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Abstract 70 

Background: Glioblastoma remains highly lethal due to its inevitable recurrence. This 71 

recurrence is found locally in most cases, indicating that post-surgical tumor-initiating cells 72 

(TICs) accumulate at tumor edge. These edge TICs then generate recurrent tumors harboring 73 

new core lesions. Here, we investigated the clinical significance of the edge-to-core transition 74 

(ECT) signature causing glioblastoma recurrence and sought to identify central mediators for 75 

ECT. 76 

Methods: First, we examined the association of the ETC-related expression changes and 77 

patient outcome in matched primary and recurrent samples (n=37). Specifically, we tested 78 

whether the combined decrease of the edge TIC marker PROM1 (CD133) with the increase of 79 

the core TIC marker CD109 representing ECT during the primary-to-recurrence progression 80 

indicates poorer patient outcome. We then investigated the specific molecular mediators that 81 

trigger tumor recurrence driven by the ECT signature. Subsequently, the functional and 82 

translational significance of the identified molecule was validated within our patient-derived 83 

tumor edge-TIC models in vitro and in vivo. 84 

Results: Patients exhibiting a CD133down/CD109up signature during recurrence representing 85 

ECT displayed a strong association with poorer progression-free survival and overall survival 86 

among all tested patients. Differential gene expression identified that PLAGL1 was tightly 87 

correlated with the core TIC marker CD109 and was linked to a shorter survival of glioblastoma 88 

patients. Experimentally, forced PLAGL1 overexpression enhanced, while its knockdown 89 

reduced, the glioblastoma edge-derived tumor growth in vivo and subsequent mouse survival, 90 

suggesting its essential role in the ECT-mediated glioblastoma development.  91 

Conclusions: ECT is likely an ongoing lethal process in primary glioblastoma contributing to its 92 

recurrence partly in a PLAGL1/CD109-mediated mechanism.  93 

  94 
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 97 

Key Points 98 

1. ECT is a pathobiological process contributing to glioblastoma lethality 99 

2. The CD133down/CD109up signature is a novel prognostic molecular biomarker in ECT 100 

3. PLAGL1 regulates growth of edge-located tumor-initiating cells 101 

 102 

Importance of the Study: 103 

Very few  studies have sought to longitudinally characterize the transition of molecular 104 

landscapes from primary to recurrent glioblastoma. Post-surgical edge-located TICs are 105 

presumably the predominant source of tumor recurrence, yet this cellular subpopulation in 106 

glioblastoma remains largely uncharacterized. This study evaluates the significance of 107 

glioblastoma edge-derived core transition (ECT) for tumor recurrence in the primary-recurrent 108 

paired sample set. We elucidate a prognostically-significant shift in molecular and cellular 109 

phenotypes associated with ECT in the CD133down/CD109up group. Moreover, our results 110 

provide clinical and experimental evidence that PLAGL1 is a mediator of glioblastoma ECT and 111 

its subsequent tumor development by the direct transcriptional regulation of the core TIC marker 112 

CD109.  113 

114 
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Introduction 115 

Glioblastoma is an incurable universally lethal disease1 and characterized by inter- and intra-116 

tumoral heterogeneity2-6. Transcriptome-based subtyping of individual tumors is considered a 117 

milestone discovery of the past decade7,8; nonetheless, this molecular subtyping has yet to 118 

change clinical management, unlike other cancers that now have distinct treatment options 119 

instructed by particular genetic subtype information (e.g. breast cancer, neuroblastoma)9,10. In 120 

sharp contrast to the accumulating experimental evidence for the mesenchymal shift of 121 

glioblastoma tumors being tightly associated with a gain of malignancy and therapy resistance 122 

in various model systems, clinical data remains lacking to suggest that mesenchymal 123 

glioblastoma gains benefit from more extensive and/or different therapies. In addition, multiple 124 

independent large-scale studies have clarified that the transcriptomic subtype switch between 125 

primary and recurrent glioblastomas is simply a random event without any clear trend of one 126 

way or the other including toward the mesenchymal shift11.  127 

 Most glioblastomas recur within a few years as the main cause of its dismal prognosis in 128 

the developed countries12. The large degrees of molecular difference between primary and 129 

