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Abstract

Tandem mass spectrometry (LC-MS/MS) is widely used to identify unknown ions

in untargeted metabolomics. Data Dependent Acquisition (DDA) chooses which ions

to fragment based upon intensity observed in MS1 survey scans and typically only

fragment a small subset of the ions present. Despite this inefficiency, relatively little

work has addressed the development of new DDA methods, partly due to the high

overhead associated with running the many extracts necessary to optimise approaches

in busy MS facilities. In this work, we firstly provide theoretical results that show how

much improvement is possible over current DDA strategies. We then describe an in

silico framework for fast and cost efficient development of new DDA acquisition strate-

gies using a previously developed Virtual Metabolomics Mass Spectrometer (ViMMS).

Additional functionality is added to ViMMS to allow methods to be used both in simu-

lation and on real samples via an instrument application programming interface (API).
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We demonstrate this framework through the development and optimisation of two new

DDA methods which introduce new advanced ion prioritisation strategies. Upon appli-

cation of the here developed methods to two complex metabolite mixtures, our results

show that they are able to fragment more unique ions than standard DDA acquisition

strategies.

Introduction

Tandem mass spectrometry (LC-MS/MS) is increasingly used in untargeted metabolomics

to aid in the annotation of unknown chemical ions. Measured fragment (MS2) spectra for

unknown ions can be used to aid annotation by direct comparison against spectral databases,

machine-learning assisted comparison with structural databases (e.g. SIRIUS41 CFM-ID2)

or analysis with metabolome data-mining tools such as molecular networking3 and MS2LDA

substructure discovery.4

Crucial to all of these approaches is the acquisition of MS2 data. A good MS2 acquisition

strategy ought to produce spectra of a high quality for as many of the ions present in the

sample as possible. There are two main approaches that are used for MS2 acquisition in

metabolomics (and proteomics): Data-dependent acquisition (DDA) and Data-independent

acquisition (DIA). We refer to Guo and Huan for a recent comparison and description.

DDA targets particular ions observed in MS1 survey scans for fragmentation, and is

used widely in metabolomics, either in individual injections, or pooled samples. In a typical

DDA scheme, the set of N ions to fragment is determined based upon the most intense ions

observed in the latest MS1 survey scan. Optionally, a dynamic exclusion window (DEW)

can be included that avoids fragmenting the same mass-to-charge ratio (m/z) multiple times

in succession, giving lower intensity peaks more chance of fragmentation. The chosen ions

are isolated and fragmented by the MS in a series of MS2 scans, which are followed by the

next MS1 survey scan. The MS duty cycle therefore consists of one MS1 scan followed by up

to N MS2 scans. A benefit of DDA is that the MS2 spectra emerge from the MS “ready to
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use” – i.e., each spectrum has been generated by fragmenting a small m/z isolation window

(typically of the order of 1Da) and will therefore normally contain fragments for a single

chemical species (although it is possible for multiple species to exist within a window of this

size typically resulting in so-called chimeric spectra (Lawson et al., 2017)). The downsides

of DDA are the limited number of ions that can be fragmented within a single injection and

the somewhat stochastic nature of fragmentation (if the same injection is run twice, different

ions may be fragmented).

DIA operates in a less targeted manner. Here, an MS1 scan is followed by one or more

MS2 scans that do not depend on the MS1 scan. Each MS2 scan isolates a broader m/z

range and can fragment many chemical species simultaneously. In theory, this means that

all species in the data are fragmented although in reality it is unlikely that fragments from

low intensity species will be visible in the resulting MS2 spectra. The resulting data require

substantial processing to produce spectra assumed to come from a single chemical ion. This

is done in software such as MSDIAL6 where (amongst other things) the chromatographic

profile of precursor and product ions are matched. Spectra deconvolved in this way can then

be used in the same manner as those produced by DDA.

There is no overall consensus as to which of these two schemes is best, and, where

comparisons have been done, no clear conclusion is possible.5 Although the development of

improved computational tools for spectral deconvolution has allowed more applications of

DIA, DDA remains a popular choice due to the high spectral quality and the fact that little

or no processing is required before the spectra can be used.

