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Abstract: 

Mesenchymal stromal cells (MSCs) from a variety of tissue sources are widely investigated in clinical 

trials, and the MSCs are often administered immediately after thawing the cryopreserved product. 

While previous reports have examined the transcriptome of freshly-cultured MSCs from some tissues, 

little is known about the single-cell transcriptomic profiles of out-of-thaw MSCs from different tissue 

sources.  Such understanding could help determine which tissue origins and delivery methods are best 

suited for specific indications. Here, we characterized cryopreserved MSCs, immediately post-thaw, 

from bone marrow (BM) and cord tissue (CT), using single-cell RNA sequencing (scRNA-seq). We show 

that out-of-thaw BM- vs. CT-MSCs have significant differences in gene expression. Gene-set enrichment 

analyses implied divergent functional potential. In addition, we show that MSC-batches can vary 

significantly in cell cycle status, suggesting different proliferative vs. immunomodulatory potentials. Our 

results provide a comprehensive single-cell transcriptomic landscape of clinically and industrially 

relevant MSC products.
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Highlights: 

 Single cell gene expression comparison between Bone-marrow derived MSCs and Cord-tissue 

derived MSCs  

 Donor effects and cell heterogeneity on tissue-specific MSC gene expression 

 Single Cell Pooling Enhances Differential Expression Analysis for Bone marrow and Cord tissue 

MSC samples  

 Gene ontology reveals tissue specific unique molecular function and pathways 
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Introduction:   

Mesenchymal Stromal Cells (MSCs), often referred to as Mesenchymal Stem Cells or Signaling Cells, are 

cells isolated from various tissues that have shown multipotent, regenerative, and immunomodulatory 

capacities in vitro. These cells, from a variety of tissue-sources, are being evaluated for therapeutic 

interventions, especially across a variety of inflammatory and immune conditions (1, 2). Numerous 

clinical trials have focused on the use of MSCs as a cell therapy for various diseases with unmet medical 

challenges, including graft-vs-host disease, osteoarthritis, autism, acute respiratory distress syndrome 

(ARDS), autoimmune diseases, and even COVID-19. A ClinicalTrial.gov search (date: August 7, 2020) with 

the keyword: MSC as other terms shows 4,044 studies that are either recruiting, not yet recruiting, 

enrolling by invitation, and active but not recruiting. MSCs are also widely used in developing 

engineered tissues ex vivo (3-5). Several are also working on developing MSC-based therapies and 

others are developing reagents and large-scale cell banks for eventual clinical use.  

Despite such widespread interest in academia, clinical trials, and in industry, the characteristics of MSCs 

that are most correlative to their specific in vivo function remain unknown. MSCs can be isolated from 

various tissues, such as bone marrow, umbilical cord, placental, and adipose tissue, which introduces 

tissue-dependent variability between MSC-based cell products that may also differ according to donor.  

Furthermore, manufacturing processes vary between sites (both clinical and commercial), leading to 

process-dependent variability.  These sources of variabilities across the MSC field confound the ability to 

compare clinical trial results and have contributed to a lack of conclusive historical data to support their 

potential for clinical use (6).  

The International Society for Cell and Gene Therapy (ISCT) standards identify MSCs based on the 

expression status of a panel of specific surface markers, their ability to adhere to plastic, and their ex 
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vivo tri-lineage differentiation potential to adipocytes, osteoblasts and chondroblasts (7, 8).  However, 

these minimal MSC identification and functional criteria, especially surface marker expression, often do 

not correlate with their regenerative or immunomodulatory functions (9). Moreover, the proportion of 

“stromal” like progenitor cells that have high regenerative capability varies across MSC donors (10).   

Therefore, there is an obvious need for deep phenotypic characterization of MSCs to compare 

heterogeneity as a function of tissue-of-origin as well as donor, and to identify potential phenotypic 

signatures that can be eventually used as predictive biomarkers or critical quality attributes (CQAs) for 

MSC-based products, and for understanding their putative Mechanisms of Action (MoAs).  

Recently, single-cell RNA sequencing (scRNA-seq) has emerged as one of the next generation cell 

characterization techniques that can be used to gain deeper insight into gene transcriptional signatures 

at the single-cell level (11, 12). scRNA-seq enables the examination of genomes or transcriptomes of 

individual cells, providing a high-resolution view of cell-to-cell variation or heterogeneity within a 

population. Moreover, this technique can be used to explore the distinct biology of individual cells and 

to understand temporal cellular processes and functions, such as differentiation, proliferation, and 

immune response potential (13). scRNA-seq has been previously used to characterize hematopoietic 

differentiation (14-16)  and immune cell subsets (17), including dendritic cells, monocytes (18), and 

innate lymphoid cells (19). A handful of reports have also used scRNA-seq to characterize differential 

gene expression in freshly-prepared MSCs from umbilical cord (20), adipose tissue (8), Wharton’s jelly 

(21) and bone marrow (22, 23). 

In many clinical trial settings for allogeneic MSC-based off-the-shelf cellular therapies, to circumvent 

logistical and manufacturing challenges, MSC products are used post-thaw (directly from a frozen vial), 

rather than fresh (without freezing after culture), or culture-rescued (re-cultured after thawing) (2, 24). 

