a key property for reli-
able symptom-to-mapping. Thus, we tested if this replicable
low-dimensional PSD symptom space robustly mapped onto
neural circuit patterns.

Leveraging a Robust Low-Dimensional Symptom Rep-
resentation for Mapping Brain-Behavior Relation-
ships. We show that the dimensionality-reduced symptom
space improved the mapping onto neural circuit features (i.e.
GBC), as compared to a priori item-level clinical symptoms
(Fig. 2). This symptom-to-neural mapping was highly repro-
ducible across various cross-validation procedures, includ-
ing split-half replication (Fig. 3). The observed statistical
symptom-to-neural improvement after dimensionality reduc-
tion suggests that data-driven clinical variation more robustly
covaried with neural features. As noted, the low-rank symp-
tom axes generalized across DSM diagnoses. Consequently,
the mapping onto neural features (i.e. GBC) may have been
restricted if only a single DSM category or clinical item was
used. Importantly, as noted, traditional clinical scales are uni-
directional (i.e. zero is asymptomatic, hence there is an ex-
plicit floor). Here, we show that data-driven symptom axes
(e.g. PC3) were associated with bi-directional variation (i.e.,
no explicit floor effect). Put differently, patients who score
highly on either end of these data-driven axes are severely
symptomatic but in very different ways. If these axes re-
flect clinically meaningful phenomena at both tails, then they
should more robustly map to neural feature variation, which
is in line with reported effects. Therefore, by definition, the
derived map for each of the PCs will reflect the neural cir-
cuitry that may be modulated by the behaviors that vary along
that PC (but not others). For example, we named the PC3
axis “Psychosis Configuration” because of its strong loadings
onto conventional “positive” and “negative” PSD symptoms.
This PC3 “Psychosis Configuration” showed strong positive
variation along neural regions that map onto the canonical de-
fault mode network (DMN), which has frequently been im-
plicated in PSD (51-56). In turn, this bi-directional “Psy-
chosis Configuration” axis showed strong negative variation
along neural regions that map onto the sensory-motor and as-
sociative control regions, also strongly implicated in PSD (?
). This ’bi-directional’ neuro-behavioral map property may
be desirable for identifying neural features that support indi-
vidual patient selection.
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Deriving Individually Actionable Brain-Behavior Map-
ping Across the Psychosis Spectrum. Deriving a neuro-
behavioral mapping that is resolvable and stable at the indi-
vidual patient level is a necessary benchmark for deploying
symptom-to-neural ‘biomarkers’ in a clinically useful way.
Therefore, there is increasing attention placed on the im-
portance of achieving reproducibility in the psychiatric neu-
roimaging literature (57-60), which becomes especially im-
portant for individualized symptom-to-neural mapping. Re-
cently, several efforts have deployed multivariate methods to
quantify symptom-to-neural relationships (15, 37, 38, 61—
63), highlighting how multivariate techniques may perhaps
provide clinically innovative insights. However, such meth-
ods face overfitting risk for high-dimensional but underpow-
ered datasets (25), as recently shown via formal generative
modeling (40).

Here we attempted to use multivariate solutions (i.e. CCA)
to quantify symptom and neural feature co-variation. In prin-
ciple, CCA is theoretically well-suited to address the brain-
behavioral mapping problem. However, symptom-to-neural
mapping using CCA across either parcel-level or network-
level solutions was not reproducible even when using a low-
dimensional symptom solutions as a starting point. There-
fore, while CCA (and related multivariate methods such as
partial least squares) are theoretically appropriate (and regu-
larization methods such as sparse CCA may help), in prac-
tice many available psychiatric neuroimaging datasets may
not provide sufficient power to resolve stable multivariate
symptom-to-neural solutions (40). A key pressing need for
forthcoming studies will be to use multivariate power cal-
culators to inform sample sizes needed for resolving stable
neuro-behavioral geometries at the single subject level.
Consequently, we tested if a low-dimensional symptom solu-
tion can be used in a univariate symptom-to-neural model to
optimize individually predictive features. Indeed, we found
that a univariate brain-behavioral space (BBS) relationship
can result in neural features that are stable for individual-
ized prediction. Critically, we found that a patient exhib-
ited a high PC symptom score, they were more likely to
exhibit a topography of neural AGBC (i.e. difference rela-
tive to the group mean reference) that was topographically
similar to PC symptom neural map. This suggests that opti-
mizing such symptom-to-neural mapping solutions (and ulti-
mately extending them to multivariate frameworks) can in-
form cross-diagnostic patient segmentation with respect to
symptom-relevant neural features. Importantly, this could
directly inform patient identification based on neural targets
that are of direct symptom relevance for clinical trial design.

Utilizing Independent Molecular Neuroimaging Maps
to ‘Benchmark’ Symptom-Relevant Neural Features.
Selecting single patients via stable symptom-to-neural map-
ping BBS solutions is necessary for individual patient seg-
mentation, which may ultimately inform treatment indica-
tion. However, are the derived symptom-to-neural maps
related to a given mechanism? Here we highlight two
ways to ‘benchmark’ the derived symptom-to-neural fea-
ture maps by calculating their similarity against indepen-
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dent pharmacological neuroimaging and gene expression
maps. We show a proof-of-principle framework for quanti-
fying derived symptom-to-neural reference maps with two
PSD-relevant neuropharmacological manipulations derived
in healthy adults via LSD and ketamine. These anal-
yses revealed that selecting single patients, via the de-
rived symptom-to-neural mapping solution, can yield above-
chance quantitative correspondence to a given molecular tar-
get map. These data highlight an important effect: it is pos-
sible to construct a “strong inference” (64) evaluation of sin-
gle patients’ differential similarity to molecular target map.
For instance, this approach could be applied to maps associ-
ated with already approved PSD treatments (such as clozap-
ine, olanzapine, or chlorpromazine (65, 66)) to identify pa-
tients with symptom-to-neural configurations that best cap-
ture available treatment-covarying neural targets.

