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2 

Abstract 1 

Background. HIV-infected people have an increased risk of atherosclerosis-based 2 

cardiovascular disease (CVD), even when the HIV virus is fully controlled. Both chronic HIV 3 

infection and CVD are chronic inflammatory diseases. The interaction between these two 4 

diseases is not well understood.   5 

Methods. The Women’s Interagency HIV Study (WIHS) collected peripheral blood mononuclear 6 

cells (PBMCs) and data on subclinical CVD defined by carotid artery ultrasound from HIV-infected 7 

women. We interrogated 32 PBMC samples using combined protein and transcript panel single 8 

cell (sc) RNA sequencing of women without HIV or CVD, with HIV only, with HIV and CVD, and 9 

with HIV and CVD treated with cholesterol-lowering drugs. Expression of 40 surface markers 10 

enabled detailed analysis of all major cell types, resolving 58 clusters in almost 42,000 single 11 

cells.  12 

Results. Many clusters including 5 of 8 classical monocyte clusters showed significantly different 13 

gene expression between the groups of participants, revealing the inflammatory signatures of 14 

HIV, CVD and their interactions. Genes highly upregulated by CVD included CCL3, CCL4 and IL-15 

32, whereas CXCL2 and 3 were more highly upregulated by HIV. Many genes were synergistically 16 

upregulated by HIV and CVD, but others were antagonistically regulated, revealing that the gene 17 

signature in people with HIV and CVD is not simply the sum of the HIV and CVD signatures. 18 

Elevated expression of most inflammatory genes was reversed by cholesterol control (statin 19 

treatment). The cell numbers in 3 of 5 intermediate monocyte subsets, 1 of 14 CD8 T cell subsets, 20 

1 of 6 B cell subsets and 1 of 6 NK cell subsets showed significant changes with HIV or CVD.  21 

Conclusions. We conclude that HIV and CVD show interactive inflammatory signatures including 22 

chemokines and cytokines that are improved by cholesterol-lowering drugs.   23 

 24 

Keywords: CVD, HIV, scRNA-seq, transcriptomes, surface markers, antibodies, PBMC, human, 25 

cholesterol-lowering drugs.  26 

27 
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3 

Introduction  1 

Most people living with HIV, including the Women’s Interagency HIV Study (WIHS) participants, 2 

are on antiretroviral therapy (ART), leading to low or undetectable HIV viral loads1. Nevertheless, 3 

low-level systemic inflammation remains measurable.2 Chronic inflammation is thought to drive 4 

morbidity and mortality in people living with HIV, much of it from sequelae of cardiovascular 5 

disease (CVD).3,4 Cardiovascular risk in people living with HIV is elevated ~3-fold compared to 6 

uninfected controls.5,6 Within the next 10 years, it is expected that 78% of people living with HIV 7 

will be diagnosed with CVD.7,8 How persistent inflammation in chronic HIV infection drives CVD 8 

is not known. Predicting the prognosis or monitoring the efficacy of therapies remains challenging. 9 

Prior studies characterized peripheral blood mononuclear cells (PBMCs) in HIV-infected 10 

people and uninfected controls using flow cytometry or mass cytometry. Other than the well-11 

known loss of CD4 T cells in HIV infection9 and their rebound with ART,10 changes were noted in 12 

monocytes and natural killer (NK) cells.11 Among people living with HIV, those with CVD showed 13 

a loss of CXCR4 expression in nonclassical monocytes (NCM).12 Other studies reported an 14 

association between monocytes and coronary artery calcium progression in people living with 15 

HIV13, persistent activation of classical monocytes (CM),14,15 changes in NK cells,11,16–22 CD8 T 16 

cells23–26 and B cells.27–32 17 

WIHS is an ongoing multi-center, prospective, observational cohort study of over 4,000 18 

women with or at risk of HIV infection that was initiated in 1994. Almost all WIHS participants with 19 

HIV are on ART. PBMCs were cryopreserved and shipped on liquid N2, following strict standard 20 

operating procedures that ensured preservation of cell surface phenotype, viability and 21 

transcriptomes.33 PBMCs can be analyzed without mechanical or enzymatic dissociation, which 22 

are known to alter cell surface markers and transcriptomes.34 PBMC are attractive for single cell 23 

RNA sequencing (scRNA-Seq) studies, because they are available in many clinical studies of 24 

specific populations with defined diseases and outcomes. The participants sampled for the 25 

present study were part of a substudy nested within the WIHS,35,36 which provided detailed 26 
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4 

information on subclinical atherosclerosis. Participants underwent high-resolution B-mode carotid 1 

artery ultrasound to image six locations in the right carotid artery.37  2 

scRNA-Seq has been applied to human PBMCs in diseases including cancers,38–41 3 

inflammatory bowel disease42,43 and autoimmune disease44,45. One study reported the effect of 4 

acute HIV infection on PBMC transcriptomes46. No single cell studies of PBMCs of people living 5 

with chronic HIV infection and CVD have been reported.  6 

Here, we report transcriptomes and cell surface phenotypes of almost 42,000 PBMCs from 7 

31 participants of the WIHS study at unprecedented resolution. We used the targeted scRNA-Seq 8 

BD Rhapsody platform47,48 that simultaneously provides surface phenotype (40 mAbs) and 9 

transcriptomes  (485 immune and inflammatory transcripts) in the same cells. We compared non-10 

HIV non-CVD with HIV+ women (HIV effect), HIV+ women with and without subclinical 11 

cardiovascular disease as assessed by carotid ultrasound (CVD effect) and the effect of treatment 12 

with cholesterol-lowering drugs (statin effect). Hundreds of genes in tens of clusters were 13 

significantly differentially expressed between the disease groups. Six of 58 resolved PBMC 14 

clusters showed significant changes in cell proportions specific for HIV or CVD.  15 

 16 

 17 

  18 
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5 

Results  1 

Population and cells.  2 

The 32 WIHS participants studied were aged 47-62, all (ex)smokers, most African American or 3 

Hispanic. Matched groups of 8 women each were selected for subclinical CVD and HIV status: 4 

CVD-HIV- (non-CVD non-HIV); CVD-HIV+ (living with HIV); CVD+HIV+statin- (living with HIV, 5 

evidence of CVD); CVD+HIV+statin+ (living with HIV, evidence of CVD, treated with cholesterol-6 

lowering drugs) (Table S1). PBMC tubes were shipped from the central repository on liquid N2, 7 

thawed and processed according to standard operating procedures. Cell viability was 88±5% 8 

(Table S2). To avoid batch effects, all cells were hash-tagged for multiplexing, with 4 samples run 9 

per 250,000-well plate (total of 8 plates). The pooled cells were labeled with 40 titrated 10 

oligonucleotide-tagged mAbs (Table S3). After quality controls and three-stage doublet removal, 11 

41,611 single cell transcriptomes from 31 WIHS participants (one sample was lost in hash 12 

tagging) were successfully analyzed (Table S4). An overview of the experimental design and 13 

workflow is shown in Figure S1.  14 

 15 

Surface marker-based cell identification.  16 

In combined protein and transcript panel single cell sequencing, just like in CITE-Seq,49 REAP-17 

Seq50 or flow cytometry, non-specific binding contributes to the antibody signal, in part, because 18 

Fc block is not complete.51,52 The type and number of Fc receptors varies among cell types, 19 

causing different levels of background for the same antibody in different cell types.53–56 Additional 20 

background is caused by unbound oligonucleotide-tagged antibody remaining in the nanowell that 21 

will be amplified and sequenced.48 To account for all sources of background, we gated based on 22 

biaxial plots of mutually exclusive markers. This yielded thresholds for all 40 markers used (Table 23 

S5). After thresholding, we used Boolean gating on surface markers to readily identify known cell 24 

types to the satisfaction of experts in the field. An alternative to surface marker-based cell calling 25 

is integrated analysis by surface markers and transcripts using Seurat.57,58 (Figure S2).  26 
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6 

Correlation between gene and cell surface marker expression.  1 

In immunology, surface markers are widely used to define and distinguish cell types.59–62 The 2 

correlation between cell surface protein and mRNA expression is weak in immune cells.63 3 

Therefore, scRNA-Seq without surface phenotype information has led to much frustration in the 4 

field, because the expression of many genes encoding well-known surface markers remains 5 

undetected in scRNA-Seq.59,64,65 It is still difficult to call cell types based on gene expression data 6 

alone, which emphasizes the need for cell surface phenotypes in addition to transcriptomes. Here, 7 

we correlated gene expression with cell surface expression for 41 pairs of genes and proteins 8 

(Table S6). For most markers, we confirm weak correlations63, which illustrates the value of 9 

monitoring cell surface phenotype in scRNA-Seq.  10 

 11 

Major cell types.  12 

T, B, NK cells and monocytes were identified by 8 antibody markers using biaxial gating, 13 

corresponding to established gating schemes for human PBMCs.66–68 CD3 and CD19 expression 14 

are mutually exclusive and specific for T and B cells, respectively (Figure S3). Thus, we identified 15 