recurrent tumors have been recognized by various OMICs analyses including deep sequencing, 130 

both with tumor tissues13,14 and at the single cell level15. Since the brain tissues adjacent to 131 

surgical resection are the most frequent sites of tumor recurrence, the normal parenchyma-132 

tumor core interface (tumor edge) presumably contains post-surgical tumor-initiating cells (TICs; 133 

also termed recurrence-initiating cells) after craniotomy. Molecular and, more importantly, 134 

phenotypic characterization of these edge-TICs may lead to the identification of a means to 135 

inhibit the process of tumor recurrence following craniotomy.  136 

 Diffuse infiltrative glioblastomas, when they recur, are detected by the propagation of 137 

new tumor core lesions, indicating the edge-to-core transition (ECT) is likely critical step toward 138 

patient lethality. Nonetheless, these lethal seeds for tumor recurrence are mostly, if not entirely, 139 
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surgically-untouchable due to the presence of intermingled normal functional brain cells 140 

including neurons. In fact, despite recent advances in surgical technology increasing the extent 141 

of resection of the core lesion with the neuro-radiological confirmation of nearly 100% resection 142 

of the enhancing abnormality on post-operative MRI, the improvement of post-surgical patient 143 

survival remains marginal. Therefore, further attention needs to be placed on the remaining 144 

edge lesions (T2/FLAIR abnormality without Gadolinium enhancement on MRI) and ECT during 145 

recurrent tumor development as a clinically-significant consequence of treatment failure to 146 

glioblastoma. In order to uncover the functional roles of tumor cells within this edge 147 

microenvironment, our recent studies have undertaken a program to isolate and characterize 148 

regionally-distinct tumor cell populations by using awake surgery to obtain reasonable amounts 149 

of edge tissues without harming patients, allowing us to functional identify CD133 and CD109 as 150 

the representative molecules to mark the edge-located and acquired core-associated TICs, 151 

respectively3,16-18.  152 

 In the current study, we investigated this presumptive transition of  CD133high/CD109low 153 

cells to CD133low/CD109high cells as the representative of highly-lethal ECT dynamics by using 154 

37 pairs of samples from matched primary and recurrent glioblastoma tumors. We then 155 

postulated that the decline of CD133 expressing TICs and the increase of CD109-expressing 156 

TICs indicates active ECT progression, worsening the patients’ prognosis.  To test this idea, we 157 

segregated our longitudinal sample set into two groups based on the CD133/109 expression 158 

changes. A set of integrated multimodal analyses was performed, followed by the pre-clinical 159 

validation of the identified molecular target as a functional key determinant for ECT-related 160 

glioblastoma aggressiveness.  161 

 162 

 163 

Materials and Methods 164 
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Patients, Specimens, and Ethics 165 

All 37 longitudinal glioblastoma cases were treated at Samsung Medical Center and Seoul 166 

National University Hospital and the tumor tissues were collected for research under the 167 

approved institutional review boards. Detailed methods are described in the previous study19 168 

and Supplementary material. For the pre-clinical studies, four patient-derived glioma sphere 169 

models were used, including three pair of tumor core- and edge-derived ones (1051E and C, 170 

1053E and C, 0573E and C) as well as one tumor edge-derived sphere line (101027E), which 171 

were established and described elsewhere3,16-18,20-22. In short, with the signed patient consent, 172 

the senior author (IN) performed supra-total resection of glioblastoma tumors under the awake 173 

setting and resected both tumor core (T1-Gadolinium(+) tumors) and edge (T1-Gadolinium(-174 

)/T2-FLAIR abnormal tumors in the non-eloquent deep white matter) to achieve maximal tumor 175 

cell eradication without causing any permanent major deficit in the patients (Supplementary 176 

Fig.1A). After the confirmation of enough tumor tissues from both lesions secured for the clinical 177 

diagnosis, remaining tissues were provided to the corresponding scientists following de-178 

identification of the patient information. Both the core-derived and edge-derived glioma spheres 179 

were established in the same culture condition 3,16-18,20-23 and their spatial identities, termed core-180 

ness and edge-ness, were confirmed by a set of xenografting experiments into mouse brains 181 