Relatedly, AHBA gene expression maps (31) may provide an
a priori benchmark for treatment targets that may be associ-
ated with a given receptor profile. Here we show that iden-
tified BBS maps exhibit spatial correspondence with neural
gene expression maps implicated in PSD — namely serotonin,
GABA and interneuron gene expression. This gene-to-BBS
mapping could be then used to select those patients that ex-
hibit high correspondence to a given gene expression target.
Collectively, this framework could inform empirically
testable treatment selection methods (e.g. a patient may
benefit from ketamine, but not serotonin agonists such as
LSD/psilocybin). In turn, this independent molecular bench-
marking framework could be extended to other approaches
(e.g. positron emission tomography (PET) maps reflecting
specific neural receptor density patterns (67, 68)) and iter-
atively optimized for quantitative patient-specific selection
against actionable molecular targets.

Considerations for Generalizing Solutions Across
Time, Severity and Mental Health Spectra. There are
several constraints of the current result that require future
optimization — namely the ability to generalize across time
(early course vs. chronic patients), across a range of symp-
tom severity (e.g. severe psychotic episode or persistent low-
severity psychosis) and across distinct symptom spectra (e.g.
mood). This applies to both the low-rank symptom solution
and the resulting symptom-to-neural mapping. It is possible
that the derived lower-dimensional symptom solution, and
consequently the symptom-to-neural mapping solution, ex-
hibits either time-dependent (i.e. state) or severity-dependent
(i.e. trait) re-configuration. Relatedly, medication dose, type,
and timing may also impact the solution.

Critically, these factors should constitute key extensions of an
iteratively more robust model for individualized symptom-to-
neural mapping across the PSD and other psychiatric spectra.
Relatedly, it will be important to identify the ’limits’ of a
given BBS solution — namely a PSD-derived effect may not
generalize into the mood spectrum (i.e. both the symptom
space and the resulting symptom-to-neural mapping is or-
thogonal). It will be important to evaluate if this framework
can be used to initialize symptom-to-neural mapping across
other mental health symptom spectra, such as mood/anxiety
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disorders.

These types questions will require longitudinal and clini-
cally diverse studies that start prior to the onset of full-blown
symptoms (e.g. the North American Prodrome Longitudinal
Study (NAPLS) (69, 70)). A corollary of this point is that
"50% of unexplained symptom variance in the current PCA
solution necessitates larger samples with adequate power to
map this subtle but perhaps clinically essential PSD variation.
Notably, the current cohort was adequately powered for
symptom data reduction that drove univariate neural map-
ping. However, this sample was insufficiently powered
for resolving stable multivariate symptom-to-neural relation-
ships even with low-dimensional symptom features. Con-
sequently, the limited sample size necessitated choices for
dimensionality-reduction of the neural feature space in this
study even for univariate analyses. While both parcellation
and GBC constitute principled choices, symptom-relevant
neural information may have been lost (which may be imbed-
ded in a higher-dimensional space). One obvious solution is
to increase sample sizes (e.g. via datasets such as the UK
Biobank (71)). However, in parallel, it will be critical to
develop neurobiologically-informed feature space reduction
and/or to optimize the stability of multivariate solutions via
regularization methods. Another improvement would be to
optimize neural data reduction sensitivity for specific symp-
tom variation (72).

Here we focused on the neural blood oxygen level dependent
(BOLD) signal from fMRI. However, other modalities such
as diffusion-weighted imaging (DWI), PET imaging, or elec-
troencephalography (EEG) could be leveraged. Additional
clinically-relevant information could be derived from genet-
ics (such as polygenic risk scores (73-75)) or ecological mo-
mentary assessment (EMA) (76, 77), especially to parse state
vs. trait biomarker variation.

Lastly, building on the proof-of-concept molecular neu-
roimaging comparisons, it will be imperative to eventually
test such predictions in formal clinical trials. An actionable
next step would be to optimize patient selection against exist-
ing treatments, which could result in higher success rates for
drug development trials and potentially massive impact for
developing new interventions. Critically, the opportunity to
develop, validate, and refine an individual-level quantitative
framework could deliver a more rapid and cost-effective way
of pairing patients with the right treatments.

Conclusions. We show that complex and highly heteroge-
neous PSD symptom variation can be robustly reduced into
a low-rank symptom solution that is cross-diagnostic, indi-
vidually predictive, generalizable and incorporates cognitive
deficits. In turn, the derived PSD symptom axes robustly
mapped onto distinct yet replicable neural patterns, which
were predictive at the single-patient level. Leveraging these
stable results, we show a proof-of-principle framework for
relating the derived symptom-relevant neural maps, at the in-
dividual patient level, with molecular targets implicated in
PSD via LSD and ketamine neuro-pharmacological manip-
ulations. Lastly, we used AHBA gene expression maps to
show that identified PSD symptom-relevant neural maps co-
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vary with serotonin, GABA and interneuron neural gene ex-
pression patterns. This set of symptom-to-neural mapping
results can be iteratively and quantitatively optimized for per-
sonalized treatment segmentation endpoints.
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Methods

