bioRxiv preprint doi: https://doi.org/10.1101/2020.09.09.290478; this version posted September 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

The FlhA linker mediates flagellar protein export switching during flagellar assembly

3

Yumi Inoue^{1,†}, Mamoru Kida², Miki Kinoshita¹, Norihiro Takekawa²,
Keiichi Namba^{1,3,4}, Katsumi Imada^{2,*} and Tohru Minamino^{1,*}

6

7 ¹ Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadoaka, Suita,

- 8 Osaka 565-0871, Japan
- 9 ² Department of Macromolecular Science, Graduate School of Science, Osaka University,
- 10 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- ³ RIKEN Spring-8 Center and Center for Biosystems Dynamics Research, 1-3
- 12 Yamadaoka, Suita, Osaka 565-0871, Japan
- 13 ⁴ JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka,
- 14 Suita, Osaka 565-0871, Japan
- 15

[†]Present address: Department of Ophthalmology and Visual Sciences, Kyoto University
 Graduate School of Medicine, Kyoto, 606-8507 Japan

18

*Correspondence to Tohru Minamino : Mailing address, Graduate School of Frontier
Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan. Tel:
+81-6-6879-4625; E-mail: tohru@fbs.osaka-u.ac.jp or Katsumi Imada: Graduate School
of Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
Tel: +81-6-6850-5455; E-mail: kimada@chem.sci.osaka-u.ac.jp.

24

25 Abstract

26 The flagellar protein export apparatus switches export specificity from hook-type 27 to filament-type upon completion of hook assembly, thereby initiating filament assembly at the hook tip. The C-terminal cytoplasmic domain of FIhA (FIhAc) forms 28 a homo-nonameric ring structure that serves as a docking platform for flagellar 29 export chaperones in complex with their cognate filament-type substrates. 30 31 Interactions of the flexible linker of FIhA (FIhAL) with its nearest FIhAc subunit in 32 the ring allow the chaperones to bind to FlhAc to facilitate filament-type protein export, but it remains unclear how it occurs. Here, we report that FIhAL acts as a 33 switch that brings the order to flagellar assembly. The crystal structure of 34 35 FlhA_c(E351A/D356A) showed that Trp-354 in **FlhA**∟ bound the to 36 chaperone-binding site of its neighboring subunit. We propose that FIhAL binds to the chaperon-binding site of FIhAc to suppress the interaction between FIhAc and 37 38 the chaperones until hook assembly is completed.

40 Introduction

41 The flagellum of Salmonella enterica (hereafter referred to Salmonella) is a 42 supramolecular motility machine consisting of the basal body, the hook and the filament. For construction of the flagella on the cell surface, a type III protein export apparatus 43 44 (fT3SS) transports flagellar building blocks from the cytoplasm to the distal end of the growing flagellar structure. The fT3SS is divided into three structural parts: a 45 46 transmembrane export gate complex made of FIhA, FIhB, FIiP, FliQ and FliR, a docking platform composed of the cytoplasmic domains of FlhA and FlhB (FlhAc and FlhBc), and 47 a cytoplasmic ATPase ring complex consisting of FliH, FliI and FliJ¹. The FlhA_c-FlhB_c 48 49 docking platform switches its substrate specificity from hook-type export substrates (FlgD, 50 FIgE and FliK) to filament-type ones (FIgK, FIgL, FIgM, FliC and FliD) when the hook 51 reaches its mature length of about 55 nm in Salmonella, thereby terminating hook 52 assembly and initiating filament formation².

FliK is secreted via fT3SS during hook-basal body (HBB) assembly not only to measure the hook length but also to switch export specificity of the FlhA_C-FlhB_C docking platform². This has been recently verified by *in vitro* reconstitution experiments using inverted membrane vesicles^{3,4}. The N-terminal domain of FliK (FliK_N) serves as a secreted molecular ruler to measure the hook length^{5–8}. When the hook length reaches about 55 nm, a flexible linker region of FliK connecting FliK_N and the C-terminal domain (FliK_C) promotes a conformational rearrangement of FliK_C to interact with FlhB_C, thereby 60 terminating hook-type protein export^{9,10}.

61 FlhA_C consists of four domains, D1, D2, D3 and D4, and a flexible linker (FlhA_L) 62 connecting FlhA_c with the N-terminal transmembrane domain of FlhA (Fig. 1)¹¹. FlhA_c forms a homo-nonamer ring^{12,13} and provides binding-sites for flagellar export chaperons 63 (FIgN, FIiS and FIiT) in complex with their cognate filament-type substrates^{14–17}. 64 Interactions of FIhA_C with the flagellar chaperones facilitate the filament-type substrates 65 66 to enter into the export gate complex for efficient protein export and assembly^{15,16}. The FliK_c-FlhB_c interaction is thought to induce structural remodeling of the FlhA_c ring 67 through interactions of FIhA_L with its nearest FIhA_C subunit, thereby initiating the export of 68 69 filament-type proteins^{13,18,19}. However, it remains unknown how.

In the present study, to clarify the role of $FlhA_L$ in the export switching mechanism of fT3SS, we analyzed the interaction between $FlhA_L$ and $FlhA_C$ and provide evidence suggesting that the interaction of $FlhA_L$ with the chaperone-binding site of $FlhA_C$ inhibits the binding of the flagellar export chaperones to $FlhA_C$ to keep the export specificity in the hook type during hook assembly.

