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Abstract

Most predictive models based on gene expression data do not leverage information
related to gene splicing, despite the fact that splicing is a fundamental feature of
eukaryotic gene expression. Cigarette smoking is an important environmental risk factor
for many diseases, and it has profound effects on gene expression. Using smoking status
as a prediction target, we developed deep neural network predictive models using gene,
exon, and isoform level quantifications from RNA sequencing data in over 2,000 subjects
in the COPDGene Study. We observed that models using exon and isoform
quantifications clearly outperformed gene-level models when using data from 5 genes
from a previously published five gene prediction model. Whereas the test set
performance of the previously published model was 0.82 in the original publication, our
exon-based models including an exon-to-isoform mapping layer achieved a test set AUC
of 0.88 using data from the same 5 genes and an AUC of 0.94 using a larger set of exon
quantifications. Isoform variability is an important source of latent information in
RNA-seq data that can be used to improve clinical prediction models.

Author summary

Predictive models based on gene expression are already a part of medical decision
making for selected situations such as early breast cancer treatment. Most of these
models are based on measures that do not capture critical aspects of gene splicing, but
with RNA sequencing it is possible to capture some of these aspects of alternative
splicing and use them to improve clinical predictions. Building on previous models to
predict cigarette smoking status, we show that measures of alternative splicing
significantly improve the accuracy of these predictive models.

Introduction 1

Smoking is the most important environmental risk factor for a wide range of diseases 2

including cardiovascular disease, lung cancer, chronic obstructive pulmonary disease 3
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(COPD). Smoking increases the risk for these diseases through a variety of mechanisms 4

including selective activation and repression of distinct aspects of the inflammatory 5

response [1]. 6

A meta-analysis of blood gene expression arrays from 5,376 current and former 7

smokers identified 1,270 smoking-associated differentially expressed genes that were 8

significantly enriched in immune-related processes including T-cell activation [2]. 9

However, it is challenging to characterize the effects of cigarette smoking on splicing and 10

differential isoform usage due to technical challenges in measuring isoform expression 11

levels. Using RNA-seq combined with novel isoform reconstruction algorithms, we have 12

shown that smoking causes widespread differential isoform and exon usage in addition 13

to overall gene-level expression changes [3]. 14

A five gene expression-based predictive model for smoking was previously proposed 15

by Beineke et. al [4] with an AUC of 0.82, indicating that there is still room for 16

improvement in predictive performance for expression-based prediction tools for current 17

smoking status. Using blood RNA-seq data from 2,557 subjects in the COPDGene 18

Study, we explored the relative utility of expression measures at the gene, exon, and 19

isoform level using deep learning models tailored specifically to account for patterns of 20

alternative splicing induced by smoking. We hypothesized that since smoking alters 21

patterns of exon and isoform usage, greater predictive accuracy could be obtained by 22

using exon and isoform-level quantifications to predict smoking status. 23

Materials and methods 24

Subject enrollment and data collection 25

This study includes 2,557 subjects from the COPDGene Study. COPDGene has been 26

previously described [5]. Self-identified non-Hispanic whites (NHW) and African 27

Americans (AA) between the ages of 45 and 80 years with a minimum of 10 pack-years 28

lifetime smoking history were enrolled at 21 centers across the United States. 29

COPDGene conducted two study visits approximately five years apart, and the ten-year 30

visits are being completed. Starting at the second study visit, complete blood count 31

(CBC) data and PaxGene RNA tubes were collected. Smoking history was ascertained 32

by self-report. Participants defined as current smokers answered yes to the question “Do 33

you smoke cigarettes now (as of one month ago?)”. Institutional review board approval 34

and written informed consent were obtained. 35

Total RNA extraction 36

Total RNA was extracted from PAXgene Blood RNA tubes using the Qiagen 37

PreAnalytiX PAXgene Blood miRNA Kit (Qiagen, Valencia, CA). The extraction 38

protocol was performed either manually or with the Qiagen QIAcube extraction robot 39

according to the company’s standard operating procedure. 40

cDNA library construction and sequencing 41

Globin reduction and cDNA library preparation for total RNA was performed with the 42

Illumina TruSeq Stranded Total RNA with Ribo-Zero Globin kit (Illumina, Inc., San 43

Diego, CA). Library quality control included quantification with picogreen, size analysis 44

on an Agilent Bioanalyzer or Tapestation 2200 (Agilent, Santa Clara, CA), and qPCR 45

quantitation against a standard curve. 75 bp paired end reads were generated on 46

Illumina sequencers. Samples were sequenced to an average depth of 20 million reads. 47