Overall Data Collection and Study Design. We used
publicly available behavioral and neural data from the
Bipolar-Schizophrenia Network on Intermediate Phenotypes
(BSNIP) consortium (11). All data were obtained from the
National Data Archive (NDA) repository (https://nda.
nih.gov/edit_collection.html?id=2274). Par-
ticipants were collected at 6 sites across the United States.
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Full recruitment details are provided in prior publications
(11,78, 79). In brief, participants were recruited through ad-
vertising in Baltimore MD, Boston MA, Chicago IL, Dal-
las TX, and Hartford CT. All assessments were standard-
ized across sites. Participants were excluded if they had 1)
a history of seizures or head injury resulting in >10 min-
utes loss of consciousness, ii) positive drug screen on the day
of testing, iii) a diagnosis of substance abuse in the past 30
days or substance dependence in the past 6 months, iv) his-
tory of serious medical or neurological disorder that would
likely affect cognitive functioning, v), history of serious med-
ical or neurological disorder that would likely affect cogni-
tive functioning, vi) insufficient English proficiency, or vii)
an age-corrected Wide-Range Achievement Test (4th edi-
tion) reading test standard score <65. Additionally, partic-
ipants were required to have had no change in medication
and been clinically stable over the past month. Participants
completed a SCID interview and were given a diagnosis via
consensus from study clinicians; participants with an Axis 1
clinical psychosis diagnosis were additionally given assess-
ments including the Positive and Negative Symptom Scale
(PANSS)(27). Note that apart from the measures used in this
paper, the full BSNIP dataset includes a rich characteriza-
tion of measures from multiple modalities, including elec-
trophysiological, eye tracking, structural and diffusion neu-
roimaging, as well as a number of clinical batteries, which
are not quantified in this study. We used data from a total of
638 participants with complete behavioral and neural data af-
ter preprocessing and quality control, including 202 healthy
controls (CON), 167 patients diagnosed with schizophrenia
(SZP), 119 patients with schizoaffective disorder (SADP),
and 150 patients with bipolar disorder with psychosis (BPP).
For full demographic and clinical characteristics of the sam-
ple see Table S1.

Neural Data Acquisition and Preprocessing. Participants
completed a neural magnetic resonance imaging (MRI) scan
at 3T, including resting-state functional blood-oxygen-level-
dependent imaging (BOLD) and a magnetization-prepared
rapid gradient-echo (MP-RAGE) sequence for T1 weighted
data. Full details on scanners and acquisition parameters used
at each of the sites have previously been described (80) and
are summarized here in Table S2. Neuroimaging data were
preprocessed using the Human Connectome Project (HCP)
minimal preprocessing pipeline (81), adapted for compatibil-
ity with “legacy” data, which are now featured as a standard
option in the HCP pipelines provided by our team (https:
//github.com/Washington-University/
HCPpipelines/pull/156). These modifications
to the HCP pipelines were necessary as the BSNIP data did
not include a standard field map and did not incorporate a
T2w high-resolution image. The adaptations for single-band
BOLD acquisition have previously been described in detail
(82).

A summary of the HCP pipelines is as follows: the T1-
weighted structural images were first aligned by warping
them to the standard Montreal Neurological Institute-152
(MNI-152) brain template in a single step, through a combi-
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nation of linear and non-linear transformations via the FM-
RIB Software Library (FSL) linear image registration tool
(FLIRT) and non-linear image registration tool (FNIRT) (83).
Next, FreeSurfer’s recon-all pipeline was used to segment
brain-wide gray and white matter to produce individual cor-
tical and subcortical anatomical segmentations (84). Corti-
cal surface models were generated for pial and white matter
boundaries as well as segmentation masks for each subcorti-
cal grey matter voxel. Using the pial and white matter surface
boundaries, a ‘cortical ribbon’ was defined along with corre-
sponding subcortical voxels, which were combined to gener-
ate the neural file in the Connectivity Informatics Technol-
ogy Initiative (CIFTI) volume/surface ‘grayordinate’ space
for each individual subject (81). BOLD data were motion-
corrected by aligning to the middle frame of every run via
FLIRT in the initial NIFTI volume space. In turn, a brain-
mask was applied to exclude signal from non-brain tissue.
Next, cortical BOLD data were converted to the CIFTI gray
matter matrix by sampling from the anatomically-defined
gray matter cortical ribbon and subsequently aligned to the
HCP atlas using surface-based nonlinear deformation (81).
Subcortical voxels were aligned to the MNI-152 atlas using
whole-brain non-linear registration and then the Freesurfer-
defined subcortical segmentation applied to isolate the sub-
cortical grayordinate portion of the CIFTI space.

After the HCP minimal preprocessing pipelines, movement
scrubbing was performed (85). As done in our prior work
(86), all BOLD image frames with possible movement-
induced artifactual fluctuations in intensity were flagged us-
ing two criteria: frame displacement (the sum of the displace-
ment across all six rigid body movement correction parame-
ters) exceeding 0.5 mm (assuming 50 mm cortical sphere ra-
dius) and/or the normalized root mean square (RMS) (calcu-
lated as the RMS of differences in intensity between the cur-
rent and preceding frame, computed across all voxels and di-
vided by thee mean intensity) exceeding 1.6 times the median
across scans. Any frame that met one or both of these criteria,
as well as the frame immediately preceding and immediately
following, were discarded from further preprocessing and
analyses. Subjects with more than 50% frames flagged using
these criteria were excluded. Next, a high-pass filter (thresh-
old 0.008 Hz) was applied to the BOLD data to remove low
frequency signals due to scanner drift. In-house Matlab code
was used to calculate the average variation in BOLD signal in
the ventricles, deep white matter, and across the whole grey
matter, as well as movement parameters. These signals, as
well as their first derivatives to account for delayed effects,
were then regressed out of the grey matter BOLD time se-
ries as nuisance variables (as any change in the BOLD sig-
nal due to these variables are persistent and likely not re-
flecting neural activity) (87). It should be noted that using
global signal regression to remove spatially persistent arti-
fact is highly controversial in neuroimaging (88, 89), but it
remains the field-wide gold standard (though see other recent
and emerging approaches at (90, 91)).