CD4 (Figure S4A)  and CD8 T cells (Figure S4B), classical, nonclassical and intermediate 16 

monocytes (Figure S4C),  B cells (Figure S4D),  and natural killer (NK) cells (Figure S4E).69–71   17 

 18 

Subclustering.  19 

Each major cell type (Figure 1, center) was subclustered by all expressed surface markers (Table 20 

S7) using UMAP and Louvain72 clustering (Figure 1). Gates were overlaid and used in all 21 

subsequent UMAP figures (cell numbers in Table S8). Violin plots of surface marker distribution 22 

of each cluster in figure S5. 23 

 24 

 25 

 26 
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7 

 1 

Figure 1. Antibody- based UMAP clustering of major cell types. The major known cell types were UMAP-Louvain-2 
clustered by CD3, CD19, CD14, CD16 and CD56 surface expression (central panel). Then, each major known cell type 3 
was UMAP-Louvain-clustered by all non-negative surface markers (see table S7 for list). (A) CD4 T cells formed 16 4 
clusters, cluster numbers indicated; (B) CD8 T cells formed 14 clusters; (C) Classical monocytes (CM) formed 8, (D) 5 
Intermediate monocytes (INT) 5 and (E) Nonclassical monocytes (NCM) 3 clusters.  (F) B cells and (G) NK cells 6 
formed 6 clusters each. 7 
 8 

Among CD4 T cells (Figure 2A), CD2, the ligand for CD48 and CD58, was expressed in almost 9 

all cells, as expected. The high affinity IL2 receptor IL2RA (CD25) was expressed in about a third 10 

of the CD4 T cells and was strikingly high in cluster 13, which was also low for IL7 receptor 11 

(CD127), defining regulatory T cells (Tregs).73,74 CD45RA and RO were mutually exclusive, 12 

D.  Intermediate 
monocytes

Figure 1

2

3

1

4

5
7 6

8

1
2

3

44

5
6

1

2

3

4
5

6 7

8

9 10
11

12

13
14

15
16

1

2
3 4

4
5

6 7

8

9

10
11

1213

14

1
2

3

4
5

6

7
3

8

A. CD4 T cells

E. Nonclassical
monocytes

B. CD8 T cells

C. Classical 
monocytes

G. NK cells

F. B cells

12

3

4

5

1

2

3
4
5

6

12

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2020. ; https://doi.org/10.1101/2020.09.10.292086doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.10.292086
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

8 

separating naive and antigen-experienced CD4 T cells. CXCR3 (CD183) identifies T-helper-1 1 

(Th1) cells in human PBMCs75 and was highly expressed in clusters 6, 14 and 16. Cluster 14 co-2 

expressed CXCR5 (CD185) with CXCR3. Cluster 7 expressed CXCR5 as the only chemokine 3 

receptor, suggesting it may contain follicular helper (TFH) T cells. Based on surface marker 4 

information, all CD4 T cell clusters were called (Figure 3A). 5 

 6 

CD8 T cells. All CD8 T cells expressed CD2 (Figure 2B). Cluster 3 exclusively expressed CD9 7 

and CD36, identifying these cells as NK-like CD8 cells.76,77 Clusters 7 and 13 were identified as 8 

NK-like T cells with a CD45RA+ terminally differentiated memory (EMRA) phenotype. Based on 9 

these markers, all CD8 T cell clusters were called (Figure 3B).  10 

 11 

Monocytes (Figure 2C). As expected, all classical monocytes (CM) were CD11b+ (Figure 2C). 12 

There were gradients of CD978, CD69, CD137, CD142 (tissue factor) and CD163 (hemoglobin-13 

haptoglobin receptor) expression. The scavenger receptor CD36 and the antigen presentation co-14 

receptor CD86 were expressed in all classical monocytes. As expected, the chemokine receptor 15 

CCR2 was expressed in all classical monocytes. Based on these markers, 5 of the 8 classical 16 

monocyte subsets were called (Figure 2C) and related to subsets described by mass cytometry.78 17 

Intermediate CD14+CD16+ monocytes (INT) have been considered pro-inflammatory by 18 

several investigators79–83 and are known to be increased in people with HIV84,85 and with 19 

CVD.82,86,87 All intermediate monocytes highly expressed the inflammation-induced costimulatory 20 

molecule CD86 (Figure 2C). Cluster INT3 highly expressed CD142 (tissue factor), which has 21 

previously been implicated in people living with HIV.14 Since subsets of intermediate monocytes 22 

have not been described before, we propose a provisional naming suggestion (Figure 3C). 23 

Nonclassical monocytes (NCM) are considered anti-inflammatory.88 In this study, they formed 24 

3 clusters (Figure 2C). Strikingly, expression of CD9 and CD36 was limited to cluster 3, 25 
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9 

suggesting that this cluster corresponds to the previously described CD9+CD36+ NCM.78 CD11c, 1 

CD7478, CD86 and CD141 were expressed in all NCMs (Figure 3C). 2 

 3 
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10 

 1 
Figure 2. Cell surface marker expression. The expression level of each of the 40 antibody markers was color-coded 2 
from dark blue (=0, not expressed) to red (highest expression, log2 scale, as per color bar in each panel). Rainbow 3 
plots projected on UMAP gates of each cell type. Selected surface markers shown on top of each plot; all others in 4 
Figure S3. Cluster outlines as defined in figure 2. (A) CD4 T cells; (B) CD8 T cells; (C) Classical (CM), intermediate 5 
(INT) and non-classical (NCM) monocytes; (D) B cells and (E) NK cells. Violin plots of surface marker distribution 6 
of each cluster in figure S5. Cluster calling in figure 3. 7 
 8 

 9 

B cells. As expected, CD20 and CD74 (HLA-DR) were expressed in all B cells. (Figure 2D). 10 

CD27, IgM and IgD are used to identify naïve B cells (CD27-IgM+IgD+).27,89 Clusters 1, 3 and 4 11 

were negative for CD27 with high transcript expression for IgM and IgD, consistent with naïve B 12 

cells. Clusters 3 and 4 expressed CCR6, a subset found in HIV+ subjects30. B cell cluster 2 13 

expressed CD25, which is a known marker for activation for B cell proliferation and exhaustion,90,91 14 

and CD27, identifying cluster 2 as a likely activated memory B cell. Cluster 5 had high CD11c 15 

levels, known to increase in HIV-infected patients,32 and expressed some CXCR3 and CCR6, but 16 

CD11c CD20 CD25 CD27

CXCR3 CCR6 HLA-DR

D. B cells
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11 

was CD27low. These features together with moderate expression of CD22 transcript suggest that 1 

cluster 5 may contain CD11c+ pathologic B cells.32 (Figure 3D). 2 

 3 

NK cells. Most NK cells were mature (CD56dim/CD16+), as expected. Cluster 3 also contained 4 

immature (CD56brightCD16-) NK cells. The CD56lowCD16- cells (clusters 4 and 5) expressed CD2 5 

and CD45RA. Cluster 5 was CD56-CD16high, an NK cell subset known to be elevated in chronic 6 

HIV infection.69,70 (Figure 2E, S4, Figure 3E).  7 
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 1 

Figure 3
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 1 

Figure 3. Heatmaps of antibody expression (log2 scale) in each main cell type: A) CD4 T cell, B) CD8 T cell, C) 2 
Monocytes, D) B cell and E) NK cells. Immunophenotypes at the bottom. Blank means uncalled. Abbreviations: EM; 3 
effector memory, EMRA; terminally differentiated effector memory; CM, Classical Monocyte; INT, Intermediate 4 
Monocyte; NCM, Nonclassical Monocyte.  5 

C. Monocytes

Figure 3

CD9
hig

h CD36
hig

h (C
M

2)

CD9
- CD11c

+ CCR2
+ (C

M
4)

CD2
+ (C

M
5)

CM
6

CD45RA
+ (C

M
7)

CM
8

CD9
hig

h CD36
hig

h (C
M

3)
IN

T1

IL
7R

- (IN
T2)

CD163
+ (IN

T4)

CTLA4
+ CXCR3

hig
h (IN

T5)

CD142
hig

h (IN
T3)

CXCL16+IL
1B (N

CM
1)

IL
7R

+ CD141
+ (N

CM
2)

CD9
+ CD36

+ CXCR4
hig

h (N
CM

3)

CCR4
- CCR6

- Naive
 (B

1)

Acti
va

te
d m

em
ory

 (B
2)

CCR6
+ Naive

 (B
3)

CCR4
+ CCR6

+ Naive
 (B

4)

CD11c
+ m

em
ory

 (B
5)

Resti
ng m

em
ory

 / 
B1 (B

6)

D. B cells

CD11b
CD11c

CD36

CD45RA
CD45RO

CD4

CD69

CD14

CCR4

CCR7
CD206

LAG3

CD163
CD16

CXCR4
CCR2

IL6R
IL7R

CD141

CTLA4

CD9

IL3RA

CD137

CD142

CD154

CXCR3

CCR5

CD20

CD38

CD56

CD86

HLA-DR

CD11c

IL3RA

CD45RA

CD56

CD86

CCR6

CD27

CD38

CD19

CD20

CD25

CD137

CXCR3

CXCR4

CXCR5

HLA-DR

CD2+/C
D86+/-M

atu
re

 (N
K1)

