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Abstract 9 

Sensorimotor rhythm (SMR) based brain-computer interfaces (BCIs) provide an alternative pathway 10 

for users to perform motor control using motor imagery (MI). Despite the non-invasiveness, ease of 11 

use and low cost, this kind of BCI has limitation due to long training times and BCI inefficiency—12 

where a subpopulation cannot generate decodable EEG signals to perform the control task. Meditation 13 

is a mental training method to improve mindfulness and awareness, and is reported to have a positive 14 

effect on one’s mental state. Here we investigate the behavioral and electrophysiological differences 15 

between experienced meditators and meditation naïve subjects in 1-dimensional and 2-dimensional 16 

cursor control tasks. We found that within subjects who have room for improvement, meditators 17 

outperformed control subjects in both tasks, and there were fewer BCI insufficient subjects in the 18 

meditator group. Finally, we also explored the neurophysiological difference between the two groups, 19 

and showed that meditators had higher SMR predictor and were better able to generate decodable EEG 20 

signals to achieve SMR BCI control. 21 

 22 

1 Introduction 23 

Decades of research have sought to find alternative methods of communication between the human 24 

brain and the outside world. With the ever-growing knowledge in the neuroscience field, scientists 25 

have designed the brain-computer interface (BCI) to achieve this goal (Wolpaw et al., 2002; He et al., 26 

2020). A BCI attempts to recognize the user’s intent by decoding her/his neurophysiological signals 27 

and then converts this intent into commands to control objects, such as a cursor on a computer screen 28 

(Wolpaw et al., 1991; Trejo et al., 2006), a quadcopter (LaFleur et al., 2013) or a robotic arm in space 29 

(Meng et al., 2016; Edelman et al., 2019). 30 

One of the main goals for the BCI is to help people suffering from various kinds of neuromuscular 31 

diseases, such as amyotrophic lateral sclerosis (ALS), stroke, and spinal cord injury (Armour et al., 32 

2016), to regain a certain degree of movement ability (Rebsamen et al., 2010; Ang et al., 2015). Despite 33 

limited ability to move, cognitive ability in this population remains partially or fully intact. Therefore, 34 

it would be a significant improvement in quality of life to use a BCI to complete daily life tasks. 35 
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BCIs have been designed to decode various kinds of brain signals: such as neurons’ action 36 

potentials using multielectrode arrays (Maynard et al., 1997), electrical signal over the cortex using 37 

ECoG (Schalk et al., 2007), and electrical signal over the scalp using EEG (He et al., 2015). Among 38 

all the recording techniques, BCI based on EEG is one of the most widely used in research and clinical 39 

settings due to its ease of use, relatively low costs, and high temporal resolution (He et al., 2015). The 40 

SMR or mu rhythm is generated by the synchronized electric brain activity over the motor cortex area, 41 

and has a frequency range of around 8 - 12 Hz (Pfurtscheller et al., 2006; Bernier et al., 2007). In BCI 42 

application, the frequency band centered at 12Hz (Cassady et al., 2014; Meng et al., 2016, 2018; Stieger 43 

et al., 2020) was shown to be effective in SMR control. Event-related desynchronization (ERD) occurs 44 

when the amplitude of mu rhythm decreases in response to a person moving or imagining moving 45 

her/his body (Pfurtscheller and Aranibar, 1979). On the other hand, when a person stops moving or 46 

imaging moving, the amplitude of mu rhythm increases, termed event-related synchronization (ERS). 47 

The SMR based BCI is a well-established BCI modality, and it has been demonstrated that people can 48 

perform multi-dimensional cursor control (McFarland et al., 2010; Meng et al., 2018), drone control 49 

(LaFleur et al., 2013), wheelchair control (Galán et al., 2008; Huang et al., 2012), and robotic arm 50 

control (Meng et al., 2016; Edelman et al., 2019) with SMR BCI. 51 

Despite the progress of SMR based BCI, challenges exist. For example, unlike EEG BCI based 52 

on P300 (Fazel-Rezai et al., 2012) and steady state visually evoked potentials (ssVEP) (Bakardjian et 53 

al., 2010), SMR based BCI usually requires several sessions of training, and around 20% of subjects 54 

are not able to achieve accurate control even after training (Blankertz et al., 2010). While efforts have 55 

been mainly focused on developing better decoding algorithms and recording techniques (Lotte and 56 