75

76 **Results**

Isolation of pseudorevertants from the *flhA(E351A/W354A/D356A)* mutant. Glu-351,
 Trp-354 and Asp-356 of FlhA_L bind to the D1 and D3 domains of its neighboring FlhA_C

79 subunit to stabilize FlhA_c ring structure in solution^{11,13}. The *flhA*(E351A/D356A) and 80 flhA(W354A) mutants produces the HBBs without the filament attached although their 81 hook length is not controlled properly¹³. The W354A and E351A/D356A mutations inhibit 82 the interaction of FlhA_c with flagellar chaperones in complex with their cognate filament-type substrates, suggesting that the interaction between FlhA_L and the D1 and 83 84 D3 domains of its neighboring $FlhA_{C}$ subunit keeps the chaperone binding site of $FlhA_{C}$ 85 open to allow the chaperones to bind to FIhAc to facilitate the export of the filament-type 86 substrates¹³. However, the *flhA(E351A/W354A/D356A)* mutant do not produce the HBBs 87 at all, raising a question of why the E351A/W354A/D356A triple mutation inhibits HBB assembly¹³. To clarify this question, we isolated 14 pseudorevertants from the 88 89 flhA(E351A/W354A/D356A) mutant. Motility was somewhat restored by these 90 pseudorevertant mutations but it was much poorer than that of wild-type cells (Fig. 2a). Export substrates such as FlgD, FlgE, FlgK and FliD were detected in the culture 91 92 supernatants of these pseudorevertants (Fig. 2b). In agreement with this, these 93 pseudorevertants produced a couple of flagella on the cell surface (Fig. 2c). DNA sequencing revealed that all suppressor mutations are located in the flgMN operon. One 94 95 was the M1I mutation at the start codon of the *flqM* gene (isolated twice), presumably 96 inhibiting FlgM translation. Two suppressor mutations produced a stop codon at position 97 of GIn-52 or Ser-85 of FIgM, resulting in truncation of the C-terminal region of FIgM. Nine 98 suppressor mutations were large deletions in *flgM*. We also found that there was a large

99 deletion in the flgM and flgN genes, thereby disrupting both FlgM and FlgN. A 100 loss-of-function of FIgM results in a considerable increment in the transcription levels of 101 flagellar genes^{20,21}. Consistently, the cellular levels of FlgK and FliD seen in the 102 pseudorevertants were higher than those in its parental strain (Fig. 2b, 3rd and 4th rows). 103 It has been shown that an interaction between FliJ and FlhA_L brought about by FliH and 104 Flil fully activates the transmembrane export gate complex of fT3SS to utilize proton 105 motive force (PMF) across the cell membrane to drive flagellar protein export²². Because 106 the E351A/W354A/D356A triple mutation reduces the binding affinity of FlhA_C for FliJ¹³, 107 this suggests that these flgM mutations considerably increase the cytoplasmic levels of 108 FliH, FliI, FliJ and export substrates to allow the *flhA(E351A/W354A/D356A)* mutant to 109 export flagellar building blocks for producing a small number of flagella on the cell 110 surface. Therefore, we propose that Glu-351, Trp-354 and Asp-356 of FlhAL also play an 111 important role in the activation mechanism of the PMF-driven export gate complex.

We found that the secretion levels of FlgD and FlgE by the pseudorevertants were about 1.5-fold and 4-fold higher than those by the wild-type whereas the secretion levels of FlgK and FliD were much lower (Fig. 2b), raising the possibility that *flgM* suppressor mutations do not efficiently promote export switching of fT3SS from hook-type substrates to filament-type ones in the *flhA*(*E351A*/*W354A*/*D356A*) mutant. To clarify this, we introduced the $\Delta flgM::km$ allele to the *Salmonella* NH001 ($\Delta flhA$) strain to produce the $\Delta flgM::km$ and *flhA*(*E351A*/*W354A*/*D356A*) $\Delta flgM::km$ cells (Supplementary 119 Fig. 1). The $\Delta flqM$::km allele restored motility of the flhA(E351A/W354A/D356A) mutant in 120 a way similar to other flgM suppressor mutations. Then, we isolated flagella from the 121 $\Delta flgM::km$ and flhA(E351A/W354A/D356A) $\Delta flgM::km$ cells and measured their hook length. The hook length of the $\Delta flgM$::km strain was 52.0 ± 5.1 nm (mean ± SD, n = 157) 122 123 (Fig. 2d), which is nearly the same as that of the wild-type strain $(51.0 \pm 6.9 \text{ nm})^{13}$. This 124 indicates that the loss-of-function mutation of FIgM does not affect the hook length 125 control. In contrast, the average hook length of the flhA(E351A/W354A/D356A) 126 $\Delta flgM::km$ strain was 68.8 ± 30.9 nm (mean ± SD, n = 157) (Fig. 2d), indicating that the 127 hook length control becomes worse in the presence of the E351A/W354A/D356A triple 128 mutation. These suggest that this triple mutation affects not only the initiation of 129 filament-type protein export but also the termination of hook-type protein export. 130 Therefore, we propose that conformational rearrangements of FIhA_L are required for 131 well-regulated export switching of fT3SS.