CD11b+M
atu

re
 (N

K2)

M
atu

re
/Im

m
atu

re
 (N

K3)

CD56low C
D16 (N

K4)

CD56-C
D16high (N

K5)

CD8+M
atu

re
 (N

K6)

CD11b

CD11c

CD45RA

CD56

CD8

CD127

CD16

CD2

CD38

E. NK cells

CM
1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2020. ; https://doi.org/10.1101/2020.09.10.292086doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.10.292086
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

14 

Transcriptomes.  1 

Next, we analyzed the transcriptomes of each single cell (Excel Table S1). We tested gene 2 

expression of each cluster against all other clusters in each major cell type (Figure 4), using 3 

Seurat to report the data as log2 fold-change (logFC) and percent of cells expressing each gene. 4 

Significant overexpression of GNLY, GZMA, GZMH, NKG7 and FGFBP2 together with the surface 5 

phenotype (Figure 3A) confirmed CD4 T cell cluster 1 as effector memory (EM). We found two 6 

clusters of EMRA cells that expressed CD25RA with quite different transcriptomes: cluster 8 7 

EMRA overexpressed CHI3L2 and cluster 9 EMRA cells overexpressed GNLY, GZMA, GZMB, 8 

GZMH, NKG7, FGFBP2, PRF1, HOPX, FCN1, the chemokine CCL3, the Th1 cytokine IFNG and 9 

the Th1 transcription factor TBX21 (Figure 4A).  10 

 11 

Among CD8 T cells (Figure 4B), CD45RA+ cluster 2 was naive based on significant 12 

overexpression of CCR7, SELL and IL7R. Cluster 7 was confirmed to contain CD56+ EMRA (NK-13 

like EMRA) based on significant overexpression of KLRF1. Cluster 8 (CD11b+CD56+EMRA) 14 

significantly overexpressed S100A9 and FCN1. Clusters 12 and 13 had NK-like phenotypes, 15 

based on significant overexpression of FCGR3A, GZMB and KLRB1.  16 

 17 

In monocytes, CM5 overexpressed CD1C, CLEC10A and FCER1A. Among intermediate 18 

monocytes, cluster 3 significantly overexpressed S100A12, CD14, CD163, CLEC4E, THBS1, 19 

MGST1, RNASE2 and 6. Nonclassical monocytes, B and NK cells showed little differential gene 20 

expression.  Exact p-values of differential gene expression in all major cell types are in Table S9. 21 
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 1 

Figure 4. Significantly differentially expressed genes of cells in each cluster. Expression of 485 transcripts was 2 
determined by targeted amplification (BD Rhapsody system). Significant genes defined as adjusted p<0.05 and log2 3 
fold change >1. Dot plot: fraction of cells in cluster expressing each gene shown by size of circle and level of expression 4 
shown from white (=0) to dark blue (=max, log2 scale). Red bars indicate genes that were significantly higher in each 5 

Figure 4
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16 

cluster compared to all other clusters of the parent cell type. (A) CD4 T cells, (B) CD8 T cells and (C) monocytes 1 
(Classical monocytes; CM, Intermediate monocytes; INT, Non-classical monocytes; NCM). 2 
 3 

Ingenuity Pathway Analysis.  4 

To identify pathways enriched in the different PBMC clusters, we used Ingenuity pathway 5 

analysis92. (Figure S6, Table 1) The pathway “communication between innate and adaptive 6 

immune cells” was very highly enriched in B cells and several monocyte subsets, with p values 7 

below 10-10. The main genes contributing to this enrichment were the chemokines CCL5 and 8 

CCL8, the co-activators CD83 and CD86, the Fcε receptor FCER1G, major histocompatibility 9 

complex-II (HLA-DRA), the cytokines interferon-γ (IFNG), IL-15 (IL15), and IL-1β (IL1B), the Toll-10 

like receptors TLR2 and TLR8 and the TNF superfamily members TNF and APRIL (TNFSF13). 11 

Th1 and Th2 pathways were highly enriched in several T cell subsets. This enrichment was driven 12 

by the TCR signaling subunits CD3D and CD3E, the co-receptor CD4, the co-activator CD86, the 13 

chemokine receptor CXCR4, the adhesion molecule ICAM1, interferon-γ (IFNG) and its receptor 14 

(IFNGR1), the IL-2 receptor subunit IL2RB, β2 integrins (ITGB2), the killer lectin receptor KLRC1 15 

and KLRD1 and the transcription factors RUNX3, STAT4 and TBX21. The atherosclerosis 16 

signaling pathway was enriched in the monocyte clusters INT3, INT5 and CM1. The genes driving 17 

this enrichment were the scavenger receptor CD36, lysozyme (LYZ), the adhesion molecules 18 

PSGL-1 (SELPLG), ICAM-1 and integrins α4 (ITGA4) and β2 (ITGB2), TNF, the known CVD-19 

causative cytokine IL-1β (IL1B), the chemokine IL-8 (CXCL8), the chemokine receptor CXCR4 20 

and the pro-atherogenic cytokine interferon-γ (IFNG). More significantly enriched pathways are 21 

shown in Table 1.  22 

 23 

 24 

 25 

 26 

 27 
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Table 1. Significantly enriched pathways. 1 
Antigen Presentation Pathway CD8T5, CM5, CD4T13, INT4, CD8T14, CM1, CD8T3, 

INT3, CD8T2, CD4T9, CM3, CD8T9, CD8T6, CD4T10, 
CD4T12, B2, CD4T4, CD8T7, CD4T2, CD8T10, B1, 
CD4T7, CD8T11 

Atherosclerosis Signaling INT5, CM1, INT3, CD4T9, CD4T6, CD8T14, CD4T12, 
CD8T6, B5, CM5, CD8T2, CD8T7, CM3, B3, INT4, 
CD8T9, B6, CM7, CD4T8, INT2, CD8T12 

B Cell Development B2, CD4T13, CD8T5, B1, INT4, CD8T3, B6, INT3, 
CM5, CD8T2, B3, B4, CD8T14, CM1, INT5, CM2, 
CD4T9, CD4T12, CD8T9, CD8T6, CD4T6, CD8T10, 
INT1, CM3, CM4, CD8T13 
CD4T10 

Chemokine Signaling CD8T5, CD8T2, CD4T14, CD4T12, CD8T9, CD8T6, 
CD8T14, CD8T1, CM5, CD4T1, CD4T8, CD4T9, 
CD8T7, CD4T2, CD4T6 

Communication between Innate and 
Adaptive Immune Cells 

B4, B6, B2, CD8T6, B3, B5, B1, CD4T12, CD8T9, 
CM5, CD4T9, CD8T2, INT5, CD8T5, CM1, CD8T13, 
CM3, CD8T7, CD4T13, CD8T14, CD8T3, CD4T10, 
CD8T1, INT3, CD4T4 
CD4T1, CD4T8, CD4T2, CM2, CD8T12, CD4T14, 
INT1 

Crosstalk between Dendritic Cells 
and Natural Killer Cells 

CD4T12, CD8T2, CD8T6, CD8T14, CD8T13, B6, 
CD8T9, B4, CD4T9, CD4T13, CD8T7, CD8T12, B5, 
CD4T2, CD8T3, CD8T1, CD8T5, CD4T4, CD4T8, B3, 
CM2, B2, CM1, CD4T10, INT3, CD4T1, CD4T16 

Cytotoxic T Lymphocyte-mediated 
Apoptosis of Target Cells 

CD8T12, CD4T12, CD8T2, CD8T7, CD8T9, CD8T11, 
B2, CD4T13, CD8T14, CD8T3, CD8T1, CD4T9, 
CD8T6, CD4T16, CD8T8, B1, CD4T5 

Dendritic Cell Maturation B6, B5, CM5, B4, INT3, B2, CD4T13, CM1, B1, 
CD4T12, B3, INT4, INT5, CD8T5, CD8T6 
CD4T4, CD4T15, CD4T8, CM3, CM2, CD8T2, CD4T2, 
CD8T14, CD8T9, CD8T3, CD8T1 

Fcγ Receptor-mediated 
Phagocytosis in Macrophages and 
Monocytes 

INT5, CD8T12, CM4, CD8T13, CD8T2, CD8T1, INT3, 
B5, CD8T7, INT2, CD4T12, CD8T9, 
INT1 

Granulocyte Adhesion and 
Diapedesis 

CM3, CM5, CD4T12, INT5, INT3, CD8T6, CD8T2, 
CD8T9, CD4T9, CD8T7, CM1, CD8T12 
CD8T5, CD4T8, CD4T6, CD8T14, CD8T13, CD8T3, 
CD4T14, CD8T1, CD4T4, B5, CD4T1 
CD8T4, CD4T2, CD8T11, CD4T13, INT4, CM4, 
CD4T10, CM7 

