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Abstract 

Although dysfunctional protein homeostasis (proteostasis) is a key factor in many age-related diseases, 

the untargeted identification of structural modifications in proteins remains challenging. Peptide location 

fingerprinting is a proteomic analysis technique capable of identifying structural modification-associated 

differences in mass spectrometry (MS) datasets of complex biological samples. A new webtool 

(Manchester Peptide Location Fingerprinter), applied to photoaged and intrinsically aged skin 

proteomes, can relatively quantify peptides (spectral counting) and map statistically significant 

differences to regions within protein structures. New photoageing biomarkers were identified in multiple 

proteins including matrix components (collagens and proteoglycans), oxidation and protease 

modulators (peroxiredoxins and SERPINs) and cytoskeletal proteins (keratins). Crucially, for many 

extracellular biomarkers, structural modification-associated differences were not correlated with relative 

abundance (by ion intensity). By applying peptide location fingerprinting to published MS datasets, 

(identifying biomarkers including collagen V and versican in ageing tendon) we demonstrate the 

potential of the MPLF webtool to discover novel biomarkers.  
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Introduction 

Loss of proteostasis (the ability to regulate the proteome) is a key feature of many age-associated 

diseases (1). In human skin, for example, ageing induces remodelling of the architecture and 

abundance of key structural proteins (such as fibrillar collagen and elastic fibres) which impact on 

appearance and function. This loss of proteostasis is particularly evident in sites exposed to ultraviolet 

radiation (UVR) (2). The photoageing process in these sites differentially affects the outer keratinocyte-

rich epidermis and the lower extracellular matrix (ECM)-rich dermis (3, 4). Within the dermis, some ECM 

macromolecular assemblies, such as collagen 1 and elastic fibres are known to be long-lived with 

biological half-lives spanning years and decades (5, 6). These abundant structural proteins are thought 

to accumulate photoageing-induced damage over time (7) as a consequence of chronic ultraviolet 

radiation (UVR) exposure (predominantly UVA) (8–10), UVR-induced reactive oxygen species (ROS) 

(11, 12) and UVR-induced elevated protease activity (13). It is not known, however whether protein 

modifications as a consequence of ageing is a common feature of ECM proteins in the complex dermal 

matrisome. In contrast to the dermis, epidermal keratinocytes and biomolecules are further exposed to 

higher energy UVB as well as to lower-energy UVA, leading to the progressive accumulation of DNA 

damage (14) and a time-dependent modulation in gene expression and potential loss of function (15). 

As a consequence of higher protein turnover, it is likely that damage manifests primarily in the epidermis 

as changes in the ability of cells to synthesise functional proteins (16). Due to the biological complexity 

of skin and these varied mechanisms of damage, the photoageing process creates a spectrum of 

modifications to proteins which are challenging to track and distinguish using a single methodology. It 

is therefore necessary to develop novel methods of analysis for the detection of biomarkers 

characteristic of photoaged skin.  

Label-free proteomic liquid chromatography tandem mass spectrometry (LC-MS/MS) is a powerful 

analytical technique used traditionally for the identification and relative quantification of proteins within 

complex mixtures, often extracted from whole tissues. The technique has enabled the identification of 

disease and ageing biomarkers based on their relative abundance (17, 18). Although this approach 

may successfully identify disease and age-related changes in protein abundance and deposition in 

ECM-rich tissues, it is poorly suited to the detection of abundance-independent, damage-associated 

protein modification in complex protein mixtures.  
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In order to address the need for an approach capable of identifying proteins with photoageing specific-

modifications, we have developed the publicly available Manchester Peptide Location Fingerprinter 

(MPLF) webtool which can detect changes in peptide yield along protein structure (10, 19). MPLF is an 

LC-MS/MS proteomic analysis tool which implements peptide location fingerprinting: tryptic peptide 

spectral counts are mapped to protein regions (specified by the user, or from the UniProt database), 

relatively quantified per region and statistically tested between groups (Fig. 1). This enables the 

characterisation of regional differences as a consequence of structure-related modifications. 
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Figure 1. Identification of regional peptide yield differences within proteins using peptide 
location fingerprinting. As standard in proteomic MS, proteins are first extracted from tissues of 
interest using study-specific protocols and trypsin digested (A). Post LC-MS/MS, exclusive (protein-
specific) tryptic peptide sequences are identified and counted (spectral counted, i.e. peptide spectrum 
matches; PSMs) per tissue sample. Fibulin-1 is used throughout this figure as an exemplar (B). Peptide 
count reports are uploaded to the MPLF webtool (C) where protein structures are divided either into 
user-defined amino acid (aa) step sizes (e.g. 50 aa shown here) or into step sizes corresponding to 
domains, repeats or regions pre-defined by the UniProt database. Peptides and their counts are then 
mapped to their protein regions and summed. Sample-specific regional counts are then normalised 
across the experiment based on the median protein spectrum count, averaged per tissue group and 
statistically compared (Bonferroni-corrected repeated measures ANOVA). This analysis is then 
visualised using representative amino acid-scale schematics of each protein (D). Average peptide 
counts are heat mapped to their corresponding region for comparison between groups (bar graphs). 
Regional, average peptide counts in one tissue group are subtracted from the counts of the other to 
show regional differences in peptide yield (line graph) with statistical significances indicated (** ≤ 0.01, 
*** ≤ 0.001).  

Using peptide location fingerprinting, we have previously shown that: i) long-lived macromolecular ECM 

assemblies exhibit inter-tissue structural diversity (19) and; ii) in vitro UVR-induced damage 

modifications to protein tertiary/quaternary structures can be detected in cell culture-derived 

suspensions of isolated ECM assemblies (fibrillin and collagen 6 microfibrils) and their associated 

receptors (integrins) (10). Here, we show that this same method can be used as a surveying tool 

capable of detecting statistically significant, photoageing-specific, structure modification-related 
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differences in proteins within human epidermal and dermal proteomes. In addition to this, the MPLF 

webtool was further used to analyse a previously published human ageing tendon dataset (20) to 

demonstrate the webtool’s wider applicability in evaluating existing LC-MS/MS data. This enables the 

identification of potentially novel biomarkers and protein classes which are independent from protein 

abundance when compared to traditional relative quantification by peak area ion intensity.  

Results and Discussion 

Peptide location fingerprinting reveals regional fluctuations in peptide yield within the 

structures of proteins from photoaged skin. 

Prior to LC-MS/MS we confirmed that forearm skin in our donor cohort was consistently and severely 

photoaged compared with buttock skin. In comparison to buttock skin sections from aged donors, 

matched extensor forearm skin exhibited clear hallmarks of photoageing (Fig. S1) including epidermal 

thinning and disruption of elastic fibre architecture including solar elastosis (21, 22). Quantification of 

solar elastosis (% elastic fibre coverage) indicated that forearm skin had significantly higher abundance 

of elastin in comparison to matched buttock skin (Fig. S2).  

As the epidermis and dermis contain distinct molecular and cellular populations, we separated these 

two skin layers and analysed them independently with LC-MS/MS. A total of 51,895 protein-specific 

tryptic peptide sequences corresponding to 975 proteins (Table S1) were detected across all dermal 

samples and 45,868 sequences corresponding to 836 proteins across epidermal samples (Table S2). 

Principal component analysis (PCA) of peptide spectral counts showed clear separation of extensor 

forearm and buttock data into distinct clusters (Fig. S3) highlighting the global difference between 

photoaged and intrinsically aged skin. Peptide sequences were then regionally mapped to their 

respective proteins, relatively quantified for forearm and buttock and statistically compared using the 

MPLF webtool. A full workflow describing the application of peptide location fingerprinting using the 

MPLF webtool to our skin datasets for photoageing biomarker identification is shown in Fig. 2. Online 

access to webtool will be provided upon publication in a scientific journal.  
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Figure 2. Identification of photoageing-modified biomarkers in human skin by filtering 
significant regional differences detected using the MPLF webtool. The MPLF webtool was applied 
to dermal and epidermal datasets to identify 50 aa-sized protein regions with significant differences in 
peptide yield between forearm and buttock samples. Once identified, (657 for dermis, 642 for epidermis) 
significantly different regions were tested for intragroup variation (forearm group and buttock group; 
Tables S3 and S4). Regions which exhibited significant intragroup variation were discounted to leave 
only those which were photoageing-specific (337 for dermis, 327 for epidermis). Lastly, proteins which 
were present in one group (forearm or buttock) but not the other were also discounted. The remaining 
regions (251 for dermis, 235 for epidermis) and their respective proteins were considered as possible 
structural modification-specific biomarkers of photoageing.   

Using the MPLF webtool, peptide location fingerprinting identified a total of 657 protein regions in dermis 

and 642 regions in epidermis (corresponding to 375 and 336 proteins respectively) which had significant 

fluctuations in peptide yield between photoaged forearm and intrinsically aged buttock samples (for 

standardisation, all regions were 50 amino acids in size; Fig. 2). Of the protein regions displaying 

significant differences of peptide counts between forearm and buttock samples, 337 for dermis and 327 

for epidermis were least susceptible to intragroup variation (Tables S3 and S4) and therefore most 

photoageing-specific (these corresponded to 219 proteins in dermis and 194 proteins in epidermis). 

Lastly, to identify modification-specific regional differences that are most independent from protein 
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presence, proteins which were present in either forearm or buttock groups but not the other were also 

discounted. This left a total of 251 regions within 174 proteins in dermis (Table S5) and 235 regions 

within 146 proteins in epidermis (Table S6) to be considered as biomarkers susceptible to photoageing-

related modifications (Fig. 2). 