(details described in 18). Only those that passed this confirmation were used for this study. The 182 

other patient-derived glioma sphere models were established as "core-like glioma spheres" 183 

using the same protocol and reported elsewhere18. All these patient-derived glioma models 184 

were periodically checked with the mycoplasma test and the Short Tandem Repeat (STR) 185 

analysis. All work related to pre-clinical data was performed under an Institutional Review Board 186 

(IRB)-approved protocol (N150219008) compliant with guidelines set forth by National Institutes 187 

of Health (NIH).  188 

 189 

Public Microarray Data Processing 190 
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Three RNA sequencing datasets were downloaded from the Gene Expression Omnibus 191 

database(https://www.ncbi.nlm.nih.gov/geo/), including GSE63035, GSE67089 and 192 

GSE11314917,23,24. RNA sequencing data of 29 longitudinal samples are derived from 193 

GSE63035, and 8 longitudinal samples are newly added, all the samples are IDH-wild type. The 194 

GSE67089 datasets contained gene expression data of MES, PN glioma sphere cells and 195 

Neuron progenitor cells. The GSE113149 included the microarray data for sh-NT versus sh-196 

CD109 in glioblastoma sphere 267. The RNA sequencing data of TCGA database was acquired 197 

from the TCGA Research Network (https://www.cancer.gov/tc- ga.)  and visualized by Gliovis25 198 

(http://gliovis.bioinf o.cnio.es/.). 199 

 200 

In vitro experiments 201 

Detailed methods are described in the Supplementary material. 202 

in vivo mouse experiments 203 

All animal experiments were performed at UAB under the Institutional Animal Care and Use 204 

Committee (IACUC)-approved protocol according to NIH guidelines. Detailed methods are described 205 

in the Supplementary material. 206 

 207 

Statistical Analysis 208 

All data are presented as mean ± SD. The number of replicates for each experiment was stated 209 

in Figure legends. Statistical differences between two groups were evaluated by two tailed t-test. 210 

The statistical significance of Kaplan–Meier survival plot was determined by log-rank analysis. A 211 

statistical correlation was performed to calculate the regression R2 value and Pearson's 212 

correlation coefficient. Statistical analysis was performed by Prism 8 (GraphPad Software), 213 

unless mentioned otherwise in figure legend. P < 0.05 was considered as statistically significant. 214 

 215 
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Results 216 

Patients in CD133down/CD109up group exhibit worse prognoses with a trend towards an 217 

increased mesenchymal signature 218 

Based on our previous data17,18, we used CD133 mRNA and CD109 mRNA to indicate edge-219 

ness and core-ness, respectively, a concept that we validated with 19 paired GBM edge- and 220 

core-samples(Supplementary Fig. 2). We reasoned that the loss of  CD133 mRNA 221 

(CD133down) and gain of CD109 (CD109up) were indicative of the edge-to-core transition in 222 

glioblastoma. Based on the differential RNA expression profiles as determined by RNA-223 

sequencing (seq) of 37 primary and recurrent glioblastoma pairs, 15 patients were assigned to 224 

the CD133down/CD109up group as representative of ECT, while the other 22 patients were 225 

assigned as control arms (Others,either CD133down/CD109down, CD133up/CD109down, or 226 

CD133up/CD109down) for comparison. Both groups displayed similar average age, sex, distant 227 

recurrence profiles, and post-surgical therapy regimens. (Table 1, Supplementary Table 1). 228 

We then investigated the progression-free survival and overall survival in these four groups. The 229 

CD133down/CD109up group exhibited a substantially worse progression-free survival (p=0.024) 230 

and overall survival (p=0.043) compared with others(Fig. 1A). Consistent with recent studies, 231 

both primary and recurrent tumors showed no significant difference in proportion among the 232 

three transcriptomic subtypes6. However, there was a trend that CD133down/CD109up group was 233 

enriched in tumors of the mesenchymal subtypes upon recurrence (p=0.028) (Fig. 1B). 234 

Nonetheless, in this patient cohort, the mesenchymal-ness of either primary or recurrent tumors 235 

did not show statistically-significant differences in prognosis. These findings suggested a 236 

significant association between the CD133down/CD109up signature representing ECT and poorer 237 

patient prognoses, associated with increase of the mesenchymal subtype in the primary-to-238 

recurrent glioblastoma progression.  239 

 240 
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Longitudinal RNA-seq analysis identifies the differential expression profile associated 241 

with ECT including PLAGL1 and CD109 242 

Next, we pursued a stepwise approach to identify a molecular target or targets that could 243 

mediate  the observed molecular and phenotypic dynamics of ECT. First, we established a data 244 

analysis pipeline using all expressed genes in the RNA-seq data of the 37 longitudinal cases 245 

