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Abstract

Machine learning methods show great promise in predicting metabolic pathways at different levels of
biological organization. However, several complications remain that can degrade prediction performance
including inadequately labeled training data, missing feature information, and inherent imbalances in the
distribution of enzymes and pathways within a dataset. This class imbalance problem is commonly en-
countered by the machine learning community when the proportion of instances over class labels within a
dataset are uneven, resulting in poor predictive performance for underrepresented classes. Here, we present
leADS, multi-label learning based on active dataset subsampling, that leverages the idea of subsampling
points from a pool of data to reduce the negative impact of training loss due to class imbalance. Specifi-
cally, leADS performs an iterative process to: (i)- construct an acquisition model in an ensemble framework;
(ii) select informative points using an appropriate acquisition function; and (iii) train on selected samples.
Multiple base learners are implemented in parallel where each is assigned a portion of labeled training data
to learn pathways. We benchmark leADS using a corpora of 10 experimental datasets manifesting diverse
multi-label properties used in previous pathway prediction studies, including manually curated organismal
genomes, synthetic microbial communities and low complexity microbial communities. Resulting perfor-
mance metrics equaled or exceeded previously reported machine learning methods for both organismal and
multi-organismal genomes while establishing an extensible framework for navigating class imbalances across
diverse real world datasets.
Availability and implementation: The software package, and installation instructions are published on
github.com/leADS
Contact: shallam@mail.ubc.ca

1 Introduction

Metabolic pathways are composed of interconnected reactions catalyzed by enzymes. The set of reactions
within and between cells comprises a reactome. Pathways and reactomes can be predicted from annotated
genes encoded within organismal or multi-organismal genomes. This pathway prediction problem presents a
fundamental challenge in biology that connects hereditary information contained within the DNA of living
things e.g. genotype, to its expression and activity at the individual, population and community levels of
organization e.g. phenotype ([29, 17, 23]). The rise of increasingly powerful sequencing technologies has
motivated corresponding innovations in the methods used to predict metabolic pathways at different levels
of genome complexity and completion ([1]). These encompass rule-based or heuristic methods including
PathoLogic ([22]) and MinPath ([41]), and more recently, machine learning (ML) methods including PtwML
([10]), mlLGPR ([5]) and triUMPF ([4]). While ML methods overcome issues of probability and scale
associated with rule-based methods, several complications remain that can degrade prediction performance
including inadequately labeled training data, missing feature information, and inherent imbalances in the
distribution of pathways within a dataset.

The class imbalance problem arises when the proportion of instances over class labels within a dataset are
uneven, resulting in poor predictive performance for underrepresented classes e.g. training loss. Such skewed
distributions are encountered across a wide range of real world datasets, from environmental monitoring and
fraud detection to medical diagnosis and facial recognition ([19]). In the case of metabolic pathways, a
similar problem exists where certain pathways are more common than others because they conduct core
metabolic functions conserved across the tree of life. These functions are overrepresented in labeled training
data relative to more niche-defining or accessory metabolic functions.
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Figure 1: Number of PGDBs (or samples) for each pathway in BioCyc v21 T2-3 training data. The horizontal
axis indicates the indices of pathways while the vertical axis represents the number of associated PGDBs.

Basher and colleagues described an information hierarchy based on the BioCyc curation-tiered structure
of Pathway/Genome Databases (PGDBs) ([8]) that traverses four tiers of genome completion and complexity
(T1-4) in descending order of curation and functional validation ([5]). Labeled pathways associated with
T1-3 genomes were incorporated into synthetic datasets and used to train supervised ML pathway prediction
methods ([5, 4]). During the benchmarking process class imbalances were recognized that limited recovery
of underrepresented pathways in the training data. For example, labeled T2-3 pathways follow a power law
distribution (Fig. 1) where 30− 35% of pathways were observed to occur in less than 25 PGDBs within the
BioCyc collection. This class imbalance extended to closely related genotypes e.g. E. coli with potential
implications for resolving metabolic differences between symbiotic, commensal or pathogenic strains.

Different class imbalance learning methods have been developed that take into account skewed distribu-
tions including sampling, algorithm modification and ensemble learning ([24]). Sampling methods attempt
to balance input data prior to training through random under-sampling, one sided-selection or a combination
of over-sampling less common classes while under-sampling more common ones ([11]). In relation to PGDBs
with numerous shared pathways, noisy class labels or missing pathway information (e.g. T2-4), subsam-
pling presents a more tractable solution than oversampling. Two distinct modes of subsampling have been
developed that are effective under different training scenarios: i) incremental learning from easier to harder
examples, and ii) hard example mining. While the incremental mode may be effective when learning from
noisy data by gradually removing hard examples ([6, 30]), sampling hard examples directly can accelerate the
learning process ([36, 26]). Given that BioCyc (T2 &3) contains more than 9000 instances (corresponding
to over 1500 organismal genomes) hard example mining is expected to reduce training loss resulting from
pathway class imbalance.

Here we describe leADS, multi-label learning based on active dataset subsampling, that builds on prior
work in active dataset subsampling (ADS) ([9]) by incorporating an ensemble of multi-label learners ([42]) to
perform hard example mining. Specifically, leADS executes, in parallel, a group of multi-label base learners
(constituting an ensemble) where each is allocated to learn from a portion of randomly selected samples
([40]). Then, each member in the ensemble selects data according to predefined choices of: i)- sample size
and ii)- an acquisition function. Samples from all base learners are aggregated for subsequent rounds of
learning.