IL-7 Signaling Pathway B5, CD8T2, CD8T5, CD8T14, CD8T13, CD4T10, 
CD8T10, CD4T9, CD8T7, CD8T12, B1 
CD4T12, B3, CD8T11, CD8T9, CD8T6, B2, CD8T3, 
B6, CD8T1, CD4T4, CD4T1, CD4T2 
CD4T6, CD4T14, CD4T3 

Interferon Signaling B3, B5, CD8T2, INT1, CM3, B4, CM4 
Natural Killer Cell Signaling CD8T12, CD8T13, CD8T2, INT5, CD4T12, CD8T7, 

CD4T2, CD8T14, CD4T10, CD8T9, CD8T6, CD4T8, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2020. ; https://doi.org/10.1101/2020.09.10.292086doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.10.292086
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

18 

CD8T3, CD8T1, CD4T4, CD8T11, B2, CD4T13, 
CD8T5 

Necroptosis Signaling Pathway CD4T5, CD4T2, CM5, CD4T1 
Phagosome Formation B5, CM5, B6, INT5, B1, B2, CM4, CD8T12, B3, B4, 

CD4T12, CD8T14, CD8T13, INT3 
CD4T6, CD8T7, INT2 

T Cell Receptor Signaling CD8T2, CD8T12, CD4T8, CD4T2, CD8T11, CD4T12, 
CD8T6, CD4T4, CD4T1, CD8T7 

Th1 and Th2 Activation Pathway CD8T2, CD4T12, CD8T6, CD8T9, CD8T12, CD8T14, 
CD4T10, CD4T9, CD8T5, B2, CD4T8, CD4T2, 
CD8T13, CD8T3, B6, CD4T7, B5, CD4T13, CM5, 
CD4T1, CD8T7, CM1, CD4T15, CD4T4, B3, INT4, 
CD4T16, CD4T14, CD4T3, INT3, B1, CM3, CM2, B4, 
CD8T11, INT5, CD8T1, CD4T6 

Th1 Pathway CD8T2, CD4T12, CD8T6, CD8T9, CD4T10, CD8T12, 
CD4T9, CD8T14, CD8T3, CD8T5 
CD4T7, CM1, CD8T13, CD4T15, CM5, CD8T7, B2, 
CD4T13, INT4, CD4T16, B6, INT3 
B5, CD4T1, CD4T8, CD4T2, CM3, CM2, B4, CD8T11, 
INT5, CD8T1, CD4T4 

Th17 Activation Pathway CM1, INT5, CD4T12 
Th2 Pathway CD8T2, CD4T12, CD8T9, CD8T6, CD8T14, CD4T10, 

CD8T12, CD8T5, B2, CD4T8, CD4T9, CD4T2, CM5, 
CD4T1, CD4T13, CD8T3, B6, CD4T4, B5, CD4T7, 
CD8T7, INT4, CM1, INT3, CD4T3, B1, CD4T15, CM3, 
CM2, B3, CD8T13, CD4T6 

Toll-like Receptor Signaling CM5, CM3, INT5, INT3, CD4T1, CD4T2, INT1 
TREM1 Signaling CM5, CM1, CM3, CM4, INT5, B6, B5, B4, CM2, 

CD8T13, INT3, CD4T9, CM7, CD4T12, CD4T3, 
CD8T2 

All pathways shown were significantly enriched in the clusters indicated. Bold: P<0.0001, 1 
others p<0.05.  2 
 3 

Gene expression changes by HIV, CVD and cholesterol control.  4 

Next, we reasoned that HIV, CVD and cholesterol control would be associated with specific gene 5 

expression changes. We focused non-HIV vs HIV+ (reflecting the HIV signature), HIV+ vs 6 

HIV+CVD+ (reflecting the CVD signature), and HIV+CVD+ vs HIV+CVD+ treated with LDL 7 

cholesterol-lowering drugs (reflecting the cholesterol control signature) (Figure 5). In a bulk RNA-8 

Seq study, we found that statins had a strong effect on sorted classical monocyte 9 

transcriptomes.15 In 27 of the 58 PBMC clusters, expression of hundreds of genes was 10 

significantly (adjusted p<0.05) regulated; 181 between women with and without HIV, 465 between 11 
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women with HIV and women with HIV and CVD, and 303 in women with HIV and CVD that 1 

received cholesterol-lowering drugs. We discovered by far the most regulated genes in classical 2 

monocytes: 98 in cluster 1, 88 in cluster 2 and 55 in cluster 3. The top 10 highly regulated genes 3 

for the main cell types are shown in Table S10 and all the underlying gene expression data in 4 

Excel table S2. Figure 5 shows the cell types with the most regulated genes; volcano plots for 5 

clusters with fewer genes are shown in Figure S7. 6 
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 1 

Figure 5. Volcano plots comparing gene expression in single cells from WIHS participant types in each cluster. 2 
All 3 meaningful comparisons were calculated, but this figure is focused on HIV+CVD- vs HIV+CVD+, and HIV+CVD+ 3 
vs HIV+CVD+ with cholesterol medication; all clusters in which at least 10 genes were statistically significant. Colored 4 
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dots (HIV+CVD- yellow, HIV+CVD+ blue, and HIV+CVD+ with cholesterol medication red) indicate significantly 1 
differentiated expressed genes (FDR<0.05 and |log2FC|>2). 3 CD4 T and 7 CD8 T cell clusters, 5 CM and 1 each INT 2 
and B cell clusters met these criteria. Dashed line indicates adjusted p-value of 0.05. Additional volcano plots shown in 3 
Figure S7, full data set shown in Excel Table S2. 4 
 5 

T cells. In CD4T1, 2 and 8, IL-32 was highly significantly increased by CVD, which was reversed 6 

by cholesterol lowering in CD4T1 and 2 (Figure 5, Table S11). IL-32 is an inflammatory cytokine 7 

that is known to be important in CVD.93–95 In CD4T2, L-selectin (SELL), PSGL-1 (SELPLG) and 8 

CCR7 were also highly significantly increased in WIHS participants with HIV and CVD, and 9 

significantly corrected by cholesterol lowering (Figure 5). In addition to SELL and SELPLG, 10 

CD4T8 showed strong upregulation of TNFSF10 (TRAIL). In CD8T1 and 2, IL32 was strongly 11 

induced in women with CVD and significantly corrected by cholesterol control. Other genes highly 12 

induced by CVD in CD8T1 included CD52, TRAC and HOPX. Several killer cell lectin receptors 13 

(KLRC4, KLRD1, KLRG1, KLRK1) were also significantly upregulated in CVD and restored to 14 

near-control by cholesterol-lowering drugs. In CD8T2, the activation marker CD69 was 15 

significantly downregulated by cholesterol-controlling drugs. In CD8T3, CD52, CCL5, IL32 and 16 

CD160 were all significantly upregulated by CVD. CCL5 encodes the chemokine RANTES, known 17 

to be important in atherosclerosis.96 In CD8T4, CVD significantly increased IL32, TRAC, HOPX, 18 

CCL5 and the killer lectin receptors KLRK1, KLRC4, KLRD1 (figure 5). 19 

 20 

In classical monocyte cluster 1, CVD strongly and significantly increased CCL4, SLC2A3, SOD2 21 

and SELPLG, all reversed by cholesterol control. In CM2, TNF, DUSP1 and 2 were highly 22 

upregulated by CVD (Figure 5), as were TNFSF10 (TRAIL), TNFSF13 (APRIL) and TNFSF13B 23 

(BAFF). BAFF and APRIL are important B cell regulators.97,98 In addition to CCL3, CCL4 and 24 

DUSP2, IL1B, known to be highly relevant in atherosclerosis,99 was highly upregulated in CM3 of 25 

HIV+CVD+ participants. The Toll-like receptor TLR2, which is known to be involved in 26 

atherosclerosis,100–102 was upregulated by CVD in CM3. In intermediate monocyte cluster 3, 27 



 
 

23 

CCL3, CCL4, TNF, IL1B and DUSP2 were upregulated by CVD and most were corrected by statin 1 

treatment.  2 

 3 

Gene expression patterns in WIHS participants with HIV and CVD.  4 

Figure 5 showed that many genes were significantly upregulated by HIV and CVD and corrected 5 

by cholesterol control. We systematically explored such patterns of gene expression (Figure 6). 6 

The most common pattern, seen in 21 genes, was decreased expression in women with HIV, 7 

increased in CVD and corrected by cholesterol control (down-up-down). Twelve other genes 8 

showed increased expression in participants with HIV, further increased in participants that also 9 

had subclinical CVD, and then reduced in participants on cholesterol-lowering drugs (up-up-10 

down). We found 3 genes that were significantly upregulated in participants with HIV, reduced in 11 

participants with CVD, and further reduced by cholesterol control (up-down-down). One gene, 12 

interferon-γ receptor (IFNGR1) was reduced by HIV, even more reduced in presence of CVD, and 13 

further reduced cholesterol-lowering drug treatment (down-down-flat, Figure 6).  14 

The down-up-down pattern was the most common in CD4 T cells (Figure 6A). The 15 

chemokine receptor CCR7 and the adhesion molecules L-selectin (SELL) and PSGL-1 (SELPG), 16 

the inflammatory cytokine IL-32 (IL32) and the cytoskeleton modulator CYTIP all followed this 17 

pattern. In CD8 T cells (Figure 6B), IL32, SELPLG, the killer lectin receptors KLRD1, KLRG1, 18 

