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DNA methylation-based biomarkers of aging have been developed for many mammals but not yet for the 

vervet monkey (Chlorocebus sabaeus), which is a valuable non-human primate model for biomedical studies. 

We generated novel DNA methylation data from vervet cerebral cortex, blood, and liver using highly 

conserved mammalian CpGs represented on a custom array (HorvathMammalMethylChip40). We present six 

DNA methylation-based estimators of age: vervet multi-tissue epigenetic clock and tissue-specific clocks for 

brain cortex, blood, and liver. In addition, two dual species clocks (human-vervet clocks) for measuring 

chronological age and relative age, respectively. Relative age was defined as ratio of chronological age to 

maximum lifespan to address the species differences in maximum lifespan. The high accuracy of the human-

vervet clocks demonstrates that epigenetic aging processes are evolutionary conserved in primates. When 

applying these vervet clocks to tissue samples from another primate species, rhesus macaque, we observed 

high age correlations but strong offsets. We characterized CpGs that correlate significantly with age in the 

vervet. CpG probes hypermethylated with age across tissues were located near the targets of Polycomb 

proteins SUZ12 and EED, and genes possessing the trimethylated H3K27 mark in their promoters.  

The epigenetic clocks are expected to be useful for age estimation of wild-born animals and anti-aging studies 

in vervets. 
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Introduction 

 

Non-human primates (NHPs) are regarded as critical animal models used in biomedical research (Jasinska et 

al. 2013; Vallender & Miller 2013; Meyer & Hamel 2014; Estes et al. 2018; Rogers 2018; Jasinska 2019) and 

key reference species used for constructing a comparative framework essential for evolutionary biology 

studies (Martin 2003; Chatterjee et al. 2009). NHPs, as compared with rodents, more closely resemble humans 

in terms of lifespan, life history strategies, cognitive processes, immunological behaviors (Bjornson-Hooper 

et al. 2019), inflammatory responses (Seok et al. 2013), and other health characteristics that are relevant to 

aging processes (Finch & Austad 2012). Therefore, NHPs are invaluable models for studying the 

pathomechanisms of age-related diseases, developing novel anti-aging treatments, and performing preclinical 

testing of such therapies before translation to human subjects (Colman 2018). Therefore, specialized tools are 

needed for the assessment of aging processes in NHP models in the context of the environmental and genetic 

factors regulating natural aging, the pathogenesis of age-related conditions, and the development and testing 

of anti-aging therapies. 

 

On the molecular level, the process of aging is associated with epigenetic DNA modifications, such as DNA 

methylation (DNAm) of cytosine residues within CpG dinucleotides (5-methyl-cytosine) across the genome.  

DNA methylation levels have been used to develop multi-tissue estimators of chronological age and mortality 

risk (Horvath 2013; Chen et al. 2016; Horvath & Raj 2018; Levine et al. 2018; Lu et al. 2019; Bell et al. 2019). 

Whereas physiological conditions (e.g., BMI and menopause), pathologies (e.g., cancers and 

neurodegenerative diseases), and environmental factors (e.g., diet, exercise, and HIV infection) can affect the 

trajectory of DNAm age (Horvath & Levine 2015; Levine et al. 2016; Zheng et al. 2016; Quach et al. 2017; 

Horvath & Raj 2018; Kresovich et al. 2019), the pace of DNAm age is a heritable genetic trait linked to several 

genomic regions (Lu et al. 2016; Lu et al. 2018; Gibson et al. 2019). 

 

The vervet monkey (genus Chlorocebus) is an Old World monkey frequently used as a model in biomedical 

research (Jasinska et al. 2013; Jasinska 2019) particularly for complex chronic diseases, many of which either 

are associated with aging or aggravate the process of aging. Vervets exhibit some aspects of human aging, 

including neurodegeneration (Postupna et al. 2017; Kalinin et al. 2013; Chen et al. 2018; Latimer et al. 2019), 

reproductive senescence and menopause (Atkins et al. 2014). Vervets have also been used in studies of 

reproductive physiology and obesity (Kuokkanen et al. 2016), the effects of genes and diet on growth and 

obesity (Schmitt et al. 2018), cardiometabolic health (Voruganti et al. 2013), physiological and behavioral 

stress responses (Fairbanks, Jorgensen, et al. 2011; Fairbanks, Bailey, et al. 2011; Jasinska, Pandrea, et al. 