All sequenced samples had RIN ¿ 6. 48
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Sequencing read alignment, quality control and expression 49

quantification 50

Reads were trimmed of TruSeq adapters using Skewer with default parameters [6]. 51

Trimmed reads were aligned to the GRCh38 genome using the STAR aligner [7]. Quality 52

control was performed using the FastQC and RNA-SeQC programs [8]. Samples were 53

included for subsequent analysis if they had >10 million total reads, >80% of reads 54

mapped to the reference genome, XIST and Y chromosome expression was consistent 55

with reported gender, <10% of R1 reads in the sense orientation, Pearson correlation ≥ 56

0.9 with samples in the same library construction batch, and concordant genotype calls 57

between variants called from RNA sequencing reads and DNA genotyping. 58

Gene and transcript gene transfer file (GTF) annotation was downloaded from 59

Biomart Ensembl database (Ensembl Genes release 94, GRCh38.p12 assembly) on 60

October 21, 2018. We further derived exonic parts GTF annotation by breaking exons 61

into disjoint parts sharing a common set of transcripts within a single gene. Sequencing 62

read counts on gene and exonic part level genomic features were obtained from 63

featureCounts function in Rsubread package (v1.32.2). Isoform level expression 64

quantifications were derived using the Salmon program (v0.12.0) and the tximport 65

package (v1.10.0). The gene, isoform, and exon count data used for this analysis are 66

available in GEO [26, 27] (accession number XXXXXX). 67

Filtering, normalization, differential expression and usage 68

analysis 69

Genomic features (genes, isoforms or exonic parts) were filtered for both features that 70

had very low and very high expression. The filter used to remove low expressed features 71

was to remove features where the average counts per million (CPM) was < 0.2 or the 72

feature was not expressed at a CPM ¿ 50 in at least 50 subjects. Extreme highly 73

expressed features were defined as features attaining a CPM > 50,000 in at least one 74

but fewer than 50 subjects. Differences in sequencing depth and RNA library 75

composition between subjects were normalized using the TMM procedure from edgeR 76

package (v3.24.3). Counts were transformed to log2 CPM values and 77

quantile-normalized to further remove systematic noise. To avoid overfitting, we limited 78

our set of genes to those contained within a set of 1,270 smoking-associated 79

differentially expressed genes that had been identified in a previous study using samples 80

that did not overlap with this study [2]. 81

Data usage and model validation 82

We analyzed blood RNA-seq data from 2,557 subjects in the COPDGene Study. We 83

randomly split the data into training, validation, and testing sets containing 1637, 407, 84

513 subjects respectively. Model optimization and hyperparameter tuning was 85

performed in the training data using 5-fold cross-validation. A small set of 86

high-performing models were further evaluated in the validation dataset, and the testing 87

data were used only for evaluation of the final set of models after all parameters and 88

hyperparameters were fixed. The testing data was held by a separate analysis group 89

using a different computer system to avoid any possibility of inadvertent use of test 90

data in the model building process. 91

Model Training 92

For all experiments, we train each model for 40 epochs with batch size 256 using Adam 93

optimizer with learning rate 0.0003, β1 = 0.9, β2 = 0.999 and a dropout rate of 0.2. We 94
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set the weight of the L1 constraint used in the Feature Selection layer to be 0.0005. 95

Unless otherwise specified, model layers were fully connected and ReLU nonlinear 96

activation function were used. All the deep learning models were implemented in 97

TensorFlow (v12.0.0) and Keras (v2.2.4.) 98

To identify high-performing model architectures, we adopted a layer-by-layer 99

incremental search strategy. We first explored the optimal number of nodes for a single 100

layer network by performing grid search. We evaluated from 2 to 512 nodes in the first 101

layer, increasing by a factor of 2 at each step, i.e., 2, 4, 8, . . . , 512. The number of 102

nodes at each layer was selected based on cross-validation performance, and then an 103

additional layer was added using the same grid search strategy for node number with 104

the constraint that each subsequent layer would have fewer nodes than the preceding 105

layer. This process was repeated until no further gain in performance was achieved. 106

Implementation of Isoform Map and Feature Selection Layers 107

To incorporate prior knowledge regarding the relationship of exons to transcript 108

isoforms, we implemented an Isoform Map Layer (IML) which takes exon feature as 109

input and outputs estimated isoform feature. This specially-designed layer is based on a 110

standard fully-connected layer with weight W. This layer encodes known exon to 111

isoform relationships in a binary relationship matrix R such that if exon i is contained 112

within isoform j, we set Rij = 1, otherwise Rij = 0. This layer takes the relationship 113

matrix to perform element-wise multiplication with the learnable weight matrix W. 114