Of the protein biomarkers identified with local molecular differences using peptide location 

fingerprinting, eight exemplar proteins that play key functional roles in skin are displayed in Fig. 3 

(interleaved graphs: Fig. S4). Collagen 6 alpha-3, fibulin-1, biglycan and galectin-7 from the dermis and 

keratins (K)-2 and -10, desmoplakin and heat shock protein (HSP) 70 from the epidermis all had 

significant regional differences in peptide yields along their structures. This indicated that these proteins 

were structurally modified as a consequence of photoageing.  
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Figure 3. Exemplar skin biomarkers exhibiting photoageing-specific structural modifications.  
Proteins were segmented into 50 aa-sized step regions with average peptide counts (PSMs; N = 7) 
heat mapped to each step and compared between forearm and buttock (bar graphs = average PSMs, 
error bars = SD). Average peptide counts corresponding to each forearm protein step were subtracted 
from the counts of their corresponding buttock protein step and divided by the amino acid sequence 
length of that step to reveal regional differences in peptide yield (line graphs). Multiple protein structures 
within the dermis (A - D) and epidermis (E - H) exhibited statistically significant regional differences in 
the peptide yield (* ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001; Bonferroni-corrected repeated measures paired 
ANOVA) between forearm and buttock. In the dermis, one region in the N-terminal half of collagen 6 
alpha-3 had significantly lower peptide counts in buttock samples than in forearm, whereas another 
region in the C-terminal half of the protein had significantly higher (A). Two N-terminal regions within 
fibulin-1 had significantly higher peptide counts in buttock than in forearm (B). Biglycan had two regions 
near the central portion of the protein with significantly higher peptide counts in buttock than in forearm 
and another region on the C-terminal side which had significantly lower (C). A central protein region in 
galectin 7 yielded significantly lower peptides in buttock samples than in forearm (D). In epidermis, two 
regions in K2 (E) and one in K10 (F) (on the N-terminal sides of both proteins) had significantly higher 
peptide counts in buttock than in forearm whereas one region on the C-terminal end of K2 and two near 
the protein centre of K10 had significantly lower counts in buttock than forearm. In desmoplakin (G) one 
N-terminal region and another near the C-terminus yielded significantly higher peptides in buttock than 
in forearm. Lastly, heat shock protein 7 exhibited one N-terminal sided region with significantly lower 
peptide counts in buttock than in forearm and another C-terminal region with significantly higher (H). 
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The collagen 6 microfibril is a structural ECM assembly comprised predominantly of three alpha chains 

with alpha-3 being the largest (23). Although previous histological analysis of photoaged skin showed 

no gross changes to the distribution of the collagen 6 network (24), we recently demonstrated using 

peptide location fingerprinting that the alpha-3 chain was structurally susceptible to physiological doses 

of UVR in vitro (10). As these ECM assemblies are markedly long-lived, here we show evidence for the 

first time that the alpha-3 chain is susceptible to photoageing-dependant modifications in vivo. Fibulin-

1 is an ECM-associated protein (25, 26) in the dermis which influences cell activity by modulating 

integrin interactions (27). Although skin photoageing has been shown to affect the co-localisation of 

fibulins-2 and -5 on elastic fibres (25, 28), we demonstrate that the structure of fibulin-1 may also be 

affected. Biglycan is an ECM-associated proteoglycan  (29) capable of transforming growth factor-β 

(TGFβ) regulation (30) whose presence is reduced in photoaged forearm dermis compared to 

intrinsically aged buttock (31). We reveal that the biglycan present in photoaged forearm is also 

subjected to damage modification by photoageing which may impair functionality. Galectin-7 plays a 

key role in epidermal cell migration and wound re-epithelialisation (32). Although reductions in 

epidermal galectin-7 expression was shown recently in intrinsically aged skin (33), our study 

demonstrates that dermal galectin-7 is additionally susceptible to modifications as a consequence of 

photoageing.  

Within the epidermis, both K2 and K10 had evidence of being structurally modified in photoageing. Both 

are heavily involved in keratinocyte differentiation and cornification (34). Although the upregulation of 

several epidermal keratins (35) has been shown in response to acute UVR exposure, including K10 

(36), differences to K2 and K10 as a consequence of chronic UVR exposure have not to our knowledge 

been previously been demonstrated in vivo. The desmosomal protein desmoplakin is required for 

epidermal cell adhesion (37). To our knowledge, this is the first instance of a photoageing-specific 

difference to an epidermal desmosomal protein. HSP70s are molecular chaperones and crucial 

regulators of cell proteostasis, a process that becomes increasingly unbalanced during ageing  (38). In 

mice, HSP70 overexpression was shown to suppress UVR-induced wrinkle formation highlighting its 

therapeutic potential (39). However, this is the first demonstration of photoageing-dependant alterations 

to HSP70. 

Through a variety of mechanisms initiated by chronic UVR exposure (direct photochemistry, induction 
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of ROS and aberrant protease expression and activity), photoageing introduces a spectrum of protein 

modifications which are very challenging to track. Peptide location fingerprinting successfully enabled 

the identification of local molecular differences within protein regions revealing a profile of proteins with 

photoageing-specific modifications. These may impact the functionality of skin, influencing multiple 

mechanisms of damage and, ultimately, skin homeostasis. For this reason, it is important to next 

consider these gross changes in infrastructure with a more holistic approach using classification and 

pathway analysis. 

Classification and pathway analysis of skin proteins with photoageing modifications 

reveals ECM, cytoskeletal proteins and metabolic enzymes as classes most affected. 

Classification analysis of proteins with significant differences in regional peptide yield between forearm 

and buttock highlighted components of the ECM as the most affected protein class in the dermis (Fig 

4A, blue pie chart). Common to both dermis and epidermis, cytoskeletal proteins (grey pie chart; top in 

epidermis) and metabolite interconversion enzymes were also among the top four classes most affected 

by photoageing, according to peptide location fingerprinting. Protease activity modulators (yellow pie 

chart) were confined to the dermis and translational (Fig. 4B, brown pie chart) and DNA- / RNA-binding 

proteins (dark blue pie chart) were classes exclusive to the epidermis. Crucially, this analysis identifies 

the potential involvement of several new protein families in the photoageing process, such as 

peroxiredoxins, serpins, ribosomal proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs), 

as well as collagens, laminins, proteoglycans and keratins with previously unappreciated roles in 

photoageing biology.  
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Figure 4. Classification of modification-specific protein biomarkers into functional groups 
reveals ECM components, ROS- and protease-modifying enzymes, cytoskeletal proteins and 
ribosomal proteins as the main classes in skin most affected by the photoageing process. 
Biomarker proteins with photoageing-specific modifications were categorised into protein classes 
(PANTHER classification system; large multi-coloured pie charts: clockwise rankings with top rank at 
12:00; only classes with two or more proteins are represented). The top four classes for dermis (A) 
were: ECM proteins (blue slice) which can be further categorised (blue pie chart) into structural matrix 
proteins, matrix-associated proteins and proteoglycans; metabolite interconversion enzymes (orange 
slice) which can be categorised (orange pie chart) into oxidoreductase and transferase enzymes; 
cytoskeletal proteins (grey slice) which can be categorised (grey pie chart) into intermediate filament-, 
actin-, and microtubule-associated proteins; and protein activity modulators (yellow slice) which can be 
categorised (yellow pie chart) into protease inhibitors and G-proteins. As for the dermis, cytoskeletal 
proteins and metabolite interconversion enzymes were also in the top four classes for the epidermis (B) 
in addition to translational proteins (brown slice) which can be categorised (brown pie chart) into 
ribosomal proteins and translational factors and nucleic acid binding proteins (dark blue slice) which 
can be categorised (dark blue pie chart) into RNA- and DNA-binding proteins. Protein identities 
contained within those categories are also listed on the right. 

The dermis is comprised primarily of long-lived structural ECM proteins. Some of the structural ECM 

biomarkers identified by peptide location fingerprinting such as collagen family members have half-lives 
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measured in decades (6, 40). Therefore, many of these assemblies are thought to accumulate damage 

as a result of chronic UVR exposure, leading to changes in molecular abundance and function, 

ultimately contributing to the photoageing phenotype (7, 41, 42). The majority of evidence for this is 

based on histological differences in elastic fibre (such as by fibrillin-1 and elastin) and collagen 1 

architecture and protein abundance. Although peptide location fingerprinting did identify significant 

differences in the protein regions within fibrillin-1 and collagen 1 alpha chains (Table S5), the high 

intragroup variation of these regions between samples (Table S3) meant that it was difficult to attribute 

differences to either photoageing or individual variability. Due to the stringency of our methods, these 

were therefore disregarded as modification-dependant biomarkers of photoageing. For proteins such 

as these, with higher inter-individual variability, more samples may be required to identify photoageing-

specific regional changes. Regardless, peptide location fingerprinting revealed numerous, potentially 

novel ECM biomarkers meriting further study (Fig. 4A), whose regions were not susceptible to individual 

variation according to our methods. These include alpha chains of collagens 3, 4 and 12, elastic fibre-

associated proteins such as fibulins-1, -2 and LTBP4, basement membrane nidogen-2 and laminins A3, 

A5 and C1, and lastly the proteoglycans asporin, biglycan, mimecan and versican. These novel 

biomarkers were also highlighted within protein-protein interaction networks using STRING analysis, 

which showed a cluster of interactions between these proteins (collagens in particular; Fig. S5, blue 

dashed line). The identification of these ECM protein super-families strengthens the hypothesis that 

long-lived macromolecular assemblies accumulate damage over time which may be independent from 

protein presence or abundance.  