2020), and multi-tissue genetic regulation of gene expression, including that in tissues involved in stress 

responses (Jasinska et al. 2017). Because it is a natural host of simian immunodeficiency virus, which typically 

does not progress to immunodeficiency upon infection, the vervet is an established model for AIDS research 

(Pandrea et al. 2006; Chahroudi et al. 2012; Ma et al. 2013; Ma et al. 2014). Whereas HIV infection in humans 

is associated with age acceleration (Horvath, Stein, et al. 2018; Horvath & Levine 2015), the links between 

the benign course of simian immunodeficiency virus infection and aging in the vervet remain unknown. 

 

Vervets from diverse African populations and the bottlenecked founder populations in the Caribbean have 

been phylogenetically characterized, and together with the genetically characterized extended pedigree 

Caribbean-origin vervets in the Vervet Research Colony (VRC) at Wake Forest School of Medicine, are used 

for genetic, gene-phenotype, developmental, and infectious disease studies (Jasinska et al. 2012; Warren et al. 

2015; Huang et al. 2015; Svardal et al. 2017; Turner et al. 2018; Jasinska et al. 2017; Jasinska, Rostamian, et 

al. 2020; Ramensky et al. 2019; Schmitt et al. 2020). To advance use of the vervet as a model for 

developmental and aging studies, and facilitate DNAm-based assessments of the age effects of various 

environmental exposures, including preclinical testing of anti-aging therapies, here we created a multi-tissue 

epigenetic age estimator for the vervet, which is based on the blood, liver, and brain prefrontal cortex. Given 
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that chronological ages are difficult to assess in free ranging monkeys, the epigenetic clock can also enable 

objective age assessment in wild vervet populations. 

 

Results 
To identify age-related CpGs and develop a multi-tissue epigenetic age predictor for vervet monkeys, we 

leveraged developmental tissue resources from the VRC vervets comprising animals representing the entire 

vervet lifespan, from neonates to senile individuals, with known chronological ages accurate to 1 day as 

detailed in Table 1. We characterized DNAm in three tissues: the peripheral blood (N=240, from 1 day to 25 

years of age), a classical immune tissue that is available through minimally invasive sampling and is routinely 

used for biomarker studies (Jasinska et al. 2009; Jasinska et al. 2012); the liver (N=48, from 0 day to 21 years 

of age), a key metabolic organ; and a region of the prefrontal cortex in the brain corresponding to the 

Brodmann area 10 (N=48, from 0 day to 22 years of age), a subregion implicated in personality expression 

and executive function. We generated high quality DNAm profiles from these samples using 36,727 CpGs 

located at highly conserved regions in the primates represented on the HorvathMammalMethylChip40. 

 

Samples cluster by tissue type 

Unsupervised hierarchical clustering of tissue samples on the basis of all tested CpG sites revealed three 

distinct clusters, one for each tissue type (Supplementary Figure 1). The clusters from the peripheral tissues, 

blood, and liver, grouped together, whereas the brain cortex cluster was more distant. Within the liver cluster, 

the samples from animals older than 8.7 years (N=7 individuals) formed a separate subcluster, thus suggesting 

marked differences in DNAm profiles between fully adult individuals versus immature individuals and young 

adults in this organ. The observations in the vervets supported previous results in humans showing that 

extensive tissue-specific remodeling of DNAm patterns occurs in the liver during aging (Bacalini et al. 2019). 

 

Epigenetic clocks  

We used these high quality DNAm data to construct different epigenetic clocks for vervet only and for both 

human and vervet. For the construction of the dual human-vervet clock, we used the DNAm data previously 

generated with the HorvathMammalMethylChip40 in 852 human samples representing 16 tissues from 

individuals 0 to 93 years old (Morgello et al. 2001; Kabacik et al. 2018; Horvath, Stein, et al. 2018). Our 

clocks for vervet monkeys can be distinguished along three dimensions (tissue type, species, and measure of 

age). We used a combined set of all samples to train a multi-tissue clock (pan-clock) suited for age predictions 

across different tissue types included in the clock construction. We also created clocks tailor-made for specific 

tissues/organs, which were trained on the basis of the samples from individual tissue types: the blood-clock, 

the liver-clock, and the brain cortex-clock. We anticipate that pan-clock may provide a proxy for tissues for 

which tissue-specific clocks are not available. 