Guan, 2011), i.e. from the ‘computer’ perspective of BCI, limited attention has been drawn to 57 

enhancing people’s ability to generate more decodable EEG signals, i.e. from the ‘brain’ side. For the 58 

latter, the high-level goal is to determine, given the same BCI system, if there exists a subpopulation 59 

who is better able to control it, and if a certain kind of training or intervention could be developed to 60 

equip ordinary people with this BCI control ability. 61 

Prior literature has suggested that meditation shows a distinct change in one’s brain structure, 62 

and meditators tend to develop the ability to better control their attention and awareness (Chan and 63 

Woollacott, 2007; Tang et al., 2007; Moore and Malinowski, 2009). In the search for optimal training 64 

methods in preparation for the SMR based BCI control, previous work has investigated whether people 65 

with meditation experience are better able to control SMR based BCI (Cassady et al., 2014; Tan et al., 66 

2014, 2015; Kober et al., 2017; Stieger et al., 2020), or just generate ERD/ERS without controlling a 67 

BCI system (Kerr et al., 2013; Rimbert et al., 2019). Similar to what Tang and colleagues (Tang et al., 68 

2015) summarized for the neuroscience aspect of meditation studies, efforts to study the meditation 69 

effect on SMR BCI could be divided into two categories, longitudinal studies and cross-sectional 70 

studies: 71 

1) Longitudinal studies separated meditation-naïve subjects into a meditation group and a control 72 

group, with the meditation group receiving meditation training and control group receive either active 73 

control tasks or no specific task (Tan et al., 2014, 2015; Botrel and Kübler, 2019; Stieger et al., 2020). 74 

After that, BCI performance and/or neurophysiological difference between the two groups was 75 

assessed. 76 

2) Cross-sectional studies investigated the difference in BCI/neurofeedback learning between 77 

people who already have meditation experience and meditation naïve subjects (Cassady et al., 2014; 78 

Kober et al., 2017). In Cassady and colleague’s work (Cassady et al., 2014), the meditation group was 79 

shown to have better performance compared with the control group in terms of performance, learning 80 
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speed, and information transfer rate. However, most of the claims in this study focused on the behavior 81 

difference. A more in-depth analysis of the neurophysiological difference is needed.  Another question 82 

left unanswered is whether meditators are also better at more complex tasks, such as 2-dimension (2D) 83 

cursor control. In another study, Kober and colleague (Kober et al., 2017) found that people who pray 84 

frequently had a higher ability to control the SMR, but the recording was limited to Cz electrode only 85 

and the control dimension was limited to 1-dimension (1D). 86 

 Is meditation experience indeed a significant factor affecting SMR BCI learning? For example, 87 

Stieger and colleagues (Stieger et al., 2020) found that after an 8-week mindfulness-based stress 88 

reduction training, subjects indeed had significant performance improvements in the up/down task 89 

(both hands motor imagery to go up and rest to go down), but for the left/right control task (left/right 90 

hand motor imagery) the effect was not significant. Botrel and colleagues (Botrel and Kübler, 2019) 91 

found that week-long visuomotor coordination and relaxation training does not improve the SMR based 92 

BCI performance. One of the reasons for this kind of disagreement may be a dose-effect, meaning that 93 

it might take a longer meditation time to affect BCI learning in a significant manner. 94 

With these questions in mind, we recruited experienced meditators and controls and investigated 95 

the difference in SMR BCI learning between these two groups in both 1D and 2D tasks. The aims for 96 

this cross-sectional study are as follows: First, to verify the conclusions in the pilot study (Cassady et 97 

al., 2014) that meditators had better learning in SMR BCI with an independent investigation; Second, 98 

to explore the behavior difference between the two groups in a more complex 2D task; Third, to 99 

investigate the neurophysiological difference between these two groups. 100 

2  Methods 101 

2.1 Participants 102 

The experimental procedures involving human subjects described in the current study were approved 103 

by the Institutional Review Board (IRB) of Carnegie Mellon University, all participants provided 104 

written informed consent. We utilized a single-blind two-group experimental design, with a meditation 105 

group and a control group. The experimenters did not know the identity of the subject in relation to 106 

their meditation experience throughout the whole study, and avoided any conversation related to 107 

meditation. Subjects were recruited via flyers in the surrounding area, as well as an email sent out to 108 

local mindfulness groups. The meditation group consisted of 16 healthy subjects (age = 37.6 +/- 15.1) 109 

with a history of meditation practice, as evaluated by a questionnaire regarding personal meditation 110 

practice completed prior to experimentation. To be accepted into the meditator group, individuals had 111 

to cite at least a year of frequent and consistent practice, with most subjects having 2 or more years of 112 

consistent practice. Most of the meditators’ practices belong to the subgroup of Vipassana, Zen, 113 