Given its popularity, surprisingly little work has been done to improve DDA performance

for single injections in metabolomics. Some work has looked into DDA for multiple samples,

specifically DsDA7 for multiple injections of different samples and AcquireX8 for repeated

injections of the same sample, but these are not useful for single injection DDA. Here,

we address the problem of improving DDA coverage for a single injection, as a way of

demonstrating how we can rapidly develop more general methods in silico.
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One of the main criticisms of the performance of DDA (with respect to DIA) is its lower

coverage: the proportion of ions that are fragmented. We start by theoretically comput-

ing the optimal performance for any particular injection, taking into account the uneven

elution distribution of the ions. The results demonstrate that there is considerable room

for improvement, motivating the development of better DDA strategies. Secondly, we de-

scribe how new strategies can be prototyped, implemented, optimised and validated using

a Virtual Metabolomics Mass Spectrometer (ViMMS),9 reducing the traditional need for

a large amount of costly machine time. Recent novel additions to ViMMS mean that the

exact same acquisition controllers can be used for both in simulation and on real hardware.

Finally, we describe two new DDA acquisition strategies prototyped in this way and demon-

strate, through validation on two complex samples, their improvement over traditional DDA

approaches.

Methods

Computing Optimal DDA Performance

Computing the theoretical optimal DDA performance allows us to place an upper bound on

the maximum number of fragmentation events that could occur, i.e., how many of the chem-

ical ions present could a DDA method fragment at least once. This is not straightforward

to compute as the limiting factor is often the co-elution of too many ions in certain regions

of the chromatogram.

To compute optimal performance, we start by defining the ‘true’ set of chemical ions as

the set of peaks picked from an .mzML file by a commonly used peak picking algorithm,

such as those provided in MZmine210 or XCMS.11 Picked peaks are represented by their

bounding boxes (min and max retention time (RT) and m/z values). An MS scan schedule

is created using the mean MS1 and MS2 scan times extracted from an mzML file and a fixed

value of N (the number of MS2 scans for each MS1 survey scan). This results in a list of
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scans, and their respective scan start times. We create a bipartite graph where the two sets

of nodes correspond to MS2 scans and peak bounding boxes from MS1, respectively. An

edge, representing a potential fragmentation event, is added between an MS2 scan and a

bounding box if the MS2 scan time is within the RT limits of the bounding box and the MS1

scan preceding the MS2 scan also has RT within the bounding box and the peak’s intensity

in this MS1 scan exceeds the minimum MS1 intensity for fragmentation.

Mirroring the standard acquisition process, we compute the optimal schedule by calcu-

lating a maximum matching for this graph (see Supplementary Information S4 for more

details). A matching is a subset of edges within which no two edges share an endpoint.

A maximal matching is a matching such that there is no matching with more edges. A

maximum matching therefore gives us the largest set of edges between scans and bounding

boxes such that each scan and box is the end point for one edge. This is the largest number

of peak boxes that can be targeted by the available scans. This globally optimal schedule

provides useful context within which to evaluate new DDA acquisition schemes.

Sample Preparation, Chromatography and MS Scan Settings

Sample Preparation

Two samples were used for our experiments to validate the performance of novel fragmen-

tation strategies. Serum extract (QCA) was prepared from metabolite extraction of Fetal

Bovine Serum (South America origin (Gibco)) by dilution 1/20 with water and addition of

chloroform and methanol to the ratio of 1:1:3 (v/v/v). A beer sample (QCB) of Black Sheep

Ale, 4.4%, was obtained. Sample extraction was performed by the addition of chloroform

and methanol with ratio 1:1:3 (v/v/v). A vortex mixer was used to mix the extracted so-

lution. Centrifugation was performed to remove protein and other precipitates. Finally the

supernatant was removed, and the aliquot was stored at -80◦C.
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Liquid Chromatography

Chromatographic separation with HILIC was performed for all samples using a Thermo

Scientific UltiMate 3000 RSLC liquid chromatography system. A SeQuant ZIC-pHILIC

column was used for a gradient elution with (A) 20 mM ammonium carbonate and (B)

acetonitrile. We injected 10 L of each sample into the column with initial conditions of 80%

(B), maintaining a linear gradient from 80% to 20% (B) over 15 min, and finally a wash of

5% (B) for 2 min, before re-equilibration at 80% (B) for 9 min. This used a constant flow

rate of 300 µL/min and a constant column oven temperature of 40◦C.