Behavioral Symptom and Cognitive Data. The behavioral
measures analyzed included the PANSS, an assessment of
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psychosis symptom severity (27), and the Brief Assessment
of Cognition in Schizophrenia (BACS) battery, which pro-
vided an assessment of cognitive functioning (92). Only con-
trol subjects with complete BACS measures were used for
analyses; PANSS symptom scores were imputed for control
subjects for whom the PANSS had not been administered un-
der the assumption that these subjects were asymptomatic.
Only patient subjects with complete PANSS and BACS mea-
sures were used in analyses. The BACS scores used here are
presented as standardized Z-scores normalized to the mean
and standard deviation of the control group for each BSNIP
site, as done in prior work (11). The full PANSS battery is
conventionally divided into three sub-scales: Positive symp-
tom scale (7 items), Negative symptom scale (7 items), and
General Psychopathology symptom scale (16 items). The
BACS battery consists of 6 individual sub-scores (92). In
total, this yielded 36 symptom variables per participant. Ef-
fects of symptom variation across assessment sites have been
rigorously characterized in prior publications (93). Never-
theless, we explicitly tested for site effects in our analyses,
described in detail below.

Principal Component Analysis of Behavioral Symptoms and
Cross-validation.  The principal component analysis (PCA)
of behavioral data was computed by including all 36 symp-
tom variables across all N=436 patients. Variables were first
scaled to have unit variance across patients before running the
PCA. Significance of the derived principal components (PCs)
was computed via permutation testing. For each permuta-
tion, patient order was randomly shuffled for each symptom
variable before re-computing PCA. This permutation was re-
peated 5,000 times to establish the null model. PCs which
accounted for a proportion of variance that exceeded chance
(p<0.05 across all 5000 permutations) were retained for fur-
ther analysis.

To evaluate if there were site differences that uniquely drove
the PCA solution, we performed a leave-site-out cross-
validation analysis. Specifically, we re-ran the PCA using all
patients except those from one site, which was held out. This
process was repeated for each of the 6 sites. To further evalu-
ate the stability of the derived PCA solutions, we performed
1,000 runs of k-fold cross-validation for values of k£ between
2 and 10. For each k-fold run, the full sample of patients was
randomly divided into equally-sized k sets and a PCA was
re-computed using subjects in k-1 sets (as the left-out set was
used as the held-out sample).

For each run of leave-site-out and k -fold cross-validations
significance was assessed via permutation testing as de-
scribed above. The number of significant PCs and the total
proportion of variance explained by these significant PCs re-
mained highly stable across all runs (see Fig. S4A and Fig.
S6 and Fig. SS). Additionally, we compared observed and
predicted PCA scores for the held-out sample of patients.
Predicted scores for the held-out sample of patients were
computed by weighing their raw symptom scores with the
loadings from the PCA computed in all other patients. Ob-
served scores for held-out patients were obtained from the
original PCA computed on the full sample presented in the

Jietal. | Brain-Behavioral Relationships in Psychosis


https://doi.org/10.1101/2020.09.15.267310

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.15.267310; this version posted September 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

main text. The similarity between predicted and observed
scores was high for all five significant PCs across all runs of
leave-site-out and k-fold cross-validation, exceeding 7=0.9 in
most analyses (see Fig. S4B-C and Fig. S6 and S5). Notably,
the PCA solution did not show medication status or dosage
effects (Fig. S7).

We also assessed the similarity of the PCA loadings us-
ing leave-site-out and 1,000 runs of 5-fold cross-validation
frameworks (Fig. S4D). Importantly, this cross-validation
was designed to test if the observed loadings remained stable
(as opposed to predicted patient-level scores). The loadings
for significant PCs from each leave-site-out PCA solution as
well as each run of the 5-fold cross-validation were highly
correlated (Fig. S4D.

The leave-site-out and k-fold cross-validation PCA analyses
by definition use overlapping samples of patients for each it-
eration. Therefore, we additionally conducted a full split-half
replication using entirely non-overlapping sets of patients in
each iteration. For each split-half iteration, the full patient
sample was randomly divided into two sets with equal pro-
portions of each of the three diagnostic groups (BPP, SADP,
SZP). Then, a PCA was computed using each of the split-half
patient samples. The loadings from the two PCA solutions
were then evaluated for reproducibility. This process was re-
peated 1,000 times. The loadings for significant PCs were
again highly similar even when comparing PCA solutions de-
rived from completely non-overlapping patient samples (Fig.
S4D).

To predict individual patient PC scores for the leave-one-out
analysis (Fig. 6A), a PCA was computed using all patients
except one held-out patient (N=435). In turn, the derived
loadings were then used to compute the predicted PC scores
for the left-out patient. This process was repeated until pre-
dicted PC scores were calculated for every patient. Finally,
the predicted score for each patient was evaluated for repro-
ducibility relative to the observed score obtained from the
PCA solution computed using the full N=436 sample of pa-
tients. In addition, we computed an independent component
analysis (ICA) to evaluate the consistency of the behavioral
data reduction solution across methods (see ).

Global Brain Connectivity Calculation. Following prepro-
cessing, the functional connectivity (FC) matrix was calcu-
lated for each participant by computing the Pearson’s corre-
lation between every grayordinate in the brain with all other
grayordinates. A Fisher’s r-to-Z transform was then applied.
Global brain connectivity (GBC) was calculate by computing
every grayordinate’s mean FC strength with all other grayor-
dinates (i.e. the mean, per row, across all columns of the
FC matrix). GBC is a data-driven summary measure of con-
nectedness that is unbiased with regards to the location of a
possible alteration in connectivity (94) and is therefore a prin-
cipled way for reducing the number of neural features while
assessing neural variation across the entire brain.