132

Effect of FlhA linker mutations on the hydrodynamic properties of FlhA_c in solution. A well conserved hydrophobic dimple of FlhA_c containing Asp-456, Phe-459 and Thr-490 resides is located at the interface between domains D1 and D2 and is involved in the interactions with the FlgN, FliS and FliT chaperones in complex with their cognate filament-type substrates (Fig. 1)^{15–17}. The W354A, E351A/D356A and E351A/W354A/D356A mutations significantly reduce the binding affinity of FlhA_c for

139 these chaperone/substrate complexes¹³, raising the possibility that FlhA_L carrying these 140 flhA mutations binds to the hydrophobic dimple of FlhA_C and blocks the FlhA_C-chaperone 141 interaction. If true, FlhA_c with these mutations would show distinct hydrodynamic properties compared with wild-type FlhA_C. To clarify this possibility, we performed size 142 143 exclusion chromatography with a Superdex 75 column HR 10/30 column. Wild-type 144 His-FlhA_c appeared as a single peak at an elution volume of 10.3 mL, which corresponds 145 to the deduced molecular mass of His-FlhA_c (about 43 kDa) (Fig. 3a). His-FlhA_c(W354A), 146 His-FlhA_c(E351A/D356A) and His-FlhA_c(E351A/W354A/D356A) appeared as a single 147 peak at an elution volume of 10.3 mL, 10.5 mL and 10.4 mL, respectively (Fig. 3a), 148 indicating that these mutant variants exist monomer in solution. as а 149 His-FlhA_c(E351A/D356A) exhibited a slightly delayed elution behavior compared with the 150 wild-type. Furthermore, His-FlhAc(E351A/D356A) showed a slightly faster mobility on 151 SDS-PAGE gels. Far-UV CD measurements revealed that the E351A/D356A double 152 mutation did not affect the secondary structures of FlhA_C (Supplementary Fig. 2). These 153 suggest that FIhA_C(E351A/D356A) adopts a more compact conformation than wild-type 154 FlhA_C. The elution peak position of His-FlhA_C(E351A/W354A/D356A) was between those 155 of the wild-type $FlhA_{C}(E351A/D356A)$ (Fig. 3a). and Because 156 His-FlhA_c(E351A/W354A/D356A) showed two different bands on SDS-PAGE gels, with a 157 slower mobility band corresponding to wild-type FlhA_c and a faster one corresponding to 158 FlhA_c(E351A/D356A) (Fig. 3a, inset), we suggest that FlhA_c(E351A/W354A/D356A)

exists in an equilibrium between the wild-type conformation and the compact conformation. Since FlhA_c(W354A) adopted the wild-type conformation (Fig. 3a), we suggest that the E351A/D356A double mutation is required to make FlhA_c more compact and that Trp-354 of FlhA_L is needed to stabilize the compact conformation.

163

164 Effect of FIhA linker mutations on methoxypolyethylene glycol 5000 maleimide 165 (mPEG-maleimide) modifications of Cys-459 and Cys-548. FlhAc structures have 166 shown that it adopts three distinct, open, semi-closed and closed conformations^{11,14,17,18,23}. Phe-459 and Lys-548 are fully exposed to solvent on the 167 168 molecular surface of the open conformation of FlhA_C but are in close proximity to each other in the closed conformation^{11,18,23}. To test whether mutations in FlhA_L bias FlhA_C 169 170 towards the closed structure, we performed Cys modification experiments with 171 mPEG-maleimide, which adds a molecular mass of ~5 kDa to a target protein. 172 FIhA_C(F459C/K548C) modified by mPEG-maleimide showed much slower mobility shift. 173 indicating that both Cys459 and Cys548 are exposed to the solvent. The W354A, 174 E351A/D356A and E351A/W354A/D356A mutations did not inhibit Cys modifications with 175 mPEG-maleimide at all, indicating that FIhA_c with these mutations does not adopt the 176 closed conformation.

177

178 Crystal structure of FlhAc(E351A/D356A). To investigate whether Trp-354 of FlhAL

179	binds to the hydrophobic dimple of $FlhA_C$ to makes $FlhA_C$ (E351A/D356A) more compact,
180	we explored crystallization conditions of $FlhA_C(E351A/D356A)$ for a molecular packing
181	distinct from the open (PDB code: 3A5I) ¹¹ and semi-closed (PDB code: 6AI0) ¹⁸ forms of
182	wild-type FlhA _c . We found a new orthorhombic crystal that diffracted up to 2.8 Å
183	resolution, with unit cell dimensions $a = 71.7$ Å, $b = 96.2$ Å, $c = 114.1$ Å (Table 1) and the
184	asymmetric unit containing two $FIhA_C$ molecules (A and B). Mol-A adopts an open
185	conformation similar to the 3A5I structure whereas Mol-B shows a semi-closed
186	conformation similar to the 6AI0 structure (Supplementary Fig. 3). The residues from
187	Val-349 to Val-357 in FlhA _L of Mol-A form an α -helix, which interacts with the hydrophobic
188	dimple of a neighboring Mol-A molecule related by a crystallographic symmetry (Fig. 4a).
189	Trp-354 fits into the hydrophobic dimple, and Ala-351 hydrophobically contacts with
190	Pro-442 on the periphery of the dimple (Fig. 4b). These interactions resemble the
191	interaction between the N-terminal α -helix of FliS and the hydrophobic dimple of FlhAc
192	(PDB ID: 6CH3) ¹⁷ (Fig. 4c). Ile-7 and Tyr-10 of the N-terminal α -helix of FliS is in the
193	corresponding position of Ala-351 and Trp-354 of $FlhA_L$, respectively. Tyr-10 fits into the
194	hydrophobic dimple of FlhAc, and Ile-7 interacts with Pro-442 of FlhAc (Fig. 4d). These
195	observations suggest that $FlhA_{L}$ and flagellar chaperones bind competitively to a
196	common binding site on $FlhA_C$ and that the dissociation of $FlhA_L$ from this binding site is
197	required for the binding of the flagellar chaperones to $FlhA_C$.