In addition to versican, which has previously been identified as a dermal biomarker of skin photoageing 

(43), asporin, lumican and biglycan all bind to fibrillar collagens (44–46) and are capable of modifying 

their assembly and function (47). Similarly, versican binds to fibrillin microfibrils and link these major 

elastic fibre component to connective tissue networks (48).  As such, these proteoglycans function to 

build and network major structural ECM components. We hypothesise therefore, that their functional 

decline may lead to the degeneration of matrix architecture seen in photoaged forearm (49).  

The ROS-modulating (50) peroxiredoxins (PRDXs)-3 and -6, identified by peptide location fingerprinting 

(Fig. 4), have not previously been reported as affected by photoageing. Photoexposed tissue is 

commonly associated with an increased oxidative environment (51) through the photodynamic 
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formation of ROS (11, 52). The functional decline of these antioxidants may play an active part in the 

progression of photoageing. 

Of the protease modulators, three serine protease inhibitors (SERPINs) were also newly identified (Fig. 

4A). As well as the inhibition of serine proteases (53) some, such as SERPINA1, also inhibit 

collagenase matrix metalloproteinase (MMP) 2 and the gelatinase MMP9 preventing the degradation 

of collagen 1 (54), which is reduced in photoaged dermis (41). The structure-associated modifications 

identified within three members of the SERPIN superfamily may be indicative of their impaired function 

and therefore synonymous with a global dysregulation of dermal protease activity. 

Within both dermal and epidermal proteomes, intracellular metabolite interconversion enzymes and 

structural cytoskeletal proteins were two of the main classes with significant regional differences 

between photoaged forearm and buttock (Fig. 4). These new observations suggest that the 

photoageing process may be having a global effect on cell metabolism and structure. Although the 

acceleration of cumulative DNA damage as a result of chronic UVR exposure may not necessarily lead 

to tumorigenesis, it is still thought to have a profound impact on keratinocyte function. This includes 

disordered maturation, a loss of polarity (15) and a decrease in the capacity for differentiation and 

proliferation in vivo (55). It is likely that our identification of a large number of proteins fundamental to 

cell metabolism and structure may reflect these large-scale changes in cell function and behaviour 

which are characteristic of epidermal chronic sun exposure.  

Of particular interest, within the epidermal proteome (in addition to K2 and K10, Fig. 3E, F), a number 

of other keratins were also identified as modified by photoageing (Fig. 4B, grey pie chart). This is also 

highlighted by STRING analysis which shows a cluster of interactions between all twelve keratin 

members identified (Fig. S6, dashed blue line). These keratins play a variety of roles within the 

epidermis from cornification (56) and barrier function integrity (57) in the superficial layers to 

keratinocyte differentiation and proliferation in deeper layers (58). The revelation of a global change 

within the keratin superfamily by peptide location fingerprinting is indicative of a wider functional decline 

of these crucial processes.  

Peptide location fingerprinting revealed that several epidermal proteins affected by photoageing were 

ribosomal (Fig 4B, brown pie chart). STRING analysis also demonstrates a cluster of interactions 
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between all ten ribosomal protein members identified (Fig. S6, dashed black line). Structural changes 

in these proteins may result in the decline of ribosome functionality within resident epidermal cells. The 

deterioration of ribosome presence (59) and function (60) during ageing has been shown previously in 

mice. In addition, it is well established that photoageing grossly affects gene expression in human 

keratinocytes (16, 61). A decline in ribosome function and in RNA-binding proteins (Fig 4B, blue pie 

chart) would lead to impairment of the cell’s translational machinery impacting globally on keratinocyte 

gene expression.  

Peptide location fingerprinting allows the assessment of protein modifications both on a molecular scale 

by visualising significant differences in peptide yield along a protein’s structure (Fig. 3) and on a 

proteomic scale through global analyses of identified biomarkers (Fig. 4). Together, it reveals potentially 

novel mechanisms and/or perturbed pathways following chronic sun exposure which merit future 

functional validation and study.  

Peptide location fingerprinting reveals biomarkers of the photoageing process which 

are not identified by conventional relative quantification of protein abundance 

In addition to regional protease susceptibility using peptide location fingerprinting, protein abundance 

was also relatively quantified within the same label-free LC-MS/MS datasets by peak area ion intensity. 

This was performed in order to identify abundance-dependant protein differences due to photoageing 

and reveal biomarkers unique to both methodological approaches. A total of 635 dermal proteins and 

926 epidermal proteins were significantly different in relative abundance (Fig. S7) between photoaged 

forearm and intrinsically aged buttock according to peak area intensity (principal component analyses 

indicated clear data separations, Fig. S8; full list of proteins - dermis: Table S7, epidermis: Table S8). 

As seen for peptide location fingerprinting, classification analysis also identified cytoskeletal proteins, 

metabolite interconversion enzymes and translational proteins as the top three classes whose relative 

abundance was affected in forearm epidermis (Fig. S9). These may be linked to the profound changes 

to keratinocyte morphology and gene expression as a result of the photoageing process (62). 

Counterintuitively, the main protein classes affected in dermis were intracellular rather than ECM-

associated. A lower presence of fibroblasts in intrinsically aged skin (buttock) (63) coupled to the higher 

biosynthetic activity of fibroblasts and an increased presence of inflammatory cells in photoaged skin 

(forearm) (64) may explain these differences in intracellular protein abundance.  
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Two new potential photoageing biomarkers TIMP3 (metalloprotease inhibitor 3) in dermis and RPL36 

(ribosomal protein L36) in epidermis, identified as significantly different in relative abundance between 

forearm and buttock skin by LC-MS/MS peak area intensity, were successfully experimentally validated 

with Western blotting (Fig S10). Western blotting on the same dermis and epidermis protein extracts 

corroborated a significant increase in TIMP3, and decrease in RPL36, in photoaged forearm compared 

to intrinsically aged buttock. Furthermore, normalised relative quantification of TIMP3 and human serum 

albumin (loading control selected based on non-significance) by Western blotting matched well with that 

of LC-MS/MS peak area relative quantification on a sample by sample basis (Fig S11). Although all 

four TIMPs have been shown to inhibit all 26 MMPs (65), TIMP3 is also capable of inhibiting more 

members of the a disintegrin and metalloproteinase proteins (ADAMs) and ADAMs with 

thrombospondin motifs (ADAMTSs) than its other family members (66). One proposed mechanism of 

photoageing is that chronic exposure of UVR to fibroblasts and keratinocytes can lead to the 

upregulation of MMPs in skin (13, 67). The elevated presence of TIMP3 in photoaged forearm dermis 

compared to intrinsically aged buttock is perhaps indicative of a heightened proteolytic environment and 

an attempt to mitigate UVR-induced remodelling.  

Peptide location fingerprinting uniquely identified 120 protein biomarkers in the dermis (Fig. 5A; Table 

S9) and 71 biomarkers in the epidermis (Fig. 5B; Table S10), which were modified as a consequence 

of photoageing but did not differ significantly in relative abundance according to peak area 

quantification. This demonstrates that changes in protein abundance do not necessarily correlate with 

changes related to protein modification, particularly in ECM-rich tissues. Of these, thirteen were ECM-

associated proteins including four collagens, two elastic fibre-associated proteins (LTBP4 and nidogen-

2), three laminin chains, nidogen-2 and the proteoglycan versican. This suggests that peptide location 

fingerprinting is capable of identifying long-lived proteins (5, 6, 68) subjected to accumulated chronic 

damage (7), whose abundance may not be impacted by the photoageing process. This is also 

corroborated by protein classification analysis which ranked ECM proteins as the top most affected 

classes in dermis for structural modifications (Fig. 4), but not for changes in relative abundance (Fig 

S9). In epidermis, peptide location fingerprinting also successfully identified photoageing modifications 

in numerous keratins, serpins and ribosomal proteins which did not significantly differ in abundance. 
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Figure 5. Peptide location fingerprinting identifies unique modification-specific skin biomarkers 
of photoageing which were not identified by whole protein relative quantification. Venn diagrams 
compare the number photoageing-modified protein biomarkers identified by peptide location 
fingerprinting with the number proteins identified with significant differences in whole protein relative 
abundance by peak area quantification. Several proteins were uniquely identified by peptide location 
fingerprinting as photoageing-specific biomarkers in both dermis (A) and epidermis (B) including 
multiple ECM proteins and protein activity modulators for dermis, translational and nucleic acid-
associated proteins for epidermis and cytoskeletal proteins and metabolite interconversion enzymes for 
both sub-tissues. Protein identities with significant modifications in structure correlated less strongly 
with significant differences in protein abundance in the dermis (C) than in the epidermis (D). Proteins 
with photoageing-specific structural modifications were identified and labelled blue on relative protein 
abundance volcano plots from Fig S7. Violin plots (dashed lines = median and IQR) of the labelled 
points (blue) were superimposed to show correlation between proteins with modification-associated 
differences and protein abundance differences (violin plots of all data points also shown in pink and 
gold). For the epidermis, a large proportion of proteins which have structural modifications (blue points 
and blue violin plot) are positioned above the p = 0.05 line, indicating that these were also significantly 
different in relative abundance between photoaged forearm and intrinsically aged buttock. This 
suggests that for epidermis, structure-related differences appear to correlate strongly with differences 
in abundance (median p-value = 0.01). For the dermis however, a smaller proportion of proteins 
identified with modification-associated differences are positioned above the p = 0.05 line suggesting 
that these differences appear to correlate less with abundance (median p-value = 0.04).    