Mindfulness, and Buddhism. The control group consists of 19 healthy individuals (age = 24.8 +/- 8.7) 114 

with no prior meditation experience. Both groups had no prior BCI experience. We continually asked 115 

participants to describe their motor imagery strategies. If these strategies diverged from the kinesthetic 116 

motor imagery they were asked to perform, we reminded them to focus on the sensations and intention 117 

behind the imagined motion of their hands. We excluded one subject (identity: meditator) from the 118 

analysis because she/he did not follow the motor imagery guidelines. 119 

2.2 Surveys 120 

In the first session, we asked subjects to fill out two surveys before the BCI experiment. Both surveys 121 

aim to measure one’s level of mindfulness. The first survey is called the Freiburg Mindfulness 122 

Inventory (FMI) (Walach et al., 2006), which has 14 statements such as ‘I am open to the experience 123 
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of the present moment’. The subject was asked to use a 1-4 scale to indicate how often she/he has such 124 

experience. The FMI score was calculated by summing up the answers to each question with proper 125 

recode of one question (Walach et al., 2006). The second survey is called Day-to-Day Experiences 126 

(Brown and Ryan, 2003), which has 15 questions, such as ‘I find it difficult to stay focused on what’s 127 

happening in the present’, the subject was asked to use a 1-6 scale to indicate how often she/he has 128 

such experience. In the end, the Mindful Attention Awareness Scale (MAAS) was calculated by 129 

averaging answers to each question. In both surveys, higher score indicates higher level of mindfulness. 130 

2.3 Data acquisition 131 

Subjects in both groups went through 6 sessions of BCI training within 4 – 6 weeks, with at least one 132 

experiment per week. Each experimental session lasted about 2 hours, with a 9-minute break in the 133 

middle. EEG data were recorded throughout the session using the Neuroscan SynAmps system with 134 

64-channel EEG QuikCap (Neuroscan Inc, Charlotte, NC). The sampling frequency was set to 1000 135 

Hz, and the impedance was kept below 5kΩ during the preparation. The experimenter checked the 136 

impedance in the break to make sure it remained below 5kΩ.  137 

The experiment setup is shown in Figure 1. Each session began with a 5-minute warmup task, 138 

where the subject was instructed to perform left- or right-hand motor imagery by focusing on imagining 139 

the sensations and intention of opening/closing the left/right hand. After that, the subject was asked to 140 

perform BCI cursor control of three different tasks: left/right (LR), up/down (UD), and 2D, by moving 141 

the ball to the corresponding bar with motor imagery. BCI2000 was used to perform a standard SMR 142 

BCI cursor task (Schalk et al., 2004), where the mu rhythm band power of C3 and C4 electrodes after 143 

small Laplacian filter was used as features. In this work, the mu rhythm was set to be centered at 12 144 

Hz (Meng et al., 2016, 2018) with a 3 Hz bin (Stieger et al., 2020), and was estimated using an 145 

autoregressive approach. In the LR task, subjects were told to image opening/closing the right hand as 146 

they practiced in the warm-up to move the ball to the right, and left-hand motor imagery to move the 147 

ball to the left. After subjects performed 3 rounds of LR BCI, with each round consisting of 25 trials, 148 

a similar explanation was given for the up-down (UD) BCI task, except they were instructed to imagine 149 

both hands opening and closing to move the ball up, and to rest, in other words try to clear their minds 150 

to move the ball down. After subjects performed three rounds of UD BCI, they moved onto the 2D 151 

task, in which the same instructions were implemented to move the ball up, down, left, or right 152 

according to which bar appeared on the screen. After one block (3 rounds) each of LR, UD, and 2D 153 

BCI, the subjects were given a 9-minute break in which they were instructed to read and rate comics 154 

by pressing a key on the keyboard, this standard ‘break task’ ensures that subjects use the same 155 

approach to relax. After the break, they completed one more block each of LR, UD, and 2D BCI. 156 

2.4 Performance metric 157 

We quantify the performance using percent valid correct, or PVC (Cassady et al., 2014; Meng et al., 158 