To verify the effectiveness of leADS, we conducted three experimental studies: parameter sensitivity,
scalability, and metabolic pathway prediction. Overall, leaADS significantly improved pathway prediction
results in relation to other inference methods including MinPath ([41]), PathoLogic ([22]), mlLGPR ([5]) and
triUMPF ([4]) on a corpora of 10 organismal and multi-organismal datasets including T1 PGDBs from the
BioCyc collection, symbiont genomes encoding distributed metabolic pathways for amino acid biosynthesis
[27], genomes used in the Critical Assessment of Metagenome Interpretation (CAMI) initiative [33], and
whole genome shotgun sequences from the Hawaii Ocean Time Series (HOTS) [38].
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2 Definitions and Problem Formulation

Here the default vector is considered to be a column vector and is represented by a boldface lowercase letter
(e.g., x) while the matrices are represented by boldface uppercase letters (e.g., X). If a subscript letter i is
attached to a matrix, such as Xi, it indicates the i-th row of X, which is a row vector. A subscript character
to a vector, xi, denotes an i-th cell of x. Occasional superscript, X(i), suggests an index to a sample or
current epoch during a learning period. With these notations in mind, we introduce information integral to
the problem formulation, starting by defining the multi-label data.

Definition 2.1. Multi-label Pathway Dataset ([5]). A pathway dataset is represented by SA =
{(x(i),y(i)) : 1 < i 6 n} consisting of n examples, where x(i) is a vector indicating the abundance in-
formation corresponding to enzymatic reactions. An enzymatic reaction is denoted by c, which is an element
of a set E = {c1, c2, ..., cr}, having r possible enzymatic reactions, hence, the vector size x(i) is r. The

abundance of an enzymatic reaction for an example i, say c
(i)
l , is defined as a

(i)
l (∈ R≥0). The class labels

y(i) = [y
(i)
1 , ..., y

(i)
t ] ∈ {−1,+1}t is a pathway label vector of size t representing the total number of path-

ways derived from a set of universal metabolic pathway Y. The matrix form of x(i) and y(i) are X and Y,
respectively.

Both E and Y can be retrieved from trusted sources, such as KEGG ([21]) or MetaCyc ([7]). Although
the input space is assumed to be encoded as r-dimensional vector, symbolized as X = Rr, through features
engineering it can be represented as X = Rd.

Problem Statement. Given a multi-label dataset, SA, the goal is to select a subset of SA, denoted by
Sper%, where per% is a prespecified hyperparameter, indicating the proportion of samples to be chosen
from SA, such that learning on Sper% incurs similar predictive score (or better) as if it was trained on full
multi-label dataset, SA.

3 The leADS Method

In this section, we provide a description of leADS components including: i)- building an acquisition model,
ii)- active dataset sub-sampling, and iii)- learning using the reduced sub-sampled data. These three steps
interact with each other in an iterative process as illustrated in Fig. 2. At the very first iteration, a set
S0
per% is initialized with randomly selected data. In the next iteration q, instead of re-initializing Sq

per%

with randomly selected samples, Sq−1
per% data collected from the previous iteration q− 1 is used, constituting

a build-up scheme implemented in many active learning methods ([9]). This process is repeated until the
maximum number of rounds τ is reached.

3.1 Building an Acquisition Model

Given SA, the objective of this step is to estimate posterior predictive uncertainty given a new test point x∗

for a pathway yj as:

p(yj = +1|x∗,SA) =

∫
p(yj = +1|x∗,Θj)p(Θj |SA)∂Θj (3.1)

where Θ ∈ Rt×r denotes pathway’s parameters. Notice that Eq 3.1 involves marginalization over Θj param-
eters, which is hard to compute ([28]). One way to mitigate this issue is to approximate the above equation
using Monte Carlo (MC) techniques ([24]) by constructing an ensemble, denoted by E, which consists of
g(∈ Z≥1) models (Fig. 2c) where each generates multiple samples according to the following formula:

p(yj = +1|x∗,SA) ≈1

g

∑
s∈g

ps(yj = +1|x∗,Θs
j)

where,

p(yj = +1|x∗,Θs
j) =

1

1 + e−Θ
s,T
j x∗

(3.2)

where Θs
[.] is sampled from q(Θs) which is considered to be in the same family distribution as the true hidden

variables p(Θs
j |SA). The parameters Θs for the s-th model can be estimated according to the multi-label

1-vs-All approach ([42]).
Although the computed MC error is expected to decrease by incorporating more samples and members in

E, label correlation increases computational complexity during training and pathway prediction (see Section
6.2). Moreover, a single multi-label learner (Fig. 3a) suffers from generalization error due to overfitting
despite being able to exploit label correlations. In contrast the ensemble learning method (Fig. 3b) is robust
given a group of multi-label base learners that are both accurate and diverse (with regard to the allocated
samples), potentially reducing overfitting.
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Figure 2: A schematic diagram indicating the leADS workflow. Using a multi-label pathway dataset (a), leADS
randomly selects samples at the very first iteration (b) then builds g members of an ensemble (c), where each
is trained on a randomly selected portion of the training set. Next, leADS applies an acquisition function (d),
based on either: entropy, mutual information, variation ratios, or normalized propensity scored precision at k,
to select per% sub-samples. Following subsample selection, leADS performs parallel training steps (e). The
process (b-e) is repeated τ times (f), where during each iteration per% samples are used in addition to another
set of samples for training. If the current iteration q reaches a desired number of rounds τ , training is terminated
and final per% results are presented (g).
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Figure 3: The two approaches for constructing multi-label learning algorithm. The individual multi-label learner
(on the left) and the ensemble based multi-label learning (on the right).