Z Tay (1)

yl

GBC(x
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» where GBC(x) denotes the GBC value at grayordinate
€z

* where IV denotes the total number of grayordinates;

N
* where Z denotes the sum fromy =1toy = N;
y=1

* where r;, denotes the correlation between the time-
series of grayordinates x and y;

For parcel-wise GBC maps (described below) we first com-
puted the mean BOLD signal within each parcel (see section
below for parcellation details) for each participant and then
computed the pairwise FC between all parcels. Finally, to ob-
tain the parcellated GBC metric we computed the mean FC
for each parcel and all other parcels. This order of operations
(first parcellating the dense data series and then computing
GBC) was chosen because it resulted in stronger statistical
values due to increased within-parcel signal-to-noise of the
BOLD data (Fig. 3A).

1 N
GBC(p = z:: ()

» where GBC(p) denotes the GBC value at parcel p;

* where IV denotes the total number of parcels;

N
¢ where Z denotes the sum fromg=1to ¢ = N;
y=1

* where 7, denotes the correlation between the time-
series of parcels p and g;

Neural Data Reduction via Functional Brain-wide Parcella-
tion. Here we applied a recently developed Cole-Anticevic
Brain Network Parcellation (CAB-NP) parcellation (33),
which defines functional networks and regions across cor-
tex and subcortex that leveraged the Human Connec-
tome Project’s Multi-Modal Parcellation (MMP1.0) (33,
36). The final published CAB-NP 1.0 parcellation solu-
tion can be visualized via the Brain Analysis Library of
Spatial maps and Atlases (BALSA) resource (https://
balsa.wustl.edu/rrg5v) and downloaded from the
public repository (https://github.com/ColeLab/
ColeAnticevicNetPartition). The cortex compo-
nent of the parcellation solution is comprised of 180 bilat-
eral parcels (a total of 360 across both left and right hemi-
spheres), consistent with the Human Connectome Project’s
Multi-Modal Parcellation (MMP1.0) (36). The subcortex
component is comprised of 358 parcels defined using resting-
state functional BOLD covariation with the cortical network
solution (33).

Mass Univariate Behavioral-to-Neural Mapping. Behav-
ioral scores (a priori and PCA) were quantified in relation
to individual GBC variation (either dense or parcellated) via
a mass univariate regression procedure. The resulting map of
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regression coefficients reflected the strength of the relation-
ship between patients’ behavioral PC score and GBC at every
neural location, across all 436 patients. The greater the mag-
nitude of the coefficient for a given location, the stronger the
statistical relationship between GBC and the behavioral vari-
ation across patients. The coefficients were then Z-scored for
each map. Significance of the maps was assessed via non-
parametric permutation testing, 2000 random shuffles with
TFCE (95) type-I error-protection computed via the Permu-
tation Analysis of Linear Models program (96).

Cross-validation of Mass Univariate Behavioral-to-Neu-
ral Mapping. Behavioral-to-Neural mapping followed the
same cross-validation logic as described for the symptom-
driven PCA solutions. Specifically, five-fold cross-validation
was performed by first randomly partitioning all patients
(N=436) into 5 subsets. Regression of the behavioral PC
scores onto GBC across patients was performed while hold-
ing out 1/5 of the patient sample (N=349). The correlation
between the resulting neural coefficient map was then com-
puted with the neural map obtained from the full sample cal-
culation.

For leave-site-out cross-validation, all subjects except those
from one site were used when calculating the Behavioral-to-
Neural regression model. The resulting maps were compared
to the map from the full sample regression. This process was
repeated 6 times, each time leaving out subjects in one of the
6 sites.

Additionally, 1,000 iterations of split-half replication of the
neural-behavioral mapping were performed. For each split-
half replication iteration, the full sample of subjects was
first randomly split into two halves (referred to as H1 and
H2) with the proportion of subjects in each diagnostic group
(BPP, SADP, SZP) preserved within each half. For each iter-
ation we used the H1 PCA solution and loadings to compute
the predicted PCA scores for H2. In turn, the observed H1
scores were computed from a PCA loadings on the same H1
half-sample of patients. These H1 scores were then regressed
against parcellated GBC for patients in H2. This coefficient
GBC map reflects the strength of the relationship between the
predicted PC score and GBC across H2 patients. Finally, the
GBC coefficient maps derived from the H1 observed and H2
predicted PCA scores were then correlated for each PC axis.
This process was then repeated 1,000 times and evaluated for
reproducibility.

Principal Component Analysis of Neural Data. To evaluate
the consistency of the neural GBC, we computed a PCA so-
lution for the parcellated neural GBC data for all 202 control
subjects as well as for all 436 patients (Fig. S17). The result-
ing neural GBC-derived PCs capture the striking consistency
of the neural variance components irrespective of clinical sta-
tus, which highlights that the bulk of the neural variance is
not symptom-relevant. As with the behavioral PCA, signifi-
cance of the neural PCA solution was assessed via permuta-
tion testing (1,000 random shuffles of parcels within subject).

Canonical Correlation Analysis. Canonical correlation
analysis (CCA) is a multivariate statistical technique which
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examines simultaneously the relationships between multiple
independent variables and multiple dependent variables by
computing linear combinations of each variable set that max-
imizes the correlations between the two sets (Fig. 4A). Here,
the two variates used were behavioral features across all sub-
jects and neural features across all subjects. Here, each
feature was Z-scored prior to computing the CCA solution.
Given the size of the dense’ neural feature space reduced the
number of neural features in principled manner via the de-
scribed parcellation. This reduced the number of neural fea-
tures to 180 symmetrized cortical parcels (i.e. GBC was av-
eraged for each pair of analogous parcels in the left and right
hemispheres). Critically, corresponding cortical parcels in
the left and right hemispheres of this parcellation have been
shown to be highly similar ((31, 81)). First, we computed
the CCA solution using all 36 behavioral symptom item-level
measures as behavioral features. In turn, we computed an ad-
ditional CCA solution using 5 significant PC scores.