2016; Edelman et al., 2019), which is the ratio between the number of hit trials and number of hit trials 159 

plus the number of missed trials. When analyzing the data, unless stated otherwise, we excluded 160 

subjects with baseline PVC > 90% in both LR and UD conditions, because these subjects usually did 161 

not have much room for learning. 4 control subjects were excluded under this criterion, accounting for 162 

11% of the total subjects. Together with the subject excluded due to not following the MI guideline (1 163 

meditator), the number of subjects involved in the analysis is 15 meditators and 15 controls. 164 

2.5 Offline EEG data analysis 165 
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We bandpass filtered the EEG data using a Hamming window sinc FIR filter with the passband set 166 

between 1 Hz and 100 Hz, then down sampled to 250Hz. ICA was performed to remove artifacts such 167 

as eye blinking. After that, complex Morlet wavelet convolution was used to extract the power of the 168 

mu frequency band (3 Hz bin centered at 12 Hz).  169 

The neurophysiological predictor, or SMR predictor measures the difference between mu band 170 

power and the 1/𝑓 noise floor in a power-frequency plot for C3 and C4 (Blankertz et al., 2010). 171 

Concretely, the EEG power spectrum at rest could be fitted with the sum of a 1/𝑓  noise floor, 172 

𝑛(𝑓; 𝜆, 𝒌𝑛) and two Gaussian distributions, centered at mu rhythm and beta rhythm, 𝑔𝛼(𝑓; 𝜇𝛼, 𝜎𝛼) and 173 

𝑔𝛽(𝑓; 𝜇𝛽 , 𝜎𝛽). In this study, the power spectral density is equal to the mean of C3 and C4 band power 174 

after small Laplacian spatial filtering during the inter-trial resting state, combining LR conditions and 175 

UD conditions. 176 

𝑃𝑆𝐷̂(𝑓; 𝜆, 𝜎, 𝑘) = 𝑛(𝑓; 𝜆, 𝑘𝑛) + 𝑔𝛼(𝑓; 𝜇𝛼 , 𝜎𝛼) + 𝑔𝛽(𝑓; 𝜇𝛽 , 𝜎𝛽) 177 

𝑛(𝑓; 𝜆, 𝒌𝑛) =  𝑘𝑛1 +
𝑘𝑛2

𝑓𝜆
 178 

𝑔𝛼(𝑓; 𝜇𝛼, 𝜎𝛼) =  𝑘𝛼𝑁(𝑓; 𝜇𝛼, 𝜎𝛼)  179 

𝑔𝛽(𝑓; 𝜇𝛽 , 𝜎𝛽) =  𝑘𝛽𝑁(𝑓; 𝜇𝛽 , 𝜎𝛽)  180 

The SMR predictor (dB) is calculated individually for C3 and C4 electrode mu rhythm band 181 

power after small Laplacian spatial filtering.  182 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 = 10 ∙ 𝑙𝑜𝑔10  
𝑃𝑆𝐷(𝑚𝑢)

𝑛(𝑚𝑢)
 183 

In the case where the algorithm could not find a curve to fit, we manually selected 5~10 184 

representative data points to describe the 1/𝑓 noise floor function by following the trend of the PSD 185 

curve and fitted these points using 𝑛(𝑓; 𝜆, 𝒌𝑛). We discard a subject and session pair if the PSD does 186 

not follow a 1/𝑓 decrease trend. The percentage of data points discarded was 10.5%. 187 

We designed a method to calculate the control signal during task execution to be as close to the 188 

real condition as possible. Concretely, we first calculated the C3 and C4 electrode frequency band 189 

power after small Laplacian spatial filtering, denoted 𝑃𝐶3 and 𝑃𝐶4. Then the raw control signal was 190 

calculated using the following equation:  191 

𝐶𝑆𝑟𝑎𝑤,𝐿𝑅 =  𝑃𝐶4 − 𝑃𝐶3  192 

𝐶𝑆𝑟𝑎𝑤,𝑈𝐷 =  𝑃𝐶4 + 𝑃𝐶3  193 

Then we applied a similar z-scored procedure to the raw control signal as the BCI 2000 194 

platform, 195 

𝐶𝑆𝑟𝑒𝑎𝑙 = 𝐺 × (𝐶𝑆𝑟𝑎𝑤 − 𝑜𝑓𝑓𝑠𝑒𝑡) 196 

Where 𝐺 and 𝑜𝑓𝑓𝑠𝑒𝑡 are set to make the 𝐶𝑆𝑟𝑒𝑎𝑙 zero mean and unit variance. The difference 197 

between this offline z-score and online approach is that the latter is causal and adaptive, i.e. 𝐺 and 198 
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𝑜𝑓𝑓𝑠𝑒𝑡 is calculated via past 30 seconds of window, and change as time goes on. As shown in Supp 199 