199 **Discussion**

200 The FlhA_C ring serves as the docking platform for flagellar export chaperones in complex 201 with their cognate substrates and facilitates the export of filament-type proteins to form the filament at the hook tip after completion of hook assembly^{14–17}. The FlhA_C ring also 202 ensures the strict order of flagellar protein export, thereby allowing the huge and complex 203 flagellar structure to be built efficiently on the cell surface^{13,14,16,18,19}. Interactions of FlhA_L 204 205 with its neighboring FlhA_c subunit in the nonamer ring is required for the initiation of 206 filament-type protein export upon completion of hook assembly. However, it remained 207 unclear how the FlhA_c ring mediates such hierarchical protein export during flagellar 208 assembly.

209 In this study. first performed genetic analyses we of the 210 flhA(E351A/W354A/D356A) mutant and found that the E351A/W354A/D356A triple 211 mutation caused a loose hook-length control (Fig. 2d), indicating that the 212 E351A/W354A/D356A mutation significantly affects the termination of hook-type protein 213 export. Furthermore, this triple mutation also reduced the secretion levels of the 214 filament-type proteins considerably (Fig. 2b), thereby reducing the number of flagellar 215 filaments per cell (Fig. 2c). These results suggest that FlhA_L serves as a structural switch 216 for substrate specificity switching of fT3SS from hook-type to filament-type and that 217 Glu-351, Trp-354 and Asp-356 of FlhA_L are directly involved in this export switching 218 mechanism.

219 It has been reported that the W354A, E351A/D356A and E351A/W354A/D356A 220 mutations inhibit interactions between FlhA_c and flagellar chaperones in complex with 221 their cognate filament-type substrates¹³, suggesting that FlhA_L regulates the binding of 222 flagellar chaperones to FlhA_c. The crystal structure of FlhA_c(E351A/D356A) showed that 223 Trp-354 of one Mol-A molecule bound to the hydrophobic dimple of the flagellar 224 chaperone binding site of its nearest Mol-A in the crystal (Fig. 4). Although the relative 225 orientations of these Mol-A molecules in the crystal differs from those in the FlhAc 226 nonameric ring, FlhA_L can bind to the hydrophobic dimple of FlhA_C in the nonamer ring 227 structure because of a highly flexible nature of $FlhA_{L}$ (Fig. 5). The C-terminal region of 228 FlhA_L is flexible enough to allow such subunit orientations without changing the essential 229 interaction between FIhA_L and the chaperone binding site of FIhA_C, as it has been shown 230 to have various conformations in the known FlhAc structures¹⁸. Therefore, we propose 231 that an interaction between FIhA_L and the hydrophobic dimple of its neighboring FIhA_C 232 subunit suppresses the docking of flagellar chaperones to the FlhA_c ring platform during 233 HBB assembly and that the hook completion induces the detachment of FlhA_L from the 234 dimple through an interaction between FliK_c and FlhB_c and its attachment to the D1 and 235 D3 domains to induce structural remodeling of the $FlhA_{C}$ ring, thereby terminating hook 236 assembly and initiating filament formation (Fig. 5). Because Trp-354 of FlhA₁ stabilized a 237 more compact conformation of the FlhA_c(E351A/D356A) monomer compared to the 238 wild-type FlhA_C and FlhA_C(W354A) monomers (Fig. 3), it is also possible that FlhA_L may

239	block the	docking	of the	flagellar	chaperones	to F	lhA _C by	covering	the binding	site	of the
-----	-----------	---------	--------	-----------	------------	------	---------------------	----------	-------------	------	--------

- same FlhA_C molecule.
- 241

242	Μ	eth	10	ds
-----	---	-----	----	----

- 243 Bacterial strains and plasmids. Bacterial strains and plasmids used in this study are
- listed in Supplementary Table 1.

246	DNA manipulations. DNA manipulations and site-directed mutagenesis were carried out
247	as described previously ²⁴ . DNA sequencing reactions were carried out using BigDye v3.1
248	(Applied Biosystems) and then the reaction mixtures were analyzed by a 3130 Genetic
249	Analyzer (Applied Biosystems).
250	
251	Motility assays. Fresh colonies were inoculated into soft agar plates [1% (w/v) triptone,
252	0.5% (w/v) NaCl, 0.35% Bacto agar] and incubated at 30°C.
253	
254	Secretion assays. Details of sample preparations have been described previously ²⁵ .
255	After SDS-polyacrylamide gel electrophoresis (PAGE), immunoblotting with polyclonal
256	anti-FlgD, anti-FlgE, anti-FlgK, or anti-FliD antibody was carried out as described
257	previously ²⁶ .