Each behavioral PC is a weighted linear composite of the
original behavioral items and each behavioral CV is a
weighted linear composite of the behavioral PCs. Therefore,
to compute the loadings of the 36 original behavioral items on
each of the behavioral CVs (computed using the behavioral
PCs), we multiplied the matrix of loadings from the CCA
with the matrix of loadings from the PCA (Fig. 4J).

In addition to the CCA computed between 180 neural cor-
tical parcel GBC features and 36 behavioral items or 5 PC
scores (shown in the main text, Fig. 4), we also computed
the following control CCAs: i) 5 PCs and 358 subcortical
parcel GBC; ii) 5 PCs and GBC from 12 whole-brain net-
works. Notably, both the 358 subcortical parcels and the 12
functional networks (which span both cortex and subcortex)
were obtained from the parcellation in (33).

CCA Cross-validation. Five-fold cross-validation of the
CCA was performed by first randomly partitioning all pa-
tients (N=436) into 5 subsets. The CCA was then performed
between neural and behavioral features using all but one of
the subsets. The results of this CCA was then compared to
the full sample CCA. Fig. S16A-D shows the comparisons
across all 5 five-fold cross-validation runs of the CCA com-
pared to the full model, including neural factor loadings, be-
havioral factor loadings, and projected behavioral item load-
ings.

For leave-site-out cross-validation, all subjects except those
from one site were used in the CCA. The resulting outputs
were then compared to those from the full sample CCA. This
process was repeated for all 6 sites. These data are shown in
Fig. S16E-H.

Split-half replication of the CCA was performed by first ran-
domly split into two halves (referred to as H1 and H2) with
the proportion of subjects in each diagnostic group (BPP,
SADP, SZP) preserved within each half. A CCA was then
performed separately in each half and the resulting outputs
were then compared to each other. This process was repeated
1,000 times to obtain mean and standard deviation perfor-
mance metrics. These data are shown in Fig. 4L.

For leave-one-out cross-validation of the CCA, one subject
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was held out as a CCA was performed using neural and be-
havioral features from the other 435 subjects. The loadings
matrices ¥ and © from the CCA were then used to calcu-
late the “predicted” neural and behavioral latent scores for
all 5 canonical modes for the holdout subject. This was re-
peated for every subject, such that predicted neural and be-
havioral latent score matrices (N and B) were computed, of
the same dimensions as (N and B) respectively. The corre-
sponding CVs in N and B were then correlated across sub-
jects, as shown in Fig. 4M. If the CCA solution is stable,
these correlations should be comparable to the canonical cor-
relations of the full CCA (Fig. 4D).

Independent Replication Dataset. To illustrate the general-
izability of the single-subject prediction results across inde-
pendent datasets and DSM disorders, we use an independent
collected dataset consisting of 30 patients with a formal diag-
nosis of schizophrenia (SZP) and 39 patients diagnosed with
obsessive compulsive disorder (OCD). These patients were
recruited via clinician referral and regional advertising and
assessed at the Connecticut Mental Health Center in New
Haven, CT. Demographic and symptom data are shown in
Table S3.

The behavioral assessment for the replication dataset in-
cluded the PANSS and the Penn Computerized Neurocog-
nitive Battery (PennCNB)(97). Items from the PennCNB
were matched to items from the BACS as follows: BACS
digital sequencing (working memory) -> LNB (N-back To-
tal score); BACS symbol coding (attention) -> Penn Contin-
uous Performance Test); BACS token motor task (motor) -
> CTAP; BACS Tower of London (abstraction and mental
flexibility) -> PCET or RAVEN (Penn Conditional Exclusion
Test); BACS verbal fluency (verbal ability) -> SPVRT (Penn
Verbal Reasoning Test); BACS verbal memory test -> PLLT
(Penn List Learning Test) (98).

Neural data were collected using a Siemens 3T scanner with
a 64 channel head coil at the Yale Center for Biomedi-
cal Imaging. Imaging acquisition parameters were aligned
with those of the Human Connectome Project (HCP) (99).
High-resolution Tlw and T2w structural images were ac-
quired in 224 AC-PC aligned slices, 0.8mm isotropic voxels.
T1w images were collected with a magnetization-prepared
rapid gradient-echo (MP-RAGE) pulse sequence (TR=2400
ms, TE=2.07 ms, flip angle=8o, field of view=256 x 256
mm). T2w images were collected with a SCP pulse sequence
[TR=3200 ms, TE=564 ms, flip angle mode=T2 var, field
of view=256 x 256 mm]. Resting-state BOLD images were
collected with a multi-band accelerated fast gradient-echo,
echo-planar sequence (acceleration factor=6, time repetition
(TR)=800 ms, time echo (TE)=31.0 ms, flip angle=550, field
of view=210 x 210 mm, matrix=84 x 84, bandwidth=2290
Hz); 54 interleaved axial slices aligned to the anterior-
posterior commissure (AC-PC) with 2.5mm isotropic voxels.
Additionally, a pair of reverse phase-encoded spin-echo field
maps (anterior-to-posterior and posterior-to-anterior) were
acquired (voxel size=2.5 mm isotropic, TR=7220 ms, TE=73
ms, flip angle=90o, field of view=210 x 210 mm, band-
width=2290 Hz). These neural data were preprocessed using
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the HCP minimal preprocessing pipeline as described in the
section “Neural data acquisition and preprocessing” above,
with the same motion scrubbing and nuisance signal regres-
sion parameters as were used for the BSNIP dataset.