Since out-of-thaw MSC products could have different metabolic and functional characteristics from their 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.09.10.290155doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.10.290155


 6 

fresh counterparts (24), phenotypic and functional characterization directly on the out-of-thaw MSC 

product is necessary to be able to find correlative attributes between their in vitro cell characteristics 

and corresponding clinical or pre-clinical efficacy. A comprehensive characterization of out-of-thaw MSC 

product from different tissue sources and donors at single-cell level may provide information on 

potential critical quality attributes (CQAs) and Mechanisms of Action (MoA) of the cells, and can be used 

to select MSC donor and/or sources for disease specific cell therapies.  

In this study, we performed scRNA-seq using the drop-seq method (11, 25) to compare single-cell transcriptome 

profiles between commercially available bone marrow-derived MSCs (BM-MSCs) from six donors from 

RoosterBio Inc. (Frederick MD), and umbilical cord-tissue derived MSCs (UCT-MSCs) from four donors provided 

by Duke University. We characterized a total of 13 out-of-thaw samples from these ten MSC donors. Specifically, 

we assessed differences between individual donors as well as differences between MSC tissue sources. To 

overcome issues with zero counts that complicated differential expression analysis and to provide flexibility in 

normalization, we also introduce a new analytical framework, scPool, in which similar cells from the same donor 

are pooled into pseudo-cells.  
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Results: 

Donor effects on Bone Marrow-Derived MSC Gene Expression 

A total of seven bone marrow-derived MSC (BM-MSC) samples from six donors were thawed and 

processed for scRNA-seq analysis (Tables 1 and 2). First, we compared two of the BM-MSC samples 

between pre-freeze and post-thaw conditions to understand freeze-thaw effects on MSC gene 

expression. Our analysis indicated a shift in the genetic profile between pre-freeze and post-thaw 

conditions (Figure S1). Pre-freeze samples showed significant overexpression of 1,743 genes relative to 

post-thaw samples at the 5% false discovery rate (FDR) threshold, while 310 genes were significantly 

overexpressed in the post-thaw samples compared to the pre-freeze samples. Some of the pathways 

overexpressed in the pre-freeze samples are cytokine signaling (FOS, MMP2, TLN1, FOSB), cell 

proliferation and cell adhesion (ZYX, ITGA5, CLIC1 etc.), while the pathways over-expressed in the 

frozen, post-thaw samples are carbohydrate interconversions (UGP2), cholesterol/Steroid biosynthesis 

and regulation of apoptosis (PSMA2, PSMB1). Having established that the freeze-thaw process imparts 

substantial changes in gene expression profiles of MSCs, we focused our analyses on post-thaw MSC 

products from BM and CT origins, since these are being widely used in numerous clinical trials.  

 

Table 1 summarizes the sample data for all BM samples. Samples BM1 and BM2a were processed in 

laboratory A, while samples BM2b, BM3, BM4, BM5 and BM6 were processed in laboratory B (Table 1). 

An average of 305 cells were profiled per sample, with an average read depth of 29,703, representing 

12,348 UMI (Unique Molecular Identifier) and 3,836 expressed genes per cell (Table 1). The profiles 

were clustered with both Seurat(26) and SC3 pipelines(38).  Since the latter is optimized for relatively 

small experimental designs, we present the results of SC3, but note that similar findings were obtained 

with Seurat (Figure S2). Before characterizing differential expression among samples, we confirmed that 
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the MSC-identity markers established by the ISCT, namely NT5E (CD73), THY1 (CD90) and ENG (CD105) 

were detected in the majority of cells in the bone marrow and umbilical cord tissue derived MSCs 

(Figure S3). Furthermore, CD34, CD14, CD19 and PECAM1 - all markers of hematopoietic or lymphoid 

lineages, were absent.  

 

Projecting each cell against the first two Principal Components (PC) of gene expression, three clusters of 

single cell profiles were observed (Figure 1A).  PC1 is highly negatively correlated with the total UMI 

count per cell. Accordingly, the smallest cluster located to the right, consists of 17% of the cells all of 

which had low UMI counts, typically fewer than 1,000 detected genes, and low ribosomal protein 

transcript counts (Figure 1B).  These low UMI counts cells were more prevalent in two donors studied - 

one from each of the two laboratories (Lab A and Lab B; BM1 and BM4, respectively: Figure 1C), 

suggesting the low UMI count may not be related to the lab in which they were manufactured.  It is not 

clear whether the unusual profile of these cells is a technical artefact, or has a biological basis, but they 

appear to be of low quality and were excluded from all subsequent analyses. 

