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ABSTRACT 
 
The development of objective brain-based measures of individual differences in psychological 
traits is a longstanding goal of clinical neuroscience. Here we show that reliable objective 
markers of children’s neurocognitive abilities can be built from measures of brain connectivity. 
The sample consists of 5,937 9- and 10-year-olds in the Adolescent Brain Cognitive 
Development multi-site study with high-quality functional connectomes that capture brain-
wide connectivity. Using multivariate methods, we built predictive neuromarkers for a general 
factor of neurocognitive ability as well as for a number of specific cognitive abilities (e.g., spatial 
reasoning, working memory). Neuromarkers for the general neurocognitive factor successfully 
predicted scores for held-out participants at 19 out of 19 held-out sites, explaining over 14% of 
the variance in their scores. Neuromarkers for specific neurocognitive abilities also exhibited 
statistically reliable generalization to new participants. This study provides the strongest 
evidence to date that objective quantification of psychological traits is possible with functional 
neuroimaging. 
 

INTRODUCTION 
 
Psychological traits and abilities arise from complex patterns in the structure and function of 
the human brain. A central goal for clinical neuroscience is to objectively measure these brain 
patterns in order to assess and predict individual differences in traits and abilities. Recent 
studies provide hints that objective quantification of psychological traits is possible with non-
invasive functional neuroimaging1–5  (see 6 for a review), but modest sample sizes and 
inconsistent results have prevented any strong conclusions. 
 
In the present work, we take a significant step forward. We establish the strongest evidence to 
date for the effectiveness and generalizability of brain-based objective markers 
(“neuromarkers”) for neurocognitive abilities, a set of inter-related abilities for reasoning, 
problem solving, manipulating representations, and learning and recall of information7–9. 
Individual differences in these abilities are important because they are associated with diverse 
life outcomes. Better neurocognitive abilities are associated with health, well-being, and 
occupational success10,11, while deficits in neurocognition, and closely related constructs such 
as executive functioning7,9, are associated with a broad range of psychopathologies12–16.  
 
Traditionally, neurocognitive abilities were studied in functional imaging with task-based 
studies and locationist methodology17–20—participants are given tasks that engage 
neurocognitive processing with the aim of localizing task-associated processing to specific brain 
regions. Our work here differs in three respects. First, we take a network neuroscience 
approach21,22, examining interconnections among distributed large-scale networks measured 
when participants are at rest23. Second, we apply recently developed multivariate predictive 
modeling methods that aggregate (typically small) units of information across the entire brain, 
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creating an overall best prediction of scores on individual difference variables.24 Such methods 
provide a substantial improvement in effect size compared to traditional mass univariate 
approaches (which conduct separate statistical tests at each brain feature), potentially allowing 
clinically meaningful predictions of individual differences at the level of the single subject. 
Third, we do not study how brain features are associated with a single neurocognitive task. 
Rather, we examine how brain connectivity is linked to an overarching general factor of 
neurocognitive ability25–28 that contributes to performance across diverse neurocognitive tasks, 
as well as several specific factors of neurocognitive ability29,30.   
 
Our study leverages imaging and behavioral data from 11,875 9 and 10-year olds in the 
Adolescent Brain and Cognitive Development (ABCD) national consortium study, Release 
2.131,32. We applied bifactor modeling to the comprehensive ABCD 11-task neurocognitive 
battery33 to quantify individual differences in a dominant general factor of neurocognitive 
ability, which captured 75% of the variation in task scores (coefficient w hierarchical34), as well 
as three domain-specific factors that together accounted for 13% of the variation in task scores 
(Figure 1). We also produced resting state connectomes for 5,937 youth who met stringent 
neuroimaging quality control standards; these connectomes capture tens of thousands of 
functional connections between hundreds of brain regions. We next applied a multivariate 
approach predictive modeling approach, brain basis set (BBS)35,5,36, to build neuromarkers for 
neurocognitive abilities from whole-brain functional connectivity patterns. To guard against 
identifying spurious relationships and to provide evidence of generalizability, we coupled BBS 
with leave-one-site-out cross-validation, in which we construct neuromarkers in all sites except 
one, test the marker at the held-out site, and repeat until each site is held out.  
 