KLRK1 and the interferon-responsive gene IFITM2 all followed this pattern. In classical (Figure 19 

6C) and intermediate monocytes (Figure 6D), TNF showed the down-up-down behavior, as did 20 

IL1B in intermediate monocytes. In non-classical monocytes, CCL4 and CD52 were 21 

downregulated in participants with HIV, up in participants with CVD and corrected by cholesterol 22 

control (Figure 6E). In B cells, CD74 and the BCR subunits CD79A and CD79B were down by 23 

HIV, up by CVD and corrected by cholesterol-lowering drugs (Figure 6F). Finally, this pattern was 24 

also seen for two Fc receptor genes in NK cells, FCGR3A and FCER1G (Figure 6G). 25 

 26 
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Figure 6
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 1 

Figure 6. Gene expression patterns by HIV, CVD and cholesterol medication. The log2 normalized expression of 2 
the genes listed above each panel shown as line graphs for each of the indicated cell types (average of all cells). Genes 3 
selected by significant differential expression. All data shown as HIV-CVD-, HIV+CVD-, HIV+CVD+, HIV+CVD+ on 4 
cholesterol medication (statin), from left to right. The line graph patterns were categorized as up-up-down (white 5 
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background), down-up-down (blue background), up-down-down (yellow background), and down-down-flat (green 1 
background). 2 
 3 

The up-up-down pattern was the most common in classical monocytes (Figure 6C), 4 

where the inflammatory chemokines CCL3, CCL4 and CCL20, the inflammatory cytokines IL1B 5 

and IL6, and the water channel AQP9 followed this pattern. In intermediate monocytes, CCL3 and 6 

CCL4 also followed this pattern, as did membrane-bound IgM (IGHM) in B cells (Figure 6F). IL32 7 

and KLRC3 in NK cells were upregulated in women with HIV, further increased by CVD and 8 

downregulated by cholesterol-lowering drugs (Figure 6G). 9 

The up-down-down pattern was less common. It was characteristic of CXCL 10 

chemokines in classical monocytes (Figure 6C), specifically the neutrophil-attracting chemokines 11 

CXCL2 and CXCL3 as well as the CXCR6 ligand CXCL16, which is also a scavenger receptor.103–12 

105 The underlying raw data for figure 6 is presented as Excel Table S3. 13 

 14 

PBMC subsets with significant differences of abundance.  15 

Finally, we asked whether HIV and CVD affected the abundance (cell number) of PBMC subsets. 16 

As expected,46,106 we found that CD4 T cells were significantly reduced in people living with HIV. 17 

We compared the proportions (cell percentages) for each of the 58 clusters using log odds ratio 18 

followed by ANOVA and Tukey’s multiple comparison test. We compared non-HIV vs HIV+ 19 

(reflecting the HIV effect), HIV+ vs HIV+CVD+ (reflecting the CVD effect), and HIV+CVD+ vs 20 

HIV+CVD+ treated with LDL cholesterol-lowering drugs (reflecting the cholesterol control effect) 21 

(Figure 7). Strikingly, three subsets of intermediate monocytes (Figure 7A) showed 22 

significantly different proportions. INT2 (IL7R-) and INT3 (TFhi) were significantly elevated in 23 

WIHS participants living with HIV and then drastically reduced in those that also had subclinical 24 

CVD. Cholesterol control significantly restored these cells. INT4 had an opposite pattern: These 25 

CD163- cells disappeared in WIHS participants living with HIV, reappeared in those that also had 26 

subclinical CVD, and were slightly reduced by cholesterol control.  27 
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 1 

Figure 7. Cell proportions in women with HIV, CVD, both or neither. HIV-CVD- (green), HIV+CVD- (yellow), 2 
HIV+CVD+ (blue), HIV+CVD+ on cholesterol medication (statin, red), from left to right. 8 samples per group except 7 3 
for HIV+CVD+. Proportions of cells in each cluster calculated as percent of the parent cell type as indicated in the title 4 
of each panel. Clusters with significant differences (*, p<0.05, **, P<0.01, *** p<0.001) in cell proportions (by log odds 5 
ratio) are shown with individual data points representing the standard error of the mean (SEM). Violin plots below show 6 
expression of all 40 cell surface markers (Log2 scale). Cluster description is as in figure 2 and 3. 7 
 8 

Among CD8 T cells, CD8T5 (CD38+HLA-DR+) (Figure 7B) were rare in HIV-CVD- WIHS 9 

participants, but increased in disease, becoming significant in HIV+CVD+ treated with cholesterol-10 
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lowering medications. Among B cells, activated memory B2 cells (Figure 7C) were severely 1 

lower in all diseased WIHS participants, whether they lived with HIV or also had subclinical CVD. 2 

Among NK cells, CD11b+ mature NK cells (cluster 2) (Figure 7D) were reduced in women with 3 

HIV with or without CVD. 4 

 5 

Discussion 6 

Here, we used combined protein and transcript panel scRNA-Seq to identify 58 clusters of PBMCs 7 

in 31 participants of the WIHS study. The most diversity was in CD4 T cells (16 clusters), 8 

monocytes (16 clusters) and CD8 T cells (14 clusters). B cells and NK cells were resolved into 6 9 

clusters each. The most salient findings were that many inflammatory genes were significantly 10 

increased in WIHS participants with CVD, and many of these genes were downregulated in 11 

participants on cholesterol-lowering drugs. Six clusters showed significantly different abundance 12 

of cells in the four groups of participants, three of them intermediate monocyte subsets, which 13 

underscores the extraordinary importance of this cell type in chronic HIV infection107,108 and 14 

CVD109,110. Intermediate monocyte numbers have previously been found to be increased in 15 

peripheral artery occlusive disease111 and significantly predicted cardiovascular events.82,112 Here, 16 

we discovered 5 subsets of intermediate monocytes. Intermediate monocyte subsets have not 17 

been described before. 18 

 INT1, the largest cluster, express the defining intermediate monocytes markers CD14 and 19 

CD16. They also share CD11b, CD11c, CD9, CD36, CD38, CD56, CD69, CD83, IL-3RA, IL6R, 20 

CD137, CD141, CD142 (tissue factor), CXCR4 and CD74 (HLA-DR) with all other intermediate 21 

monocytes. We found no single positive marker that was specific for INT1 and thus refrained from 22 

naming this cluster. INT2 uniquely lacks IL-7R (CD127, table 1); we propose to call these cells IL-23 

7R- intermediate monocytes. INT2 cells also lack CXCR3. INT3 (CD142hi) express tissue factor, 24 

the initiator of coagulation, even more strongly than INT2. Tissue factor expression has previously 25 

been found in intermediate monocytes110 and was increased in HIV+ subjects14. The proportion 26 
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of INT2 and INT3 is increased in women living with HIV. Intermediate monocytes are considered 1 

pro-atherogenic,79 and tissue factor expression provides a plausible reason for this. In INT2 and 2 

INT3, the inflammatory chemokines CCL3 and CCL4 and the known pro-atherogenic cytokine IL-3 

1β are significantly upregulated in participants with CVD. This is fully reversed in subjects 4 

receiving cholesterol-lowering medication. INT4 uniquely lack expression of CD163, the receptor 5 

for hemoglobin-haptoglobin complexes. Thus, we call INT4 CD163- intermediate monocytes. 6 

INT5, called CTLA4+CXCR3hi, uniquely express CTLA4 (CD152) and highly express CXCR3. 7 

Since intermediate monocyte subsets are currently not defined in mice, more discovery research 8 

in mice is needed to address the function of these intermediate monocyte subsets. 9 

In peripheral blood, we confirmed that CD4 T cells counts were significantly lower in 10 

people living with HIV. In many CD4 T cell clusters, IL32 mRNA expression was prominently 11 

increased by CVD. IL-32 is a 27 kDa cytokine expressed in T cells, NK cells and monocytes that 12 

is secreted after apoptosis. It is an inflammatory cytokine that drives IL-1β,99 TNF, IL-6 and IL-8 13 

expression,94,95 cytokines that are known to be important in CVD. IL-32 activates the leukocyte 14 

surface protease PR3, which in turn triggers the G-protein coupled receptor PAR2 and is known 15 

to be important in viral infections.113 We found IL-32 highly expressed in most  T and NK cell 16 

clusters. IL-32 expression appears to be specific for CVD and responds to cholesterol lowering. 17 