 

Two clusters identified by SC3 in the remaining high-quality datasets largely differentiate along PC3 

(Figure 1D).  Three of the five samples expanded in laboratory B (BM3, BM4 and BM6) were 

predominantly found in cluster BM-High_b; the other two samples along with both of the samples 

expanded in laboratory A (BM1, BM2a, BM2b and BM5) were predominantly found in cluster BM-High_a 

(Figure 1E).  Both samples from the donor whose cells were cultured in each of the laboratories are in 

cluster BM-High a (BM2a and BM2b), suggesting that the difference is more likely to be donor-related 

than due to a laboratory or technical effect.  Nevertheless, Figure 1E shows that even between the two 

laboratories, the cells from this donor tend to separate along PC3.   
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Single Cell Pooling Enhances Differential Expression Analysis for Bone Marrow-MSC samples  

Although the above analysis follows current standard practice, it is nevertheless subject to the caveat 

that for a large percentage of the genes, transcripts are only observed in fewer than half of the cells, and 

consequently the differential expression analysis is mostly based on presence-versus-absence. In order 

to lend robustness to the conclusions, we elected to analyze differential expression with an alternative 

strategy that accounts for the impact of a high proportion of drop-outs in scRNA-seq.  Our method, 

“scPool”, is based on pooling of cells of the same type within samples, which ensures that a high 

proportion of genes are represented by an approximately normal count distribution.  It also allows for 

fitting of normalization strategies initially developed for bulk microarray or RNA-seq analysis. 

 

After normalizing gene expression values to counts per 10,000 UMI, differential expression analysis 

between clusters BM-High_a and BM- High_b was performed in EdgeR with donor as a random 

covariate, yielding 4,624 genes at a FDR of 5%.  There were 2,230 genes upregulated in cluster 2a, and 

2,394 upregulated in cluster 2b (Figure 2A).  Gene ontology analysis detected strong enrichment for 

multiple pathways involved in cell cycle regulation in cluster BM-High_b (Figure 2B).  By contrast, cluster 

BM-High_a showed upregulation of multiple pathways related to immune signaling and other processes 

expected to be characteristic of functional MSCs (Figure 2B). On the basis of the cell cycle gene 

expression, cells in cluster BM-High_b may be preparing for or undergoing cell cycle division, whereas 

the cluster BM-High_a MSCs may be more likely to be in G0 phase. Alternately the two populations may 

simply express cell cycle related genes at different levels, without this reflecting cell cycle stages.  

 

To implement the scPool strategy, we created random pools of pseudo-cells consisting of the sum of 

raw read counts for random draws of 20 cells (excluding the low-quality cluster 1 cells) within a donor’s 
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sample.  The number of such pseudo cells ranged from 6 for sample BM5 to 20 for sample BM4.  We 

then retained all genes with at least one read in 90% of the pseudo cells, a total of 6,422 genes.  This 

dataset was normalized using the supervised normalization of microarrays (SNM) protocol (27) with 

cluster sub-type as the biological variable, adjusting for donor effects, and analysis of variance was used 

to detect differentially expressed genes.  The procedure was repeated ten times, and the fold change 

and p-values were averaged to generate a robust list of cluster-specific genes. Compared with the single 

cell analysis, 1,290 more significant differentially expressed genes were detected.  Figure 2C shows 

generally higher significance than the single cell-level analysis, without over-estimation of fold-changes 

for a large fraction of the less-significant genes.   

Next, we probed the magnitude of donor contributions to variance within clusters, by performing 

analysis of variance with donor as the fixed effect of interest.  Within just the high-quality cluster BM-

High_a cells, donor effects accounted for 8.5% of the variance.  A similar result was observed for cluster 

BM-High_b. 

 

Donor Effects on Umbilical Cord Tissue Derived MSC Gene Expression 

Umbilical cord tissue derived MSC (UCT-MSC) samples from four donors were used for scRNA-seq 

analyses.  A total of six scRNA-seq samples were prepared, all from the same lab, including three 

biological replicates of one donor sample (UCT1a, UCT1b and UCT1c).  An average of 349 cells were 

profiled per sample, with an average read depth of 27,417, representing 9,700 UMI and 3,057 expressed 

genes per cell (Table 2).  The UCT-MSC gene expression profiles were also analyzed with the SC3 

pipeline.  

 

Two major clusters of single cell profiles were again observed in the projection of the first two principal 

components of the UCT-MSC data (Figure 3A).  The smallest of these, consisting of 13% of the cells, was 
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characterized by cells with low UMI counts, typically fewer than 2,000 detected genes (Figure 3B), 

similar to the BM-MCS analysis.  These low UMI-count cells were present in every sample but again were 

more prevalent in two of the samples (UCT1c and UCT3: Figure 3C). It is not clear whether the origin of 

these cells is a technical artefact, or has a biological basis, but they also appear to be of low quality and 

were again excluded from all subsequent analyses.  Within the high-quality cells, SC3 once more 

identified two clusters of cells, UCT-High_a (UCT2 and UCT3) and UCT-High_b (UCT1a, UCT1b, UCT1c and 

UCT4), though in this case they did not clearly correspond to one of the Principal Components. The three 

replicates of donor UCT1 were primarily captured within the UCT-High_b cluster, suggesting consistency 

of technique. 