259	Hook length measurements. The HBBs were purified from NH004gM carrying pMM130
260	or pYI003 as described previously ²⁷ . The HBBs were negatively stained with $2\%(w/v)$
261	uranyl acetate. Electron micrographs were recorded with a JEM-1011 transmission
262	electron microscope (JEOL, Tokyo, Japan) operated at 100 kV and equipped with a F415
263	CCD camera (TVIPS, Gauting, Germany). Hook length was measured by ImageJ version
264	1.48 (National Institutes of Health).
265	
266	Protein purification. E. coli BL21 (DE) Star cells carrying a pET15b-based plasmid
267	encoding His-FlhA _c or its mutant variants were grown overnight at 30°C in 250 mL of
268	L-broth [1% (w/v) tryptone, 0.5% (w/v) yeast extract, 0.5% (w/v) NaCl] containing
269	ampicillin. His-FlhA _c and its mutant variants were purified by affinity chromatography,
270	followed by size exclusion chromatography as described previously ²⁴ .
271	
272	Far-UV CD spectroscopy. Far-UV CD spectroscopy of His-FlhA _C or its mutant variants
273	was carried out at room temperature using a Jasco-720 spectropolarimeter (JASCO
274	International Co., Tokyo, Japan) as described previously ²⁸ .
275	
276	Cystein modification by mPEG-maleimide. His-FlhA _C (F459C), His-FlhA _C (K548C),
277	His-FlhAc(F459C/K548C), His-FlhAc(W354A/F459C/K548C),

278 His-FlhAc(E351A/D356A/F459C/K548C)

His-FlhA_C(E351A/W354A/D356A/F459C/K548C) were dialyzed overnight against PBS (8
g of NaCl, 0.2 g of KCl, 3.63 g of Na₂HPO₄ 12H₂O, 0.24 g of KH₂PO₄, pH 7.4 per liter) at
4°C, followed by cysteine modification by mPEG-maleimide (Fluka) as described
previously¹⁸. Each protein solution was run on SDS-PAGE and then analyzed by
Coomassie Brilliant blue (CBB) staining.

284

285 X-ray crystallographic study of FlhA_c(E351A/D356A). Initial crystallization screening 286 was performed at 20°C by the sitting-drop vapor-diffusion method using Wizard Classic I 287 and II, Wizard Cryo I and II (Rigaku Reagents, Inc.), Crystal Screen and Crystal Screen 2 288 (Hampton Research). Crystals suitable for X-ray analysis were obtained from drops 289 prepared by mixing 0.5 µL protein solution with 0.5 µL reservoir solution containing 0.1 M 290 Tris-HCI (pH 8.5), 20% (v/v) PEG 8000, and 200 mM MgCl₂. X-ray diffraction data were 291 collected at synchrotron beamline BL41XU in SPring-8 (Harima, Japan) with the approval 292 of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 293 2016B2544 and 2018A2568). The FlhA_c(E351A/D356A) crystal was soaked in a solution 294 containing 90% (v/v) of the reservoir solution and 10% (v/v) glycerol for a few seconds 295 and was directly transferred into liquid nitrogen for freezing. The X-ray diffraction data 296 were collected under nitrogen gas flow at 100 K. The diffraction data were processed

and

with MOSFLM²⁹ and were scaled with Aimless³⁰. The initial phase was determined by molecular replacement using the software package Phenix³¹ with the wild-type FlhA_c structure in the orthorhombic crystal form (PDB code: 6AI0) as a search model. The atomic model was constructed with COOT³² and refined with Phenix³¹. During the refinement process, iterative manual modification was performed. The diffraction data statistics and refinement statistics are summarized in Table 1.

303

304 Accession code

The atomic coordinates have been deposited in Protein Data Bank under the accessioncode 7CTN.

307

308 **References**

- 309 1. Minamino, T., Kawamoto, A., Kinoshita, M. & Namba, K. Molecular organization and
- 310 assembly of the export apparatus of flagellar type III secretion systems. *Curr. Top*
- 311 *Microbiol. Immunol.* **427**, 91–107 (2020).
- 312 2. Minamino, T. Hierarchical protein export mechanism of the bacterial flagellar type III
- 313 protein export apparatus. *FEMS Microbiol. lett.* **365**, fny117 (2018).
- 314 3. Terashima, H. et al. In vitro reconstitution of functional type III protein export and
- insights into flagellar assembly. *mBio* **9**, e00988-18 (2018).

316	Δ	Terashima	H et a	I In vitro	autonomous	construction	of the	flagellar a	vial structi	ire in
510	4.	rerasmina,	п. ега	1. <i>III VIU</i> O	autonomous	CONSTRUCTION	orune	liauella a	xiai sirucii	леш

- 317 the inverted membrane vesicles. *Biomolecules* **10**, 126 (2020).
- 5. Minamino, T., González-Pedrajo, B., Yamaguchi, K., Aizawa, S.-I. & Macnab, R. M.
- 319 FliK, the protein responsible for flagellar hook length control in Salmonella, is
- exported during hook assembly. *Mol. Microbiol.* **34**, 295–304 (1999).
- 321 6. Moriya, N., Minamino, T., Hughes, K. T., Macnab, R. M. & Namba, K. The type III
- 322 flagellar export specificity switch is dependent on FliK ruler and a molecular clock. J.
- 323 *Mol. Biol.* **359**, 466–477 (2006).
- 324 7. Shibata, S., *et al.* (2007) FliK regulates flagellar hook length as an internal ruler. *Mol.*325 *Microbiol.* 64, 1404–1415.
- 8. Erhardt, M., Singer, H. M., Wee, D. H., Keener, J. P. & Hughes, K.T. An infrequent
- 327 molecular ruler controls flagellar hook length in *Salmonella enterica. EMBO J.* **30**,
- 328 **2948–2961 (2011)**.
- 329 9. Kinoshita, M., Aizawa, S.I., Inoue, Y., Namba, K. & Minamino, T. The role of
- intrinsically disordered C-terminal region of FliK in substrate specificity switching of
- the bacterial flagellar type III export apparatus. *Mol. Microbiol.* **105**, 572–588 (2017).
- 10. Kinoshita, M., Tanaka, S., Y. Inoue, Y., Namba, K. Aizawa, S.I. & Minamino, T. The
- 333 flexible linker of the secreted FliK ruler is required for export switching of the flagellar
- 334 protein export apparatus. *Sci. Rep.* **10**, 838 (2020).
- 11. Saijo-Hamano, Y. et al. Structure of the cytoplasmic domain of FlhA and implication