RESULTS 
 

 
Figure 1: Factor Model of the ABCD Neurocognitive Battery. The comprehensive 11-task ABCD 
neurocognitive battery was factor analyzed yielding a general factor of neurocognitive ability 
and three specific factors.  
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Figure 2: Correlations Between Predicted and Actual General Factor Scores in Leave-One-Site-
Out Cross-Validation Analysis. Neuromarkers for the general factor of neurocognitive ability 
were constructed based on whole brain connectivity patterns. (Left Panel) These neuromarkers 
generalized to 19 out of 19 held out sites. The overall mean correlation between predicted and 
observed general factor scores for 5,937 held out subjects was 0.36, pPERM<0.0001 (observed 
correlation was higher than 10,000 correlations in the permutation distribution). (Right Panel) 
Scatter plots for the four largest held-out sites show highly consistent performance. 
 
Connectivity-based neuromarkers for the general factor of neurocognitive ability are highly 
effective in predicting scores in held-out subjects 
 
In leave-one-site-out cross-validation, the correlation between actual versus predicted general 
factor scores, averaging across folds of the cross-validation, was 0.36 (Figure 1, left panel). That 
is, brain connectivity patterns accounted for 14.2% of the variance in general factor scores in 
held-out samples of youth (variance explained was calculated with the r-squared cross-
validated metric37). Cross-site generalizability was remarkably consistent (Figure 1, right panel). 
Correlations between predicted and actual scores were statistically significant in 19 out of 19 
held-out sites (all 19 site-specific p values < 0.0001; observed correlations were higher than all 
10,000 correlations in the permutation distribution). 
 
Predictive performance of neuromarkers for the general factor of neurocognition remained 
highly statistically significant across multiple robustness checks 
 

Analysis 
General Factor of 
Neurocognitive Ability 

Number of 
Participants (N) 

1. Main Analysis r=0.36; p<0.0001* 5,937 

2. Additional Demographic Controls r=0.30; p<0.0001* 5,468 
3. White/European-American (non-
Hispanic) Subsample 

r=0.27; p<0.0001* 3,480 

4. Leave-One-Site Out General Factor r=0.36; p<0.0001* 5,937 

5. Ultra-Low Motion Subsample r=0.32; p<0.0001* 2,847 
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Table 1: Summary of Additional Analyses to Assess Robustness. The sensitivity of our main 
analyses (top row) to modeling choices was assessed with a number of robustness checks (rows 
2-5). Correlations between actual and predicted neurocognitive scores remained statistically 
significant and similar in size across all these analyses.  * = observed correlation was higher than 
all 10,000 correlations in the permutation distribution. 
 
We next assessed the robustness of our leave-one-site-out cross-validation analysis via 
sensitivity checks that modified key elements of the analysis stream. We tested alternative 
analyses that utilized: 1) Additional ABCD demographic covariates (household income, highest 
parental education, household marital status), and 2) A subsample restricted to participants 
who reported their race as White/European-American (non-Hispanic), to confirm that findings 
were not driven by potentially confounding demographic factors; 3) Bifactor models of 
neurocognition learned in the training sample and applied to the held-out sample (to create 
total separation between training and test samples); and 4) An ultra-low head motion sample 
(mean framewise displacement<0.2; to confirm motion was not responsible for any 
associations). As shown in Table 1, all results remained highly statistically significant across 
these changes, confirming the robustness of our analysis stream.  
 
Neuromarkers for specific cognitive abilities also exhibited statistically reliable generalization 
to unseen subjects, with neuromarkers for verbal abilities performing the best 

 
Figure 3: Correlations Between Predicted and Actual Scores for 14 Specific Neurocognitive 
Abilities in Leave-One-Site-Out Cross-Validation Analysis. Neuromarkers for 14 specific ability 
variables were constructed based on whole brain connectivity patterns. All 14 neuromarkers 
exhibited statistically reliable generalization to unseen subjects. 
 