Neural Parcel AGBC Feature Selection and Prediction.
For the purposes of patient selection, we were focused on
individual differences in neural features as they co-vary in
relation to individual symptom scores. However, this indi-
vidual variation in neural features may be small compared
to the overall group mean. Hence for each patient, we com-
pute the difference in each brain location (parcel) between
the patient’s actual GBC and the group mean GBC for that
location. This is denoted by AGBC. Importantly, using a
de-meaned GBC metric “standardizes” the data and helps to
correct for possible differences in scanners/protocols across
different datasets. Next, we developed an optimized univari-
ate regression framework leveraging a “dot product” metric
to relate a vector of neural features with a single symptom
scalar value. This process for neural feature selection (results
in Fig. 6) is shown as a systems flow diagram in Fig. S18.
The observed dot product GBC metric (dpG BC%) is com-
puted as follows:

AGBC$bs
dpGBCYs = : . :
AGBCIODzjlect A BGBCIODI)S

select’ N—1

3

BGBCY

¢ where for a given subject ¢ dpGBC,f’bs denotes the
dot product GBC value of the two vectors AGB C{’bs .
ﬁGBCK}’f 1 across all Psejeqt parcels,

J AGBC’;’bS is a vector of length Pg;..+ denoting a dif-
ference map of subject i’s G BC°?® map relative to the
group mean G BC°* map, within a given number of
parcels Pselects

s the BGBCYY*, vector denotes the PCA-to-GBC sta-
tistical group-level S map for a low-dimensional PC
symptom score across selected parcels Pgejeor for N
subjects excluding subject .

This calculation is then repeated for each subject 7, resulting
in a final vector dpGBC°** = [dpGBCSY ..., dpGBC’]‘{}’S]
for N subjects. There are several key properties of the
dpGBC°bs statistic: 1) it is not inflated by individual GBC
map similarity to the group map because each subject’s
AGBC®% map is demeaned relative to the reference group
computed independently of the left-out subject; ii) this statis-
tic is not biased by the parcel number (which drops with iter-
ative selection) because the resulting dpG BC°®* value vari-
ation is quantified relative to the low-dimensional symptom
score across all subjects (see Eq. 2). Put differently, the fi-
nal evaluation considers the relationship between dpG BC°?*
and the low-dimensional PC symptom scores across individ-
uvals; iii) The dot product statistic can yield both positive
and negative values — a property which some map similar-
ity measures lack (e.g. 772); iv) It is unbounded (unlike a
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correlation), which is key to maximize co-variation with low-
dimensional symptom scores across individuals (see Eq. 2);
v) The AGBC;’Z’S map for a given individual is projected
onto the basis set of the BGBC]O\f’i ; map, which is indepen-
dent of the left-out individual but directly related to the low-
dimensional PC symptom score variance, thus maximizing
the dot product optimization.

Next, we select N — ¢ individuals and compute a univari-
ate regression where participants’ low dimensional symptom
scores are regressed onto the dpG BCYPS , values:

dpGBCeb Sebs
: —a| 1 |+e @
dpGBCSbs , Sgbs

« where for dpGBC®°% each element denotes the dot
product value of the AGBCbe . 5GBC]°\}’f 1 vectors
per subject across P parcels,

* « denotes the regression coefficient in the univariate
linear model,

+ where for S°°% each element denotes the observed low-
dimensional symptom score (e.g. PC3 score) per sub-
ject,

¢ ¢ denotes the error term in the univariate linear model.

After the dpGBC% = a.S°P - ¢ regression is computed on
N — 4 subjects it is applied to the left-out-subject ¢. This is
repeated for all IV subjects and the model is evaluated for the
number of parcels that maximize two key dot product evalu-
ation metrics (Fig. SB):

Metric A
Forp=1{1,...,P} find p where
dpGBCl pred Sl pred

5
= A = max : N ®)
dpGBCN SN
Metric B
Forp={1,...,P} find pwhere
dpGBC1 \*"* [ dpGBC; N ©

)

= B =max : :
< : :

dpG BC N dpGB C N

* where A denotes the maximum r correlation value for
the two vectors of dpGBCP™*? values and the pre-
dicted SP"¢¢ low-dimensional symptom scores (e.g.
PC3 axis) for N subjects from the leave-one-out cross-
validation,

e where B denotes the maximum r correlation value for
the two vectors of obs and pred dpGBC' values for N
subjects.

22 | bioRxiv

In the initial step in the step-down model all P = 718 parcels
are retained in the initial dot product calculation. For each
iteration of P selected parcels, the least predictable parcel P
(i.e. the parcel with the weakest value in the PC3 map) is
eliminated from the map. Then, the step-down regression is
repeated until P = 1.

Pharmacological Neuroimaging Acquisition in Healthy Vol-
unteers - LSD. Methods for the lysergic acid diethylamide
(LSD) neuroimaging study are described in detail in prior
publications (28). The study employed a fully double-blind,
randomized, within-subject cross-over design with 3 con-
ditions: (1) placebo + placebo (Pla) condition: placebo
(179 mg Mannitol and Aerosil 1 mg po) after pretreatment
with placebo (179 mg Mannitol and Aerosil 1 mg po); (2)
Pla+LSD (LSD) condition: LSD (100 ug po) after pretreat-
ment with placebo (179 mg Mannitol and Aerosil 1 mg po),
or (3) Ketanserin+LSD (Ket+LSD) condition: LSD (100 ug
po) after pretreatment with the 5-HT2A antagonist Ket (40
mg po). Data were collected for h subjects in a randomized
counterbalanced order at three different sessions each two
weeks apart. For all conditions, the first substance was ad-
ministered 60 minutes before the second substance, and the
first neural scan was conducted 75 minutes after the second
administration, with a second scan conducted at 300 minutes
post-administration. In the present study, only data from the
two neural scans for the LSD and Pla conditions were evalu-
ated.