Thus, only canonical exon to isoform relationships can contribute to the final model. 115

Exon to isoform relationships were obtained from the Ensemble v94 GTF file. 116

The Feature Selection Layer (FSL) associates every input feature with a 117

non-negative learnable weight using an L1 constraint and outputs a reweighted feature 118

vector of the same size as the input feature vector. The weights represent each feature’s 119

importance with respect to smoking status prediction. 120

Baseline models and model comparisons 121

To assess the effectiveness of our method, we compared our method against the current 122

method proposed by Beineke et al., which is a logistic regression model using the 123

following five genes: CLDND1, LRRN3, GOPC , LEF1, MUC1. We apply the Beineke 124

model on our data by exploring logistic regression with exon, isoform and gene inputs 125

considering only these five genes. For models evaluating the full set of genes, we trained 126

elastic net models as a baseline for comparison with the weights for the L1 and L2 127

norms set at 0.0005. We obtain the optimal set of parameters of elastic net by 128

conducting grid search and find out the best performance on the validation set. All 129

statistical tests of model performance were analyzed using data from the test set and 130

performed using R version 3.6. Direct comparisons between models were performed 131

using the deLong test implemented in the pROC package. 132

Results 133

RNA-seq data from 2,557 current and former smokers in the COPDGene Study were 134

used to develop and test the predictive models. Data were randomly split into training, 135

validation, and testing data. The use of data for model training, selection, and testing 136

are described in Fig 1. The characteristics of the subjects in these datasets are shown in 137

Table 1. 138
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Fig 1. Visual Abstract. (a) Dataset split and usage. The number in each cell
represents the number of subjects. The training set is equally split into 5 folds for deep
learning model optimization (cross-validation for tuning the hyperparameters and
architecture search in a deep learning model). The validation set is used to select the
optimal model and the testing set is held out for performance evaluation. (b) Model
overview. Our model consists of a Feature Selection Layer (FSL), an Isoform Map Layer
(IML) (if the input feature is exon) and standard fully connected layers. FSL associates
each input feature with a non-negative learnable weight, which represents the
importance of features with respect to smoking status. IML encodes exon to isoform
relationships via a binary matrix R, such that if exon i is contained within isoform j,
we set Rij = 1, otherwise Rij = 0. By multiplying Rij with corresponding learnable
weights W, we only consider canonical exon to isoform relationships.

Validation and Further Development of the Beineke Model 139

using Exon and Isoform Level Data 140

A microarray and RT-PCR based five gene expression model for smoking has been 141

previously developed and shown to have a test set AUC of 0.82 [4]. To externally 142

validate this model and establish a performance benchmark in our dataset, we 143

constructed an initial set of models using gene, exon, and isoform expression from this 144

set of genes. One of the genes, MUC1 was expressed in our data at levels below our 145

filtering threshold. We confirmed that this gene is also expressed in very low levels in 146

whole blood RNA samples from the Genotype Tissue Expression Project, and 147

subsequently based our models on the other four gene expression values. A logistic 148

regression model using these four genes had an AUC of 0.76 and 0.78 in our validation 149

and testing data (Table 2). We then trained two additional logistic regression models 150

using exon counts and Salmon estimated isoform quantifications from these genes. As 151

shown in Fig 2, the prediction performance in both validation and testing datasets was 152

improved using both isoform (p=0.002) and exon level (p<0.001) quantifications, and 153
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Table 1. Characteristics of subjects.

Training Validation Testing P-value

Number of subjects 1637 407 513
Age, years 65.4 (58.6, 71.9) 65.6 (58.4, 71.3) 65.4 (58.6, 71.7) 0.2
Sex, %males 51.1% 55.8% 49.9% 0.2
Race, %non-Hispanic whites 74.3% 74.9% 77.8% 0.3
BMI 28.1 (24.5, 32.3) 28.1 (25.0, 32.1) 27.9 (25.1, 32.2) 0.4
Smoking pack-years 40.0 (28.0, 54.8) 40.0 (26.9, 52.7) 40.0 (28.0, 57.9) 0.8
Current smokers, % 35.4% 35.4% 35.5% 0.9
FEV1, %predicted 81.5 (62.7, 95.2) 84.1 (66.8, 97.3) 82.2 (63.7, 96.2) 0.08
FEV1/FVC 0.71 (0.61, 0.78) 0.72 (0.62, 0.78) 0.72 (0.62, 0.79) 0.7
COPD case status, % 31.7% 28.6% 29.3% 0.3