Mass Spectrometry

A Thermo Orbitrap Fusion tribrid-series mass spectrometer was used to generate mass spec-

tra data. Full scan spectra were acquired in positive mode at a fixed resolution of 120,000

and a mass range of 70-1000 m/z. Fragmentation spectra were acquired using the orbitrap

mass analyser at resolution 7,500. Precursor ions were isolated using 0.7 m/z width and

fragmented with fixed HCD collision energy of 25%.

In silico DDA Strategy Prototyping and Optimisation

Developing DDA Fragmentation Strategies

In our previous work, we introduced ViMMS,9 a simulator that could be used to evaluate

different fragmentation strategies in silico. Fragmentation strategies are implemented as

controllers in ViMMS. During simulation, controllers react to incoming scans and determine

the next actions to perform by sending commands to the MS. Using the Top-N controller

as an example, the possible acquisition commands would be whether to perform a survey

(MS1) scan or to generate fragmentation (MS2) scans.

Here we have extended ViMMS by creating bridging code that allows controllers de-
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veloped in ViMMS to be used directly on an actual MS. This bridge takes the form of a

vendor-specific MS class in Python. Due to instrument availability, we currently support

the Thermo Scientific Orbitrap Tribrid instruments through its Instrument Application Pro-

gramming Interface (API) (IAPI),12 however the flexible design of our framework does not

preclude supporting other vendors who offer real-time instrument control through an API.

Developing new methods in simulation allows us to optimise them without having to rely

upon costly MS time. We therefore propose the novel controller prototyping, optimising and

validating pipeline shown in Figure 1. Fullscan (mzML) data is used to seed the virtual

MS.9 The fragmentation controller under development is implemented in the ViMMS frame-

work in the Python programming language. It runs in the simulated environment using the

virtual MS. The performance of the controller is evaluated and the best performing param-

eters returned. For validation on the actual instrument, the optimised parameters from the

simulation are used. The results from this validation experiment are reported as the final

evaluation results. The same controller code (yellow boxes in Figure 1) works with both the

simulated and the actual MS.

Performance Evaluation

We define two measures of performance to evaluate the effectiveness of different fragmenta-

tion strategies:

• Coverage is the number of picked peaks that contain a fragmentation event. In the

absence of ground truth we use peaks picked from full-scan data acquisition.

• Efficiency is defined as the ratio of the number of picked peaks that are fragmented

to the number of MS2 scans, i.e. how many picked peaks are, on average, targeted by

one MS2 scan. A perfect value of 1.0 indicates that each fragmentation event targets

one unique picked peak.

To pick peaks we use mzMine2,10 with parameters provided in Supplementary Table
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Optimised
Parameters

Controller

Final Results

Controller 

Parameters Virtual MS

Simulated EnvironmentSeeds

Returns

Generates

Injected

A. In-silico Development of Fragmentation Strategy

IAPI MS

Real Environment

B. Validation of Fragmentation Strategy on An Actual Instrument

Acquisition
commands

Compounds

Optimised
Parameters

Used Compounds

Fullscan
Data

Figure 1: Flow diagram demonstrating the process of developing and optimising a new
fragmentation strategy. (A) Developing, testing and optimising the fragmentation strategy
in silico. (B) Validating the developed fragmentation strategy using the simulated optimal
parameters on the actual instrument.

SI-1. Peaks are exported in the form of bounding boxes (m/z and RT min and max). To

ensure that the results are not biased to one peak picking algorithm we also evaluated the

methods using XCMS 3.6.111 and Peakonly13 (see Supplementary Information S3). MS2

fragmentation events are checked to see which peak bounding boxes they fall into (if any).

The RT range of the bounding box is defined by the first and last MS1 scans that comprise

the chromatographic peak. If a fragmentation event is triggered after the last occurrence of

the precursor, the resulting MS2 scan could fall outside the box, but we consider this as a

hit for computing coverage. Discounting these instances made an insignificant difference to

coverage.
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Validation on Actual Instrument

For each of serum (QCA) and beer (QCB) extracts, we ran six injections: one fullscan

(for evaluating coverage and efficiency), one TopN (using the controller optimised in Wandy

et al.), and four injections for the new fragmentation strategies.