Implementation of the scPool strategy for detecting differential gene expression between the two UCT-

MSC clusters, after removing the low-quality cells, detected 2,526 genes at an FDR of 5%. Directional up-

regulation of established marker genes for mitosis is evident in cluster UCT-High_b as indicated by blue 

points in the volcano plot Figure 4A. Gene ontology analysis (Figure 4B) indicates enrichment for up-

regulation of collagen biosynthesis, integrin signaling, extracellular matrix (ECM) organization, and 

protein translation pathways in the cluster UCT-High_a MSCs, whereas the cluster UCT-High_b cells are 

enriched for cell cycle regulation, degradation of mitotic proteins, as well as various processes related to 

cell cycle progression, including CDC20 mediated degradation of Securin, and auto degradation of CDH1, 

suggesting potential donor-dependent heterogeneity in the gene expression profile of UCT-MSC. 

 

Comparison between Bone-Marrow and Cord-Tissue derived MSC single-cell gene expression profiles  

Direct comparison of MSCs derived from bone marrow and MSCs from umbilical cord tissue was 

performed by combining the analyses of the previous two datasets. As expected, Principal Component 

Analysis (PCA) of the raw single cell profiles again identified two major clusters of low and high UMI-
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abundance cells along PC1, but in this case PC2 of the joint analysis cleanly differentiates the BM and CT 

samples (Figure 5A). This result implies that there are significant differences in gene profile between 

MSCs derived from the two source tissues.  

We implemented scPool to identify differentially expressed genes between MSCs derived from the two 

sources, after removing the low-quality cells identified in our first series of analysis.  Pools of 20 cells 

were again assembled computationally within donor and mixed model analysis of variance was 

performed, with donor as a random effect.  3,437 genes were found to be up-regulated in the BM-MSC, 

and 3,250 genes down-regulated, compared to UCT-MSCs. We highlighted the top 16 differentially 

expressed genes (Figure S4). Gene ontology analysis of all the significantly differential expressed genes 

indicates enrichment for metabolism of lipids and lipoproteins, cholesterol biosynthesis, mitochondrial 

translation, and metabolic pathways in the BM-MSCs, whereas the UCT- MSCs were enriched for ECM 

organization, collagen biosynthesis and signal transduction (Figure 5B). UCT-MSC also showed relative up-

regulation of mitotic cell cycle pathways, but this likely reflects the greater ratio of UCT-High_b to UCT-

High_a cluster cells than of BM-High_b to BM-High_a cells, rather than a consistent trend favoring cell 

division in the UCT-MSC. 

 

Pathway enrichment analysis also showed that the differences between the two clusters in each tissue 

are not consistently maintained. The chord diagram (Figure 5C) highlights pathways overexpressed in 

BM-High_a and UCT-High_a, which are not the same.  These data confirm differences in the gene 

expression of non-dividing cells as a function of tissue of origin and suggest that the two types of MSCs 

are likely to have divergent regulatory and functional potentials. Importantly, the UCT-High_a 

population exhibit higher expression of genes involving pro inflammatory mediation, ECM organization 

and collagen biosynthesis, whereas the BM-High_a population had higher expression of steroid 

biosynthesis, the citric acid cycle and neutrophil degranulation genes (Figure 5C). 
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Next, we examined the expression level of genes that play important roles in the immunomodulatory 

response induced by MSCs.  Focused comparison of expression of genes that are associated with cell 

adhesion, migration, immunosuppression and immunostimulation between the BM- and UCT-derived 

MSCs suggests tissue-of-origin and donor differences in gene activity (Figure S5). BM-High_a cells 

characteristically overexpress transcripts encoding the membrane proteins prostaglandin synthase 

(PTGES2) and Endoglin (ENG) as well as the lysosomal protein CD63, compare to BM-High_b, whereas 

BM-High_b cells overexpress the genes CD46 (encoding a complement cofactor), CD47 (an integrin-

associated protein), and CD146 (MCAM, cell adhesion molecule) , compare to BM-High_a. These genes 

are in general overexpressed in BM derived MSC compare to UCT derived MSC. BM derived MSCs have 

higher expression of the cell surface glycoprotein coding genes CD44 and CD59, as well as the 

nucleotidase NT5E and immune checkpoint molecule CD276 compare to UCT derived MSC.  Conversely, 

when comparing UCT-High_a and UCT-High_b clusters, UCT-High_a cells overexpress the tetraspanin 

regulators of motility CD151, and cell surface protein coding genes CD99, THY1 and CD248, while UCT-

High_b overexpressed CD9. The cell surface protein coding gene CD81 is not significantly differentially 

expressed between the clusters UCT-High_a and UCT-High_b. We looked at two genes associated with 

immunostimlation: CCL2 and CD109, which are overexpressed in UCT and BM derived MSCs, 

respectively. 

 

We also looked at multiple pluripotent and stemness genes (Figure S6), none of which were found to be 

significantly differentially expressed between bone marrow and umbilical cord tissue.  
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Discussion: 

MSCs from various tissue sources are the subject of 4044 registered clinical trials (ClinicalTrials.gov- 

keyword: MSC as other terms with filters - not yet recruiting, recruiting, enrolling by invitations, and 

active, not recruiting; search date – August 7, 2020).  It is thus important to develop robust high-

throughput approaches for characterization of diverse batches from various tissue sources in order to 

help evaluate reasons for success or failure of individual trials or patient responses.  Single cell RNA 

sequencing is a relatively unbiased approach to profile the molecular attributes of individual cells. 