Figure S1, we found that control signal under this definition could better explain the variability of 200 

performance than the ERD/ERS method, i.e. band power during task execution divided by resting state 201 

band power. 202 

We quantify the contrast between two contexts in a task (e.g. left trials and right trials in LR 203 

task) using Fisher score (Perdikis et al., 2018).  204 

𝐹𝑆 =  
|𝜇1 − 𝜇2|

√s1
2 + s2

2
 205 

Where 𝜇1and 𝜇2 are the means and  s1
2 and s2

2  are the variance of context 1 and context 2’s band 206 

power in one session. The fisher score is calculated independently for each channel. 207 

 208 

3  Results 209 

3.1 Survey results 210 

In both surveys, we found meditators had higher scores than control subjects. Concretely, the FMI 211 

score for meditator is 45.2 ± 5.0, while for control subject it is 37.3 ± 6.9. The difference is significant 212 

(Wilcoxon rank-sum test, Z = 3.11, p = 0.0018). The MAAS score for meditator is 4.51 ± 0.84, while 213 

for control subject it is 3.74 ± 0.67. The difference is significant (Wilcoxon rank-sum test, Z = 2.69, 214 

p = 0.007). Bar plots for the two groups’ scores are shown in Figure 2(A). The same observation also 215 

holds when including subjects who are BCI proficient at baseline. These results serve as an additional 216 

proof, apart from the self-reported meditation experiences, that the meditators had higher level of 217 

mindfulness than the control group. In addition to the group difference, we also calculated the 218 

correlation between these survey results and performance. We used baseline PVC as performance 219 

because this session is when the surveys were filled out. The correlation between survey results and 220 

UD PVC turned out to be significant. Specifically, for FMI, r = 0.41, p = 0.014, and for MAAS, r = 221 

0.41, p = 0.017. 222 

3.2 Group averaged performance 223 

Within the population who are not BCI proficient at baseline (i.e. subjects did not have > 90% of PVC 224 

in both LR and UD in session 1), we found that meditators achieved better performance (PVC) 225 

compared with control subjects, and this difference was consistent throughout the six sessions. The 226 

group averaged performance in the baseline and final session is shown in Table S1, and the averaged 227 

performance for all sessions is shown in Figure 2. 228 

We modeled the learning progress as a linear regression model. To see if the regression lines 229 

between meditators and controls are different, we used analysis of covariance (ANCOVA). We found 230 

that the difference between groups was significant in all three tasks (F(1,176) = 14.62, 17.34, 12.16 231 

with p = 0.0002, <0.0001, 0.0006 for LR, UD and 2D). The learning effects in UD and 2D task were 232 

also significant (F(1,176) = 4.38, 4.51, p = 0.03, 0.03 for UD and 2D). However, the learning effect 233 

did not show significance in LR (F(1,176) = 2.76,  p = 0.10). There were no significant interaction 234 

(session x group) effects in any of the three tasks (F(1,176) = 0.05, 0, 0.23 with p = 0.83, 0.96, 0.06 for 235 

LR, UD and 2D), indicating that the learning speed was not different between two groups. 236 
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Realizing the fact that the 2D task is the combination of LR and UD, we next separated the LR 237 

and UD task within the 2D. Interestingly, we found that within the 2D task, meditators had a higher 238 

baseline of LR, but for the UD these two groups were at the same level. Further, the learning curve 239 

showed that meditators had numerically better learning compared with controls in the UD within 2D. 240 

Statistical analysis using ANCOVA shows that performance in both LR and UD within the 2D task 241 

was different between two groups (F(1,176) = 14.83, 5.91, p = 0.0002, 0.016 for LR and UD within 242 

2D), as well as the learning effect of UD (F(1,176) = 7.36, p = 0.0007). On the other hand, LR within 243 

2D did not show a significant learning effect (F(1,176) = 1.33, p = 0.25). The learning speed between 244 

two groups was not significantly different between groups as well (F(1,176) = 0.19, 0.25, p = 0.665, 245 