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.14.296020doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296020
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

18 
 

To test whether differences in structural modification in proteins may correlate with differences in 

relative abundance in epidermis and dermis, p-values of relative abundance differences (measured by 

peak area) of proteins identified with modifications (measured by peptide location fingerprinting) were 

compared between epidermis and dermis (Fig. 5 C, D). The proportion of proteins with both significant 

modifications and also significant differences in relative abundance was higher in epidermis than in the 

dermis. Since the dermis consists primarily of longer-lived structural ECM whereas the epidermis is 

predominantly cellular, this observation may be reflective of the higher protein turnover in the cellular 

epidermis compared to the relatively acellular dermis. This is a further demonstration of the potential of 

peptide location fingerprinting in elucidating biomarkers of chronic disease, particularly in ECM-rich 

connective tissue but also in cell-rich tissues.  

The MPLF webtool can be readily applied to existing LC-MS/MS datasets to reveal 

previously undiscovered disease biomarkers. 

To showcase that peptide location fingerprinting can be used as a surveying tool to reveal novel disease 

biomarkers by post hoc analysis of published LC-MS/MS datasets, the MPLF webtool was used to 

analyse an independent, publicly available label-free LC-MS/MS human tendon data (downloaded from 

the PRIDE repository; dataset identifier PXD006466 and 10.6019/PXD006466). Hakimi et al. (2017) 

recently published a quantitative proteomic comparison between aged (torn) and young human 

supraspinatus tendon (20). They revealed significant reductions in the multiple pericellular matrix 

components in aged, torn tendon compared to young uninjured tendon, such as collagens 1 and 6 and 

elastic fibre components fibrillin-1, microfibril-associated protein 5 (MFAP5), LTBP2 and fibulin-1.  

Peptide location fingerprinting on this published dataset identified 54 protein regions with significant 

differences in tryptic peptide yield between aged torn tendon and young uninjured male tendon (Table 

S11) corresponding to 31 proteins with possible modifications to structure (Fig. 6A). Of these, lamin-A, 

human serum albumin, tenascin-X and cartilage intermediate layer protein-2 (CILP2) are displayed as 

exemplary proteins with significant regional differences in peptide yields along their structures (Fig. 6 

B – E).  
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Figure 6. MPLF webtool analysis of publicly available ageing human tendon data demonstrates 
that peptide location fingerprinting can be applied post hoc to downloaded conventional label-
free LC-MS/MS datasets to reveal unique structural modification disease biomarkers. Protein-
protein interaction network (STRING; minimum required interaction score = 0.400) highlighted ECM 
and ECM-associated proteins as the main MPLF-identified tendon biomarkers of human ageing and 
injury (A). Differences in peptide yield along the protein structure of four of these biomarkers identified 
are shown (B – E). Similar to Fig. 2, proteins are segmented into 50 aa-sized step regions with average 
peptide counts (PSMs; N = 9) heat mapped to each step and compared between aged/torn and young 
groups (bar graphs = average PSMs, error bars = SD). Average peptide counts corresponding to each 
protein step in the aged/torn group were subtracted from the counts of their corresponding protein step 
in the young group and divided by the amino acid sequence length of that step to reveal regional 
differences in peptide yield (line graphs) with statistically significances between groups shown (** ≤ 
0.01, *** ≤ 0.001; Bonferroni-corrected repeated measures unpaired ANOVA). Both lamin-A (B) and 
albumin (C) contained one region on their N-terminal sides with significantly higher peptide counts in 
young compared to aged samples. Tenascin-X contained one region near the N-terminus which yielded 
significantly higher peptides in young compared to aged and another on C-terminal side which yielded 
significantly lower peptide counts (D). A C-terminal region of CILP2 also had significantly lower peptide 
counts in young compared to aged (E).  
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In common with biomarkers identified by Hakimi et al. (2017) by relative quantification (20), peptide 

location fingerprinting also identified collagen 1 alpha-1, collagen 6 alpha 2, fibrillin-1, latent-

transforming growth factor beta-binding protein 2 (LTBP2), complement and CILP as modification-

specific markers of tendon damage. However, a number of newly identified biomarkers exclusive only 

to protein structural modifications were also identified. These were collagen V alpha-1, the 

proteoglycans versican, mimecan and asporin, human serum albumin, the nuclear intermediate filament 

protein lamin A, and the multifunctional cytokine TGFβ.  

Through the use of the MPLF webtool, peptide location fingerprinting was successfully applied to a 

previously published human tendon dataset, revealing possible novel modification-specific protein 

biomarkers of tendon damage not previously identified (20). This highlights the wider impact of peptide 

location fingerprinting as a novel surveying tool capable of enhancing biomarker discovery in 

combination with conventional relative quantification LC-MS/MS methods.   

Conclusion 

Peptide location fingerprinting of label-free LC-MS/MS datasets generated from photoaged forearm and 

intrinsically aged buttock skin enabled the identification of structure-associated modifications to proteins 

as a consequence of chronic sun exposure. As well as a biomarker discovery tool, we demonstrated 

that peptide location fingerprinting can be used to investigate local molecular differences in tryptic 

peptide yield within structural regions of proteins in complex, whole tissue lysates. Crucially, this 

approach also identified proteins which did not exhibit significant differences in relative abundance. As 

such, peptide location fingerprinting revealed novel biomarkers of photoageing which remain 

undetectable by conventional relative quantification, in particular of long-lived ECM proteins.   

Through the use of the MPLF webtool, peptide location fingerprinting can be applied to any label-free 

LC-MS/MS dataset suitable for conventional data-dependant acquisition. As such, a combinational 

approach of both peptide location fingerprinting and relative protein quantification of protein abundance 

enables a more complete assessment of tissue proteostasis as a consequence of chronic disease and 

creates a powerful tool for biomarker discovery.  
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Materials and Methods 

Human tissue and materials 

Chemicals were sourced from Sigma-Aldrich Co. Ltd (Poole, UK) unless otherwise stated. Human skin 

was collected from photoaged donors (N = 7, mean age = 70 years, range = 62 – 79 years, 3 males; 

Fitzpatrick skin phototype I-III) with informed and written consent following approval from The University 

of Manchester Research Ethics Committee (ref: UREC 15464). Samples were bisected, one half snap 

frozen (for LC-MS/MS) and one half embedded in Optimal Cutting Temperature compound (OCT; 

CellPath; Powys, UK) and snap frozen (for histology).  

Tissue cryosectioning and Weigert’s staining 

Tissue (buttock and forearm) was cryosectioned at a thickness of 5 µm (OTF cryostat; Bright 

Instruments, Bedfordshire, UK). Three serial sections were collected per slide and stained with 

Weigert’s resorcin fuchsin (Merck; Darmstadt, Germany). In brief, cryosections were fixed in 4% [w/v] 

paraformaldehyde (PFA) in PBS and then submerged in staining solution, each step for 10 minutes at 

room temperature. Stained sections were dehydrated in graded industrial methylated spirit (IMS) (70% 

[v/v], then twice with 100%), cleared in xylene (5 minutes per step at room temperature) and then 

permanently mounted (DPX).   

Imaging and solar elastosis quantification 

Weigert’s stained skin sections were imaged using brightfield microscopy (BX53 microscope; Olympus 

Industrial, Southend-on-Sea, UK). Solar elastosis was quantified by measuring the percentage area of 

positively-stained elastic fibres using ImageJ (NIH; Bethesda, MA, USA). Percentage areas of elastic 

fibres were measured automatically by thresholding the images by brightness using “Threshold Colour”. 

All coloured pixels, corresponding to the purple stained elastic fibres were then converted to a single 

colour and all other pixels were coloured white. Elastic fibre abundances were measured within ImageJ 

as a percentage of coloured pixels within the areas. Statistical comparisons were performed using 

GraphPad Prism (GraphPad Software Incorporated; California, USA). The percentage area of elastic 

fibres was assessed for matched forearm and buttock skin groups with six individuals per group. 

Percentage area was measured in three images per section and three sections per individual, and then 

averaged. Elastic fibres were analysed between matched forearm and buttock groups using the 

Student’s paired t-test. Only differences of p ≤ 0.05 were considered significant. 
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Sample preparation for mass spectrometry 

Employing any LC-MS/MS analysis on skin dermis is challenging as networking ECM structures are 

tightly bonded, highly modified and covalently crosslinked. This, along with the hierarchical assembly 

of macromolecular ECM components (as seen in fibrillary collagens and elastic fibres) renders them 

highly insoluble (69). As such, an optimised protocol was devised which maximised peptide yield and 

protein discovery in dermis and epidermis by LC-MS/MS analysis.  

Skin samples were defrosted at room temperature and incubated in 20 nM Ethylenediaminetetraacetic 

acid (EDTA) in PBS for 2 hr at 37°C to ensure dermal-epidermal separation. Biopsies were washed in 

PBS and the epidermis removed. Dermis was minced and incubated in 8 M urea buffer (8 M urea + 25 

mM ammonium bicarbonate + 25 mM dithiothretol [DTT]) and homogenised using a bullet blender (Next 

Advance, New York, USA) at maximum speed. Dermal samples were centrifuged and supernatants 

diluted to 2 M urea with AB buffer (25 mM ammonium bicarbonate and 1.3 mM calcium chloride). The 

epidermis was homogenised in 8 M urea buffer with an ultrasonicator (S220X, Covaris, Brighton, UK) 

with 175 W peak power for 8 min. Samples were centrifuged and supernatants diluted to 2 M urea with 

AB buffer. Dermis- and epidermis-derived supernatants were digested with trypsin SMART Digest 

Beads (Thermo Fisher Scientific, MA, USA) and agitated overnight at 37°C. Tryptic peptide samples 

were reduced in 10 mM DTT for 10 min at 60°C, alkylated in 30 mM iodoacetamide for 30 min and 

acidified in 2% (v/v) trifluoroacetic acid. Biphasic extraction was performed via agitation with ethyl 

acetate. Peptides were then desalted using OLIGO R3 Reversed-Phase Resin beads (Thermo) and 

vacuum dried. Samples were re-suspended in 5% acetonitrile (ACN) and peptides (~10 μg injections) 

were analysed using LC-MS/MS. 