3.2 Subsampling Dataset

During this step, a subset of SA, denoted as Sq−1
per% ⊆ SA, is picked for each member in E using an acquisition

function f : x→ R where per% is a pre-specified threshold, indicating the proportion of samples to be chosen
from SA, at iteration q − 1.

Four acquisition functions used in subsampling are described that incorporate predictive uncertainty
distribution from the previous step: entropy, mutual information, variation ratios, and normalized PSP@k.
For each function, we retrieve top per% samples that contain high acquisition (or uncertainty) values.

1. Entropy (H) ([34]). This function measures the uncertainty of a sample given the predictive distri-
bution of that sample:

H = −pᵀ log(p) (3.3)

where p is a vector of predictive probabilities over t pathways.

2. Mutual information (M) ([37]). This function looks for low mutual information between g models,
encouraging samples with high disagreement to be selected during the data acquisition process:

M = H− 1

g

∑
s∈g

Hs (3.4)

where Hs denotes the entropy obtained from an individual member of E for a sample before marginal-
ization. Since entropy is always positive, the maximum possible value forM is H. However, when the
models make similar predictions, then 1

e

∑s=e
s=1H

s → H, resulting in M → 0, which is its minimum
value ([9]). Note that this formula is similar to multi-label negative correlation learning ([35]), which
estimates pairwise negative correlation of each learner’s error with respect to errors of other members
in E.

3. Variation ratios (V) ([14]). This function measures the number of members in E that disagree with
the majority vote for a sample according to k desired pathway size, where larger values indicate higher
uncertainty:

V =1− 1

|V |g
∑
s∈g

∣∣∣∣({arg psj : 1 ≤ j ≤ k}
)
∩ V

∣∣∣∣
V = Mode

s∈g

(
{arg psj : 1 ≤ j ≤ k}

) (3.5)

where V corresponds the disagreement of k pathways across g models, where k ∈ Z>0 is a pre-specified
number of pathways to be considered in computing the mode operation.

4. Normalized propensity scored precision at k (nPSP@k). This is a modified version of PSP@k
([20]), which measures the average precision of top k relevant pathways given an instance i where larger
values indicate less uncertainty:

nPSP@k =1−Norm

(
1

k

∑
j∈rankk(p)

yj

psj

)
psj =

1

1 + (nj + 1)−1

(3.6)

where Norm(.) scales the score within [0, 1]. The term p is a vector of predictive probabilities over t
pathways, rankk(p) returns the indices of k largest value in p, ranked in a descending order, where
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k ∈ Z>0 is a hyperparameter. psj is the propensity score for the j-th pathway, where nj is the number
of the positive training instances for the pathway j. In the context of extreme multi-label problems,
PSP@k was used to derive an upper bound for missing/miss-classified labels ([39]), and is reported to
be a good performance metric for long-tail distribution in which a significant portion of labels are tail
labels ([31, 2]).

3.3 Training on the Reduced Dataset

As described above, each member in E is assigned to train on randomly selected samples from Sq−1
per%, which

is expected to contain hard examples that are difficult to learn and classify. The process is repeated τ times,
where during each iteration the top per% are selected based on their acquisition values for the next round
of training.

4 Optimization and Prediction

The objective function in Eq. 3.2 can be solved by decomposing into t independent binary classification
problems according to the multi-label 1-vs-All approach enabling parallel training. Consider optimization
for a member s:

min
Θs

∑
i∈ns

∑
j∈t

log
(

1 + e−y
(i)
j Θ

sᵀ
j x(i)

)
+
∑
j∈t

λ||Θs
j ||2,1 (4.1)

where ||.||22,1 is the L2,1 regularization term, which is the sum of the Euclidean norms of columns of Θ. The
L2,1 norm imposes sparsity on the model’s parameters to minimize the negative effect of label correlations,
where λ(∈ R>0) is employed to govern relative contributions of L2,1 and the log-loss term. Although the
joint formula in Eq 4.1 is convex, the logistic log-loss function still posses a problem where there exists no
analytical solution for it. To address this problem, we apply mini-batch gradient descent ([25]), which begins
with some initial random guess for leADS parameters, and performs iterative updates to each individual
parameter to minimize Eq. 4.1 where the derivative for each Θs

j ∈ Θs has the following formula:

∇Θs
j =

1

ns

i=ns∑
i=1

(
−y

(i)
j x(i)

1 + ey
(i)
j Θ

sᵀ
j x(i)

)
+ λ

Θs
j

2||Θs
j ||2

(4.2)

For prediction, we apply a cut-off threshold ξ ∈ R≥0 to retain only pathways having higher probability
values than ξ, i.e., L(x) = {j : p(yj = +1|x,Θs

j) ≥ ξ,∀j ∈ t, ∀s ∈ g}, where p(yj = +1|x,Θs
j) = 1

1+e
−Θ

s,ᵀ
j

x(i) .

5 Experimental Setup

In this section, we describe an experimental framework used to demonstrate leADS pathway prediction
performance across multiple datasets spanning the genomic information hierarchy ([5]). leADS was written
in the Python programming language (v3). Unless otherwise specified all tests were conducted on a Linux
server using 10 cores of Intel Xeon CPU E5-2650.