To compute coverage and efficiency, peaks were picked from the mzML files for the fullscan

data of the two samples. With our current implementation, running methods through the

Fusion IAPI requires manually starting MS acquisition once the chromatography has begun.

This could lead to small time shifts between the fullscan .mzML and the .mzML from the

different controllers. To ensure a fair comparison, the best results for each of the controllers

are reported after performing a constant correction to the shift in retention time between -20

and 20 seconds (most shifts are far lower than this). We adopted this approach as it was the

simplest way in which to align the data (any alignment method would have introduced more

parameters into the analysis) and because we expected any delay in initialising to cause a

small constant offset to all peaks.

SmartROI: a Flexible Fragmentation Strategy that Targets Regions

of Interest in Real-time

SmartROI

Our first proposed new controller is motivated by the observation that a large number of MS2

scans in the TopN controller targeted ions that were not subsequently picked as peaks. The

SmartROI controller keeps track of regions of interest (ROIs) in real time and only fragments

peaks within ROIs. Creation of ROIs is the first step in many peak picking methods and

therefore fragmentation events outside ROIs are almost certainly wasted, see Tautenhahn

et al. for an example of how to create ROIs.

SmartROI can be considered a variant on a TopN strategy in which the object being

prioritised for fragmentation is the region of interest (ROI) instead of individual detected
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ions. As MS1 survey scans appear from the MS, the set of ROIs is updated according to

the algorithm given in Tautenhahn et al.. ROIs that are not extended by the data from the

MS1 scan are considered inactive and discarded. The remaining active ROIs are prioritised

based upon intensity but only if they are available for fragmentation, determination of which

is based on the following rules:

1. They must have intensity in the most recent survey scan of greater than or equal to

the minimum intensity for fragmentation.

2. If they have not been fragmented before, they are available.

3. If they have been fragmented before then they are available if either of the following

conditions are met:

(a) Their intensity is higher by a factor α than when it was previously fragmented.

(b) Their intensity has dropped by a factor β from its highest value since it was last

fragmented.

Any ROI that does not meet these conditions is not available for fragmentation and will be

ignored.

This strategy can be seen in Figure 2. The upper plot shows a chromatogram (x-axis

retention time, y-axis intensity) and a possible set of fragmentation events using a standard

TopN strategy. The dashed grey line shows the minimum intensity for fragmentation. Note

that in reality, fragmentation events would depend upon the other ions eluting at the same

retention time, but it is easier to understand the approaches when considered in isolation.

When the intensity falls below the minimum intensity, fragmentation ceases, starting again

when it rises above the threshold. In the lower plot of Figure 2, the same chromatogram is

shown for SmartROI. The first fragmentation event mirrors that in the TopN. The second is

slightly earlier, being triggered when the intensity has increased by α%. This behaviour is

to ensure that we only fragment an ROI again if it has substantially increased in intensity.
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DEW

Min intensity for
fragmentation

Fragmentation
events

In
te

ns
ity

Retention time

A) TopN DDA

B) SmartROI
XIC/ROI

New fragmentation event as
intensity has risen sufficiently
from previous fragmentation

New fragmentation event as intensity
has dropped sufficiently from

previous fragmentation

Figure 2: SmartROI compared with a Top-N strategy. Keeping track of an ROI in real-time
allows for better targeting of MS2 events.

The SmartROI scheme then cannot fragment until the intensity has dropped by β% from

the highest point since the previous fragmentation. However, the intensity is below the

minimum intensity and so fragmentation does not occur until it has risen. The purpose of

the β% drop is to ensure that we do not miss multiple peaks within the same ROI. The final

fragmentation in the SmartROI example is triggered because the intensity has risen again

by α%. SmartROI typically results in fewer, more precisely targeted fragmentation events

than TopN.