Mass spectrometry 

Dermal- and epidermal-derived peptide mixtures were separately analysed by LC-MS/MS using an 

UltiMate® 3000 Rapid Separation Liquid Chromatography system (RSLC; Dionex Corporation, CA, 

USA) coupled to a Q Exactive HF mass spectrometer (Thermo). Peptide mixtures were separated using 

a multistep gradient from 95% A (0.1% formic acid [FA] in water) and 5% B (0.1% FA in ACN) to 7% B 

at 1 min, 18% B at 58 min, 27% B at 72 min and 60% B at 74 min at 300 nL min-1, using a 250 mm x 

75 μm i.d. 1.7 µM CSH C18, analytical column (Waters, Hertfordshire, UK). Peptides were selected for 

fragmentation automatically by data-dependant analysis.  
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Peptide list generation for peptide location fingerprinting 

Raw MS spectrum files were converted to Mascot MGF files containing peak lists with associated mass 

and intensity values using the ExtractMSn algorithm (Thermo) under default parameters. The Mascot 

Daemon application v 2.5.1 (Matrix Science; London, UK) was used to automate the submission of 

peak list MGF files to the Mascot server. The Mascot search engine then correlated the peak spectra 

within each file to the UniProt human database (2018; Swiss-Prot and TreEMBL). Mascot MS/MS ion 

searches were performed with the following parameters: database – Swissprot_TreEMBL_2018_01; 

species – Homo sapiens; enzyme – trypsin; peptide charge – 2+ and 3+; max missed cleavages – 2; 

fixed modifications – carbamidomethyl (mass: 57.02 Da; amino acid: C); variable modification – 

oxidation (mass: 15.99 Da; amino acid: M); peptide tolerance – 10 ppm (monoisotopic); fragment 

tolerance – 0.02 Da (monoisotopic); instrument – ESI-TRAP. Mascot search results were exported as 

DAT files for every run performed.  Peptide spectrum matches (PSM) were generated using the Scaffold 

4 software (Proteome Software; Portland, OR, USA). DAT files were imported into Scaffold 4 and 

peptide/protein identifications generated automatically using LFDR scoring. Data were filtered to report 

only peptides exclusive and unique to their matched proteins. Peptide probability was thresholded to 

95% minimum giving a low peptide false discovery rate (FDR) of 0.5% for epidermis samples and 0.6% 

for dermis samples. Peptide FDR was automatically calculated by Scaffold 4 using peptide probabilities 

assigned by the Trans-Proteomic Pipeline (Sourceforge; Seattle. WA, USA) using the PeptideProphet™ 

algorithm. Peptide lists used for peptide location fingerprinting were exported from Scaffold 4 (Tables 

S1 and S2) within CSV files which were then imported into the MPLF webtool.  

Peptide location fingerprinting using the Manchester Peptide Location Fingerprinting 

webtool 

The MPLF webtool is a publicly available (upon publication in a journal) bioinformatics spectral counting 

LC-MS/MS analysis tool developed in-house, hosted on our previously published database: the 

Manchester Proteome website (70). MPLF allows users to perform high-throughput peptide location 

fingerprinting analysis of LC-MS/MS peptide spectrum lists. Calculations are performed by MPLF on 

the server side with a code written in Python version 3.8. The back end is powered by Python Django 

3.8 framework and by mySQL 8 database and the front end operates REACTjs with Redux state 

management to ensure speed and reliability of analysis. 
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The concept of peptide location fingerprinting by the MPLF webtool was designed using LC-MS/MS 

spectral counting data instead of peak area ion intensity, since spectral counting is the easiest data to 

access in the field and instrument independent. Additionally, peptide location fingerprinting measures 

gross differences across the protein structure profile making spectral counting suitable. Lastly, we 

wanted to make MPLF a useful LC-MS/MS analysis and visualisation tool for other researchers in the 

field and spectral counting data is easiest for users to access. We hope to continue developing the 

MPLF webtool and adjust in future to include peak area ion intensity and additional organism 

proteomes. 

The MPLF webtool allows protein amino acid sequence structures to be divided either into 20, 40, 50, 

80, 100 aa regional steps or into step sizes corresponding to domains, repeats or regions pre-defined 

by the UniProt database. Peptide list CSVs (Tables S1 and S2) were imported into the MPLF webtool 

and peptide spectrum matches (PSM and associated spectral counts) were then automatically summed 

per respective regional step within a protein, normalised based on individual protein total spectrum 

count, averaged per group (forearm or buttock; N = 7) and subsequently heat mapped onto 

representative “amino acid-length scale” schematics of each protein. Average PSM counts 

corresponding to amino acid number step sizes within protein structures of one group (buttock) were 

then subtracted from the counts of their corresponding step sizes in the other group (forearm) and 

divided by each step’s amino acid length to show regional differences in peptide yield. In addition, PSM 

counts corresponding to each amino acid step size within a protein of one group (buttock) was 

statistically compared with counts of each corresponding amino acid step size in the other group 

(forearm) using Bonferroni-corrected, repeated measures paired ANOVA. For further information on 

peptide location fingerprinting, please refer to previous publications detailing the same process for 

fibrillin-1 and collagen 6 alpha-3 proteins (10, 19). 

Relative quantification of protein abundance with peak area ion intensity using 

Progenesis QI software 

Relative quantification of protein abundance was performed using Progenesis QI software package 

(Nonlinear Dynamics, Waters, Newcastle, UK). Raw mass spectra files were imported and ion intensity 

maps were automatically generated. Ion outlines were automatically aligned by Progenesis QI to a 

single reference run using default settings. Ion peaks and their relative abundances were then 
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automatically picked without filtering and normalised to a single reference run by Progenesis QI using 

default settings. Data were then exported and searched using Mascot v2.5.1 with same search 

parameters and on the same database as described for peptide location fingerprinting. This was then 

re-imported back into Progenesis QI where identified peptide ions were automatically matched. 

Normalised abundance for each protein was calculated by Progenesis QI as the sum of the each 

matched peptide ion abundance (individual peptide ion abundance is equal to the sum of the intensities 

within the isotope areas). Normalised protein abundances, compared between matched forearm and 

buttock samples, were statistically analysed within Progenesis QI using a paired (repeated measured) 

ANOVA test. A fold change for each protein was also calculated automatically (fold change is defined 

as the higher average normalised abundance of one group divided by the average normalised 

abundance of the second group). Principal component analysis (PCA) was performed on the quantified 

proteins using Python Sklearn package (Fig. S8).  

TIMP3 and RPL36 Western blotting 

Samples were ran on 4 – 12% NuPAGE gels (Life Technologies, Warrington, UK) and transferred onto 

Immun-Blot PVDF membranes (Bio-Rad, Watford, UK) using a Trans-Blot Turbo Transfer system (Bio-

Rad). Membranes were blocked with 5% (v/v) milk in TBS-T (50 mM Tris-HCl, 5% [v/v] TWEEN 20) for 

one hour at room temperature and split into two halves along the direction of electrophoresis at ~40 

kDa. Bottom halves of dermal sample membranes were incubated with rabbit anti-TIMP3 (Cell 

Signalling Technology; D74B10) and top halves with mouse anti-HSA (Abcam, ab10241; loading 

control). Bottom half of epidermal sample membranes were incubated with rabbit anti-RPL36 (Sigma; 

HPA047153) and top halves with rabbit anti-VCL (Sigma; HPA063777; loading control). All primary 

antibodies were incubated at 1:1000 dilution, overnight at 4oC. Membranes were washed thrice with 

TBS-T before incubation for one hour at room temperature with secondary antibodies (horse radish 

peroxidase goat anti-mouse or anti-rabbit; Bio-Rad), all at 1:5000 dilution. Blots were developed with 

Western Lightning Plus ECL (PerkinElmer, Beaconsfield, UK).  

Expansion of the Manchester Proteome 

Skin proteins identified (Scaffold 4; peptide probability threshold = 50%, protein probability threshold = 

99%, minimum two peptides per protein) in the LC-MS/MS data generated in this study were used to 

expand the existing Manchester Proteome database with new protein entries (70). All protein 
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identifications with their associated p-values and fold changes are freely searchable on 

www.manchesterproteome.manchester.ac.uk/proteome. 

Author Contributions 

MO and AE contributed equally to this work. MO and AE conceived, designed and performed all 

proteomic experiments, analysed all the data and prepared the figures. MO programmed and 

developed the MPLF webtool. AE conceptualised the application of peptide location fingerprinting 

approach, wrote the paper and performed all western blot experiments. MJS contributed to the 

conception and design of the study, the interpretation of results, the preparation of figures and to 

writing. KTM performed all histology, Wiegert’s staining and microscopy of skin tissue. VM and JS 

contributed to the design of LC-MS/MS sample preparation. SW, ROC and DK provided technical 

assistance and support for all LC-MS/MS performed and to the interpretation of MS data and figures. 

CEMG and REBW and contributed to the interpretation of results. JS contributed to the interpretation 

of peptide location fingerprinting data and the conceptualisation of intragroup variation testing. All 

authors contributed to reviewing and editing of the paper.   