5.1 Description of Datasets

We used a corpora of 10 organismal and multi-organismal datasets including T1 PGDBs from the Bio-
Cyc collection (AraCyc, EcoCyc, HumanCyc, LeishCyc, TrypanoCyc, and YeastCyc), symbiont genomes
describing distributed metabolic pathways for amino acid biosynthesis between the two symbiotic bacteria:
Moranella (GenBank NC-015735) living inside Tremblaya (GenBank NC-015736) ([27]), genomes used in
the CAMI initiative [33], and whole genome shotgun sequences from HOTS at 25m, 75m, 110m (sunlit) and
500m (dark) ocean depth intervals [38] to benchmark leADS. The general characteristics of the datasets are
summarized Supp. Table 1. We used BioCyc (v21 T2 &3) ([8]) to train leADS and triUMPF (using default
settings). This version of BioCyc consists of 9429 PGDBs with 1512 distinct pathway labels assigned using
Pathway Tools with or without manual curation ([22]).

5.2 Parameter Settings

We used pathway2vec ([3]) to obtain pathway and EC features using “crt” as the embedding method with
the following settings: the number of memorized domain was 3, the explore and the in-out hyperparameters
were 0.55 and 0.84, respectively, the number of sampled path instances was 100, the walk length was 100,
the embedding dimension size was m = 128, the neighborhood size was 5, the size of negative samples was 5,
and the used configuration of MetaCyc was “uec”, indicating links among ECs were trimmed. The obtained
features were used to leverage correlations among ECs and pathways for training leADS (see Supp. Section
4). We then trained leADS using the following default settings (unless otherwise mentioned): the learning
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Figure 4: The impact of k on leADS performance on the CAMI dataset by varying k ∈
{5, 10, 15, 20, 30, 40, 50, 70, 90, 100} using variation ratios and nPSP as acquisition functions is demonstrated
in Fig. 4a while the effect of four acquisition functions and random sampling by varying sample size according
to per% ∈ {30%, 50%, 70%} is shown in Fig. 4b.

rate was 0.0001, the batch size was 50, the number of epochs was 3, the number of models was g = 3,
the proportion of samples (per%) to be selected was 30%, the number of subsampled pathways for each
member was 500, and the cutoff threshold ξ for predictions was 0.5. For the regularized hyperparameter λ,
we performed 10-fold cross-validation on BioCyc T2 &3 data and found the settings λ = 10 to be optimum
according to results obtained on golden T1 and CAMI datasets.

6 Experimental Results and Discussion

To verify the effectiveness of leADS, we conducted three experimental studies: parameter sensitivity, scala-
bility, and metabolic pathway prediction.

6.1 Parameter Sensitivity

Experimental setup. In this section, the impact of two user defined hyperparameters (k and per%)
were evaluated on the CAMI dataset using acquisition functions described in Section 3.2. In the case of
k, a range of values between {5, 10, 15, 20, 30, 40, 50, 70, 90, 100} was tested in relation to pathway size for
variation ratios in Eq. 3.5 or top k relevant pathways for nPSP in Eq. 3.6. In the case of per% different
subsampling proportions between {30%, 50%, 70%} were tested by selecting BioCyc T2 &3 data at random.
For variation ratios and nPSP, the values of k were fixed based on the optimum results obtained from
the previous experiment. All other hyperparameters, were set according to the configurations described in
Section 5.2 and results were reported using average F1 scores.
Experimental results. Fig. 4a shows the impact of k for both variation ratios and nPSP acquisition func-
tions. Although both functions have similar disagreement metrics, the optimum performance for variation
ratios is at k = 15 while the optimum for nPSP is at k = 40. This discrepancy in k values likely results from
the effects of subsampling pathways and examples that are allocated randomly to each member in E. After
several rounds of experiments, we found k = 50 to be optimum for both variation ratios and nPSP. Next, we
examined the effect of per% on leADS’s performances using four acquisition functions and random sampling,
where we fixed k = 50 for variation ratios and nPSP. From Fig. 4b, it is evident that leADS performance
generally improves by including more samples for each acquisition function, although the entropy function
resulted in a marginal improvement. In contrast, random sampling had no performance benefit across the
sample size range tested.
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Figure 5: Fig. 5a shows the average F1 score reported on CAMI data as the ensemble size g varies across
{1, 2, 3, 5, 10, 15, 20, 50} while the elapsed computational time (in minutes) per epoch (averaged over 3 epochs)
is demonstrated in Fig. 5b based on the same ensemble size variation.

6.2 Scalability to the Ensemble Size

Experimental setup. In this section, time complexity of training was determined when the model size
varied as g ∈ {1, 2, 3, 5, 10, 15, 20, 50}, simultaneously. Performance was evaluated on the CAMI dataset as
described above using the average F1 score metric for each configuration of g. per%wassetto30% of BioCyc
T2 &3 data for training under the four acquisition functions. In the case of random sampling, leADS was
trained on 30% of randomly selected BioCyc T2 &3 data. Performance was expected was expected to
improve proportionally to the member size in E (due to the dual effects of pathways and examples that
are being allocated randomly to each base learner) with concomitant increase in computational time. See
section 5.2 for configuration settings.
Experimental results. Results in Fig. 5a are consistent with expectations, with gradual inclusion of
more members in E improving leADs performance. Although random sampling reduced time complexity
when compared to the four acquisition functions under all model size configurations, it resulted in the
lowest performance (Fig. 5b). Among the four acquisition functions, variation ratios required an additional
mode operation, contributing to increased training time. Based on these results, setting the model size
between [3, 10] ∈ Z>0 while increasing pathway subsampling size accordingly (e.g. 2000 for 10 members)
is recommended to improve prediction outcomes and reduce both computational complexity (training and
inference) and parameter storage needs.