We next assessed the predictivity of neuromarkers for specific neurocognitive abilities, in 
particular the three specific factors as well as the 11 individual neurocognitive tasks (Figure 1). 
Neuromarkers were constructed in 14 separate BBS models, each tested with leave-one-site-
out cross-validation. We found that neuromarkers for all 14 specific ability variables exhibited 
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statistically reliable generalization to unseen subjects (Figure 3). Neuromarkers for verbal 
abilities (vocabulary and reading) performed the best, each accounting for more than 9% of the 
variance in scores in held out participants. To address the fact that the general factor is 
correlated (to varying degrees) with some of the 14 specific ability variables, we constructed 
additional neuromarkers for all 14 specific ability variables, this time performing leave-one-site-
out cross-validation controlling for the effect of the general factor of neurocognitive ability. We 
found 13 of the 14 neuromarkers continued to exhibit statistically reliable generalization to 
unseen subjects (the 14th neuromarker, working memory, was trend significant at pPERM=0.10, 
Figure S3). This result demonstrates that resting state connectivity patterns contain unique 
information about multiple specific domains of neurocognitive abilities over and above 
information about the general factor.  
 
Functional connections involving control networks and processing networks were prominent 
in the general factor neuromarker. Additionally, these connections varied the most across the 
fifteen neuromarkers for different neurocognitive abilities. 
 

 
Figure 4: Connections Between Brain Networks in the Neuromarker for the General Factor of 
Neurocognition. (Left Panel) Supra-threshold connections linking large-scale networks are 
shown as red and blue dots. The map shows a distributed set of brain-wide connections is 
related to the general factor for neurocognitive ability. Connections involving control networks 
(fronto-parietal, ventral attention, dorsal attention, and cingulo-opercular) and processing 
networks (visual, default) are especially prominent. (Right Panel) Network map highlighting 
connections involving control networks and processing networks. Width of chords represents 
number of suprathreshold connections linking the indicated pair of networks. Red shades = 
connections at which higher connectivity predicts higher neurocognitive scores; Blue shades = 
connections at which lower connectivity predicts higher neurocognitive scores. 
 
We next examined consensus connectomes, importance-weighted composite maps associated 
each neuromarker (see Methods, §9). For the general factor neuromarker, its consensus 
connectome (Figure 4) showed prominent representation of connections involving control 
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SMH – Somatomotor hand
SMM – Somatomotor mouth
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networks (fronto-parietal, cingulo-opercular, ventral attention, and dorsal attention) and 
processing networks (visual, default). Connections involving these networks were 56.4% of the 
suprathreshold connections in the general factor neuromarker, even though make up only 
22.6% of the connections in the connectome.  
 

 
Figure 5: Connections Involving Control Networks and Processing Networks Differentiate 
Neuromarkers for Different Neurocognitive Abilities. We identified pairs of networks (listed in 
rows) in which inter-network connections varied the most across the fifteen neuromarkers for 
neurocognitive abilities (listed in columns). The size of the gray circles indicates the number of 
suprathreshold connections linking the pair of networks for each neuromarker. Red network 
labels indicate positive connections and blue indicate negative connections. The figure shows 
that connections involving control networks (Fronto-parietal, Cingulo-opercular, Dorsal 
Attention, Ventral Attention) and processing networks (Default, Visual, Somatomotor-Hand) 
play a major role in differentiating neuromarkers for distinct neurocognitive abilities.  
 