Funding Disclosure 

This study was funded by a programme grant from Walgreens Boots Alliance, Nottingham, UK. 

Competing Interests 

The authors declare that they have no conflicts of interest with the contents of this article. Walgreens 

Boots Alliance has approved this manuscript’s submission but exerted no editorial control over the 

content. 

Acknowledgements 

We would like to thank all the participants who donated skin for this study and research nurses J. 

Bastrilles and G. Aarons at the The Dermatopharmacology Unit of Salford Royal NHS Foundation 

Trust. We would also like to acknowledge the help of the University of Manchester research IT team 

members, in particular A. Gilchrist for setting up the servers to host the MPLF webtool and J. Selley of 

the BioMS facility for his aid in bioinformatic analysis during the Covid-19 pandemic. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.14.296020doi: bioRxiv preprint 

http://www.manchesterproteome.manchester.ac.uk/proteome
https://doi.org/10.1101/2020.09.14.296020
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

27 
 

References 
1.  M. S. Hipp, P. Kasturi, F. U. Hartl, The proteostasis network and its decline in ageing. Nat. 

Rev. Mol. cell Biol. 20, 421–435 (2019). 
2.  R. Warren, et al., Age, sunlight, and facial skin: A histologic and quantitative study. J. Am. 

Acad. Dermatol. 25, 751–760 (1991). 
3.  A. K. Langton, H. K. Graham, C. E. M. Griffiths, R. E. B. Watson, Ageing significantly impacts 

the biomechanical function and structural composition of skin. Exp. Dermatol. (2019). 
4.  H. K. Graham, A. Eckersley, M. Ozols, K. T. Mellody, M. J. Sherratt, “Human Skin: 

Composition, Structure and Visualisation Methods” in Skin Biophysics, (Springer, 2019), pp. 1–
18. 

5.  S. D. Shapiro, S. K. Endicott, M. a. Province, J. a. Pierce, E. J. Campbell, Marked longevity of 
human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear 
weapons-related radiocarbon. J. Clin. Invest. 87, 1828–1834 (1991). 

6.  S.-S. Sivan, et al., Collagen turnover in normal and degenerate human intervertebral discs as 
determined by the racemization of aspartic acid. J. Biol. Chem. 283, 8796–8801 (2008). 

7.  E. C. Naylor, R. E. Watson, M. J. Sherratt, Molecular aspects of skin ageing. Maturitas 69, 
249–256 (2011). 

8.  M. J. Sherratt, et al., Low-dose ultraviolet radiation selectively degrades chromophore-rich 
extracellular matrix components. J Pathol 222, 32–40 (2010). 

9.  S. a. Hibbert, et al., A potential role for endogenous proteins as sacrificial sunscreens and 
antioxidants in human tissues. Redox Biol. 5, 101–113 (2015). 

10.  A. Eckersley, et al., Proteomic fingerprints of damage in extracellular matrix assemblies. Matrix 
Biol. Plus, 100027 (2020). 

11.  S. A. Hibbert, R. E. B. Watson, C. E. M. Griffiths, N. K. Gibbs, M. J. Sherratt, Selective 
proteolysis by matrix metalloproteinases of photo-oxidised dermal extracellular matrix proteins. 
Cell. Signal. (2018). 

12.  C. S. Sander, et al., Photoaging is associated with protein oxidation in human skin in vivo. J. 
Invest. Dermatol. 118, 618–625 (2002). 

13.  M. Brennan, et al., Matrix Metalloproteinase‐1 is the Major Collagenolytic Enzyme Responsible 
for Collagen Damage in UV‐irradiated Human Skin¶. Photochem. Photobiol. 78, 43–48 (2003). 

14.  J. Cadet, E. Sage, T. Douki, Ultraviolet radiation-mediated damage to cellular DNA. Mutat. 
Res. Mol. Mech. Mutagen. 571, 3–17 (2005). 

15.  M. Yaar, B. A. Gilchrest, Ageing and photoageing of keratinocytes and melanocytes. Clin. Exp. 
Dermatol. 26, 583–591 (2001). 

16.  B. A. Cho, S.-K. Yoo, J.-S. Seo, Signatures of photo-aging and intrinsic aging in skin were 
revealed by transcriptome network analysis. Aging (Albany NY) 10, 1609 (2018). 

17.  E. C. B. Johnson, et al., Large-scale proteomic analysis of Alzheimer’s disease brain and 
cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and 
astrocyte activation. Nat. Med., 1–12 (2020). 

18.  V. L. Newton, et al., Mass spectrometry‐based proteomics reveals the distinct nature of the 
skin proteomes of photoaged compared to intrinsically aged skin. Int. J. Cosmet. Sci. 41, 118–
131 (2019). 

19.  A. Eckersley, et al., Structural and compositional diversity of fibrillin microfibrils in human 
tissues. J. Biol. Chem., jbc-RA117 (2018). 

20.  O. Hakimi, N. Ternette, R. Murphy, B. M. Kessler, A. Carr, A quantitative label-free analysis of 
the extracellular proteome of human supraspinatus tendon reveals damage to the pericellular 
and elastic fibre niches in torn and aged tissue. PLoS One 12, e0177656 (2017). 

21.  A. K. Langton, M. J. Sherratt, C. E. Griffiths, R. E. Watson, A new wrinkle on old skin: the role 
of elastic fibres in skin ageing. Int J Cosmet Sci (2010) https:/doi.org/ICS574 [pii] 
10.1111/j.1468-2494.2010.00574.x. 

22.  R. E. B. Watson, N. K. Gibbs, C. E. M. Griffiths, M. J. Sherratt, Damage to skin extracellular 
matrix induced by UV exposure. Antioxid. Redox Signal. 21, 1063–1077 (2014). 

23.  M. Cescon, F. Gattazzo, P. Chen, P. Bonaldo, Collagen VI at a glance. J Cell Sci 128, 3525–
3531 (2015). 

24.  R. E. B. Watson, et al., Distribution and expression of type VI collagen in photoaged skin. Br. 
J. Dermatol. 144, 751–759 (2001). 

25.  K. Kadoya, et al., Fibulin-5 deposition in human skin: decrease with ageing and ultraviolet B 
exposure and increase in solar elastosis. Br. J. Dermatol. 153, 607–612 (2005). 

26.  A. I. Olin, et al., The Proteoglycans Aggrecan and Versican Form Networks with Fibulin-2 
through Their Lectin Domain Binding. J. Biol. Chem. 276, 1253–1261 (2001). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.14.296020doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296020
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

28 
 

27.  W. O. Twal, et al., Fibulin-1 suppression of fibronectin-regulated cell adhesion and motility. J. 
Cell Sci. 114, 4587–4598 (2001). 

28.  N. Hunzelmann, R. Nischt, P. Brenneisen, A. Eickert, T. Krieg, Increased deposition of fibulin‐2 
in solar elastosis and its colocalization with elastic fibres. Br. J. Dermatol. 145, 217–222 
(2001). 

29.  C. Wiberg, et al., Complexes of matrilin-1 and biglycan or decorin connect collagen VI 
microfibrils to both collagen II and aggrecan. J. Biol. Chem. 278, 37698–37704 (2003). 

30.  M. Kolb, P. J. Margetts, P. J. Sime, J. Gauldie, Proteoglycans decorin and biglycan 
differentially modulate TGF-β-mediated fibrotic responses in the lung. Am. J. Physiol. Cell. 
Mol. Physiol. 280, L1327–L1334 (2001). 

31.  D. H. Lee, J.-H. Oh, J. H. Chung, Glycosaminoglycan and proteoglycan in skin aging. J. 
Dermatol. Sci. 83, 174–181 (2016). 

32.  G. Gendronneau, et al., Galectin-7 in the control of epidermal homeostasis after injury. Mol. 
Biol. Cell 19, 5541–5549 (2008). 

33.  J. W. Choi, et al., Decreased Galectin-3 and-7 expressions in old-aged skin and their 
differential expression in skin equivalents. Ann. Dermatol. 30, 375–378 (2018). 

34.  S. Zhu, et al., C/EBPβ modulates the early events of keratinocyte differentiation involving 
growth arrest and keratin 1 and keratin 10 expression. Mol. Cell. Biol. 19, 7181–7190 (1999). 

35.  A. Hachiya, et al., Mechanistic effects of long-term ultraviolet B irradiation induce epidermal 
and dermal changes in human skin xenografts. Am. J. Pathol. 174, 401–413 (2009). 

36.  M. D. Smith, J. L. Rees, Wavelength-specific upregulation of keratin mRNA expression in 
response to ultraviolet radiation. J. Invest. Dermatol. 102, 433–439 (1994). 

37.  V. Vasioukhin, E. Bowers, C. Bauer, L. Degenstein, E. Fuchs, Desmoplakin is essential in 
epidermal sheet formation. Nat. Cell Biol. 3, 1076–1085 (2001). 

38.  M. R. Fernández‐Fernández, M. Gragera, L. Ochoa‐Ibarrola, L. Quintana‐Gallardo, J. M. 
Valpuesta, Hsp70–a master regulator in protein degradation. FEBS Lett. 591, 2648–2660 
(2017). 

39.  M. Matsuda, et al., Suppression of UV-induced wrinkle formation by induction of HSP70 
expression in mice. J. Invest. Dermatol. 133, 919–928 (2013). 

40.  D. R. Sell, V. M. Monnier, “Aging of Long-Lived Proteins: Extracellular Matrix (Collagens, 
Elastins, Proteoglycans) and Lens Crystallins” in Comprehensive Physiology, (John Wiley & 
Sons, Inc., 2010) https:/doi.org/10.1002/cphy.cp110110. 