6.3 Metabolic Pathway Prediction

Experimental setup. In this section, pathway prediction performance was evaluated using parameter
settings described in Section 5.2. Three training configurations were tested: i)- per% = 70% under the
four acquisition functions, ii)- random sampling corresponding to 70% of BioCyc T2 &3 selected at random,
and iii)- full configuration where all BioCyc T2 &3 data were utilized without subsampling. After training,
pathway prediction results were reported on golden T1 data using four evaluation metrics: Hamming loss,
average precision, average recall, and average F1 score. leADS performance was compared to four extant
pathway prediction algorithms: i)- MinPath v1.2 ([41]), ii)- PathoLogic v21 ([22]); iii)- mlLGPR ([5]) and
iv)- triUMPF ([4]) on the T1 data. In addition, we compared leADS performance to other methods on multi-
organismal datasets including symbiont, CAMI low complexity and HOTS datasets. For all experiments,the
number of epochs was 10, the member size was g = 3, the subsampled pathway size was 2000, and k was 50
(for variation ratios and nPSP). See section 5.2 for additional configuration settings.
Experimental results. As shown in Table 1, leADS resulted in competitive performance compared to other
pathway inference algorithms based on average F1 scores. For each column in Table 1, a boldface number
represents the best evaluation metric score while an underlined number indicates the best score between
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leADS variants. Among the four acquisition functions, leADS+nPSP resulted in the highest average F1
scores for EcoCyc (0.8874) and HumanCyc (0.8333) which are also the highest scores among all models tested.
Consistent with previous sections, random sampling resulted in the poorest overall performance scores.
Interestingly, leADS+Full in Table 1 was on par with random sampling, reinforcing the idea that BioCyc
T2 &3 contain noisy data that hampered proper estimation of leADS coefficients. Through subsampling
informative data in an ensemble based framework, leADS was able to reduce noise and improve the prediction
performance on golden T1 data.

To evaluate leADS performance on metabolic pathways distributed between organisms we used the
reduced genomes of the mealybug symbionts Moranella (GenBank NC-015735) and Tremblaya (GenBank
NC-015736) ([27]). The two symbiont genomes in combination encode intact biosynthetic pathways for
9 essential amino acids. Pathologic, mlLGPR, triUMPF, and leADS were used to predict pathways on
individual symbiont genomes and a concatenated dataset consisting of both symbiont genomes, and resulting
amino acid biosynthetic pathway distributions were determined (Supp. Fig. 1). Pathologic, triUMPF,
and leADS predicted 6 of the expected amino acid biosynthetic pathways on the composite genome while
mlLGPR predicted 8 pathways. The phenylalanine biosynthesis (L-phenylalanine biosynthesis I ) pathway
was excluded from analysis because the associated genes were reported to be missing during the ORF
prediction process. All models inferred false positive pathways for individual symbiont genomes (Moranella
and Tremblaya) despite reduced pathway coverage information (mapping enzymes onto associated 9 amino
acid biosynthetic pathways) relative to the composite genome. Although it is possible for leADS to reduce
type I error by incorporating taxonomy-based predictions using rules, such pruning can also increase false-
negative (type II error) pathway predictions in multi-organismal datasets ([18]).

To evaluate performance on more complex multi-organismal genomes we compared leADS to mlLGPR
and triUMPF using the CAMI low complexity dataset ([33]) and to PathoLogic, mlLGPR, triUMPF using
the HOTS dataset ([38]). In the case of CAMI, leADS+nPSP outperformed other methods resulting in an
average F1 score of 0.6214 (Supp. Table 2). In the case of HOTS, leADS+Random, leADS+Full, leADS+H,
leADS+M, leADS+V, and leADS+nPSP predicted a total of 60, 67, 63, 68, 67, and 68 pathways among
a subset of 180 selected water column pathways ([18]), while PathoLogic, mlLGPR, and triUMPF (using
BioCyc v21) inferred 54, 62 and 67 pathways, respectively. These observations indicate that leADS with
subsampling improves pathway prediction outcomes by reducing training loss due to pathway class imbalance
(Supp. Fig. 10).

7 Conclusion

In this paper we present leADS, a novel ensemble-based ML approach for hard example mining that con-
structs a set of diverse multi-label base learners to jointly improve the subselection of samples and overcome
class imbalance during metabolic pathway prediction from genomic sequence information at different levels
of complexity and completion. leADS performs an iterative process to: (i)- construct an acquisition model
in an ensemble framework; (ii) select informative points using an appropriate acquisition function including
entropy, mutual information, variation ratios, and normalized PSP@k; and (iii) train on selected samples.

We evaluated leADS performance using a corpora of experimental datasets manifesting diverse multi-
label properties comparing pathway prediction outcomes to other prediction methods including MinPath
([41]), PathoLogic ([22]), mlLGPR ([5]) and triUMPF ([4]). Resulting performance metrics indicated that
leADS equaled or exceeded pathway prediction outcomes on organismal and multi-organismal datasets with
increased sensitivity on T1 golden data. This indicates that active subsampling can overcome pathway class
imbalance. At the same time, it is important to emphasize that the acquisition functions used in subsampling
tend to reduce the number of pathways used in training Y in Def. 2.1. For example, leADS+H, leADS+M,
leADS+V, and leADS+nPSP returned 1380, 1378, 1431 and 1404 distinct pathways, respectively, from a
total of 1512 pathways in BioCyc T2 &3. This reduction reveals a fundamental limitation of subsampling
based approaches ([11]).