All values are from the COPDGene visit 2. BMI: Body mass index; FEV1: Forced expiratory volume in 1 second;
FVC: Forced vital capacity; GOLD: Global Initiative for Chronic Obstructive Lung Disease; COPD case status
defined as subjects with GOLD spirometric grade ≥ 2. Variables are expressed as medians and interquartile
ranges (25th to 75th percentiles) for continuous variables, and percentages for categorical variables. P-values are
obtained using Kruskal-Wallis test for the continuous variables and chi-square test for the proportions.

exon data outperformed Salmon estimated isoform data (p=0.002). Notably, the best 154

performing models used exon level data combined with an (exon-to-)Isoform Map Layer 155

based on curated isoform data (i.e. Ensembl GTF) and a Feature Selection Layer, as 156

described later. 157

Table 2. Predictive performance of modified Beineke models using gene, isoform and exon-level
expression data.

Val - Accuracy Val - AUC Test - Accuracy Test - AUC

Gene 0.698 0.758 0.743 0.780
Isoform 0.757 0.828 0.774 0.828
Exon 0.801 0.859 0.808 0.869
Exon, IML-GTF 0.828 0.876 0.825 0.870
Exon, IML-GTF, FSL 0.828 0.889 0.838 0.875

Val: validation data. AUC: area under the curve. IML-GTF: Isoform Map Layer containing information from
Ensembl GTF file. FSL: Feature Selection Layer. Best results are shown in bold.

Model Optimization Using A Larger Feature Set 158

Having obtained improved prediction performance using exon and isoform data from 159

four genes in the Beineke model, we then constructed models using a much larger set of 160

features. Of the 1,270 genes that were significantly associated with current smoking 161

from the meta-analysis by Huan et al. [2], 1,079 were expressed at levels high enough to 162

be analyzed in our RNA-seq data. These genes contained 6,196 isoforms and 19,027 163

exons present in our data, and we constructed separate deep learning models using gene, 164

isoform, and exon level data. As expected, the best models for isoform and exon data 165

had a larger number of nodes (256-128-64) than the gene level model (128-64-32). 166

Maximal accuracy was observed with three layers, and the best performance was 167

achieved with exon level quantifications (Fig 4). 168
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Fig 2. ROC curves in test data for the 4-gene modified Beineke model
using gene (black), isoform (blue), and exon-level (red) quantifications.
Isoform and exon-level data outperform gene-level data (Delong p=0.002 and <0.001,
respectively).

Improved Prediction through Exon-to-Isoform Mapping and 169

Feature Selection Layers 170

We hypothesized that the performance of exon-based prediction models would be 171

improved by incorporating relationships between exons and isoforms. Using known exon 172

to isoform relationships from the Ensembl version 94 GTF file, we introduced a deep 173

learning layer (IML) that encoded these connections between exons and isoforms 174

(Figure 1), and we observed improved predictive performance in cross-validation and in 175

test data (Table 3). For comparison, we also compared these models to models that 176

incorporated a fully connected layer between exons and isoforms, but this model was far 177

more complex and failed to converge. 178

We then explored whether the addition of an integrated feature selection layer (FSL) 179

would further improve performance by introducing an additional layer that assigns a 180

non-negative weight for each input feature, and we observed an incremental increase in 181

performance. When we compared the performance of this model to the base exon 182
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Fig 3. Cross-validation accuracy calculated during model optimization for
exon-level data.

Table 3. Predictive performance of various models using exon-level data,
including elastic net for comparison.

Val - Accuracy Val - AUC Test - Accuracy Test - AUC

Exon, Elastic Net 0.821 0.861 0.774 0.903
Exon Base 0.813 0.886 0.842 0.913
Exon, IML-GTF 0.843 0.905 0.854 0.924
Exon, IML-GTF, FSL 0.860 0.916 0.869 0.935

Val: validation data. AUC: area under the curve. IML-GTF: Isoform Map Layer
containing information from GTF file. FSL: Feature Selection Layer. Best results are
shown in bold.

model, the performance was significantly improved (p=0.02 in test data, Figure 4). 183

Discussion 184

Deep learning models applied to blood RNA-seq data provide more accurate prediction 185

of current smoking status than previously published models. In testing data, our models 186

achieved an AUC >0.9 compared to a replication AUC of 0.81 for the previously 187

established 5-gene model. Much of this improvement is due to the use of exon rather 188

than gene expression levels coupled with the use of a neural net layer encoding exon to 189

isoform relationships. These findings improve our ability to identify environmental 190

exposures from RNA-seq data, and they suggest that latent isoform information in 191

RNA-seq data can be used to improve clinical predictions. 192

This paper describes for the first time how exon and isoform-level data from 193

RNA-seq improve the accuracy of clinical prediction models, demonstrating a general 194

approach by which gene expression predictive models may be improved. Eukaryotic 195

genomes are characterized by complex gene structure and extensive alternative splicing 196