We next calculated a variability index (Methods, §10) that identifies pairs of networks whose 
connections varied the most across the 15 neuromarkers for neurocognitive abilities (the index 
separates positive and negative internetwork connections, and is thus calculated over 240 
inter-network values). This index illuminates the main network connectivity patterns that best 
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differentiate the neuromarkers. We found the top 21 inter-network relationships (out of 240 
total) accounted for over 50% of the variance in inter-network connectivity across the 15 
neuromarkers. These 21 highly varying inter-network relationships are shown in Figure 5, which 
in addition highlights interesting patterns of specificity for different domains of neurocognition. 
For example, the Speed/Flexibility factor is heavily represented in negative connections 
involving fronto-parietal and cingulo-opercular connections with default network. The 
Learning/Memory factor, in contrast, is most represented in negative connections within 
default network and positive connections linking default network with fronto-parietal network. 
Similar patterns of specificity are found for other specific neurocognitive abilities. Additionally, 
we found connections linking control networks and processing networks (see Figure 5 caption), 
which were heavily represented in the general factor neurosignature (see Figure 4), were also 
the most variable across neuromarkers.  
 

DISCUSSION 
 
This study examined behavioral and resting state imaging data for 5,937 9- and 10-year-old 
participants across 19 sites in the ABCD Consortium study33,38. Using a multivariate predictive 
modeling approach, we aimed to build neuromarkers for neurocognitive abilities from resting 
state connectivity patterns and validate their performance with leave-one-site cross-validation. 
Our main findings are that multivariate neuromarkers of neurocognitive abilities are effective at 
predicting multiple domains of neurocognition and reliably generalize to held out subjects. In 
addition, neuromarkers for the general factor of neurocognition were particularly effective, 
explaining over 14% of variance in scores in held out subjects, a clinically meaningful level of 
predictivity, and remained highly predictive after a number of robustness checks. Our results 
provide the strongest evidence yet that neuroimaging can be used to build reliable and 
generalizable brain-based markers for psychological traits and abilities. Moreover, these 
findings set the stage for additional investigation in the longitudinal ABCD dataset to better 
understand how the connectivity patterns here linked to neurocognitive abilities change and 
mature over the course of adolescence.  
 
Previous studies also identified links between brain imaging features, including resting state 
functional connectivity, and neurocognitive phenotypes1–6. The present study adds to the 
literature in three key ways. First, this is the largest study ever examining links between brain 
connectivity and cognitive abilities in youth. Larger samples enable estimation of effects with 
less variability39, yielding especially reproducible insights into brain-behavior relationships. 
Second, this study provides unique evidence about generalizability, showing that neuromarkers 
trained in one set of subjects effectively and consistently generalize to new subjects (with 
successful generalization in 19 out of 19 held out ABCD sites). The utility of imaging-based 
markers for psychological traits and abilities depends heavily on their applicability to new 
datasets collected at heterogenous sites with different subject characteristics and scanners, and 
this study confirms that strong generalizability is possible. Third, most previous neuroimaging 
studies exclusively examined a single aspect of cognition, such as a single neurocognitive 
ability1,4,40,  or a general factor of cognitive ability3,36,41. This study is among the first to shed 
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light on how brain connectivity contributes to the general factor of neurocognition, several 
specific factors, as well as a number of individual neurocognitive abilities. 
 
To this point, we found that neuromarkers across different domains of neurocognition 
exhibited varying levels of performance. Predictivity was highest for the general factor of 
neurocognitive ability, explaining over 14% of the variance in scores in out of sample subjects. 
Strong predictivity was also observed for a verbal/spatial specific factor as well as for several 
individual tasks, especially for the crystalized abilities of reading and vocabulary. Relatively 
poorer performance, on the other hand, was observed for two other neurocognitive domains, 
the Speed/Flexibility domain and the Learning/Memory domain, as well as the individual task 
associated with these domains (Figure 3). 
 