(n=22,255) (Fig. 2A). Differential gene expression analysis identified 26 genes distinctively 246 

associated with the CD133down/CD109up changes (Supplementary Table 2). Unsupervised 247 

hierarchical clustering of those genes (n=155) segregated our cohort sample (n=37) into two 248 

distinctive subgroups (up- and down-regulated) (Fig. 2B, C). In order to further elucidate the 249 

essential molecules governing ECT, we designed an integrated second step approach to 250 

evaluate the expression of these 26 up-regulated genes in our well-characterized glioma sphere 251 

models treated with either shRNA-based gene silencing of CD109 or flow cytometry to isolate 252 

CD109(+) cells. To this end, we used our recently-published RNA-seq data with two well-253 

characterized tumor core-like glioma sphere models; g267 for shRNA and g1005 for flow 254 

cytometry17. As a result, PLAGL1 was identified as being the gene whose expression most 255 

strongly correlated with that of CD109 (FC>1.5, p<0.05) (Fig. 2A, D, Supplementary Fig. 3A, 256 

B). Consistently, Pearson’s correlation analysis of the 37 glioblastoma paired samples indicated 257 

a strong linear relationship between CD109 and PLAGL1 relative expression (r = 0.7, p< 0.05) 258 

(Fig. 2E). This CD109-PLAGL1 expression correlation was also observed in four clinical 259 

datasets (TCGA, Rembrandt, CGGA, and CGGA GBM datasets) (Fig. 2F). qRT-PCR with two 260 

additional edge- and core-derived glioma sphere models (Edge- and Core-derived g1053 261 

spheres and g0573 spheres) showed that both PLAGL1 and CD109 were higher in the core-262 

derived, yet CD133 was up in the edge-derived, glioma spheres in vitro (Fig. 2G).  263 

 To prospectively assess PLAGL1 localization in experimental tumors, we injected edge- 264 

or core-derived glioma spheres from 3 patients into immunodeficient mice. PLAGL1 showed its 265 

preferential expression in the tumor core-derived lesions (patient n=3) (Fig. 2H). In the patient 266 
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tumor data in TCGA, PLAGL1 mRNA expression was relatively higher in glioblastomas 267 

compared to lower grade gliomas (Fig. 2I). In glioblastoma, PLAGL1 mRNA was enriched in 268 

mesenchymal tumors (Fig. 2J). As expected, glioblastoma patients with higher PLAGL1 269 

expression exhibited shorter survival in the TCGA database (Fig. 2K).  270 

 Since the PLAGL1 gene encodes for C2H2 zinc finger (ZF) transcription factors (TFs)26, 271 

we sought to further confirm our results by cross-referencing them to our previously-established 272 

cDNA microarray dataset with the sphere lines established from either human neonatal brains 273 

(neural progenitors: NPs) or glioma patients with mesenchymal or core-like signature23. Among 274 

2,766 human TFs27, 12 TFs, including PLAGL1, were highly overexpressed (fold change >15) in 275 

mesenchymal or core-like glioma sphere lines as opposed to NP counterparts (p<0.001) (Fig. 276 

2L), moreover, PLAGL1 was the second highest C2H2-ZF TFs in MES cells (Supplementary 277 

Fig.4). Consistently, a volcano plot displayed PLAGL1 as a significantly upregulated gene in 278 

mesenchymal or core-like glioma spheres (Fig. 4M). Gene set enrichment analysis (GSEA) 279 

using the 26 upregulated genes identified their association with "HDAC1 targets" and "UV 280 

response DNA damage", both of which our recent studies have identified as pathways tightly 281 

correlated to CD109-driven signals in glioblastoma and their TIC models (Fig.4N)17,18. Finally, 282 

we explored the expression of PLAGL1 in primary GBM edge, core lesions as well as their 283 

subsequent recurrent core tissues, which showed PLAGL1 higher in the core lesions in both 284 

primary recurrent tumors (Fig. 4O). Collectively, these clinical and experimental data suggested 285 