Briefly, neuroimaging data acquisition details for the LSD
study are as follows. MRI data were acquired on a Philips
Achieva 3.0T whole-body scanner (Best, The Netherlands).
A 32-channel receiver head coil and MultiTransmit paral-
lel radio frequency transmission was used. Images were
acquired using a whole-brain gradient-echo planar imaging
(EPI) sequence (repetition time=2,500 ms; echo time=27
ms; slice thickness=3 mm; 45 axial slices; no slice gap;
field of view=240 mm?; in-plane resolution=3 mm x 3
mm; sensitivity- encoding reduction factor=2.0). 240 vol-
umes were acquired per resting state scan resulting in a
scan duration of 10 mins. Additionally, two high-resolution
anatomical images were acquired using T1-weighted and T2-
weighted sequences. T1-weighted images were collected via
a 3D magnetization-prepared rapid gradient-echo sequence
(MP-RAGE) with the following parameters: voxel size=0.7
mm?3, time between two inversion pulses=3123 ms, inver-
sion time=1055 ms, inter-echo delay=12 ms, flip angle=8°,
matrix=320x335, field of view=224x235 mm, 236 sagittal
slices. Furthermore T2-weighted images were collected us-
ing via a turbo spin-echo sequence with the following param-
eters: voxel size=0.7 mm?, repetition time=2500 ms, echo
time=415 ms, flip angle=90°, matrix=320 x 335, field of
view=224 mm x 235 mm, 236 sagittal slices.

Pharmacological Neuroimaging Acquisition in Healthy Vol-
unteers - Ketamine.  Similar to the LSD study, the ketamine
pharmacological neuroimaging protocol employed a within-
subject design where all healthy volunteer participants under-
went a single scanning session consisting of two infusions:
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i) placebo (saline solution) followed by ii) ketamine infu-
sion. Healthy volunteers were informed prior to scanning
that they would undergo one placebo run and one ketamine
run but were blinded to the order of administration. Because
of the sustained effects of ketamine, this infusion was always
the second of the two runs, consistent with prior work (86).
A doctor and two nurses as well as a study coordinator re-
mained present for the duration of the scan. A bolus of ke-
tamine (0.3 mg/kg of bodyweight) or saline were delivered
via infusion 5 sec after the start of the run and then contin-
uously at a rate of 0.65 mg/kg through the duration of the
session. The sequence of scans in each for either the placebo
or ketamine infusion was as follows: i) resting state (4.67
min); ii) blood draw (sham if saline condition); iii) a cog-
nitive working memory task (total 14 min); iv) blood draw
(sham if saline condition); v) a cognitive working memory
task (total 14 min); vii) blood draw (sham if saline condi-
tion); vii) a cognitive working memory task(total 8.63 min).
Data from the the cognitive working memory task were not
used in the present study and are actively undergoing a dis-
tinct analysis. Participants were scanned at Yale University
on a Siemens Trio 3T whole-body scanner and 32-channel re-
ceiver head coil. High-resolution structural T1-weighted im-
ages were acquired using an MP-RAGE sequence and the fol-
lowing parameters: voxel size=0.8 mm?, time between two
inversion pulses=3123 ms, inversion time=1055 ms, inter-
echo delay=12 ms, flip angle=8°, matrix=320x335, field of
view=227x272 mm, 227 sagittal slices. T2-weighted images
were acquired with the following parameters:voxel size=0.8
mm3, repetition time=2500 ms, echo time=415 ms, flip an-
gle=90°, matrix=320 x 335, field of view=227x272 mm,
227 sagittal slices. BOLD images were acquired using a
whole-brain gradient-echo planar imaging (EPI) sequence
(400 frames at TR=0.7 ms; TE=30 ms; slice thickness=2.5
mm; 54 axial slices; no slice gap; field of view=250 mm?;
in-plane resolution=2.5 mm x 2.5 mm). In addition, a field
map and pair of spin-echo gradients were collected at the end
of every scanning session.

Pharmacological Neuroimaging Processing and Analysis for
LSD and Ketamine Samples. All data were preprocessed
to be consistent with the BSNIP and replication dataset pro-
cessing steps. Specifically, we used the HCP minimal pre-
processing pipeline and with the same motion scrubbing and
nuisance signal regression parameters as were used for the
BSNIP dataset as described in the section “Neural data ac-
quisition and preprocessing” above. Parcel-wise GBC maps
were computed as described in the section “Resting-state
functional connectivity and global brain connectivity” above,
by first parcellating the dense time-series for each subject and
then computing the parcel-level GBC. As with the BSNIP
and replication analyses, parcel GBC was first calculated by
parcellating the dense time-series for every subject and then
computing GBC across all 718 parcels from the whole-brain
functional parcellation (33, 36). Group-level GBC maps
were computed for every participant for all conditions. We
computed the contrast map for “LSD-Placebo” as well as
“Ketamine-Placebo” conditions as a t-test between both the
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pharmacological scans versus placebo scans. The Z-scored
t-contrast maps between pharmacological and placebo con-
ditions were used as a pharmacological target map in relation
to the PC-derived neural GBC maps Fig. 7 and Fig. S22.

Neural Gene Expression Mapping. The gene mapping
analyses in this study utilize the procedure described in
(31). Briefly, we used cortical gene expression data from
the publicly available Allen Human Brain Atlas (AHBA,
RRID:SCR_007416) , mapped to cortex (31). Specifically,
the AHBA quantified expression levels across 20,737 genes
obtained from six postmortem human brains using DNA mi-
croarray probes sampled from hundreds of neuroanatomical
loci. Recent studies demonstrated the ability to map expres-
sion of each gene onto neuroimaging-compatible templates
(30, 31). Building on these innovations we mapped gene
expression on to 180 symmetrized cortical parcels from the
HCP atlas (36) in line with recently published methods (31).
This yielded a group-level map for each gene where the value
in each parcel reflected the average expression level of that
gene in the AHBA dataset. These group-level maps were in
turn as a gene expression target map in relation to the PC-
derived neural GBC maps.

Data Availability.  All primary results derive from data that
is publicly available from sources described above. All
symptom and neuroimaging data for the BSNIP-1 consortium
was obtained via the NDA (https://nda.nih.gov/
edit_collection.html?id=2274).
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