Members of an ensemble in leADS have the following two important properties: representativeness (each
member has a different set of candidate examples) and diversity (each member has different overlapping
pathways across examples) ([16]). Having these properties implies that a member trained on a subset of
examples containing a more diverse subset of pathways should be given more weights when predicting those
subsets of pathways. Unfortunately, leADS does not utilize such weighting which can be resolved in part by
adopting a better voting scheme ([32, 15]), or by incorporating an additional learner that integrates weights
obtained from all the base learners into global weights ([12, 13]). Looking forward, an integrated ensemble or
meta-learning framework is needed that can estimate the confidence of multiple training methods to provide
an optimal balance between sensitivity and precision when predicting pathways across different levels of
genome complexity and completion.
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Methods
Hamming Loss ↓

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.0610 0.0633 0.1188 0.0424 0.0368 0.0424
MinPath 0.2257 0.2530 0.3266 0.2482 0.1615 0.2561
mlLGPR 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590
triUMPF 0.0317 0.0523 0.1560 0.0740 0.0530 0.0515
leADS+Random 0.0574 0.0796 0.1528 0.0796 0.0515 0.0685
leADS+Full 0.0471 0.0732 0.1576 0.0736 0.0396 0.0566
leADS+H 0.0265 0.0610 0.1453 0.0756 0.0471 0.0606
leADS+M 0.0289 0.0499 0.1425 0.0657 0.0408 0.0542
leADS+V 0.0301 0.0424 0.1394 0.0649 0.0368 0.0507
leADS+nPSP 0.0261 0.0364 0.1457 0.0653 0.0333 0.0499

Methods
Average Precision Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7230 0.6695 0.7011 0.7194 0.4803 0.5480
MinPath 0.3490 0.3004 0.3806 0.2675 0.1758 0.2129
mlLGPR 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455
triUMPF 0.9158 0.7094 0.6801 0.6040 0.3819 0.5789
leADS+Random 0.7516 0.6383 0.7199 0.5714 0.3799 0.5039
leADS+Full 0.7994 0.6767 0.7171 0.6352 0.4606 0.5611
leADS+H 0.9380 0.6997 0.7299 0.5872 0.4192 0.5423
leADS+M 0.9239 0.7508 0.7757 0.6684 0.4529 0.5779
leADS+V 0.9231 0.7654 0.8110 0.6720 0.4828 0.6009
leADS+nPSP 0.9319 0.8425 0.8198 0.7078 0.5102 0.6061

Methods
Average Recall Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.8078 0.8423 0.7176 0.8734 0.8391 0.7829
MinPath 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000
mlLGPR 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914
triUMPF 0.8143 0.8925 0.4294 0.5328 0.8736 0.9429
leADS+Random 0.7883 0.6452 0.3980 0.4891 0.7816 0.7429
leADS+Full 0.8176 0.6452 0.3627 0.4410 0.8736 0.8400
leADS+H 0.8371 0.7849 0.4451 0.5590 0.9540 0.8057
leADS+M 0.8306 0.8208 0.4137 0.5459 0.8851 0.8057
leADS+V 0.8208 0.8889 0.4039 0.5546 0.9655 0.8000
leADS+nPSP 0.8469 0.8244 0.3569 0.4760 0.8621 0.8000

Methods
Average F1 Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7631 0.7460 0.7093 0.7890 0.6109 0.6447
MinPath 0.5161 0.4589 0.5489 0.4221 0.2990 0.3511
mlLGPR 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768
triUMPF 0.8621 0.7905 0.5264 0.5661 0.5315 0.7174
leADS+Random 0.7695 0.6417 0.5126 0.5271 0.5113 0.6005
leADS+Full 0.8084 0.6606 0.4818 0.5206 0.6032 0.6728
leADS+H 0.8847 0.7399 0.5530 0.5727 0.5825 0.6483
leADS+M 0.8748 0.7842 0.5396 0.6010 0.5992 0.6730
leADS+V 0.8690 0.8226 0.5393 0.6077 0.6437 0.6863
leADS+nPSP 0.8874 0.8333 0.4973 0.5692 0.6410 0.6897

Table 1: Predictive performance of each comparing algorithm on 6 benchmark datasets. leADS+Full: leADS
with full data, leADS+Random: leADS with random sampling, leADS+H: leADS with entropy, leADS+M:
leADS with mutual information, leADS+V: leADS with variation ratios, and leADS+nPSP: leADS with nor-
malized propensity scored precision. For each performance metric, ‘↓’ indicates the smaller score is better
while ‘↑’ indicates the higher score is better. Values in boldface represent the best performance score while the
underlined score indicates the best performance among leADS variances.
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1 Dataset Characteristics

Experiments were conducted on a corpora of 10 high-dimensional pathway datasets with diverse multi-label
properties, ranging from organismal to multi-organismal genomes. These datasets are: i)- golden T1 com-
posed of six databases, retrieved from biocyc website: EcoCyc (v21), HumanCyc (v19.5), AraCyc (v18.5),
YeastCyc (v19.5), LeishCyc (v19.5), and TrypanoCyc (v18.5), and are refined to include only those pathways
that cross-intersect with the MetaCyc database (v21) [2]; ii)- reduced complexity data from Moranella (Gen-
Bank NC-015735) and Tremblaya (GenBank NC-015736) mealybug symbiont genomes encoding distributed
metabolic pathways for amino acid biosynthesis [5]; iii)- the Critical Assessment of Metagenome Interpretation
(CAMI) initiative low complexity dataset (edwards.sdsu.edu/research/cami-challenge-datasets/), consisting of
40 genomes [6]; iv)- whole genome shotgun sequences from the Hawaii Ocean Time Series (HOTS) at 25m,
75m, 110m (sunlit) and 500m (dark) ocean depth intervals downloaded from the NCBI Sequence Read Archive
under accession numbers SRX007372, SRX007369, SRX007370, SRX007371 [7]; and v)- BioCyc (v21 T2 &3)
[3], which consists of 9429 PGDBs (Pathway/Genome Databases) with 1512 distinct pathways. The detailed
characteristics of the datasets are summarized in Table 1. For each dataset S, we use |S| and L(S) to represent
the number of instances and pathway labels, respectively. In addition, we also present some characteristics of
the multi-label datasets, which are denoted as:

1. Label cardinality (LCard(S) = 1
n

∑i=n
i=1

∑j=t
j=1 I[Yi,j 6= −1]), where I is an indicator function. It denotes

the average number of pathways in S.