PLAGL1 is possibly one key regulator in the edge-TICs to cause tumor core development in 286 

glioblastoma. 287 

 288 

Genetic perturbation of PLAGL1 reveals its role in glioblastoma tumorgenicity in the 289 

edge-TIC models 290 
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Following the identification of PLAGL1 as a potential candidate regulating the ECT-mediated 291 

glioblastoma malignancy, we investigated the function of PLAGL1 in our glioblastoma edge-TIC 292 

models to understand if its targeting holds any translational significance. To this end, we used 293 

the two tumor edge-derived glioma sphere models (1051E and 101027E) for lentivirus-mediated 294 

gene overexpression (PLAGL1-OE) and knockdown by shRNA (sh#1 and #2). As the control, 295 

we used the non-targeting lentiviral construct (Ctrl). Western blotting confirmed both induced 296 

overexpression and gene silencing in cells harboring the shRNA construct, with more efficient 297 

targeting of PLAGL1 by sh#2 than sh#1 (Fig. 3A, Supplementary 5.A). In both models, 298 

PLAGL1-OE displayed significantly higher in vitro growth rates, while their growth was largely 299 

attenuated by gene silencing of PLAGL1 (Fig. 3B). Using clonal sphere formation as a 300 

surrogate in vitro indicator of tumor initiating capacity, we found that PLAGL1-OE glioma 301 

spheres relatively increased, whereas its gene silencing reduced it with a greater inhibitory 302 

effect of sh#2 compared to sh#1 (Fig. 3C, D, Supplementary Fig. 5B). In vivo injection of 303 

PLAGL1-OE glioma spheres into brains of SCID mice resulted in higher luminescent intensity 304 

indicative of their larger tumor sizes by edge-TIC-derived tumor establishment, whereas the 305 

shRNA-carrying xenografts displayed significantly lower signals in both of these two 306 

glioblastoma edge sphere-derived tumor models (Fig. 3E). Mice with PLAGL1-OE glioma 307 

sphere-derived tumors exhibited significantly worse survival with higher tumor burden, while 308 

their gene silencing groups displayed improved overall survival with lower tumor burden 309 

compared to the control group (Fig. 3F, Supplementary Fig.6). As expected, immunoreactivity 310 

to CD109 was strongly correlated with the expression of PLAGL1 in both models (Fig. 3G). 311 

Collectively, this data suggested that PLAGL1 regulates the in vitro clonality and in vivo tumor 312 

development originally derived from edge-TICs. 313 

 314 

PLAGL1 binds to the promoter region for CD109 to regulate its transcriptional activity 315 
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Lastly, we sought to determine the molecular mechanisms linking the expression of PLAGL1 316 

and CD109. Specifically, we tested if PLAGL1 binds to the promoter region for the CD109 gene 317 

in glioblastoma edge-derived cells. Using g1051E spheres, we performed chromatin-318 

immunoprecipitation with the PLAGL1 antibody, followed by qRT-PCR for the CD109 genetic 319 

regulatory element that we previously identified as its active promoter17 and detected a band 320 

indicative of the direct transcriptional regulation of CD109 by PLAGL1 in glioblastoma edge-321 

derived cells. This result was also validated with g101027E cells (Fig.4A). As expected, 322 

overexpression of PLAGL1 elevates, while its silencing decreases, the expression of CD109 323 

protein, determined by western blotting in both sphere models (Fig.4B). Collectively, the tightly 324 

associated co-expression of PLAGL1-CD109 was, at least in part, mediated through the direct 325 

transcriptional regulation of CD109 via the TF, PLAGL1. 326 

 327 

Discussion 328 

Patients with glioblastoma gain only limited benefit from craniotomy due to the inability to 329 

completely eliminate tumor cells from the brain28,29. The lethal seeds for tumor recurrence 330 

(recurrence-initiating cells) reside predominantly, yet not entirely, at the tumor edge surrounding 331 

the resection cavity. In this study, we used CD133 and CD109 expression changes as a 332 

reference to indicate ECT. The rationale for this investigation included our previous finding that 333 