Shifted SmartROI

As shown in the results (Supplementary Table SI-6), SmartROI requires additional compu-

tation when scheduling MS2 scans (updating the ROIs). We propose overcoming this by

a slight variant to the controller. Rather than scheduling the next MS1 scan after N MS2

scans, we schedule it after N-1 or N-2 MS2 scans, with the remaining 1 or 2 following. This

way, whilst the controller is scheduling, the MS will be acquiring MS2 scans rather than

sitting idle.
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WeightedDEW: a Fragmentation Strategy with Weighted Dynamic

Exclusion Scheme

WeightedDEW generalises the concept of the dynamic exclusion window. It is motivated

by the problem of setting DEW width in standard TopN approaches: (i) too narrow and

we waste MS2 scans repeatedly fragmenting the same ions, and (ii) too wide and we miss

closely eluting peaks with similar m/z.

TopN DDA uses the intensity of the ion in the survey scan for fragmentation prioritisation.

When using a DEW, peaks are excluded from repeated fragmentation as long as their m/z

and RT values are still within the dynamic exclusion window of previously fragmented ions.

In a standard Top-N DDA scheme, this can be thought of as prioritising ions based upon the

intensity multiplied by a binary indicator (which is 0 if the ion is still excluded by DEW and

1 otherwise). The result of multiplying the precursor ion intensities and the DEW indicator

terms are then used to select the TopN ranked ions to fragment. WeightedDEW generalises

the binary DEW indicators to non-binary weights. It is defined by two parameters – t0 and

t1. The weight for a particular ion, w, observed at time t is given by

w =


0 if tf < t < tf + t0

t−(tf+t0)

t1−t0
if tf + t0 ≤ t ≤ tf + t1

1 otherwise,

where tf is the most recent time at which this m/z was fragmented. This function, for

different values of t1, is shown in Figure 3a. A standard exclusion is applied for the first t0

seconds after fragmentation, after which the weight increases linearly from 0 at t0 to 1 at t1.

An example chromatogram and weighted intensity can be seen in Figure 3b, with a

fragmentation at 30s, t0 = 20s and t1 increasing from 20s to 100s. WeightedDEW down-

weights chromatograms for a period after their initial exclusion. Our hypothesis is that by

allowing for dynamic ‘exclusion’ to be weighted linearly as a function of time and precursor
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Figure 3: (a) The weight function in WeightedDEW. In standard DEW (t1 = t0) the weight
is zero from the fragmentation event until t0 seconds has elapsed. In WeightedDEW, as t1
increases, the weight takes longer to return to 1. (b) An example chromatogram (left) show-
ing a fragmentation event (black circle, 30s) and minimum fragmentation intensity (dashed
line). The weighted intensity (right) is zero until t0 (20 seconds) has elapsed. Different
curves show the effect on the weighted intensity of increasing t1.

ion intensity (rather than in a binary DEW manner), the system would be able to better

prioritise smaller peaks that have not yet been fragmented.

Results

Optimal Results

The results of our optimal analysis show that for both complex mixtures, the observed cover-

age from TopN DDA acquisition strategies are far from optimal, motivating the development

of new methods. Optimal results were computed by picking peaks (see Supplementary Infor-

mation S4) from data acquired for the serum and beer extracts in fullscan mode using scan

timings taken from our own TopN method (as presented and optimised in Wandy et al.).

Full results are shown in Table SI-5. In summary, for both the serum and beer extracts,

the coverage of the TopN method is significantly below the optimal: 1184 (observed) v 1767
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(optimal peaks) and 1509 v 2736 for serum and beer respectively. Although we would never

expect to be able to reach the optimum in practice (it requires global knowledge of the

peaks and when they elute), the results demonstrate the considerable room for improvement

available in DDA controller design.

Controller optimisation

Both SmartROI and WeightedDEW were optimised using a grid search for coverage in sim-

ulation (more details in Supplementary Information S7). Supplementary Figure SI-4 shows

heatmaps of coverage for the serum and beer extracts for the SmartROI and Weighted DEW

methods. For SmartROI, the parameter combinations α = 1000 and β = 0.1 performed

well for both datasets and were chosen. For WeightedDEW, t0 = 15s and t1 = 120s were

chosen. The grid search required 30 (SmartROI) and 36 (WeightedDEW) virtual injections

for each of the serum and beer extracts, with each sample taking about 1 hour to produce

in total – a significant time saving over running them on real equipment, demonstrating a

clear advantage of optimising in silico.