336 for flagellar type III protein export. <i>Mol. Microbiol.</i> 76 , 260–268 (201	0).
--	-----

337	12. Abrusci, P. et al. Architecture of the major component of the type III secretion system
338	export apparatus. Nat. Struct. Mol. Biol. 20, 99–104 (2013).
339	13. Terahara, N. et al. Insight into structural remodeling of the FlhA ring responsible for
340	bacterial flagellar type III protein export. Sci. Adv. 4, eaao7054 (2018).
341	14. Bange G. et al. FlhA provides the adaptor for coordinated delivery of late flagella
342	building blocks to the type III secretion system. Proc. Natl. Acad. Sci. USA 107,
343	11295–11300 (2010).
344	15. Minamino, T. et al. Interaction of a bacterial flagellar chaperone FlgN with FlhA is
345	required for efficient export of its cognate substrates. Mol. Microbiol. 83, 775-788
346	(2012).
347	16. Kinoshita, M., Hara, N., Imada, K., Namba, K. & Minamino, T. Interactions of bacterial
348	chaperone-substrate complexes with FIhA contribute to co-ordinating assembly of
349	the flagellar filament. Mol. Microbiol. 90, 1249–1261 (2013).
350	17. Xing, Q. et al. Structure of chaperone-substrate complexes docked onto the export
351	gate in a type III secretion system. Nat. Commun. 9, 1773 (2018).
352	18. Inoue, Y. et al. Structural insight into the substrate specificity switching mechanism of
353	the type III protein export apparatus. Structure 27, 965–976 (2019).
354	19. Minamino, T., Inoue, Y., Kinoshita, M. & Namba, K. FliK-driven conformational
355	rearrangements of FIhA and FIhB are required for export switching of the flagellar

356 protein export apparatus. *J. Bacteriol.* **202**, e00637-19 (2020).

357	20. Gillen, K.L. & K.T. Hughes. Molecular characterization of flgM, a gene encoding a
358	negative regulator of flagellin synthesis in Salmonella typhimurium. J. Bacteriol. 173,
359	6453–6459 (1991).
360	21. Erhardt, M., Mertens, M.E., Fabiani, F.D. & Hughes, K.T. ATPase-independent
361	type-III protein secretion in Salmonella enterica. PLoS Genet. 10, e1004800 (2014).
362	22. Minamino, T., Morimoto, Y.V., Hara, N. & Namba, K. An energy transduction
363	mechanism used in bacterial type III protein export. Nat. Commun. 2, 475 (2011).
364	23. Moore, S.A., and Jia, Y. Structure of the cytoplasmic domain of the flagellar secretion
365	apparatus component FIhA from Helicobacter pylori. J. Biol. Chem. 285, 21060-
366	21069 (2010).
367	24. Saijo-Hamano, Y., Minamino, T., Macnab, R.M. & Namba, K. Structural and functional
368	analysis of the C-terminal cytoplasmic domain of FIhA, an integral membrane
369	component of the type III flagellar protein export apparatus in Salmonella. J. Mol. Biol.
370	343 , 457-466 (2004).
371	25. Minamino, T., Kinoshita, M. & Namba, K. Fuel of the bacterial flagellar type III protein
372	export apparatus. Methods Mol. Biol. 1593, 3–16 (2017).
373	26. Minamino, T. & Macnab, R. M. Components of the Salmonella flagellar export
374	apparatus and classification of export substrates. J. Bacteriol. 181, 1388–1394
375	(1999).
	19

376	27. Inoue, Y., Morimoto, Y. V., Namba, K. & Minamino, T. Novel insights into the
377	mechanism of well-ordered assembly of bacterial flagellar proteins in Salmonella. Sci.
378	Rep. 8 , 1787 (2018).
379	28. Shimada, M. et al. Functional defect and restoration of temperature-sensitive
380	mutants of FlhA, a subunit of the flagellar protein export apparatus. J. Mol. Biol. 415,
381	855–865 (2012).
382	29. Battye, T.G., Kontogiannis, L., Johnson, O., Powell, H.R. & Leslie, A.G. 'iMOSFLM: a
383	new graphical interface for diffraction-image processing with MOSFLM'. Acta
384	Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).
385	30. Evans, P.R. & Murshudov, G.N. How good are my data and what is the resoluton?
386	Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).
387	31. Adams, P.D., et al. PHENIX: a comprehensive Python-based system
388	formacromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-
389	221 (2010).
390	32. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of
391	Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
392	

393 Acknowledgements

We thank beamline staffs at SPring-8 for technical help in use of beamlines BL41XU.
 This work was supported in part by JSPS KAKENHI Grant Numbers JP18K14638 and

396	JP20K15749 (to M.K.), JP16J01859 (to N.T.), 25000013 (to K.N.), 15H02386 (to K.I.) and
397	JP26293097 and JP19H03182 (to T.M.). This work has also been partially supported by
398	JEOL YOKOGUSHI Research Alliance Laboratories of Osaka University to K.N.
399	
400	Author Contributions
401	K.N. K.I. and T.M. conceived and designed research; Y.I., M.Kida, M.Kinoshita, N.T., K.I.
402	and T.M. preformed research; Y.I., M.Kida, M.Kinoshita, N.T., K.I. and T.M. analysed the
403	data; and K.N., K.I. and T.M. wrote the paper based on discussion with other authors.
404	
405	Competing interests
406	The authors declare no competing interests.
407	
408	Data availability
409	All data generated during this study are included in this published article and its
410	Supplementary Information files.