0.619 for LR and UD within 2D). 246 

3.3 Competency curve 247 

While group averaged PVC is a good indicator of performance, there are several drawbacks. First, it 248 

only provides information on the overall trend of performance during BCI learning; we still do not 249 

know how many subjects remain BCI inefficient. Second, it does not provide information regarding 250 

within-session learning.   251 

To intuitively show how learning occurs in the two groups, we plotted the percentage of 252 

subjects whose PVC remained below a threshold, as sessions go on. We set the threshold as 70% for 253 

1D control and 40% for 2D control (Combrisson and Jerbi, 2015), but we obtain similar results under 254 

varied thresholds. To cope with potential fluctuation of performance, a subject passes the threshold if 255 

he/she meets one of the following criteria: achieving an averaged PVC > threshold in three consecutive 256 

runs, or achieving an averaged PVC > threshold in one single session (Cassady et al., 2014). The result 257 

is shown in Figure 3. 258 

There are two observations from this plot. First, after six sessions of learning, the percentage of 259 

BCI inefficient subjects appears to be lower in meditators. The percentage of BCI inefficient subjects 260 

are 20% (46%), 6% (26%) and 6% (33%) for meditators(controls), in LR, UD and 2D tasks, 261 

respectively. Therefore, in all three tasks, meditators indeed had numerically less BCI inefficient 262 

subjects after 6 sessions or 36 runs of learning, but Chi-squared tests did not reveal significance for the 263 

proportion of BCI inefficiency between two groups (X2(1, N = 30) = 2.4, 2.16, 3.33 , p = 0.12, 0.14 264 

and 0.06 for LR, UD and 2D, p < 0.05). Second, the speed of learning, the LR and the UD plot showed 265 

a steeper decline during the initial 6 runs, i.e. the baseline session. This means that the learning speed 266 

of meditators appears to be faster than control subjects. Besides, while previous studies showed that 267 

BCI learning occurs in a session by session base (Meng et al., 2016), our results showed that learning 268 

could also occur within a 2-hour session. We also noticed that compared with 1D tasks (LR, UD), both 269 

groups in the 2D task showed a similar learning curve in the first 20 runs, i.e. in the first three sessions. 270 

After that, meditators showed a numerically better learning speed compared with control subjects. This 271 

observation is consistent with the previous group average performance in the sense that in UD within 272 

the 2D task, meditators had numerically larger improvement starting from the third session. In addition, 273 

it also shows that 2D control is indeed more difficult than 1D control, requiring more training time. 274 

3.4 Group averaged topology during task 275 

Figure 4 shows the LR and UD task fisher score topology (Perdikis et al., 2018) for meditators and 276 

controls. From the plot, a gradual increase of motor cortex area high alpha power could be seen in both 277 

groups, indicating that both groups were able to increase the contrast of two opposite conditions 278 

through voluntary motor imagery as learning progresses. However, this plot did not provide 279 

quantitative information regarding whether meditators had a higher baseline of C3 and C4 high alpha 280 
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power, or if they exhibit better learning. To further investigate the effect of meditation experience on 281 

these quantities, we looked into the SMR predictor during the inter-trial resting state, and control signal 282 

during task execution. 283 

3.5 Neurophysiological predictor 284 

Blankertz and colleagues (Blankertz et al., 2010) found that in the resting state power spectral density 285 

plot of C3 and C4 electrodes, the difference between mu rhythm peak and noise level baseline is a 286 

significant predictor of the BCI performance. Here we tried to investigate the difference in SMR 287 

predictor between meditators and controls. As shown in Figure 5 (A), we first fit a linear regression 288 

model between the SMR predictor and PVC. We found that in the LR task, the correlation coefficient 289 

between SMR predictor and PVC is r = 0.150 with a marginal significant p = 0.057, and in the UD 290 

task, r = 0.219 with p = 0.005. We noticed that there were outlier points for one subject that were far 291 

away from the population, therefore we also recalculated the correlation after removing this subject 292 

(Blankertz et al., 2010). After removing the outlier, in the LR task, the correlation coefficient was r = 293 

0.385 with p < 0.001, and in the UD task, r = 0.268 with p < 0.001. Our correlation coefficient was 294 

smaller than that of Blankertz and colleague’s work (Blankertz et al., 2010). The difference might be 295 

due to the task design and subject variability. We next asked if experienced meditators have a better 296 

SMR predictor than controls. We found that the difference between the two groups was statistically 297 

significant (F(1,157) = 16.69, p < 0.001), but we did not observe the learning effect to be significant 298 