September 9, 2020 8/14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2020. ; https://doi.org/10.1101/2020.09.09.290395doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.290395
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 4. ROC curves in test data for the deep learning base exon model
(black) and the model including the exon-isoform mapping and feature
selection layers (red) which has significantly better performance (Delong
test p=0.02).

that greatly expands the protein repertoire. Over 90% of human genes have multiple 197

transcribed isoforms [9], isoform variability is clearly observable across tissues within 198

the same individual [10], and isoform variability is an important contributor to human 199

diseases [11,12]. Focusing first on the previously published Beineke gene expression 200

model, we demonstrate a notable increase in performance by substituting exon or 201

isoform quantifications for the same set of genes used in the original model (AUC 202

increase from 0.76 to 0.86). The best performance was achieved with exon data, not 203

estimated isoform quantifications, which is likely due to inaccuracy in the estimation of 204

full length isoforms from short-read RNA-seq. 205

We were able to further improve our model by encoding known exon-isoform 206

relationships in one of the layers of the neural network, which we refer to as the isoform 207

mapping layer. This is in line with other applications of machine learning to biological 208

data that have found improved performance for algorithms that can incorporate prior 209

biological knowledge, such as the use of known gene-interaction networks to improve the 210

performance of clustering methods [13,14]. Since our current catalog of human isoform 211
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variability is incomplete, as this knowledge increases the value of isoform mapping layers 212

that depend on prior knowledge will also increase. In addition, with the growing use of 213

long read sequencing, these highly accurate isoform quantifications can be used directly 214

as inputs to predictive models. Our data suggest that this will lead to further 215

improvements in predictive accuracy for models based on RNA expression. 216

Gene expression prediction models for current smoking status are useful for multiple 217

reasons. First, existing smoking biomarkers have good but not ideal predictive 218

performance. In clinical practice, determination of smoking status is primarily done by 219

patient self-report, and in instances where biochemical validation is necessary this is 220

done via measures of nicotine metabolites, such as cotinine, in blood, urine, or saliva. 221

While it may seem straightforward to determine smoking status, in practice it is 222

difficult to ascertain smoking status with complete certainty for multiple reasons. 223

Individuals may not accurately report their smoking behavior, and biochemical tests 224

can yield false positives when individuals are exposed to nicotine in the absence of 225

cigarette use, as can occur with the use of nicotine replacement therapy or electronic 226

nicotine delivery devices (e-cigarettes). A systematic review of the performance of 227

various cotinine cutoffs with respect to self-report of smoking status reported 228

performance in the range of 70-90% sensitivity with specificity levels of 98% [15]. While 229

our models outperformed previous models based on expression data, they did not 230

perform as well as cotinine with respect to predicting self-reported smoking status. 231

Thus, from the standpoint of clinical biomarkers for smoking status, nicotine 232

metabolites such as cotinine remain the gold standard. Our model is best used for 233

situations where gene expression data are available, but cotinine measures are not. 234

Another important application for transcriptome-based predictive models is to infer 235

smoking status when only gene expression data are available. This is important because 236

smoking has a strong effect on gene expression and therefore can be a confounder of 237

gene expression studies, particularly in situations where smoking is confounded with 238

specific disease states. In this scenario, use of a previously defined model for to infer 239

smoking status may allow for more accurate detection of disease-related gene expression 240

signals, even when the smoking status of subjects has not been directly measured. 241

The strengths of this study are the large sample size of subjects with blood RNA-seq 242

data, and the ability to assess our predictive models in two sets of independent test 243

data. We assessed deep learning based method which has provided superior predictive 244

performance in multiple contexts, and we assessed the predictive utility of novel aspects 245

of RNA expression which have not been extensively studied in the prediction context. 246

Limitations of this study are that smoking status was determined by self-report only, 247

and cotinine measures were not available. 248

Conclusion 249

In summary, the use of exon-level quantifications in combination with an 250

exon-to-isoform mapping layer produced predictive models with superior ability to 251

predict current smoking status relative to previously published models from gene 252

expression data. While these models still do not outperform gold-standard metabolite 253

biomarkers of smoking, they can be of use in studies where such biomarkers are not 254

available. Finally, these findings are proof-of-concept that incorporating isoform-level 255

information into predictive models improves the ability to predict clinical outcomes. As 256

the quality of isoform quantification improves from isoform inference algorithms and 257

long-read sequencing, it is reasonable to expect that the performance of RNA-based 258

predictive models will also improve. 259
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