Potential utility of scRNA-seq includes characterization of heterogeneity that cannot be observed with 

bulk RNA-seq, and monitoring of the effect of the stage of the cell-cycle on transcriptional diversity.  

Contrasting pre-freeze and post-thaw samples from 2 donors, we identified numerous differentially 

expressed genes that are associated with different types of cellular functions, such as cytokine signaling, 

cell proliferation, cell adhesion, cholesterol/steroid biosynthesis, and regulation of apoptosis. Previuosly, 

functional differences between pre-freeze (fresh) and post-thaw MSCs were also reported by others 

(28). In this study, however, we focused on in-depth scRNA-seq analysis of post-thaw MSCs as they are 

currently being tested as cell therapy products in many clinical trials.  

Here we describe a droplet-based scRNA-seq comparison of donor, tissue-of-origin, and expansion 

conditions of out-of-thaw MSC variability, concluding that bone marrow and umbilical cord tissue-

derived MSCs have significant differential expression that likely explains some of the documented 

differences between them, and that donor differences are modest yet significant. To our knowledge, six 

other scRNA-seq studies (11, 12, 20-23) of MSCs have been published, and our results are broadly 

concordant though with some important differences in emphasis.  Barrett et. al., 2019 (22) used a 

version of SmartSeq to deeply profile 103 Wharton’s jelly-derived umbilical cord MSCs and 63 bone 
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marrow-derived MSCs, identifying 463 differentially expressed genes enriched for activity in numerous 

processes including the matrisome, coagulation, angiogenesis, and wound-healing via immune-

regulation. The current study similarly finds a difference between cord tissue and bone marrow-derived 

MSCs. Additionally, our data also shows a cell cycle variability which seems to be related to the donor 

(22).  

Each of the other studies (11, 12, 20-23) has noted that the cell cycle gene expression is a major source 

of heterogeneity within donors.  According to the Huang et. al., 2019 (20) study, it appears the cell cycle 

is related to the immune regulatory potency of the MSCs. Previous work (21) has used a core set of 

G1/G2M/S markers to assign cells to each phase, and regressed out this source of variance before 

performing downstream analysis.  We eschewed this approach both because of concerns over the 

reliability of the assignments, and to emphasize that the proportion of cells with low expression of these 

genes is an important component of among-donor differences in both BM-MSC and UCT-MSC. Reported 

higher proliferative capacity of Wharton’s jelly-derived MSCs (22) is consistent with the higher 

proportion of mitotic genes in our UCT-MSCs relative to BM-MSCs.  However, it should be emphasized 

that higher overall expression may not correlate with higher rates of proliferation, since expression 

levels may vary among donors without implying that a different fraction of cells are undergoing division. 

On the other hand, it appears that putative G0 cells that do not express cell cycle genes have quite 

different transcriptional properties that are directly relevant to their biological functions such as 

immunomodulatory potential.  We note that each of our samples was profiled at population doubling 

level (PDL) ranged from 12-15, eliminating passage number as a source of variability in our study. 

Other authors have also chosen to regress out “batch” effects before searching for heterogeneity, even 

though in each case “batch” appears to be coincident with “donor” (8, 21) or “Passage” (20).  In the 

absence of biological replication, that is, two MSC preparations obtained independently from the same 

donor, it is impossible to know whether differences between sample populations have a biological or 
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technical basis.  Nevertheless, we estimate from principal component variance analysis that less than 

10% of the overall expression variability is among donors/batches within each of the two clusters 

observed in both the BM- and UCT-MSC datasets (Figure 1C, Figure 3C).  We see this minor source of 

variability is donor-related in the two instances where we had technical replicates from the same donor 

(in the case of the two BM-MSC samples cultured in different laboratories). The cells strongly tended to 

be assigned to the same sub-cluster BM-High_a or UCT-High_a. Whether or not these differences impact 

MSC function in clinical applications remains to be seen, additional large-scale comparisons with a large 

set of samples with high quality data on patient outcomes will need to be analyzed.   

In this study the transcriptomes of human bone marrow and cord tissue-derived MSCs were analyzed via 

drop-seq single cell RNA-seq. Using this approach, new information about MSCs emerges. First, the 

differences between bone marrow-derived MSCs and cord-tissue derived MSCs were seen. Surprisingly, 

pathways up-regulated in G0 bone marrow-derived MSCs did not correspond to the same pathways 

upregulated in G0 cord tissue -derived MSC (Figure 5C). Further, we observed differences in various 

immune regulatory genes between bone marrow and cord tissue MSCs, especially for the “a” cluster 

cells (Figure 5C). Notably, BM-High_a MSCs had higher gene expression for PTGES2, and the protein 

encoded by this gene is known to have direct or indirect role in immunomodulation by MSCs (29, 30). 