In explaining these differences, it is possible that these neurocognitive variables that were less 
well predicted simply do not have sizable signatures in resting state connectomes in 9- and 10-
year old youth. There is some evidence that neurocognitive abilities remain fairly 
undifferentiated27, unspecialized42, or underdeveloped43,44  in late childhood/early adolescence. 
Thus, it is possible that performance for a number of specific factors and individual tasks will 
improve as the architecture of neurocognition becomes more refined over the course of 
adolescence and the specific abilities reflected in these factors/tasks separate out from the 
general factor. An alternative explanation is that the multivariate classifiers used for the 
present analysis are not sensitive to signatures for certain specific factors and individual tasks. 
For example, if resting state signatures of certain neurocognitive abilities are mainly localized in 
small, spatially discrete structures (e.g., striatum or hippocampus), classifiers that rely on 
distributed whole-connectome information, including the BBS method used in the present 
report, will be unlikely to recover them. In future studies, alternative classifiers (e.g., supervised 
methods), modalities (e.g., task-based methods), or search strategies (e.g., regions of interest 
approaches) could be utilized. 
 
The connectivity neurosignatures for the general factor of neurocognition and other 
neurocognitive variables were highly distributed across the connectome, but there was 
nonetheless a concentration of connections involving control networks (such as fronto-parietal 
network and cingulo-opercular network) and processing networks (such as default network and 
visual network). Additionally, we found control network/processing network connections were 
the most variable across the set of neurosignatures for different neurocognitive domains. 
Control networks45,46 are proposed to be the source of cognitive control signals that modulate 
responses in other networks based on contextual demands—a function that is consistent with 
the observation that these networks are implicated in higher-order cognitive abilities. 
Additionally, connections involving control networks and default network are found to be 
among the most variable across individuals.47 These connections also exhibit substantial 
maturation across childhood and adolescence48,49, and their maturational trajectories exhibit 
significant inter-individual differences4,50,51. Taken together, these observations align well with 
our finding that connections involving control networks and processing networks are a primary 
locus of individual differences in neurocognitive abilities.  
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One important potential application for neuromarkers of neurocognition is in elucidating 
psychological, neural, and developmental mechanisms of cognitive abilities43,52. Neuromarkers 
summarize complex distributed whole-brain connectivity patterns with a small number of 
quantitative metrics24, opening the door to sophisticated statistical modeling methods that 
assess genetic and environmental (e.g., poverty, family environment) contributions to 
neuromarker expression and, in turn, the contributions of neuromarker expression to 
subsequent outcomes. Critically, a major strength of the 10-year longitudinal ABCD study31 is 
that it allows researchers to track the maturational patterns across adolescence of the 
connections implicated in our neurocognitive markers. This will facilitate future work that 
delineates in detail the role of neuromarker expression in mediating the relationship between 
genetic and environmental risk factors (e.g., poverty, family environment) and the subsequent 
emergence of behavioral (e.g., substance initiation) or psychopathological (e.g., psychosis) 
endpoints.  
 
Additionally, neuromarkers of the type demonstrated here could one day find more direct 
clinical application. There is growing evidence that impaired neurocognitive abilities are 
associated with diverse forms of psychopathology12–16,  including schizophrenia53–55, 
externalizing disorders such as ADHD56,57 and substance use disorders58,59, and internalizing 
disorders such as depression60,61. Notably, in this same ABCD baseline sample, we recently 
showed62 that reduced scores on the general factor of neurocognition were associated with 
elevation in the general factor of psychopathology63–65 (widely terms the “P factor”), which 
confers vulnerability to nearly all prevalent psychiatric symptoms. The possibility thus exists 
that neuromarkers for neurocognitive abilities could find clinical use in identifying individuals at 
risk for negative psychiatric outcomes, potentially at an early age well before overt signs and 
symptoms have emerged.   
 
In sum, in a large rigorously characterized sample of youth, we established that neuromarkers 
of neurocognitive abilities built from distributed brain network connectivity patterns 
consistently generalize to new subjects across different data collection sites, are robust across a 
number of sensitivity checks, and capture clinically meaningful quantities of variation in general 
and specific neurocognitive abilities.  
 