2. Label density (LDen(S) = LCard(S)
L(S) ). This is simply obtained through normalizing LCard(S) by the

number of total pathways in S.

3. Distinct label sets (DL(S)). This notation indicates the number of distinct pathways in S.

4. Proportion of distinct label sets (PDL(S) = DL(S)
|S| ). It represents the normalized version of DL(S), and

is obtained by dividing DL(.) with the number of instances in S.

The notations R(S), RCard(S), RDen(S), DR(S), and PDR(S) have similar meanings for the enzymatic reac-
tions E in S. Finally, PLR(S) represents a ratio of L(S) to R(S). The preprocessed experimental datasets can
be obtained from zenodo.org/record/3993874#.X2BLO4ZlDeQ

2 Incorporating EC Features

For pathway prediction, we first obtain node features using “crt” embedding method from pathway2vec [1] with
settings provided in Section 5.2 of the main manuscript. Then, we exclusively use EC features to concatenate
each example i according to:

x̃(i) = x(i) ⊕ 1

r
x(i)E (2.1)
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Dataset |S| L(S) LCard(S) LDen(S) DL(S) PDL(S) R(S) RCard(S) RDen(S) DR(S) PDR(S) PLR(S) Domain
AraCyc 1 510 510 1 510 510 2182 2182 1 1034 1034 0.2337 Arabidopsis

thaliana
EcoCyc 1 307 307 1 307 307 1134 1134 1 719 719 0.2707 Escherichia

coli K-12 sub-
str.MG1655

HumanCyc 1 279 279 1 279 279 1177 1177 1 693 693 0.2370 Homo sapiens
LeishCyc 1 87 87 1 87 87 363 363 1 292 292 0.2397 Leishmania

major
Friedlin

TrypanoCyc 1 175 175 1 175 175 743 743 1 512 512 0.2355 Trypanosoma
brucei

YeastCyc 1 229 229 1 229 229 966 966 1 544 544 0.2371 Saccharomyces
cerevisiae

Symbiont 3 119 39.6667 0.3333 59 19.6667 304 101.3333 0.3333 130 43.3333 0.3914 Composed
of Moranella
and Trem-
blaya

CAMI 40 6261 156.5250 0.0250 674 16.8500 14269 356.7250 0.0250 1083 27.0750 0.4388 Simulated
microbiomes
of low com-
plexity

HOT 4 2178 311.1429 0.1429 781 111.5714 182675 26096.4286 0.1429 1442 206.0000 0.0119 Metagenomic
Hawaii Ocean
Time-series
(10m, 75m,
110m, and
500m)

BioCyc 9429 1833617 194.4657 0.0001 1512 0.1604 9000227 954.5261 0.0001 2766 0.2934 0.2037 BioCyc ver-
sion 21 (tier
2 & 3)

Table 1: Experimental data set properties. The notations |S|, L(S), LCard(S), LDen(S), DL(S), and PDL(S)
represent: number of instances, number of pathway labels, pathway labels cardinality, pathway labels density,
distinct pathway labels set, and proportion of distinct pathway labels set for S, respectively. The notations
R(S), RCard(S), RDen(S), DR(S), and PDR(S) have similar meanings for the enzymatic reactions E in S.
PLR(S) represents a ratio of L(S) to R(S). The last column denotes the domain of S.

Metric mlLGPR triUMPF leADS+Random leADS+Full leADS+H leADS+M leADS+V leADS+nPSP
Hamming Loss (↓) 0.0975 0.0423 0.0577 0.0553 0.0402 0.0398 0.0399 0.0397
Average Precision Score (↑) 0.3570 0.7308 0.5245 0.5468 0.7515 0.7558 0.7550 0.7569
Average Recall Score (↑) 0.7827 0.5030 0.5212 0.5284 0.5260 0.5306 0.5268 0.5334
Average F1 Score (↑) 0.4866 0.5915 0.5174 0.5320 0.6151 0.6199 0.6167 0.6214

Table 2: Predictive performance of mlLGPR with elastic net penalty, triUMPF, and leADS on CAMI low com-
plexity data. leADS+Full: leADS with full data, leADS+Random: leADS with random sampling, leADS+H:
leADS with entropy, leADS+M: leADS with mutual information, leADS+V: leADS with variation ratios,
and leADS+nPSP: leADS with normalized propensity scored precision. Values in boldface represent the best
performance score while the underlined score indicates the best performance among leADS variances.

where ⊕ indicates the vector concatenation operation, E ∈ Rr×m corresponds the feature matrix of ECs
and m = 128. The addition of features results in a dimension of size r + m, where r = 3650. We expect
by incorporating enzymatic reaction features into the original r dimensional example x(i), the modified x̃(i)

summarizes informative characteristics, which are expected to be useful in pathway prediction.