(F(1,157) = 2.2, p = 0.140, and there was no learning speed difference between groups (F(1,157) = 299 

0.03, p = 0.859), as shown in Figure 5 (B). 300 

3.6 Control signal baseline and learning 301 

Given the behavior difference described in the previous section, the next question to ask is whether 302 

meditators exhibit better overall and learning of ∆Ctrl Signal, defined as the control signal difference 303 

between two opposite motor imagery tasks (left versus right, up versus down). Figure 5(c)(d) shows 304 

the group averaged ∆Ctrl Signal as sessions go on. For LR, before session 4, the two groups exhibited 305 

similar values, and starting from session 4, meditators had higher ∆Ctrl Signal than controls, but the 306 

variance was high, and ANCOVA analysis did not reveal group, session, or the learning effect 307 

differences (F(1,176) = 3.34, 1, 0.5, p = 0.07, 0.32 and 0.48 for group, session or the learning 308 

difference). On the other hand, for the UD task, a numerical increase trend could be seen in both 309 

meditators and controls. The difference between the two groups was significant (F(1,176) = 4.19, p = 310 

0.04), while the learning effect and learning rate difference was not (F(1,176) = 0.055 and 0.76). 311 

4 Discussion 312 

Reducing the training time and BCI inefficiency is critical in the application of SMR based BCI. While 313 

prior studies have tried to solve this problem from the ‘brain’ side of BCI by investigating the effect of 314 

meditation experience on SMR BCI learning, the relationship between these two is still not 315 

comprehensive. First, due to the large variability in the type and duration of meditation, more studies 316 

are needed to confirm the existence of such an effect. Second, it is still unclear whether and to what 317 

extend do meditators are better able to do more complex tasks than 1D control. Third, a more thorough 318 

investigation of the neurophysiological difference between these two groups is needed. 319 

Our results provide insights into the effect of long-term meditation experiences on SMR based 320 

BCI. Concretely, we found that level of mindfulness is correlated with the SMR BCI performance in 321 

the UD task, and within the population who still have a margin to learn, experienced meditators had 322 

higher BCI performance compared with meditation naïve subjects. We also found that there were 323 
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numerically fewer BCI inefficient subjects remaining after six sessions of learning. As for task 324 

complexity, we extended the control paradigm to a more complexed 2D cursor control task. We found 325 

a similar trend when separating the LR and UD tasks within the 2D control, that meditators had higher 326 

LR within the 2D performance than controls, we also found that although meditators and controls 327 

started at approximately the same level of UD within 2D performance, numerically, meditators had 328 

better learning and resulted in higher improvement than controls; Finally, neurophysiology analysis 329 

revealed that there is a significant difference between the SMR predictor and the UD control signal 330 

between two groups. In general, the statistical differences between these two groups mainly lie in the 331 

performance, we did not find the speed of learning to be significantly different between these two 332 

groups, which could be due to the reason that given meditators already have relatively higher 333 

performance, the room for improvement becomes smaller. 334 

It should be noted that our experimental task is consistent with prior work done in the same lab 335 

(Cassady et al., 2014) in terms of the platform (BCI 2000) and 1D BCI task design. However, to the 336 

best of author’s knowledge, this study of comparing SMR based BCI performance between 337 

experienced meditators and controls has not been replicated. Our work was done in a different time, 338 

location, and subpopulation of experienced meditators and controls, yet we reveal results to some 339 

degree consistent with the previous work, supporting that differences exist between experienced 340 

meditators and controls in terms of SMR BCI control. 341 

While the prior longitudinal study found an 8-week MBSR class mainly has effects on the UD 342 

trials (Stieger et al., 2020), our work showed that people with long term meditation experiences 343 

outperformed control subjects in both LR and UD tasks. This long-term meditation effect could be due 344 

to the plasticity introduced by meditation experience. For example, one of the main benefits of 345 

mindfulness meditation is enhanced attentional control (MacLean et al., 2010). In the SMR BCI, 346 

subjects are instructed focus on, or pay attention to the motor intention, which could regard as a specific 347 

type of attention control. Therefore, the prolonged meditation practices might serve as additional 348 

‘training time’ and cause the meditator group to have enhanced BCI performance. Future work along 349 

this line should investigate if ordinary people are also able to improve SMR BCI control, apart from 350 