PTGES2 encodes membrane-bound prostaglandin synthase E2 which converts prostaglandin H2 (PGH2) 

to prostaglandin E2 (PGE2) that is known to have anti-inflammatory/immunosuppressive effects on 

various immune cells, including macrophages, T cells and B cells (31, 32).  

MSC surface proteins are important for their significant roles in identification and functions (33). When 

we compared gene expression for surface markers that are known to have some immunomodulatory 

functions, BM derived MSCs showed higher expression for CD46, CD47, and CD276 whereas UCT derived 

MSC had higher expression for CD81. Surface expression of CD46 protein helps MSCs to inhibit 

complement binding and complement-mediated lysis (34). CD47 serves as a “don’t eat me” signal to 
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avoid phagocytosis by engaging its cognate ligand signal-regulatory-protein alpha (SIRP alpha) on 

phagocytes (35, 36), and the interaction of CD47 with SIRP alpha is reported to inhibit antigen 

presenting cell (APC) maturation and enhance STAT3 phosphorylation and IL10 induction in APC (37).  

CD276 is known to cause immune suppression by inhibiting T cell function and is currently being 

targeted as a check point blockade therapy for cancer (38); however, their specific role in MSC-mediated 

immunomodulation is not yet confirmed. CD81 is one of the surface markers used to identify MSC-

derived extracellular vehicles (EVs) but does not have any reported immunomodulatory role for MSCs; 

however, CD81 coding gene is known to affect T regulatory (Treg) and myeloid-derived suppressor cell 

(MDSC) function enhancing tumor growth (39). Taken together, gene expression differences for surface 

markers related to immune response between BM and UCT-MSCs implicates potential differences in the 

immunomodulatory functions between BM and UCT-MSCs. Further, differences in immunomodulatory 

gene expression between the High_a and High_b clusters for both BM and UCT-MSCs indicates 

functional and phenotypic heterogeneity within each MSC product. No differences in expression of a 

small number of pluripotent and stemness marker genes was detected between BM and UCT derived 

MSCs (Figure S6), though we note that abundance of these transcripts was very low which reduces 

power to observe differential expression.  

In summary, this study both confirms the potential for functional differences to exist between MSCs 

derived from different tissues and even donors, and that within-sample heterogeneity is low. The 

expression of cell cycle markers is a major component of heterogeneity among donors, and 

manufacturing processes may need to accommodate biological and technical influences on proliferative 

potential. These findings will help improve the therapeutic MSC manufacturing processes and identify 

the most efficient cells from a heterogeneous MSC population. Even though differences in the gene 

expression profile between bone marrow and cord tissue G0 MSC were found, further studies are 
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needed to confirm these results as well as the impact of these differences on the clinical use of these 

cells. 
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Experimental Procedures: 

Study approval 

This study was approved by the ethics committee of the institutional review boards at Georgia 

Institute of Technology and Duke University (IRB protocol no. H17348). All procedures involving 

human participants were in accordance with the ethical standards of the research committee. 

Informed consent was obtained from all participants. 

Human Bone Marrow MSC collection 

Seven frozen human bone marrow-derived MSC lots from six male donors were purchased from 

RoosterBio Inc., and expanded using RoosterBio expansion protocol (https://www.roosterbio.com/wp-

content/uploads/2019/10/A.-RoosterBio-MSC-001-BOM-Expansion-Protocol-IF-08022016.pdf). Briefly, a 

BM-hMSC high performance media kit was brought to room temperature. Then 1 vial of Media Booster 

GTX (RoosterBio, catalog no. SU-003) was added to 500ml hMSC high performance basal media 

(RoosterBio, catalog no. SU-005). The 10million BM-hMSC vial was obtained from a liquid nitrogen 

dewar and immediately thawed at 370C for approximate 2 minutes while monitoring the process and 

removed from the water bath once a small bit of ice remained. Cells were aseptically transferred to a 

15ml centrifuge tube and 10ml cultured media was added. The cells were spun down at 200g for 10 

minutes and all the supernatant was discarded. The cell pellet was re-suspended in 10ml of culture 

media and transferred into 500ml media bottle. The cells were mixed  by capping and gently inverting 

the bottle and distributed (seeded at 3500-4000 cells/cm2 and 42 mL media/T225) equally into T-225 

vessels (Corning cat no. 431082). The vessels were transferred to a 370C incubator ensuring that the 

surfaces were covered with media. The vessels were observed microscopically from day 1 to determine 

percentage confluency.  Once they reached >80% confluency, they were harvested the next day, and 
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cryo-preserved in Cryostor CS-10 freezing media.  All single-cell RNA-sequencing was performed on the 

out of thaw cells directly from these frozen vials. 

Samples BM1 and BM2a were cultured in Laboratory A, while samples BM2b, BM3, BM4, BM5 and BM6 

were cultured in Laboratory B. Samples BM2a and BM2b were from the same donor.   

Human Cord Tissue MSC collection 

For cord tissue derived samples, six frozen human MSC samples from four male donors were provided 

by the department of pediatrics, Duke University. Cryopreserved P0 vials were placed in a sterile bag 

which was itself placed in a 37°C water bath. Vials were thawed until the cell suspension was slushy (~2 

minutes). Cell suspension from the vials were transferred to a 15 mL tube containing XSFM (Irvine 

Scientific, cat. no. 91149) using a sterile serological pipette and the cell suspension was mixed slowly. 