CD133 and CD109 are preferentially expressed within the TIC subpopulations, selectively within 334 

glioblastoma edge- and core-tissues, respectively17. While expression of CD109 and CD133 335 

within individual cells in tumors appear to be mutually-exclusive, previous studies indicate that 336 

expression of these markers represents a dynamic molecular state6. One means of affecting 337 

ECT is through radiation, which induces the conversion of edge-associated CD133(+)/CD109(-) 338 

cells to the core-associated CD133(-)/CD109(+) cells, thereby developing therapy-resistant 339 

tumors in vivo. On the other hand, core CD133(-)/CD109(+) cells themselves respond to 340 
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radiation by secreting factors that promote the radiation resistance of edge-located 341 

CD133+)/CD109(-) cells in vitro and in vivo. Collectively, these prior data suggest the 342 

significance of targeting both core- and edge-TICs (marked by CD133 and CD109, respectively) 343 

to achieve better outcomes of glioblastoma treatment. However, recent advances in surgical 344 

technique, including the imaging-assisted fluorescence-guided surgery in the awake setting, has 345 

allowed us to increase the proportion of surgical cases of total or near-total resection of the 346 

tumor core lesions. Yet, edge-located tumor cells undoubtedly remain as a key therapeutic 347 

target as they are the presumptive sources of recurrent tumors. 348 

        In the current study, we examined 37 paired primary-recurrent tumor samples to focus on 349 

ECT, validating its association with poorer patient prognoses. It is important to note that both 350 

tumor edge and core are composed of tumor cells in all three transcriptomic subtypes, albeit the 351 

ratios are slightly different (Fig. 5)18. Our findings suggest, yet do not definitely prove, relatively 352 

weaker correlation of mesenchymal-ness, in comparison to the ECT signature, to patients' 353 

poorer prognosis, at least in this patient cohort. This interpretation needs further validation with 354 

more clinical evidence, ideally with prospective measurement, from multiple independent 355 

groups. The ECT axis could be more clinically-relevant but it remains poorly understood how 356 

similar to, or different from, the transcriptomic proneural (and classical)-mesenchymal axis it is. 357 

In addition, in many craniotomies, small residual core lesions are left behind. Most likely, they 358 

also contribute both directly and indirectly to the tumors to recur, as our recent study 359 

suggested18. Therefore, we need to be cautious in stating that ECT does not explain all the 360 

clinical courses of the primary-to-recurrent glioblastoma progression. More extensive molecular 361 

characterization with additional longitudinal case cohorts is warranted.   362 

 For the phenotypic characterization associated with tumor edge and ECT in 363 

glioblastoma, we believe that the recently-established tumor edge- and core-derived glioma 364 

spheres represent valuable models, as their xenografts faithfully recapitulate their spatially-365 

distinct tumor lesions in mouse brains. They can allow for the study the tumor recurrence 366 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.09.14.293753doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.293753


 16

formation from the mixed populations of the core and edge cells7. Needless to say, the accuracy 367 

of the resected tissue locations within the brains is critical for these spatially-identified models 368 

and a number of potential hurdles have to be overcome in order to ascertain these samples 369 

(e.g. brain shift, patient safety). In particular, glioblastomas tend to infiltrate into the deep white 370 

matter, where a number of functional neuronal fibers run throughout the brain. Obtaining tumor 371 

edge tissues from these regions without harming the patients is a critical step in allowing us to 372 

establish models that faithfully recapitulate their spatially-distinct pathobiology. Further 373 

characterization of our models and developing other tumor edge-reflective models would help 374 

facilitate the molecular and phenotypic analyses to identify therapeutic targets in the post-375 

surgical residual tumor cells at tumor edge that subsequently cause patient lethality. 376 

 Our data indicated the significance of targeting PLAGL1 to attenuate, yet not completely 377 

eliminate, tumor initiation and propagation, accompanied by an impact on survival of tumor-378 

bearing mice. As for its molecular mechanism, we found that this TF directly regulates the ECT 379 

gene CD109. Our previous studies demonstrate that CD109 drives ECT, and, thus, by inference, 380 

PAGL1 would be expected to do the same. Nonetheless, the role of PLAGL1 in cancer has 381 

been controversial. Prior studies have shown that PLAGL1 is a tumor suppressor gene 382 

encoding an inducer of apoptosis and cell cycle arrest in various cancers30-32 (e.g. breast cancer, 383 

hepatoma, colon cancer). Even in glioma, one study has demonstrated the frequent loss of 384 