3 Metabolic Pathway Prediction

Here, we investigate the effectiveness of leADS for the pathway prediction task on mealybug symbiont genomes,
CAMI low complexity, and HOTS datasets.

3.1 Predicted Pathways on Symbiont data

We analyzed pathways from each individual genome of symbiotic data and their combinations. Fig. 1 shows
that leADS (with all strategies), triUMPF, and PathoLogic predicted 6 of the expected amino acid biosynthetic
pathways on the composite genome while mlLGPR predicted 8 pathways.

3.2 Pathway Prediction from CAMI data

In this section, we contrast leADS (using four acquisition functions and random sampling) with triUMPF
and mlLGPR (using elastic net penalty with reaction and pathway evidence features) on CAMI low complexity
dataset. From Table 2, we observe that leADS+nPSP outperformed other algorithms with regard to the average
F1 score, achieving 0.6214.
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(a) Moranella
(b) Tremblaya

(c) Composite

Figure 1: Comparative study of predicted pathways for symbiont data between PathoLogic, mlLGPR, triUMPF,
and leADS (with random sampling, full data, and four acquisition functions). Black circles indicate predicted
pathways by associated models while grey circles indicate pathways that were not recovered by models. The
size of circles corresponds the pathway abundance information.

3.3 Predicted Pathways from HOTS data

We used leADS to infer a set of pathways from HOTS dataset, where leADS+Random, leADS+Full, leADS+H,
leADS+M, leADS+V, and leADS+nPSP were able to recover a total of 60, 67, 63, 68, 67, and 68 pathways
while triUMPF, mlLGPR, and PathoLogic detected 67, 62, and 54 pathways, respectively, from 180 previously
reported pathways ([4]). The results of leADS are presented in Figs. 2, 3, 4 & 5.

4 Visualization

We applied leADS for per% = 70% subsampling, which reduced the number of selected samples (more than
half for some species related instances) as illustrated in Fig. 10. Figs 6, 7, 8, and 9 show the selected examples
by leADS+H, leADS+M, leADS+V, and leADS+nPSP, respectively, in relation to top 100 occurring species
in BioCyc T2 & 3.
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Figure 2: Comparative study of predicted pathways for HOTS 25m dataset between PathoLogic, mlLGPR,
triUMPF, and leADS (with random sampling, full data, and four acquisition functions). Black circles indicate
predicted pathways by the associated models while grey circles indicate pathways that were not recovered by
models. The size of circles corresponds the pathway abundance information.
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Figure 3: Comparative study of predicted pathways for HOTS 75m dataset between PathoLogic, mlLGPR,
triUMPF, and leADS (with random sampling, full data, and four acquisition functions). Black circles indicate
predicted pathways by the associated models while grey circles indicate pathways that were not recovered by
models. The size of circles corresponds the pathway abundance information.
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Figure 4: Comparative study of predicted pathways for HOTS 110m dataset between PathoLogic, mlLGPR,
triUMPF, and leADS (with random sampling, full data, and four acquisition functions). Black circles indicate
predicted pathways by the associated models while grey circles indicate pathways that were not recovered by
models. The size of circles corresponds the pathway abundance information.
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Figure 5: Comparative study of predicted pathways for HOTS 500m dataset between PathoLogic, mlLGPR,
triUMPF, and leADS (with random sampling, full data, and four acquisition functions). Black circles indicate
predicted pathways by the associated models while grey circles indicate pathways that were not recovered by
models. The size of circles corresponds the pathway abundance information.
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Figure 6: Samples corresponding top 100 species in BioCyc T2 &3. The black colored bars represent leADS+H
(per% = 70%) selected samples while the grey colored bars indicates an overall number of samples associated
with species in BioCyc T2 &3. For example, leADS+H selected 48 Salmonella related instances (out of 115)
comprising a total of 496 distinct pathways (out of 548 distinct pathways).
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Figure 7: Samples corresponding top 100 species in BioCyc T2 &3. The black colored bars represent leADS+M
(per% = 70%) selected samples while the grey colored bars indicates an overall number of samples associated
with species in BioCyc T2 &3. For example, leADS+M selected 45 Salmonella related instances (out of 115)
comprising a total of 494 distinct pathways (out of 548 distinct pathways).
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Figure 8: Samples corresponding top 100 species in BioCyc T2 &3. The black colored bars represent leADS+V
(per% = 70%) selected samples while the grey colored bars indicates an overall number of samples associated
with species in BioCyc T2 &3. For example, leADS+V selected 73 Salmonella related instances (out of 115)
comprising a total of 537 distinct pathways (out of 548 distinct pathways).
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Figure 9: Samples corresponding top 100 species in BioCyc T2 &3. The black colored bars represent
leADS+nPSP (per% = 70%) selected samples while the grey colored bars indicates an overall number of
samples associated with species in BioCyc T2 &3. For example, leADS+nPSP selected 45 Salmonella related
instances (out of 115) comprising a total of 505 distinct pathways (out of 548 distinct pathways).
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(a) Entropy (4752 samples) (b) Mutual information (4762 samples)

(c) Variation ratios (5506 samples) (d) nPSP (4752 samples)

Figure 10: The number of reduced samples for each pathway in BioCyc T2 &3 data. For each figure, the
horizontal axis indicates the indices of pathways while the vertical axis represents the number of associated
examples in BioCyc T2 &3 collection. The black colored area represents leADS (per% = 70%) selected instances
while the grey colored area indicates an overall number of samples for pathways in BioCyc T2 &3.

13

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.14.297424doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.297424
http://creativecommons.org/licenses/by/4.0/