Validation on Instrument

After parameter optimisation, the controllers were validated on the real MS. We initially

investigate the scanning frequency of the controllers. Full timing information is given in Table

SI-6. Timings were computed as the difference between the scan start time in successive scans

from the .mzML file in order to include the time taken to process an MS1 scan and prioritise

the MS2. As expected, the SmartROI system is the slowest, with an MS1 scan taking 0.7

seconds in the beer results (compared with 0.43s for fullscan, 0.59s for TopN and 0.62s for

WeightedDEW) due to the operations required to track ROIs in real time. For both serum

and beer extracts, the additional processing time is the equivalent of roughly one MS2 scan

motivating the development and evaluation of the shifted SmartROI controller, with shifts of

1 and 2 scans. WeightedDEW took slightly longer per MS1 scan than standard TopN. This
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is due to the fact that whilst TopN can greedily move from the most intense MS1 peak down

until it has scheduled N MS2 scans (or runs out of non-excluded peaks), WeightedDEW has

to compute the weights for all MS1 peaks above the minimum intensity threshold to ensure

that it takes the topN weighted intensities into consideration. The time increase between

TopN and WeightedDEW was not large enough to justify the use of a shifted controller for

WeightedDEW.

Table 1 shows the performance in terms of coverage for the five controllers as well as

the optimal performance as shown previously. In addition, we computed coverage based on

peaks picked using XCMS and peakonly, both of which gave the same overall trends in per-

formance with the new controllers outperforming the TopN controller (see Supplementary

Information S3). In both the serum and beer extracts, the best performing controller is the

WeightedDEW. SmartROI performs best with a shift of 2, as it compensates for the extra

processing time required. TopN is the worst performing method in both cases. The TopN

comparison used above was our own TopN controller and not the vendor TopN controller.

This was due to the difficulty in comparing with the vendor controller due to the paral-

lelisation it employs. However, for context, we compared our new fragmentation strategies

against a vendor TopN controller (with identical scan parameters) and our new controllers

achieved higher coverage. A more detailed description of this comparison can be found in

Supplementary Information S2.

We next consider the number of MS1 and MS2 scans produced by each method and

the acquisition efficiency, shown in Table 2. We see a very wide range in the number of

scans between the methods, explained predominantly by the variation in the number of

MS2 scans. For the beer extract, where TopN and WeightedDEW typically create around

6000 MS2 scans, the SmartROI controllers produce far fewer, resulting in a much higher

efficiency. This is explained by the relative reluctance of the SmartROI controllers to re-

fragment the same m/z values, even after a long time has elapsed. This increased efficiency

allows more MS1 scans to be produced, which is useful if these files are also being used for
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Table 1: Coverage (number of picked peaks fragmented) for each controller for both the
serum and beer extracts, where peaks have been picked using MZmine2. The first five rows
show the performance of our (Python) controllers. Numbers in brackets show the shift (in
seconds) that gave this optimal performance. The final two rows give the performance of
the vendor method and the optimal, computed using the bipartite graph matching, and scan
timings taken from our TopN method.

Method Beer (6267 peaks) Serum (4481 peaks)
TopN 1509 (7) 1184 (2)
WeightedDEW 2180 (10) 1534 (2)
SmartROI 1982 (4) 1281 (-2)
SmartROI (shift = 1) 2047 (4) 1309 (1)
SmartROI (shift = 2) 2106 (3) 1318 (1)
Optimal (using TopN scan timings) 2736 1767

peak picking and relative quantification. We also hypothesise that more efficient controllers

(e.g. SmartROI) would perform even better on yet more complex mixtures, where there

would be more co-elution of metabolites and hence more peaks to fragment at the same

time.

Table 2: Total number of scans, number of MS1 and MS2 scans and MS2 efficiency (the
number of picked peaks that are fragmented divided by the number of MS2 scans).