Table 1. X-ray data collection and refinement statistics

X-ray data collection			
Space group	P2	12121	
Cell dimensions	71.7, 96.2, 114.1		
a, b, c (Å)			
Wavelength (Å)	1.(0000	
Resolution (Å)	73.5-2.80	(2.95-2.80)	
R _{merge}	0.074	(0.317)	
R _{pim}	0.065	(0.283)	
CC(1/2)	0.995	0.915	
Ι/σΙ	8.1	(2.8)	
Completeness (%)	97.1	(94.6)	
Redundancy	3.4	(3.1)	
Refinement statistics			
Resolution range (Å)	73.5-2.80	(2.87-2.80)	
No. of reflections working	17,398	(1,182)	
No. of reflections test	1,903	(112)	
R _w (%)	23.2	(33.5)	
R _{free} (%)	29.0	(42.1)	
Rms deviation bond length (Å)	0.003		
Rms deviation Bond angle (°)	0.680		
B-factors			
Protein atoms	70.0		
Solvent atoms	-		
Ramachandran plot (%)			
Most favored	96.0		
Allowed	3.9		
Disallowed	0.1		
No. of protein atoms	5, 252		
No. of solvent atoms	0		

413 Values in parentheses are for the highest resolution shell.

 $R_w = \sum || Fo | - | Fc || / \sum | Fo |, R_{free} = \sum || Fo | - | Fc || / \sum | Fo |$

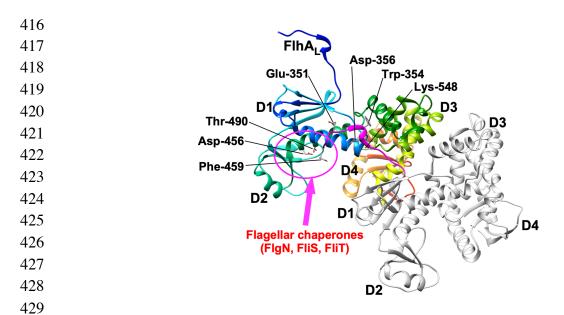
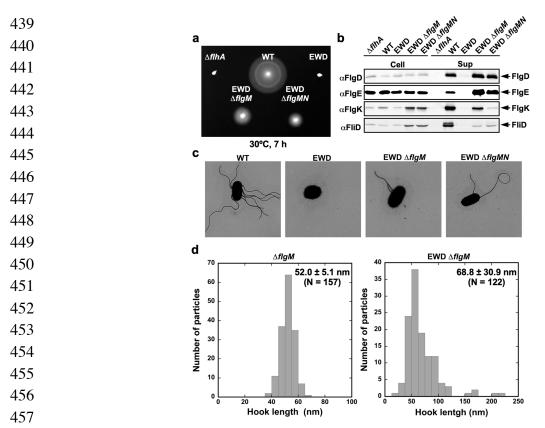
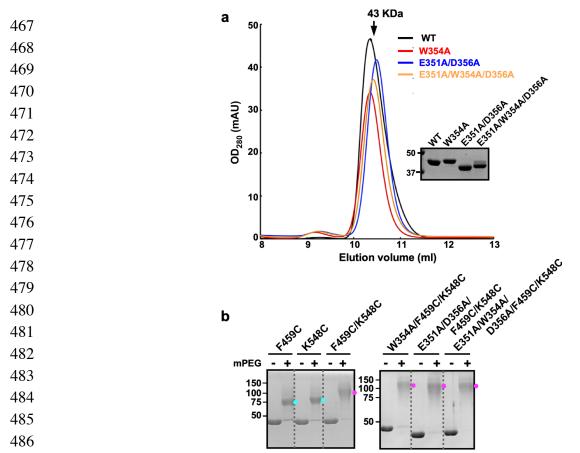
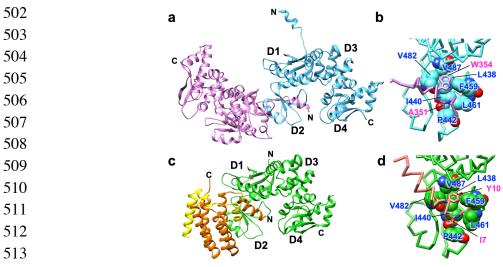
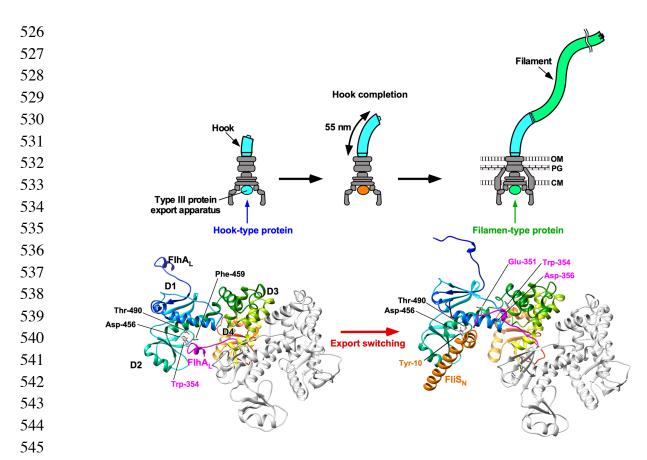