The cryovial was rinsed with 0.5 mL of XSFM and the rinse was transferred to the 15 mL tube. After 

mixing slowly, the cell count and viability was measured. The cells were mixed in the 15 mL conical using 

a sterile pipette and transfer the volume containing 3.4 x 106 cells into a HYPER flask containing 1.12 L of 

XSFM and the bottle was mixed gently. The HYPER Flasks were placed into a 37°C/5% CO2 incubator. 

The P1 cells were harvested after 5-7 days. The P2 cells were then frozen using CS-10 freezing media and 

cryopreserved. The Cryopreserved P2 cells were shipped to us for the downstream characterizations.  All 

the single-cell RNA-sequencing was performed on the out of thaw cells directly from these frozen vials. 

Samples UCT1a, UCT1b and UCT1c come from the same donor. 

Thawing and single cell suspension preparation for Single-Cell RNA-Sequencing  

Frozen vials containing 1 million MSC were thawed in a 370C water bath for a couple of minutes. Cells 

were then aseptically transferred to a 15 ml centrifuge tube. Room temperature RPMI media (1mL) was 

used to rinse the cell vial and added to the cells in the 15 ml tube. Another 3 ml of media was added to 
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the cells and mixed well with serological pipette. Cells were counted using Nucleocounter and spun 

down at 200 g for 10 minutes. The cells were re-suspended in media and counted again and processed 

for scRNA-sequencing.   

Single-cell RNA-seq library preparation and sequencing 

The Illumina-Bio-Rad ddSEQ platform was used to process, capture, and barcode the cells to generate 

single-cell Gel Beads by following the manufacturer’s protocol. Cell suspensions were loaded onto a 

ddSEQ Cartridge along with reverse transcription master mix, and encapsulated and barcoded by the 

Single-Cell Isolator. Lysis and barcoding took place in each droplet. Droplets were disrupted and cDNA 

was pooled for second strand synthesis. Libraries were generated with direct cDNA tagmentation using 

Nextera technology. Tagmentation was followed by 3′ enrichment and sample indexing to prepare 

indexed, sequencing-ready libraries. The libraries were sequenced using Nextseq sequencing Platform 

on an Ilumina NextSeq in the IBB Molecular Evolution core at Georgia Tech (PE75, mid-output V2.5 kit). 

The library quality (check for primer dimers, adopter dimers, ethanol contamination, degradation as well 

as the size and concentration) was confirmed before each sequencing run using Agilent 

Bioanalyzer2100. 

All the BM-MSC samples have 2415 cells with an average 3,835 genes/cell (Table 1) and the UCT-MSCs 

have 1785 cells with average 3056 genes/cell (Table 2). The BM-MSC samples have average 28,890,505 

(Table 1) reads per sample and the UCT-MSC samples have 33,771,805 (Table 2) reads per sample in 

average.  

Confirmation that MSCs were relatively pure populations of undifferentiated cells was revealed by FACS 

analysis of cell surface markers provided by the manufacturer as a release criteria.  Furthermore, scRNA-

seq (which is less sensitive due to high drop-out rates) confirmed prevalent expression of NT5E (CD73), 

THY1 (CD90), and ENG (CD105) and absent expression of CD34 among other genes (Fig. 6).   ENG was 
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expressed on 66% of the cell, NT5E on 72%, and THY1 on 92%.  In contrast, each of the transcripts 

PTPRC, CD34, CD14, ITGAM, CD79A, CD19, and HLA-DRA were detected in less than 0.5% of the cells. 

 

Data Analysis 

Sample demultiplexing and gene counts were extracted using the Illumina Sure cell pipeline. The raw 

reads were trimmed, and the gene-barcode matrix was generated. Sure cell was also used to filter and 

align the samples and to generate gene-cell UMI count matrices. The seven samples from bone marrow 

were sequenced in three different batches, and the six samples from cord tissue were sequenced in two 

batches. 

Downstream analysis was initiated with SC3 software (40) for cell clustering. Owing to the high 

proportion of zero counts in most cells (as is typical of dropseq data), we elected to perform differential 

expression analysis on pools of pseudo-cells whose profiles have a distribution of read counts that 

closely resembles that of bulk RNAseq.  Custom R scripts were used to generate pools of pseudo-cells by 

pooling groups of 20 cells within each sample and cluster, and then summing their gene count. The gene 

expression values from the pseudo cells were normalized to counts per million before using EdgeR (41) 

for normalization and differential expression estimation. Default likelihood ratio tests assuming negative 

binomial distributions were performed in EdgeR to evaluate the significance of differential expression. 