Beer (6267 peaks) Serum (4481 peaks)
Method Total MS1 MS2 Efficiency Total MS1 MS2 Efficiency
TopN 6786 652 6134 0.25 6570 667 5903 0.11
WeightedDEW 6726 638 6088 0.36 6466 682 5784 0.27
SmartROI 4804 1302 3502 0.57 4123 1454 2669 0.48
SmartROI (shift = 1) 4982 1325 3657 0.56 4167 1505 2662 0.49
SmartROI (shift = 2) 5054 1343 3711 0.57 4212 1503 2709 0.50

Discussion and Conclusions

Increasing MS2 acquisition coverage improves the ability to annotate ions in an LC-MS/MS

analysis. However developing new acquisition methods has typically required extensive ex-

perimentation on the MS apparatus, which could be expensive and time-consuming. Here

we demonstrated how new acquisition strategies can be rapidly developed and prototyped in
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silico and then validated on the machine. Additionally we introduce a framework to support

this development process by extending the capability of ViMMS9 so it could easily run frag-

mentation strategies implemented as controllers in the simulator on the real MS equipment

with minimal change to the code.

Using this iterative design, prototype and validation process, we presented two new DDA

acquisition strategies that both considerably outperform a conventional TopN strategy that

prioritises ions for fragmentation based on intensity alone. In the first, SmartROI, we use

a ROI detection algorithm commonly used for peak picking to only fragment molecules in

real-time that are within ROIs and are therefore likely to be picked as peaks. In the sec-

ond, WeightedDEW, we generalise the dynamic exclusion window approach to a real-valued

weighting scheme allowing previously fragmented ions to smoothly rise up the priority list as

their intensity remains high. In both cases, improved performance in silico was mapped to

improved performance in reality, instilling confidence in the simulation procedures. Although

the WeightedDEW controller outperformed the SmartROI in our chosen performance mea-

sure, we believe that both have utility. WeightedDEW is computationally straightforward, as

demonstrated by its similar processing time to TopN, and it produces higher coverage com-

pared to the alternatives here investigated. SmartROI requires more computational time

but it also offers more direct control in how often an ROI will be fragmented. The tracking

of ROIs in real time also offers the advantage of further method development. For example,

it should be possible to predict, in real time, if an ROI contains a peak or not, and only

fragment those predicted peaks. The increased efficiency of SmartROI also suggests that it

would perform better in more crowded mixtures than those presented here. For example,

background signals where the intensity values do not change much could potentially be frag-

mented multiple times in a standard Top-N DDA scheme, but in SmartROI it will only be

fragmented once. This is possible in SmartROI even without having a prior knowledge of

what the background ion is, rather it is accomplished through tracking of regions of interests

in real time.
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When optimising our controllers we have chosen to maximise fragmentation coverage.

MS2 scan parameters have remained constant throughout, so it is not the case that we

have increased coverage at the expense of data quality as would be the case if for example,

reduced scan resolutions were used. All of our MS2 scans were performed in the orbitrap

mass analyser to obtain high resolution fragmentation data. It would be possible to improve

coverage of all methods by performing MS2 analysis in the linear ion trap mass analyser and

fully make use of the possible parallelisation described in Senko et al.. The optimisation

procedure proposed here is independent of any particular figure of merit: any other measure

of MS2 acquisition quality could be used in place of coverage if considered more appropriate.

In addition, we have also shown how an approximate optimal limit of DDA acquisition

performance for a particular mixture can be computed via a bipartite graph matching scheme.

This limit provides context for acquisition analysis results: for the two complex samples

analysed here, we are far from reaching these theoretical maxima, suggesting that much

more optimisation is possible. At the same time, this provides a framework for future DDA

and DIA method optimisation studies to perform benchmarking when applied to the samples

used in their studies.

For validation on actual instruments, our proposed framework at the moment is limited

to supporting the Thermo Fusion Tribrid instrument through the manufacturer’s provided

IAPI. The modular nature of our software means that all controllers communicate with the

instrument through bridging code and therefore the same controller implementations could

easily run on different hardware if a real-time API is available from the manufacturers. For

instance, Waters instruments could be supported by developing an appropriate bridge from

our framework to communicate with the Waters Research Enabled Software (WREnS) API.

We conclude that there is much further improvement possible in the development of

DDA acquisition strategies. We show how the use of a simulation system to optimise such

strategies can rapidly lead to improvements. We demonstrate two such acquisition strategies,

both exceeding performance over a TopN controller in terms of coverage (number of unique
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picked peaks that are fragmented).
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