41.  H. S. Talwar, C. E. M. Griffiths, G. J. Fisher, T. A. Hamilton, J. J. Voorhees, Reduced Type I 
and Type III Procollagens in Photodamaged Adult Human Skin. J Investig Dermatol 105, 285–
290 (1995). 

42.  R. E. B. Watson, C. E. M. Griffiths, N. M. Craven, C. A. Shuttleworth, C. M. Kielty, Fibrillin-Rich 
Microfibrils are Reduced in Photoaged Skin. Distribution at the Dermal-Epidermal Junction. 
112, 782–787 (1999). 

43.  K. Hasegawa, et al., Versican, a major hyaluronan-binding component in the dermis, loses its 
hyaluronan-binding ability in solar elastosis. J. Invest. Dermatol. 127, 1657–1663 (2007). 

44.  P. Onnerfjord, A. Khabut, F. P. Reinholt, O. Svensson, D. Heinegard, Quantitative proteomic 
analysis of eight cartilaginous tissues reveals characteristic differences as well as similarities 
between subgroups. J. Biol. Chem., jbc-M111 (2012). 

45.  E. Schönherr, et al., Interaction of biglycan with type I collagen. J. Biol. Chem. 270, 2776–2783 
(1995). 

46.  C. Wiberg, D. Heinegård, C. Wenglén, R. Timpl, M. M. Mörgelin, Biglycan organizes collagen 
VI into hexagonal-like networks resembling tissue structures. J. Biol. Chem. (2002). 

47.  S. Kalamajski, Å. Oldberg, The role of small leucine-rich proteoglycans in collagen 
fibrillogenesis. Matrix Biol. 29, 248–253 (2010). 

48.  Z. Isogai, et al., Versican interacts with fibrillin-1 and links extracellular microfibrils to other 
connective tissue networks. J. Biol. Chem. 277, 4565–4572 (2002). 

49.  A. K. Langton, et al., Organisation of the dermal matrix impacts the biomechanical properties 
of skin. Br. J. Dermatol. (2017). 

50.  Z. A. Wood, E. Schröder, J. R. Harris, L. B. Poole, Structure, mechanism and regulation of 
peroxiredoxins. Trends Biochem. Sci. 28, 32–40 (2003). 

51.  Y. Miyachi, Photoaging from an oxidative standpoint. J. Dermatol. Sci. 9, 79–86 (1995). 
52.  G. T. Wondrak, M. K. Jacobson, E. L. Jacobson, Endogenous UVA-photosensitizers: 

mediators of skin photodamage and novel targets for skin photoprotection. Photochem. 
Photobiol. Sci. 5, 215–237 (2006). 

53.  J. A. Huntington, Serpin structure, function and dysfunction. J. Thromb. Haemost. 9, 26–34 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.14.296020doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296020
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

29 
 

(2011). 
54.  C. Cipriani, et al., Serpin A1 and the modulation of type I collagen turnover: Effect of the C‐

terminal peptide 409–418 (SA1‐III) in human dermal fibroblasts. Cell Biol. Int. 42, 1340–1348 
(2018). 

55.  O. S. Kwon, et al., Photoaging-associated changes in epidermal proliferative cell fractions in 
vivo. Arch. Dermatol. Res. 300, 47–52 (2008). 

56.  H. H. Bragulla, D. G. Homberger, Structure and functions of keratin proteins in simple, 
stratified, keratinized and cornified epithelia. J. Anat. 214, 516–559 (2009). 

57.  P. J. Salas, R. Forteza, A. Mashukova, Multiple roles for keratin intermediate filaments in the 
regulation of epithelial barrier function and apico-basal polarity. Tissue barriers 4, e1178368 
(2016). 

58.  H. Alam, L. Sehgal, S. T. Kundu, S. N. Dalal, M. M. Vaidya, Novel function of keratins 5 and 14 
in proliferation and differentiation of stratified epithelial cells. Mol. Biol. Cell 22, 4068–4078 
(2011). 

59.  N. Mori, D. Mizuno, S. Goto, Conservation of ribosomal fidelity during ageing. Mech. Ageing 
Dev. 10, 379–398 (1979). 

60.  T. Nakazawa, N. Mori, S. Goto, Functional deterioration of mouse liver ribosomes during 
aging: translational activity and activity for formation of the 47 S initiation complex. Mech. 
Ageing Dev. 26, 241–251 (1984). 

61.  B. A. Gilchrest, M. Garmyn, M. Yaar, Aging and photoaging affect gene expression in cultured 
human keratinocytes. Arch. Dermatol. 130, 82–86 (1994). 

62.  C. Longo, A. Casari, F. Beretti, A. M. Cesinaro, G. Pellacani, Skin aging: in vivo microscopic 
assessment of epidermal and dermal changes by means of confocal microscopy. J. Am. Acad. 
Dermatol. 68, e73–e82 (2013). 

63.  W. Ma, et al., Chronological ageing and photoageing of the fibroblasts and the dermal 
connective tissue. Clin. Exp. Dermatol. 26, 592–599 (2001). 

64.  S. M. Pilkington, M. J. Barron, R. E. B. Watson, C. E. M. Griffiths, S. Bulfone‐Paus, Aged 
human skin accumulates mast cells with altered functionality that localize to macrophages and 
vasoactive intestinal peptide‐positive nerve fibres. Br. J. Dermatol. 180, 849–858 (2019). 

65.  G. Murphy, Tissue inhibitors of metalloproteinases. Genome Biol. 12, 233 (2011). 
66.  K. Brew, H. Nagase, The tissue inhibitors of metalloproteinases (TIMPs): an ancient family 

with structural and functional diversity. Biochim. Biophys. acta (BBA)-molecular cell Res. 1803, 
55–71 (2010). 

67.  M. Sárdy, Role of matrix metalloproteinases in skin ageing. Connect. Tissue Res. 50, 132–138 
(2009). 

68.  M. J. Sherratt, Tissue elasticity and the ageing elastic fibre. Age 31, 305–325 (2009). 
69.  C. W. Chang, A. J. Dalgliesh, J. E. López, L. G. Griffiths, Cardiac extracellular matrix 

proteomics: Challenges, techniques, and clinical implications. PROTEOMICS-Clinical Appl. 10, 
39–50 (2016). 

70.  S. A. Hibbert, et al., Defining tissue proteomes by systematic literature review. Sci. Rep. 8, 1–
10 (2018). 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.14.296020doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296020
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tissue 

group

Uniprot 

accession

Protein

spectrum 

count

Peptide

spectrum 

count

Identified exclusive 

peptide sequence

A FBLN1_HUMAN 9 1 CLAFECPENYR

A FBLN1_HUMAN 9 1 CVDVDECAPPAEPK

A FBLN1_HUMAN 9 2 DCSLPYATESK

A FBLN1_HUMAN 9 2 EFTRPEEIIFLR

A FBLN1_HUMAN 9 1 MCVDVNECQR

A FBLN1_HUMAN 9 2 MVQEQCCHSQLEER

B FBLN1_HUMAN 8 2 CVDVDECAPPAEPK

B FBLN1_HUMAN 8 1 DCSLPYATESK

B FBLN1_HUMAN 8 1 EFTRPEEIIFLR

B FBLN1_HUMAN 8 1 GYHLNEEGTR

B FBLN1_HUMAN 8 2 MCVDVNECQR

B FBLN1_HUMAN 8 1 MVQEQCCHSQLEER

Normalised peptide 
count

No

Fibulin-1 
50 aa region 
(positions)

Average 
tissue 

group A

Average 
tissue 

group B
p value 
A vs. B

1 1 – 50 4 2 0.0015

2 51 – 100 6 3 < 0.001

3 101 – 150 0 0 1

4 151 – 200 0 0 1

5 202 – 250 0 0 1

6 251 – 300 0 0 1

7 301 – 350 4 2 0.1035

8 351 – 400 9 10 1

9 401 – 450 2 2 1

10 451 – 500 1 2 1

11 501 – 550 0 0 1

12 551 – 600 2 2 1

13 601 – 650 5 5 1

14 651 – 700 0 1 1

Tissue group B

Tissue group A

Ti
ss

u
e

 g
ro

u
p

 A
Ti

ss
u

e
 g

ro
u

p
 B

0

0

13

13

3

- 3

Ti
ss

u
e

 A
 –

Ti
ss

u
e

 B

8 9 10 11 12 13 147654321

***
**

Tryptic peptide 
generation

LC-MS/MS

Peptide identification

Peptide mapping, relative quantification (spectral 
counting) per protein region and statistical testing

MPLF application

Peptide location fingerprinting of fibulin-1 protein 
structure

Figure 1.

A B

CD

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.14.296020doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296020
http://creativecommons.org/licenses/by-nc-nd/4.0/


EpidermisDermis

657 regions in 
375 proteins

642 regions in 
336 proteins

Input data  of forearm vs buttock (N = 7) datasets = Scaffold peptide 
report. Parameters = 
• 95% peptide probability threshold 
• 99% protein probability threshold
• exclusive unique peptides (assigned TRUE on report). 
MPLF application: 
• peptides regionally mapped to 50 amino acid-sized protein regions 
• quantified per group by spectral counting
• median normalised based on whole protein exclusive spectrum count
• statistically compared using a Bonferroni-corrected repeated 

measures paired ANOVA. 