METHODS 
 
1. Sample and Data 
The ABCD study is a multisite longitudinal study with 11,875 children between 9-10 years of age 
from 21 sites across the United States. The study conforms to the rules and procedures of each 
site’s Institutional Review Board, and all participants provide informed consent (parents) or 
assent (children). Detailed description of recruitment procedures66, assessments67, and imaging 
protocols38 are available elsewhere.  
 
2. Data Acquisition, fMRI Preprocessing, and Connectome Generation 
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Imaging protocols were harmonized across sites and scanners. High spatial (2.4 mm isotropic) 
and temporal resolution (TR=800 ms) resting state fMRI was acquired in four separate runs 
(5min per run, 20 minutes total, full details are described in 68). The entire data pipeline 
described below was run through automated scripts on the University of Michigan’s high-
performance cluster, and is described below, with additional detailed methods automatically 
generated by fRMIPrep software provided in the Supplement. Code for running the analyses 
can be found at Code for running the analyses can be found at 
https://github.com/SripadaLab/ABCD_Resting_Neurocognition. 
 
Preprocessing was performed using fMRIPrep version 1.5.069, a Nipype70 based tool. Full details 
of the fMRIPrep analysis can be found in supplemental materials. Briefly, T1-weighted (T1w) 
and T2-weighted images were run through recon-all using FreeSurfer v6.0.1. T1w images were 
also spatially normalized nonlinearly to MNI152NLin6Asym space using ANTs 2.2.0. Each 
functional run was corrected for fieldmap distortions, rigidly coregistered to the T1, motion 
corrected, and normalized to standard space. ICA-AROMA was run to generate aggressive noise 
regressors. Anatomical CompCor was run and the top 5 principal components of both CSF and 
white matter were retained. Functional data were transformed to CIFTI space using HCP’s 
Connectome Workbench. All preprocessed data were visually inspected at two separate stages 
to ensure only high-quality data was included: After co-registration of the functional data to the 
structural data and after registration of the functional data to MNI template space. 
 
Connectomes were generated for each functional run using the Gordon 333 parcel atlas71, 
augmented with parcels from high-resolution subcortical72 and cerebellar73 atlases. Volumes 
exceeding a framewise displacement threshold of 0.5mm were marked to be censored. 
Covariates were regressed out of the time series in a single step74, including: linear trend, 24 
motion parameters (original translations/rotations + derivatives + quadratics), aCompCorr 5 CSF 
and 5 WM components and ICA-AROMA aggressive components, high pass filtering at 0.008Hz, 
and censored volumes. Next, correlation matrices were calculated for each run. Each matrix 
was then Fisher r-to-z transformed, and then averaged across runs for each subject yielding 
their final connectome.  
 

3. Bifactor Modeling of the ABCD Neurocognition Task Battery 
Preliminary exploratory factor analyses (EFA) were first conducted (maximum likelihood 
estimation with oblique geomin rotation) to explore the latent structure of the 11 ABCD 
neurocognitive tasks. In addition, a parallel analysis with 1,000 random draws was also run that 
suggested the presence of three factors. The optimal factor structure was determined by 
considering the scree plot, parallel analysis, model fit, and the interpretability of different factor 
solutions (including consistency with past research). Overall, three broad factors best 
characterize these tasks, corresponding to spatial/verbal, speed/flexibility, and 
learning/memory; in the bifactor models these three factors served as the specific factors. 
Follow-up confirmatory factor analysis showed very good fit by conventional standards (c2 
(34)=443.16, p<0.001, RMSEA=0.03, CLI=0.99, TLI=0.98, SRMR=0.02), with the general factor 
capturing 75% of the variation in task scores (coefficient w hierarchical34), and the three 
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domain-specific factors together accounting for 13% of the variation in task scores (see Figure 
S3).  
 