Ten permutations of this procedure were performed, and the average differential expression and 

negative-log P-values were computed, and genes significant with a FDR less than 5% were selected for 

downstream gene ontology analysis. Then gene ontology was performed on the differentially expressed 

genes using GSEA (42, 43) and ToppGene (44) tools. 
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Figure legends:  

Figure 1.  Clusters of BM-MSC transcriptome profiles.  (A) The first two Principal Components of gene 

expression identify two broad clusters of cells, which are colored by sample: Cluster BM-Low, which 

correspond low UMI count cells and cluster BM-High, with high UMI count cells. (B) Violin plots show the 

density of the number of Genes, UMI, and Ribosomal Protein transcripts (RP) per cell.  (C) Association of 

cells with clusters.  The width of each column is proportional to the number of cells in the indicated 

sample, and the color of each box corresponds to cells in cluster BM-Low (blue), BM-High_a (red) or BM-

High_b (green).   (D)  Within cluster High, SC3 identifies two clusters of cells, which separate along PC3 

as indicated by the red and blue points.  (E)  Shading of cells by sample confirms that cells from each 

donor belong to one of the two sub-clusters, although with subtle separation associated with PC3.   

 

Figure 2.  Differential expression between the two High clusters of Bone Marrow-MSC samples.  (A)  

Volcano plot of negative log P-value (NLP) against fold change, created with standard single cell level 

computation in edgeR.  (B)  Corresponding volcano plot based on the pseudo pools results.  Blue shading 

indicates cell cycle markers obtained from cycleBase(45). (C)  Chord diagram of gene ontology analysis 

highlighting the top 10 differentially expressed genes in each of 8 pathways representative of the up- 

and down-regulated genes.  Ribbons link genes on the left to pathways on the right; genes associated 

with multiple pathways bifurcate.  Note that in this depiction, the direction of differential expression is 

the same for all genes in the pathway. 

 

Figure 3.  Clusters of UCT-MSC Profiles.  (A) The first two Principal Components of gene expression 

identify the two major clusters of cells, which are colored by sample.  Most cells of each sample cluster 

together. (B) Violin plots show the density of the number of Genes, UMI, and Ribosomal Protein 

transcripts (RP) per cell.  (C) Association of cells with clusters.  The width of each column is proportional 
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to the number of cells in the indicated sample, and the color of each box corresponds to cells in cluster 1 

(blue), 2a (red) or 2b (green).   

Figure 4.  Differential expression between two high quality UCT-MSC clusters.  (A) Volcano plot of 

significance against fold difference in gene expression for the comparison of clusters 2a and 2b.  Blue 

points indicate genes with established roles in cell-cycle regulation. (B) Chord diagram of gene ontology 

analysis highlighting the top 10 differentially expressed genes in each of 10 pathways representative of 

the up- and down-regulated genes.  Ribbons link genes on the left to pathways on the right; genes 

associated with multiple pathways bifurcate.   

Figure 5.  (A) Principal component analysis showing clustering of MSC samples by tissue of origin (bone 

marrow vs umbilical cord tissue). (B) Chord diagram summarizing differential expression between UCT-

MSC and BM-MSC.    (C) Cluster-specific pathway expression is not conserved between the two High 

clusters from the two tissues of MSC origin. Chord diagram contrasting clusters BM-High_a versus UCT-

High_a. 
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Tables: 

Table 1. Number of cells, average number of genes and average number of UMI per cell per BM-MSC 

sample. 

Samples Lab Number 

of Cells 

Number of 

Reads 

Mean 

Reads per 

cell 

Median 

genes 

per cell 

Number 

of cells 

post 

filtering 

Sex Age Average 

nGenes 

per cell 

Average  

nUMI 

per cell 

BM1 A 293 29,671,530 15,469 2,218 293 Male 25 2,693 7,581 

BM2a A 310 29,943,109 46,467 3,855 252 Male 21 3,714 12,242 

BM2b B 199 41,511,093 39,417 4,686 199 Male  21 4,395 15,506 

BM3 B 590 35,842,779 26,580 4,272 452 Male 22 4,193 13,415 

BM4 B 557 25,262,984 17,668 3,803 542 Female 26 3,430 9,718 

BM5 B 149 18,160,926 32,928 4,201 122 Male 31-

45 

4,057 13,591 

BM6 B 317 21,841,113 29,393 4,554 275 Male 18-

30 

4,367 14,385 
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Table 2. Number of cells, average number of genes and average number of UMI per cell per UCT-MSC 

sample. 

Samples Lab Number 

of Cells 

Number of 

Reads 

Mean 

Reads 

per cell 

Median 

genes 

per cell 

Number 

of cells 

post 

filtering 

Sex Age Average 

nGenes 

per cell 

Average  

nUMI per 

cell 

UCT1a C 161 16,255,153 19,563 2,472 161 Male -- 2,808 8,458 

UCT1b C 251 31,333,645 38,809 3,840 251 Male -- 3,667 12,075 

UCT1c C 251 31,333,645 38,809 3,840 251 Male -- 2,477 7,321 

UCT2 C 692 59,783,150 25,248 2,979 547 Male -- 3,053 9,381 

UCT3 C 397 43,757,708 26,241 2,724 396 Male -- 2,720 9,262 

UCT4 C 284 20,167,531 29,162 3,717 259 Male -- 3,616 11,711 
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