Prospective studies in larger cohorts will be needed to determine whether IL32 mRNA is a useful 18 

biomarker. 19 

One of the most striking findings of our study was that many pro-inflammatory cytokines 20 

and chemokines that were increased in CVD in many cell types were corrected by treatment with 21 

cholesterol-lowering drugs (mostly statins, see Table S1). Statins are known to lower several 22 

inflammatory biomarkers.114 Rosuvastatin is known to decrease the progression of subclinical 23 

atherosclerosis in HIV+ subjects,115 which was previously attributed to cholesterol lowering. A 24 

large ongoing clinical trial, the Randomized Trial to Prevent Vascular Events in HIV (REPRIEVE), 25 

is testing the effects of pitavastatin on CAD and inflammatory biomarkers.116 Our data suggest 26 
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that, in addition to LDL cholesterol lowering, statin treatment has significant anti-inflammatory 1 

benefits. This has been shown in earlier studies117 and our findings greatly extend this to many 2 

human blood cell types.  3 

When analyzing gene expression differences among the participant types, we found two 4 

common patterns. The up with HIV-up with CVD-down with statin (up-up-down) pattern of gene 5 

expression can perhaps be called the expected pattern, since both HIV and CVD are pro-6 

inflammatory, and since statins are known to be anti-inflammatory.117 However, we also found 7 

many genes that followed the down-up-down pattern, which means that their expression was 8 

decreased by HIV, increased by CVD and corrected by cholesterol control. Thus, not all 9 

inflammatory genes are regulated in the same direction by HIV and CVD, suggesting that for 10 

some genes, HIV and CVD are synergistic, for others antagonistic. Consistently across cell types, 11 

controlling LDL cholesterol showed an anti-inflammatory gene signature. 12 

In this study, CVD was assessed by carotid ultrasound. Thus, some of the markers 13 

discovered here may be expected to be better indicators for stroke than CVD elsewhere. There 14 

is overlap between stroke, myocardial infarction and peripheral artery disease risk, but the 15 

correlation is not perfect.118 This discovery study will encourage prospective epidemiological 16 

studies to address which PBMC subsets are best suited as clinical biomarkers to stratify risk and 17 

guide treatment in subjects with CVD or coronary artery disease or peripheral artery disease.  18 

In the WIHS study, participants were exceptionally well phenotyped, attending semi-19 

annual follow-up visits, during which they underwent detailed examinations, specimen collection, 20 

and structured interviews assessing health behaviors, medical history, and medication use.119 21 

These significant strengths are balanced by limitations of the present study. We don’t know 22 

whether the same changes in PBMCs would be observed in non-HIV populations. The multiethnic 23 

study of atherosclerosis (MESA120) is an example of such a cohort. The current findings also need 24 

to be extended to men (the current data is based on women) and Caucasians (the current data is 25 

based on mostly African American and Hispanic women). Studies of CVD in non-smokers are 26 
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also needed (the current data is based on smokers and ex-smokers), and the age range needs 1 

to be broadened.  2 

Six PBMC clusters showed significantly changed proportions in response to HIV, CVD, 3 

cholesterol control, or combinations. This finding is directly translatable, because these cells are 4 

defined by surface markers and thus can, in future validation studies, be identified by standard 5 

flow cytometry (Table S12), a method that is routinely used in monitoring HIV+ people.121  6 

CD8 T cell numbers in HIV+ males are associated with increased risk of acute myocardial 7 

infarction.24 The effect of cholesterol-lowering drugs on CD8 T cell activation is unclear.25,26 Major 8 

clinical trials have shown a potential benefit (reduced CVD risk) in HIV-infected populations 9 

treated with statins,116 but the specific cell types affected were not known prior to the present 10 

study. Here, we show that the TEMRA clusters CD8T1, 3, 7 and 9, naïve CD8 T cells (CD8T2), 11 

effector memory CD8 T cells (CD8T4) and CD38+ CD8 T cells (CD8T5) all show significant 12 

decreases in inflammatory gene expression in subjects treated with cholesterol-lowering drugs.   13 

It is known that HIV disease leads to impaired B cell and antibody responses.122 Our study 14 

identified B cell cluster 2 with high expression of CD25, a known marker for B cell proliferation, 15 

activation and exhaustion,91 suggesting that premature exhaustion of these B cells could be linked 16 

to a decreased antibody response in HIV+ individuals.91 CD11c+ B cells are increased in number 17 

in HIV infected patients, which agrees with our observation in B cell cluster 5. A recent study 18 

showed that a putative human B-1 cell may be linked to atherosclerosis.28 Specifically, the 19 

percentage of circulating CD20+CD27+CD43+ cells was directly correlated with levels of IgM to 20 

oxidation-specific epitopes on low density lipoprotein (LDL) and inversely correlated with coronary 21 

artery plaque volume, especially in cells with high expression of CXCR4.28 Here, we found 22 

significantly decreased CXCR4 surface expression in several B cell clusters in subjects with CVD, 23 

supporting the idea that CXCR4 on some B cells may have atheroprotective roles. Among NK 24 

cells, we found the proportion of cells in cluster 2 to be significantly reduced in HIV+CVD+ 25 

participants that were on cholesterol-lowering drugs. CD56bright NK cells are known to accumulate 26 
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in human atherosclerotic lesions, possibly contributing to plaque instability.123 Symptomatic 1 

carotid atherosclerotic plaques are often infiltrated by NK cells,123 but the exact subset was not 2 

investigated and their mechanistic role remains unknown. 3 

In conclusion, we present the first study of scRNA-Seq with cell surface phenotype 4 

assessment in the same cells in people living with HIV, with and without documented CVD. 5 

Beyond the translational and clinical utility of our findings, the identification of 58 distinct clusters 6 

of CD4 and CD8 T cells, monocytes, B cells and NK cells helps to gain a deeper understanding 7 

of PBMCs, a rich and readily accessible source of biological and clinical information. The 8 

discovery of subsets of intermediate monocytes calls for identifying such subsets in model 9 

organisms to test their function in vivo.  Many inflammatory genes are upregulated by HIV, CVD 10 

or both, and in most cases corrected by statin treatment. 11 

 12 

 13 

 14 

 15 

 16 

  17 
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Methods  1 

Study characteristics and sample selection. The Women’s Interagency HIV Study (WIHS) was 2 

initiated in 1994 at six (now expanded to ten) U.S. locations.36,37 It is an ongoing prospective study 3 

of over 4,000 women with or at risk of HIV infection. Recruitment in the WIHS occurred in four 4 

phases (1994-1995, 2001-2002, 2010-2012, and 2013-2015) from HIV primary care clinics, 5 

hospital-based programs, community outreach and support groups.  Briefly, the WIHS involves 6 

semi-annual follow-up visits, during which participants undergo similar detailed examinations, 7 

specimen collection, and structured interviews assessing health behaviors, medical history, and 8 

medication use.  All participants provided informed consent, and each site’s Institutional Review 9 

Board approved the studies. 10 

 11 

All participants in the current analysis were part of a vascular substudy nested within the 12 

WIHS.124,125 The baseline visit for the vascular substudy occurred between 2004 and 2006, and a 13 

follow-up visit occurred on average seven years later.  Participants underwent high-resolution B-14 

mode carotid artery ultrasound to image six locations in the right carotid artery: the near and far 15 

walls of the common carotid artery, carotid bifurcation, and internal carotid artery. A standardized 16 

protocol was used at all sites,35,126 and measurements of carotid artery focal plaque, a marker of 17 

subclinical atherosclerosis, were obtained at a centralized reading center (U. of Southern 18 

California).  Subclinical CVD (sCVD) was defined based on the presence of one or more carotid 19 

artery lesions.35 20 

 21 

From the initial 1,865 participants in the WIHS vascular substudy, 32 participants were selected 22 

for scRNA-seq analysis. Because we were interested in the joint relationships of HIV infection 23 

and sCVD with surface marker and RNA expression by different cell subtypes, we used a two-by-24 

two factorial design based on HIV, CVD and cholesterol treatment (mostly statins). CVD was 25 

defined as presence of carotid artery focal plaque at either vascular substudy visit to define four 26 
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groups of eight participants each: HIV-, HIV+CVD-, HIV+CVD+, HIV+CVD+ treated with 1 

cholesterol-lowering drugs. HIV infection status was ascertained by enzyme-linked 2 

immunosorbent assay (ELISA) and confirmed by Western blot. CVD participants either had one 3 

or more plaques at each vascular substudy visit, or more than one plaque at a single visit.  Non-4 

CVD participants with self-reported coronary heart disease or current lipid-lowering therapy use 5 

were excluded. Participants were formed in quartets matched by race/ethnicity (except one 6 

quartet), age (± 5 years) at the baseline vascular substudy (except one quartet where the age 7 

difference was more but all the women were post-menopausal), visit number, smoking history, 8 

and date of specimen collection (within 1 year).   9 

 10 

Demographic, clinical, and laboratory variables were assessed from the same study visit using 11 

standardized protocols. Table S1 shows characteristics of the study population.  The median age 12 

at the baseline study visit was 55 years, and 96% of participants were either of black race or 13 

Hispanic ethnicity.  Most (86%) reported a history of smoking.  Substance use was highly 14 

prevalent, with 43% of HIV+ and 50% of HIV- participants reporting either a history of injection 15 

drug use; current use of crack, cocaine, or heroin; or alcohol use (≥14 drinks per week).  Among 16 

HIV+ participants, over 80% reported use of HAART at the time PBMCs were obtained, and 59% 17 

reported an undetectable HIV-1 RNA level.  The median CD4+ T-cell count was 585 cells/µL (IQR 18 