4. Inclusion/Exclusion 
There are 11,875 subjects in the ABCD Release 2.0.1 dataset. Screening was initially done using 
ABCD raw QC to limit to subjects with 2 or more good runs of resting data as well as a good T1 
and T2 image (QC score, protocol compliance score, and complete all =1). This resulted in 9598 
subjects with 2 or more runs that entered preprocessing. Each run was subsequently visually 
inspected for registration as well as for warping quality, and only those subjects who still had 2 
or more good runs were retained (N=8858). After connectome generation, runs were excluded 
if they had less than 4 minutes of uncensored data, and next subjects were retained only if they 
had 2 or more good runs (N=6568). Next, sites with fewer than 75 subjects were dropped. This 
left us with N=6449 subjects across 19 sites to enter PCA. Finally, subjects with missing values 
for neurocognitive scores or nuisance covariates were excluded. This left 5937 subjects to enter 
our main BBS predictive modeling analysis. Number of subjects for alternative analysis streams 
conducted as part of our robustness checks are reported in Table 1.  
 
5. Constructing a Brain Basis Set (BBS) 
BBS is a validated multivariate method that uses principal components dimensionality 
reduction to produce a basis set of components that are then associated with phenotypes4,35. 
We select the top 250 components for our basis set based on previous work showing that 50-
100 components per 1000 subjects captures most meaningful variance without overfitting35,36.  
 
6. Leave-One-Site-Out Cross Validation 
To assess generalizability of BBS-based regression models, we used leave-one-site-out cross-
validation. In each fold of the cross-validation, data from one of the 19 sites served as the held-
out test dataset and data from the other 18 sites served as the training dataset. Additionally, to 
ensure separation of train and test datasets, at each fold of the cross-validation, a new PCA was 
performed on the training dataset yielding a 250-component basis set. We assessed the 
performance of BBS models with Pearson’s correlation, cross-validated r-squared (see 
Supplement), and mean squared error.  
 
7.  Accounting for Covariates in Cross-Validation Framework 
In each fold of cross-validation, BBS models were trained in the train partition with the 
following covariates: gender, race, age, age squared, mean FD and mean FD squared. To 
maintain strict separation between training and test datasets, regression coefficients for the 
covariates learned from the training sample are applied to the test sample, and the variance 
they explain is subtracted away. This procedure, described in detail in our previous 
publication36, yields an estimate of the contribution of brain components alone in predicting 
test subject P factor scores, excluding the contribution of the nuisance covariates. Note that by 
employing leave-one-site-out, members of twinships and sibships are never present in both 
training and test samples. 
 
8. Permutation Testing  
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We assessed the significance of all cross-validation-based correlations with non-parametric 
permutation tests in which we randomly permuted the 5,880 subjects’ P factor scores 10,000 
times, as described in detail in the Supplement. 
 
9.  Consensus Connectome Maps  
To help convey overall patterns across entire BBS multiple regression models with 250 
components, we constructed “consensus” component maps. We used multi-level multiple 
regression modeling, with the neurocognitive scores as outcome variables and expression 
scores for the 250 components as predictors. Gender, race, age, mean FD, and mean FD 
squared were entered as fixed effect covariates, with family id and ABCD site entered as 
random effects (family nested within site). We next multiplied each connectomic component 
with its associated regression coefficient. We then summed across all 250 components yielding 
a single map, and thresholded the entries at z=2. We in addition created circular visualizations 
of consensus connectomes (see Figure 4, right panel) using the circlize software library in R, 
restricting the visualization to a subset of networks of interest. 
 
 
10. Identifying Highly Varying Network Pairs 
We quantified variation of pairs of networks across 15 connectomic neuromarkers (4 for the 
factor model and 11 for individual tasks). For each neuromarker, we summed suprathreshold 
connections for each pair of networks separately for positive and negative connections, yielding 
240 values per neuromarker. We next calculated the variance of these values across the 15 
neuromarkers. We selected the 21 most varying network pairs (which together accounted for 
over 50% of the variance across the 15 neuromarkers) and displayed the number of 
suprathreshold connections for each network pair for each neuromarker with a bubble heat 
map.  
 
11.  Data Availability 
The ABCD data used in this report came from NDA Study 721, 10.15154/1504041, which can be 
found at https://nda.nih.gov/study.html?id=721. 
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