UD tasks (Stieger et al., 2020), with more extended meditation training. 351 

An alternative explanation would be the pre-existing difference in the brain structure, personality, 352 

etc., for people who choose to meditate for years (Tang et al., 2015). In other words, the subpopulation 353 

who choose to meditate for years may have attributes that contribute to a successful SMR BCI control. 354 

Nevertheless, the research focusing on SMR BCI control ability for people with different 355 

characteristics is still limited, and future work on investigating the impact of these multidimensional 356 

and interrelated personal attributes might reveal more details of SMR BCI control. 357 

Another concern regarding studying these two distinct groups is the effect of age. While we tried 358 

our best to find age-matched controls for the meditators, the meditators are on average 38.5 years old 359 

and controls are on average 24.8 years old years with a 13.7 years old difference. One might argue that 360 

the fact meditators being more senior might affect our conclusion. However, we did not find the 361 

correlation between age and performance to be statistically significant. Another evidence from prior 362 

study is that cortical physiology might decrease as people age (Roland et al., 2011). Therefore, the fact 363 

that meditator being more senior does not make our conclusions invalid. 364 

5 Conclusion 365 
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In this study, we have examined the behavior and neurophysiological differences between experienced 366 

meditators and control subjects. We found that among subjects who still have a margin to learn, 367 

meditators outperformed control subjects in terms of averaged performance, SMR predictor and control 368 

signal (in the UD task). This finding has implications on enhancing the ‘brain’ side of SMR BCI and 369 

may help overcome the limitations of SMR BCI technology, such as long training time and BCI 370 

inefficiency.   371 
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 387 

Figure 1. Experimental setup. (A) Top: three experiment tasks and typical cursor trajectories in 388 

left/right (LR) control, up/down (UD) control and 2D control. The dashed lines were invisible to the 389 

subject. Bottom: example topology of mu rhythm band power in each motor imagery class. (B) 390 

Experiment flow of one session. (C) Each trial consists of 2s of inter-trial interval, 2s of target 391 

presentation and 0~6s of BCI feedback control. 392 

 393 
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Figure 2. Survey results and group averaged performance and learning. (A) Survey results of FMI and 394 

MAAS shows that meditators have higher level of mindfulness than controls. Data are shown as 395 

mean±SD. Med. is meditator, Ctrl. is control. (B) Group LR averaged PVC±SEM for mediators and 396 

controls. Asterisk indicates significant group effect between meditator and controls with ANCOVA 397 

with p < 0.05, (C) for UD task, (d) for 2D task, LR within the 2D task and 2D within the 2D task. * 398 

indicates group difference with p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, same for 399 

subsequent plots. 400 

 401 

Figure 3. Competency curves for (A) LR, (B) UD and (C) 2D tasks. Each session has 6 runs for one 402 

task, accounting for 36 runs in total throughout the 6 training sessions. The numbers are percentage of 403 

subjects not meeting competency thresholds. 404 

 405 

 406 

Figure 4. Fisher score topology for meditators and controls during the (A) LR and (B) UD task. 407 
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 408 

Figure 5. (A) Regression between SMR predictor and PVC, for LR task. The red line is the regression 409 

line, and red dashed line is the regression line after removing outlier (red points). The plot for UD task 410 

is similar and not shown. (B) Group averaged SMR predictor between meditator and controls, 411 

significance in the group effect is found. (C, D) Control signal learning as sessions go on for (C) LR 412 

and (D) UD. 413 

 414 

11 Supplementary Material 415 

Identity \ PVC (%) LR UD 2D 

Meditator  Baseline 70.7 74.4 42.1 

Final 79.6 79.2 50.4 
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Control Baseline 62.8 62.9 36.5 

Final 68.6 70.9 40.2 

Table S1. Group averaged performance from baseline and final session 416 

 417 

 418 

Figure S1. Comparison of two methods to compute the control signal during task execution. 419 

The traditional method to quantify how EEG band power changes during task execution is event-420 

related desynchronization. Concretely, the control signal under the ERD definition would be band 421 

power normalized by the resting state alpha activity. Here we argue that the control signal using the 422 

z-score method would be a better metric by showing that it explains more performance variability. 423 

(A) in LR, the correlation coefficient for regression between ∆Ctrl Signal and PVC was 0.69 and 424 

0.83 in the ERD method and z-scored method, (B) for UD the it was 0.62 and 0.84, p < 0.05. 425 

 426 

12 Data Availability Statement 427 
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