337 regions in 
219 proteins

327 regions in 
194 proteins

Intragroup variation testing of datasets (N = 3) - MPLF applied to 4 
comparisons within forearm group and within buttock group:
• 2 x 3 vs 3 randomly chosen within group
• 2 x 3 vs 3 chosen based on spectral count PCA analysis (1 = closest 

cluster, 1 = largest spread) (Fig. S3). 
• Significant differences = regions with significant inter-sample 

variability
8 tests (Tables S3 and S4) in total revealed:
• 315 out of 642 regions for epidermis and 320 out of 657 regions  for 

dermis which were significantly different for photoageing had high 
inter-sample variation in at least one test.

• These were therefore discounted to leave only the photoageing-
specific protein regions least susceptible to inter-sample variation. 

251 regions in 
174 proteins

235 regions in 
146 proteins

Removal of proteins containing zero counts in one group and positive 
counts in the other.
• 48 epidermal proteins and 45 dermal proteins contained significantly 

different regions due to zero counts (zero for all regions) in one group 
and positive counts in the other group. 

• These significant differences are due to  proteins being present in one 
group and not the other, rather than protein modification. 

• To select proteins which are photoageing modification-specific and 
independent from relative quantification, these were discounted. 

Photoageing
-modified 
biomarkers

Figure 2.

MPLF
significant 
differences

MPLF
significant 
differences

Regions with 
lowest

intragroup
variation 

Regions with
lowest

intragroup
variation

Photoageing
-modified 
biomarkers

975 proteins 836 proteins

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.14.296020doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296020
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. 

A B

C D

E F

G

Dermis

Epidermis

H

3177 aa 703 aa

368 aa 136 aa

639 aa 584 aa

2871 aa 641 aa

Highest PSM count0

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.14.296020doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296020
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. 

COL18A1, COL3A1, COL4A2, COL6A1,
COL6A6, COL6A2, COL6A3, LAMA3,
LAMA5, LAMC1

COL12A1, FBLN1, FBLN2, LGALS7, LTBP4,
NID2, VTN

ASPN, BGN, OGN, VCAN

ADH5, ALDH1A1, ALDH2, BLVRB, COX7A2,
CP, ETFB, GLUD1, GPX4, LDHA, MDH1,
PRDX3, PRDX6

ACAA2, GALK1, HADHB, PYGB, TYMP

A2M, AHSG, C4B2, ITIH1, SERPINC1,
SERPINF1, SERPINH1

GNAI1, GNB1

ACTB, ARPC5L, CAPZA2, FSCN1, MYO1C

DSP, EPPK1, KRT14, KRT7, KRT77, KRT8,
PLEC, PPL

KIF5B, TUBA1B, TUBB6

1

2

3

4

5

6

7

8

9

10

11

12

1

2

34

5

6

7

8

9
10

11 12

1

2

3

4

5

6

1

2

3

4

5

6

ACTC1, ARPC4, ARPC5, CAPZA1,
CTNNA1, MYL6, MYO1D, PFN1

DYNC1H1, KIF5B, NUMA1, TUBB4B

DSP, KRT1, KRT10, KRT14, KRT16,
KRT2, KRT23, KRT27, KRT31, KRT33B,
KRT5, KRT6A, KRT85, PLEC, PPL,

CS, FBL, GSTK1, HADHB, RPN1, TGM1

ALOX12B, HADHA, PRDX1, SDHA1, UQCRA

DPYSL2, HEXB

RPL10A, RPL19, RPL36, RPL7, RPL8,
RPL9P9, RPS17, RPS20, RPS24, RPS3

EEF1D, EIF3C

HNRNPH1, HNRNPM, HNRNPR, RO60

H2AFY, XRCC6

Dermis

Epidermis

A

B

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.14.296020doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296020
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5.

580 54 120

Whole protein relative
abundance

Peptide location
fingerprinting

A

Whole protein relative 
abundance

COL18A1, COL3A1, COL4A2, COL6A6,
COL6A2, COL6A3, LAMA3, LAMA5, LAMC1

LGALS7, LTBP4, NID2

VCAN

ADH5, ALDH2, BLVRB, COX7A2, CP,
GLUD1, GPX4, MDH1, PRDX6

ACAA2, HADHB,

AHSG, C4B2, ITIH1, SERPINC1,
SERPINF1, SERPINH1

GNB1

ACTB, ARPC5L, CAPZA2, FSCN1, MYO1C

DSP, KRT14, KRT7, PLEC, PPL

KIF5B, TUBA1B

Matrix structural 
protein

Matrix associated
protein

Proteoglycan

Intermediate filament

Actin / actin-binding

Microtubule / 
microtubule-binding

Oxidoreductase and 
dehydogenase

Transferase

Protease inhibitor

G-protein

Cytoskeletal

Metabolite interconversion

Translational

Nucleic acid association

Dermis

Epidermis

Peptide location
fingerprinting

ACTC1, CAPZA1, MYL6, MYO1D,

KIF5B, NUMA1, TUBB4B

KRT2, KRT23, KRT27, KRT33B, KRT6A

CS, TGM1

PRDX1, SDHA1

DPYSL2, HEXB

RPL19, RPL7, RPL9P9, RPS24

EEF1D, EIF3C

HNRNPM, HNRNPR, RO60

XRCC6

Intermediate filament

Actin / actin binding

Microtubule / 
Microtubule-binding

Transferase

Oxidoreductase and 
dehydrogenase

Hydrolase

Ribosomal protein

Translational factor

RNA binding

DNA binding

Extracellular matrix

Cytoskeletal

Metabolite interconversion

Protein activity modulation

B

851 75 71

C D

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.14.296020doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296020
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6.
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Table S1. Full list of LC-MS/MS-identified exclusive peptides in dermis 
samples used for structural mapping and fingerprinting.

Table S2. Full list of LC-MS/MS-identified exclusive peptides in 
epidermis samples used for structural mapping and fingerprinting. 

Table S3: Intragroup variation testing of dermal protein regions 

Table S4: Intragroup variation testing of epidermal protein regions 

Table S5. Full list of peptide fingerprinted dermal protein regions 
with significantly different peptide counts between forearm and 
buttock 

Table S6. Full list of peptide fingerprinted epidermal protein regions 
with significantly different peptide counts between forearm and 
buttock 

Table S7. Full list of whole protein relatively quantified dermal 
proteins by peak ion intensity ranked by significance. 

Table S8. Full list of whole protein relatively quantified epidermal 
proteins by peak ion intensity ranked by significance. 

Table S9: Dermal protein biomarkers identified exclusively by peptide 
location fingerprinting, relative protein quantification or by both 
methodologies.
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Table S10: Epidermal protein biomarkers identified exclusively by 
peptide location fingerprinting, relative protein quantification or by 
both methodologies.

Table S11: Full list of peptide fingerprinted tendon protein regions 
with significantly different peptide counts between old and buttock 
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Figure S1. Representative histology images of biopsies to visually 
showcase photoageing phenotype. .

Figure S2. Skin samples from photoexposed forearm had significant 
solar elastosis compared to photoprotected buttock. 

Figure S3: Principal component analysis (PCA) of spectral count data 
used for peptide location fingerprinting shows clear separation of 
forearm and buttock data into distinct clusters. 

Figure S4: Eight exemplary biomarkers exhibiting photoageing-
specific structural modifications. 

Figure S5. Protein-protein interaction network analysis of dermal 
biomarkers containing structural modifications indicates a global 
effect to tissue homeostasis as a consequence of chronic sun 
exposure.

Figure S6. Protein-protein interaction network analysis of epidermal 
biomarkers containing structural modifications indicates a global 
effect to tissue homeostasis as a consequence of photoageing. 

Figure S7. Label-free relative quantification of protein abundance by 
peak area ion intensity identifies multiple proteins with significant 
differences in relative abundance between matched photoaged
forearm and intrinsically-aged buttock skin.

Figure S8. PCA analysis of peak area ion intensity data used for 
relative quantification shows clear data separation between forearm 
and buttock samples analysed.
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Figure S9: Classification of protein biomarkers significantly different 
in relative abundance into functional groups reveals metabolite 
interconversion enzymes, nucleic-acid binding proteins, cytoskeletal 
proteins and translational proteins as the main classes in skin most 
affected by the photoageing process. 

Figure S10: Western blot validation of LC-MS/MS relative 
quantification of protein abundance highlights TIMP3 and RPL36 as 
novel biomarkers of photoageing.

Figure S11: Dermis LC-MS/MS-based relative abundances for TIMP3 
and HSA match well with Western blot relative abundances on a 
sample by sample basis.
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Figure S1. Representative histology images of biopsies to visually 
showcase photoageing phenotype.  
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Figure S2. Skin samples from photoexposed forearm were severely 
photoaged compared to photoprotected buttock. 
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Figure S3. Principal component analysis (PCA) with partitioning 
around medoids clustering of spectral count data used for peptide 
location fingerprinting. 
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Figure S4. Exemplary biomarkers exhibiting photoageing-specific 
structural modifications - mean + standard deviations
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Figure S5. STRING analysis of dermal photoageing biomarkers 
containing structural modifications 

From curated STRING databases
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Figure S6. STRING analysis of epidermal photoageing biomarkers 
containing structural modifications 

From curated STRING databases
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Figure S7. Label-free peak ion intensity identifies multiple proteins 
with significant differences in relative abundance between matched 
photoaged forearm and intrinsically-aged buttock skin.  
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Figure S8. Principal component analysis (PCA) of peak ion intensity 
data used for whole protein relative quantification. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.14.296020doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296020
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S9. Protein classifications of proteins with significant 
differences in relative abundance (PANTHER analysis). 
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Figure S10. Full western blot membranes for TIMP3 and RPL36 
validations.
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Figure S11. Dermis LC-MS/MS-based relative abundances for TIMP3 
and HSA match well with WB relative abundances on a sample by 
sample basis.
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