PLAGL1 in their clinical samples. However, another study paradoxically demonstrated a pro-385 

tumorigenic function of PLAGL1 driven by SOX1133,34. Here, using pre-clinical models, we 386 

provide strong evidence to support the tumorigenic function of PLAGL1 in glioblastoma TICs. In 387 

addition, the analysis of clinical samples using public and our own databases were consistent 388 

with our experimental findings. PLAGL1-mediated signaling might be context-dependent among 389 

various cancer cells, or even within gliomas. Such context-dependency is known to occur in a 390 

variety of settings, including ones directly related to these studies. We previously found that 391 

histone deacetylase 1 (HDAC1) is a positive transcriptional regulator that drives CD109 gene 392 
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expression via a protein complex formation with an oncogenic TF C/EBPβ, even though HDAC1 393 

is recognized to modulate the compact chromatin structure leading to widespread repression of 394 

transcriptional activities  in cancers and developmental somatic cells35-37. It remains unknown if 395 

PLAGL1 forms a larger protein complex with HDAC1 and C/EBPβ in glioblastoma and other 396 

cancers.  397 

 In conclusion, this study provides a set of clinical and experimental data suggesting the 398 

significance of targeting tumor edge-located TICs that subsequently escape current therapies to 399 

develop lethal core lesions during tumor recurrence. The PLAGL1-CD109 signaling axis is likely 400 

among key drivers for ECT. As the molecular and cellular complexity of glioblastoma is 401 

increasingly recognized as a challenging road block to prolong survival of patients, successful 402 

removal of tumor core is certainly the mandated first-step, yet it still requires us to learn how to 403 

manage the tumor edge in better ways. Further phenotypic characterization of edge-TICs is 404 

among key tasks ahead of us to develop effective therapies for glioblastoma.  405 

406 
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Figure Captions 514 

Figure 1. CD133down/CD109up group exhibits worse prognoses accompanied by an 515 

increase in mesenchymal signature 516 

(A)  Kaplan-Meier analysis of Overall Survival (left) and Progression-Free Survival (right) of 517 

glioblastoma patients in CD133down/CD109down, CD133up/CD109down, CD133up/CD109up, and 518 

CD133down/CD109up (red, top to bottom) with each collected remaining cases (Others, blue).  519 

(Log-rank test). 520 

(B) River-plot analysis of the molecular subtype shifts from primary to recurrence in 521 

CD133down/CD109up (upper) and others (lower). (p =0.028, Chi square test) 522 

 523 

Figure 2. Longitudinal RNA-seq analysis identifies the differential expression profile 524 

associated with ECT including PLAGL1 and CD109 525 

(A) Schematic demonstration of the filtering procedure of PLAGL1 from 22,255 genes. 526 

(B) Heatmap depicting supervised hierarchical clusters of up- and down-regulated genes within 527 

recurrent glioblastomas of CD133down/CD109up and others. 528 

(C) Volcano plot of RNA-seq data comparing CD133down/CD109up and others. Red and blue dots 529 

refer to up- and down-regulated genes in CD133down/CD109up group respectively. 530 

(D) Scatterplot comparing expression profiles of the 26 genes from RNA-seq analysis results 531 

within our glioma sphere models; MES-g1005 (n=1) FACS-sorted into CD109 negative to 532 

positive cells and represented along the x-axis (left to right respectively), while microarray 533 

relative expression of CD109 in MES-g267 (n=3) with shNT and shCD109 is represented along 534 

the y-axis (down- and up-ward, respectively). 535 

(E) Scatterplot displaying the linear correlation between CD109 and PLAGL1 expressions in the 536 

37 longitudinal cases. Pearson correlation coefficient (r) = 0.70 and p= 1.43E-06. 537 
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(F) Scatterplot displaying the linear correlation between CD109 and PLAGL1 expressions in 4 538 

public databases (TCGA, Rembrandt, CGGA, CGGA GBM), based on Pearson correlation test. 539 