Fig. 1. FlhAc structure in a crystal (PDB ID: 3A5I). FlhAc consists of four domains, D1, 430 D2, D3 and D4 and a flexible linker (FlhAL). Glu-351, Trp-354 and Asp-356 of FlhAL binds 431 432 to the D1 and D3 domains of its neighboring subunit. A well-conserved hydrophobic 433 dimple including Phe-459 is responsible for the interaction of FlhA_C with flagellar export 434 chaperones in complex with filament-type substrates. Phe-459 and Lys-548 are exposed to solvent on the molecular surface when FlhA_C adopts the open conformation. The 435 436 interactions between the two FlhA_C molecules in this crystal also represent those in the 437 FlhA_c nonameric ring of the export apparatus.


458 Fig. 2. Isolation pseudorevertants from the *flhA(E351A/W354A/D356A)* mutant. (a)

459 Motility of the *Salmonella* NH001 strain transformed with pTrc99A ($\Delta flhA$), pMM130 (WT), 460 or pY1003 [FlhA(E351A/W354A/D356A) indicated as EWD]), Y11003-4 (EWD $\Delta flgM$) or 461 Y11003-13 (EWD $\Delta flgMN$) in soft agar. (b) Immunoblotting using polyclonal anti-FlgD (1st 462 row), anti-FlgE (2nd row), anti-FlgK (3rd row) or anti-FliD (4th row) antibody, of whole cell 463 proteins (Cell) and culture supernatants (Sup) prepared from the above strains. (c) 464 Electron micrographs of the above cells. (d) Histogram of hook length distribution of 465 NH001gM ($\Delta flhA \Delta flgM::km$) carrying pMM130 ($\Delta flgM$) or pY1003 (EWD $\Delta flgM$).


487 Fig. 3. Effect of FIhA linker mutations on the FIhAc conformation. (a) Size exclusion 488 chromatography using a Superdex 75HR 10/30 column. Elution positions of His-FlhAc 489 black), His-FlhA_c(W354A) (red), His-FlhA_c(E351A/D356A) (WT. (blue) and His-FlhA_C(E351A/W354A/D356A) (orange) are 10.3 ml, 10.3 ml, 10.5 ml and 10.4 ml, 490 491 respectively. Arrow indicates the elution peak of ovalbumin (43 kDa). Inset, CBB-stained 492 gels of purified FlhA_C proteins. (b) Effect of FlhA mutations on mPEG-maleimide 493 modification of Cys459 and Cys548. His-FlhAc(F459C), His-FlhAc(K548C), 494 His-FlhAc(W354A/F459C/K548C), His-FlhAc(F459C/K548C), His-FlhA_C(E351A/D356A/F459C/K548C) 495 and His-FlhA_C(E351A/ 496 W354A/D356A/F459C/K548C) were incubated with (+) or without (-) mPEG-maleimide. After centrifugation at 20,000 g for 20 min to remove any aggregates, supernatants were 497 498 analyzed by SDS-PAGE with CBB staining. Cyan and magenta dots indicate positions of 499 FlhA_C-(mPEG) and FlhA_C-(mPEG)₂, respectively.

- 500
- 501

514

515 Fig. 4. Interaction between FlhA_L and a well conserved hydrophobic dimple of its 516 neighboring FlhAc in the crystal of FlhAc(E351A/D356A). (a) Mol-A of 517 FlhA_C(E351A/D356A) (magenta) interacts with neighboring Mol-A (cyan) related by a 518 crystallographic symmetry. (b) Close-up view of the interaction between FlhA_L and the 519 hydrophobic dimple. Residues that form the hydrophobic dimple are indicated by balls. Ala-351 and Trp-354 in FlhA_L are shown in stick models. (c) Interaction between FlhA_C 520 521 (green) and FliS (orange) fused with the C-terminal region of FliC (yellow) (PDB code: 522 6CH3). (d) Close-up view of the interaction between FliS and the hydrophobic dimple. 523 The residues that form the hydrophobic dimple are indicated by ball. Ile-7 and Tyr-10 of 524 FliS are shown in stick models.

546 Fig. 5. Structural rearrangements of FlhA_L responsible for export switching of 547 fT3SS. Trp-359 of FlhA_L binds to a well-conserved hydrophobic dimple containing 548 Asp-456, Phe-459 and Thr-490 of its neighboring FIhA_C subunit in the FIhA_C ring to inhibit 549 the interaction of FIhAc with flagellar chaperones in complex with their cognate 550 filament-type substrates during hook assembly. When the hook reaches its mature length 551 of about 55 nm, an interaction between FliK_c and FlhB_c triggers a conformational 552 rearrangement of the FlhA_C ring so that FlhA_L dissociates from the hydrophobic dimple 553 and binds to the D1 and D3 domains of the neighboring FlhA_c subunit, allowing the 554 chaperones to bind to FIhAc to facilitate the export of their cognate substrates for filament 555 assembly.