382-816) in HIV+ women without sCVD and 535 cells/µL (IQR 265-792) in HIV+ women with 19 

sCVD.  20 

 21 

Preparation of PBMC samples for CITE-seq. To avoid batch effects, sixteen samples each 22 

were processed on the same day. PBMC tubes were thawed in a 37℃ water bath and tubes filled 23 

with 8 mL of complete RPMI-1640 solution (Table S13; cRPMI-1640 contains Human Serum 24 

Albumin, HEPES, Sodium pyruvate, MEM-NEAA, Penicillin-Streptomicyn, GlutaMax and 25 
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Mercaptoethanol). The tubes were centrifuged at 400 xg for 5 minutes and pellets resuspended 1 

in cold staining buffer (SB: 2 % fetal bovine serum (FBS) in in phosphate-buffered saline (PBS)). 2 

All reagents, manufacturers and catalogue numbers are listed in Table S13. Manual cell counting 3 

was performed by diluting cell concentration to achieve 100-400 cells per hemocytometer count. 4 

Cells were aliquoted to a count of 1 million cells each and incubated on ice with Fc Block (BD, 5 

Table S13) at a 1:20 dilution, centrifuged at 400 xg for 5 minutes, resuspended in 180 µL of SB 6 

and transferred to their respective sample Multiplexing Kit tubes (BD). The cells were incubated 7 

for 20 minutes at room temperature, transferred to 5 mL polystyrene tubes, washed with 3 mL SB 8 

and centrifuged at 400 xg for 5 minutes. The addition of 2 mL of SB to the tubes and centrifugation 9 

was repeated 2 more times for a total of 3 washes. The cells were resuspended in 400 µL of SB 10 

and 2 µL of DRAQ7 and Calcein AM were added to each tube. The viability and cell count of each 11 

tube was determined using the BD Rhapsody Scanner (Scanner) (Table S2). Tube contents were 12 

pooled in equal proportions with total cell counts not to exceed 1 million cells. The tubes were 13 

then centrifuged at 400 xg for 5 minutes and resuspended in a cocktail of 40 AbSeq antibodies (2 14 

µL each and 20 µL of SB) on ice for 30-60 minutes per manufacturer’s recommendations. The 15 

tubes were then washed with 2 mL of SB followed by centrifugation at 400 xg for 5 minutes. This 16 

was repeated two more times for a total of 3 washes. The cells were then counted again using 17 

the Scanner.  18 

 19 

Library preparation. Cells were loaded at 800-1000 cells/µL into the primed plate. The plate was 20 

primed and then loaded and unloaded per the User Guide described by BD when using a Scanner. 21 

The lysis buffer that was collected was removed by having the beads isolated with a magnet and 22 

the supernatant removed. Reverse Transcription was performed at 37℃ on a thermomixer at 23 

1200 rpm for 20 minutes. Exonuclease I was then incubated at 37℃ on a thermomixer at 1200 24 

rpm for 30 minutes and then immediately placed on a heat block at 80℃ for 20 minutes. The tube 25 
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was placed on ice followed by supernatant removal while beads were on a magnet. The beads 1 

were resuspended in Bead Resuspension solution (provided in BD kit). Then, the tubes were 2 

stored in 4℃ until further processing. Per BD’s protocol, the reagents for PCR1 including the BD 3 

Human Immune Response Panel and our custom panel of ~100 genes were added to the beads. 4 

Next samples were aliquoted into four 0.2 mL strip PCR tubes and incubated for 10 cycles 5 

according to BD’s protocol for PCR1. A double size selection was performed using AMPure XPre 6 

beads at a ratio of 0.7X (RNA tube). The supernatant was transferred to a new tube and an 7 

additional 100 µL of AMPure XP beads were added (sample tags and antibodies). The RNA tube 8 

was washed twice with 500 µL of 80 % ethanol. 550 μl of supernatant were removed from the 9 

antibody tube followed by two washes with 500 µL of 80 % ethanol. The cDNA was eluted off the 10 

beads using 30 µL of BD elution buffer and then transferred to a 1.5mL tube. 11 

 12 

Pre-sequencing quality control (QC). A QC/ quantification check was performed on the tube 13 

containing AbSeq and Sample Tags using Agilent TapeStation high sensitivity D1000 screentape. 14 

5 µL from each tube (mRNA and Ab/ST) was then added to their respective tubes containing the 15 

reagents for PCR2. mRNA had the reagents required for amplifying the Human Immune 16 

Response Panel and the Custom panel, while the Sample Tags had the reagents required for 17 

amplifying them specifically. Each tube had 12 cycles of PCR performed according to BD’ User 18 

Guide. Each tube was then cleaned with AMPure XP beads with the following ratios 0.8X for 19 

mRNA and 1.2X for ST. Two 200 µL washes were performed during the clean-up using 80 % 20 

ethanol per sample. The cDNA was eluted off using BD elution buffer. A QC/ quantification check 21 

was performed using Agilent TapeStation high sensitivity D1000 screen tape and Qubit double 22 

stranded high sensitivity DNA test kit. The mRNA was then diluted, if necessary, to a 23 

concentration of 1.2-2.7 ng/µL and the Ab/ST tube as well as the Sample Tag library from PCR2 24 

were diluted, if needed, to a concentration of 0.5-1.1 ng/µL. From each sample 3 µL were added 25 
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to a volume of 47 µL of reagents for PCR3 as described by BD’s User Guide following the protocol 1 

and number of cycles listed, except for AbSeq, which had 9 cycles of PCR performed as described 2 

by previous optimization. The three libraries were then cleaned with AMPure XP beads at the 3 

following ratios: mRNA 0.7X AbSeq and Sample Tag 0.8X. Samples were washed twice with 200 4 

µL of 80 % ethanol. The cDNA was eluted off the beads using BD’s elution buffer. Then a final 5 

QC and quantification check was performed using TapeStation and Qubit kits and reagents.  6 

 7 

Sequencing. The samples were pooled and sequenced to the following nominal depth 8 

recommended by BD: AbSeq: n x 1000 reads per cell, where n is the plexity of AbSeq used; 9 

mRNA: 20,000 reads per cell; Sample Tags: 600 reads per cell. A total of 60,600 reads per cell 10 

were desired for sequencing on the NovaSeq. The samples and specifications for pooling and 11 

sequencing depth, along with number of cells loaded onto each plate was optimized for S1 and 12 

S2 100 cycle kits (Illumina) with the configuration of 67x8x50 bp. Once sequencing was complete, 13 

a FASTA file was generated by BD as a reference for our AbSeq and genes we targeted with 14 

these assays. The FASTA file and FASTQ files generated by the NovaSeq were uploaded to 15 

Seven Bridged Genomics pipeline, where the data was filter in matrices and csv files. This 16 

analysis generated draft transcriptomes and surface phenotypes of 54,078 cells (496 genes, 40 17 

antibodies). 11 genes were not expressed, i.e. had exactly 0 total reads in all cells combined. 18 

These genes were removed, leaving 485 genes for analysis. 19 

 20 

Doublet Removal. Based on the 4 sample tags used per plate, 8,359 doublets were removed. 21 

The remaining 45,719 cells were analyzed using the Doublet Finder package on R 22 

(https://github.com/chris-mcginnis-ucsf/DoubletFinder) with the default doublet formation rate 23 

(7.5%). This removed another 3,322 doublets, leaving 42,397 Cells. Finally, we removed all cells 24 

that had less than 128 (27) antibody molecules sequenced. This removed 786 noisy cells, resulting 25 
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in 41,611 cell transcriptomes. All antibody data were CLR (centered log-ratio) normalized and 1 

converted to log2 scale. All transcripts were normalized by total UMIs in each cell and scaled up 2 

to 1000. 3 

 4 

Identifying Major Cell Types by Biaxial Gating. To identify the major known cell types, we used 5 

antibodies to CD3, CD19, CD4, CD8, CD14, CD16 and CD56. Cell type definitions:  6 

• B cells: CD19+ and CD3-  7 

• T cells: CD19- and CD3+ as T cells. (To find CD4T and CD8T further ahead in the 8 

analysis) 9 

• CD4 T cells: CD4+ and CD8- T cells  10 

• CD 8 T cells: CD8+ and CD4- T cells  11 

• Monocytes and NK cells from CD19-CD3- (non-B non-T cells) 12 

• CM: CD14+CD16- (non-B non-T cells) 13 

• INT: CD14+CD16+ (non-B non-T cells) 14 

• NCM: CD14-CD16+CD56- (non-B non-T cells) 15 

• NK: CD4- CD56+ CD14- CD20- CD123- CD206- (non-B non-T cells) 16 

 17 

As is standard in the NK cell field,127 the CD16- immature NK cells were gated to a higher level of 18 

CD56 as shown in figure S3. The mature NK cells were CD19-CD3-CD16+CD56+. One 19 

CD16+CD56- cluster was also identified as NK cells. This resulted in 2919 B cells, 11,045 CD4 T 20 

cells, 12,843 CD8 T cells, 5,145 CM, 1009 INT, 475 NCM and 1,843 NK cells.  21 

 22 

Thresholding. Each antibody threshold (Table S5) was obtained by determining its expression 23 

in a known negative cell. To identify the thresholds, biaxial plots of mutually exclusive markers 24 

were used to best separate the positive populations from the noise. In combined protein and 25 
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transcript panel single cell sequencing, non-specific background staining is caused by incomplete 1 