(G) Bar graph displaying qRT-PCR results for the expression of CD109, PLAGL1, and CD133 540 

within edge- and core-derived sphere culture models of 2 glioblastoma patients (g1053 and 541 

g0573). Data are means ± SD (n=3). ***p<0.001. 542 

(H) Representative images of immunohistochemistry (IHC) for PLAGL1 in mouse orthotopic 543 

xenografts with tumor core- (C) and edge(E)-derived glioma sphere models from 3 patients 544 

(g0573, g1053, and g1051). Scale bar 100um. 545 

(I) Boxplot diagram demonstrating PLAGL1 relative mRNA expression profiles from TCGA 546 

database across different gliomas subtypes. *p<0.05, **p<0.01, and *** p<0.001. 547 

(J) Boxplot diagram comparing relative expression profiles of PLAGL1 among the 3 molecular 548 

subtypes (CL, MES, and PN) of glioblastoma within TCGA database. ***p<0.001. 549 

(K) Kaplan-Meier survival curve of glioblastoma patients in the TCGA database. Patients were 550 

categorized into a ‘‘high’’ or ‘‘low’’ expression group based on the median PLAGL1 expression 551 

in the Agilent 4502 microarray. 552 

(L) Heatmap of displaying expression profiles of transcription factors (TF) (n=2,766) across 4 553 

MES glioma sphere lines compared with the neural progenitor sphere line (NP) (n=3 for each 554 

cell line). 555 

(M) Volcano plot comparing TF gene expressions (n=2,766) across MES and NP lines, 556 

highlighting PLAGL1. 557 

 (N) Up-regulated pathways in recurrent glioblastomas in CD133down/CD109up group. 558 

(O) Representative IHC images for CD109 and PLAGL1 in primary edge and core, and 559 

recurrent core tumor tissues. Scale bar 100um. 560 

 561 
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Figure 3. PLAGL1 overexpression enhances, while its silencing diminished, glioblastoma 562 

growth in vivo, leading to affect subsequent mouse survival in the edge-TIC models 563 

(A) Western blotting of two patients' tumor edge-derived glioma sphere lines (g1051E and 564 

g101027E) after transducing with overexpression vector (OE) or shRNA targeting PLAGL1 565 

(sh#1 or sh#2) or a nontargeting control (Ctrl). 566 

(B) Line charts of in vitro growth of the indicated groups (**p<0.01, n=6, one-way ANOVA). 567 

(C) Representative images of the indicated glioma sphere lines after genetic transduction. Scale 568 

bar 60 μm. 569 

(D) Inverse linear graphs of in vitro clonogenicity assays (limiting dilution neurosphere formation 570 

assays) depicting the relationship between PLAGL1 expression and edge-derived GBM spheres 571 

(g1051E, g101027E). (*p<0.05, **p<0.01, ELDA analyses)  572 

(E) Bioluminescent images (Left) and their quantifications (Right) of orthotopic mouse 573 

xenografts established by injection of indicated g1051E and g101027E glioma sphere models. 574 

(*p<0.05 and **p<0.01, n=5, one-way ANOVA). 575 

(F) Kaplan-Meier analysis of SCID mice harboring intracranial tumors derived from g1051E or 576 

101027E spheres transduced with either overexpressed PLAGL1 (n=7), Ctrl(n=5), 577 

shPLAGL1#1(n=6) or shPLAGL1#2 (n=6). *p<0.05, **p<0.01, and *** p<0.001. 578 

(G) IHC of indicated tumors in SCID mice for CD109 and PLAGL1. Scale bar 100um. 579 

 580 

Figure 4. PLAGL1 binds to the promoter region for CD109 to regulate its transcriptional 581 

activity 582 

(A) ChIP-qPCR assay showing PLAGL1 binding to the promoter region for the CD109 gene in 583 

g1051E and g101027E spheres. H3K9Ac is used as a positive control. 584 
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(B) Western blotting of CD109 and PLAGL1 in g1051E and g101027E spheres after transducing 585 

with overexpression vector, shRNA targeting PLAGL1 (sh#1 or sh#2), or a non-targeting control 586 

(Ctrl). 587 

 588 
Figure 5. Schematic delineating the edge- and core-located tumor cells in glioblastoma together 589 

with intra-tumoral CD133 and CD109 expressions in the TIC subpopulations. 590 
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