Fc block and oligonucleotide-tagged antibody being trapped in the nanowell.49  2 

 3 

Clustering. Clustering was performed using UMAP (Uniform Manifold Approximation and 4 

Projection) and Louvain clustering.72 UMAP is a manifold learning technique for dimensionality 5 

reduction. It is based on the neighborhood graphs, which captures the local relationship in the 6 

data. UMAP is able to maintain local structure and also preserve global distances in the reduced 7 

dimension, i.e the cells that are similar in the high dimension remain close-by in the 2 dimensions 8 

and the cells that different are apart in the 2 dimensions. There are a few parameters that define 9 

the dimensionality reduction when using UMAP; 1) N_neighbours: This is used to create the 10 

neighborhood graph. It controls how the UMAP balances the local and the global structure. It 11 

gives the size of the local neighborhood the algorithm looks at while trying to obtain the lower 12 

dimensional manifold. Larger values give a more global view while smaller values give more on 13 

local view. 2) n_pcs: This gives the number of principal components of the data to consider while 14 

creating the neighborhood graph. 3) min_dist: This parameter provides the minimum distance 15 

between embedded points. Smaller values result in more dense embedding while larger values 16 

result in a more spread-out embedding. 4) Spread: This parameter determines the scale at which 17 

the points are spread out. Together with min_dist, it determines the closeness of points in the 18 

cluster. The clustering parameters used were: n_neighbors = 100, n_pcs = 50, min_dist = 1, 19 

spread = 1, random state = 42. Louvain resolution was set at 0.8. Subclustering of each major 20 

cell type was based on all non-negative antibodies (Table S7). 21 

 22 

Cluster Assignment. Louvain clusters produced 12 clusters with clearly bimodal expression of 23 

at least one cell surface marker. In CD4 T cell, 4 of the initial clusters were further divided based 24 

on the expression of CD11c, CD56, CD25, CD127, CXCR3 and CCR2. CD8 T cells had two 25 

clusters that were divided based on CD11c, CD16 and CXCR3 surface marker expression. One 26 
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cluster from classical monocytes and one cluster from intermediate monocytes were further 1 

divided based on CCR7 and CD152 expression, respectively. In non-classical monocytes, one 2 

cluster showed differential expression of CD36 and CD152 surface marker expression and was 3 

divided in two. In B cells, one cluster was split because it showed differential expression of CD25 4 

and CXCR3 within the cluster. Finally, two clusters from NK cells were split due to CD16, CD56 5 

and CD11c expression.  6 

 7 

Comparing Gene Expression among Participant Types. To determine differential expression 8 

(DE) among the four types of participants, we use the Seurat package in R with no thresholds 9 

over avg_logFC, minimum fraction of cells required in the two populations being compared, 10 

minimum number of cells and minimum number of cells expressing a feature in either group. We 11 

filtered for adjusted p<0.05 and compared HIV-, HIV+CVD-, HIV+CVD+ and HIV+CVD+ statin-12 

treated. From this data, volcano plots were generated using ggplot2 and ggrepel packages in R, 13 

Axis were restricted to the range of (-2,2) on the x-axis and (0,20) on the y-axis. Genes outside 14 

these ranges were bounded to the corresponding limit of the axes.  15 

 16 

Comparing Cell Proportions. To find changes in proportions, we identified the cell numbers for 17 

each participant in each cluster (Table S4). Statistical differences in cell proportions were 18 

calculated by log-odds ratio defined as p/(1-p) where p is the proportion of cells, followed by 19 

ANOVA and Tukey’s multiple comparison test between the four groups. For clarity, the data is 20 

presented as percentage of cells. 21 

 22 

Correlation Analysis. We correlated each antibody to its corresponding gene(s) using Spearman 23 

rank correlation and significance (R package). For each combination of gene-antibody, we 24 

discarded cells that had values below the corresponding threshold for that antibody as well as 25 

cells with zero counts for that gene. After this filter, any gene-antibody combination that had 10 26 
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cells or less was deemed insignificant. Finally, all non-significant (p-value > 0.05) were designated 1 

a nominal value of zero as the Spearman rank correlation coefficient and we selected only those 2 

genes or antibodies that had at least one correlation whose coefficient >= 0.25 or whose 3 

coefficient <= -0.25. All significant non-negative correlations are reported in Table S6. 4 

 5 
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Supplemental figure legends 1 

 2 

Figure S1. Study design overview. Three group comparisons (HIV effect, CVD effect and 3 

cholesterol lowering treatment effect) and main steps of analysis. 4 

 5 

Figure S2. Unbiased UMAP clustering. All cells were clustered based on 462 genes and 40 6 

antibody markers using Seurat, revealing B cells, monocytes, DCs, NK and T cells (left). The 7 

monocytes and DCs were re-clustered showing 3 classical, 2 intermediate and 4 nonclassical 8 

monocyte clusters, 1 DC and 1 monocyte-DC cluster (right).   9 

 10 

Figure S3. Gating scheme (A) and biaxial dot plots (B-E) to identify major known cell types. 11 

PBMCs from 32 WIHS participants were hash-tagged and stained with 40 oligonucleotide-tagged 12 

mAbs (table S3). (B) B cells were defined as CD19+CD3- and T cells as CD19-CD3+. (C) T cells 13 

were identified as CD4 (CD4+CD8-) or CD8 (CD4-CD8+). (D) All CD19-CD3- cells were gated for 14 

CD14 and CD16, with CD14+CD16- cells being classical (CM) and CD14+CD16+ being 15 

intermediate (INT) monocytes. (E) The CD14-CD16+ cells from panel D contain NK cells, which 16 

were identified by CD56 and defined as CD56+CD14-CD20-CD123-CD206-. Most of the 17 

remaining CD56-CD16+ cells were nonclassical monocytes (NCM).  18 

 19 

Figure S4. Rainbow plots of cell surface phenotype not shown in Figure 2. The expression 20 

level of each of the 40 antibody markers was color-coded from dark blue (=0, not expressed) to 21 

red (highest expression, log2 scale, as per color bar in each panel).  (A) CD4 T cells, (B) CD8 T 22 

cells, (C) Monocytes (Classical monocytes; CM, Intermediate monocytes; INT, and 23 

Nonclassical monocytes; NCM), (D) B cells, (E) NK cells. 24 

 25 
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Figure S5. Antibody expression in all clusters. Violin plots for each of the 58 PBMC clusters. 1 

(A) CD4+ T cells (total of 16 clusters), (B) CD8+T cells (total of 14 clusters), (C) Classical 2 

monocytes (total of 6 clusters), (D) Intermediate monocytes (total of 5 clusters), (E) 3 

Nonclassical monocytes (total of 3 clusters), (F) B cells (total of 6 clusters), (G) NK cells (total 4 

of 6 clusters). 5 

 6 

Figure S6. Pathway analysis. Ingenuity pathway analysis (IPA) was conducted on all clusters, 7 

filtered for the 21 pathways most relevant to HIV and CVD. Enrichment p values shown as a heat 8 

map from blue (P<0.05) to red (p<10-10). 9 

 10 

Figure S7. Remaining volcano plots not shown in Figure 7.  11 

  12 
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Supplemental Excel tables 1 

 2 

Supplemental Excel Table S1. The data underlying Figure 4. Full gene expression matrix. 3 

(A) Average gene expression per cell in all clusters. (B) Log2 normalized gene expression. (C-I) 4 

Gene expression of each cell in each cell type, (C) CD4 T cells, (D) CD8 T cells, (E) Classical 5 

monocytes (CM), (F) Intermediate monocytes (INT), (G) Nonclassical monocytes (NCM), (H) B 6 

cells, (I) NK cells. 7 

 8 

Supplemental Excel Table S2. The data underlying Figure 5. Differentially expressed genes 9 

[HIV-CVD- vs HIV+CVD-, HIV-CVD+ vs HIV+CVD+, HIV+CVD+ vs HIV+CVD+Statin (cholesterol 10 

lowering drugs)] compared in each cell cluster. First group (before the ‘+’) against second group 11 

(after the ‘+’). gene: gene name, p_val: raw p value, avg_logFC: average log2 fold change, pct.1: 12 

the percentage of cells that express the gene in the first group, pct.2: the percentage of cells 13 

where the gene is detected in the second group, p_val_adj: adjusted p-value, based on Bonferroni 14 

correction using all genes in the dataset p value adjusted by Benjamini-Hochberg for multiple 15 

comparisons.  16 

 17 

Supplemental Excel Table S3. The data underlying Figure 6. Significantly differentially 18 

expressed genes in each PBMC cluster among the 4 patient types [HIV-CVD-, HIV+CVD-, 19 

HIV+CVD+, HIV+CVD+Statin+ (cholesterol lowering drugs)]  20 

 21 

 22 

 23 