 

While the multi-tissue vervet clock applies only to vervets, we also created dual species clocks, referred to as 

human-vervet clocks, for estimates of chronological age and relative age. Relative age is the ratio of 

chronological age to maximum lifespan (i.e., the maximum age of death observed in the species). Thus, 

relative age takes on values between 0 and 1. The maximum lifespan observed for humans and vervets was 

122.5 and 30.8 years, respectively. Relative age allows alignment and biologically meaningful comparison 

between species with different lifespan (vervet and human), which is not afforded by mere measurement of 

chronological age.  

 

To arrive at unbiased estimates of the epigenetic clocks, we used leave-one-out (LOO) cross-validation of the 

training data. The cross-validation study reports unbiased estimates of the age correlation R (defined as 

Pearson correlation between the age estimate (DNAm age) and chronological age) as well as the median 

absolute error (mae) measuring the deviation between the predicted and observed age (for chronological age 

in years). As indicated by its name, the vervet multi-tissue clock is highly accurate in age estimation of the 

different tissue samples (R=0.98 and median error 0.89 years, Figure 1A). The multi-tissue clock also 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.289801doi: bioRxiv preprint 

https://paperpile.com/c/lpznh7/dYCgD+QfVT3
https://paperpile.com/c/lpznh7/C8PhW
https://paperpile.com/c/lpznh7/2l61i+zoxoL+ZDzO4
https://doi.org/10.1101/2020.09.09.289801
http://creativecommons.org/licenses/by-nc/4.0/


 

5 

 

performs well when restricting the analysis to samples from a given tissue type: R=0.98 in the blood, R=0.99 

in the liver and R= 0.91 in the brain cortex (Figure 2). We also developed highly accurate vervet clocks for 

single tissues: blood (R=0.98, Figure 1B), cerebral cortex (R=0.95, Figure 1C), and liver (R=0.99, Figure 

1D). The accuracy of the multi-tissue clock for the vervet (r=0.98) exceeded the accuracy of the human pan-

clock (r=0.96) (Horvath 2013) the accuracy of mouse multi-tissue clocks, which have been reported to range 

from r=0.79 to r=0.89 (Thompson et al. 2018).  

 

We developed two dual species clocks based on our vervet samples and previously characterized human 

tissues (Morgello et al. 2001; Horvath, Stein, et al. 2018; Kabacik et al. 2018). The human-vervet clock for 

chronological age (R=0.99 for the human and vervet samples and R=0.98 for the vervet samples, Figure 1E,F) 

and relative age (R=0.98 for the human and vervet samples and R=0.97 for the vervet samples, Figure 1G,H). 

 

We tested the performance of the vervet blood clock in longitudinal blood samples from 14 individuals 

collected at two different time points. In these samples, we correlated the changes in DNAm age predicted on 

the basis of the vervet blood clock with the changes in the actual chronological age (Supplementary Figure 

2). In all pairs of samples from the same animal, the samples collected later were correctly predicted to be 

from an older animal. 

 

Vervet clock applied to other primates 

To determine the cross-tissue performance and the cross-species conservation of the vervet multi-tissue clock, 

we applied the vervet pan-clock to an array of tissues from key organs from two primate species: macaque 

(N=283 samples from eight tissues) and humans (N=852 from 16 tissues). The data from rhesus macaque are 

described in a companion paper (Horvath, Zoller, et al. 2020). 

 

We observed an overall moderate to high correlation between the chronological age and predicted age based 

on the vervet multi-tissue clock: R=0.77 for macaque (Supplementary Figure 3) and R=0.62 for human 

(Supplementary Figure 4). The highest correlation in individual tissues was observed in blood (R=0.83 in 

macaque and R=0.81 in humans) and in skin (R=0.79 in macaque and R=0.9 in humans) (Figure 3, Figure 

4). Strictly speaking, it is not possible to compare the correlation coefficients across the different tissues since 

it greatly depends on the underlying age distribution (e.g. minimum and maximum age) and to a lesser extent 

on the sample size. The vervet clock is poorly calibrated in other primates such as rhesus macaque and human 

as reflected by an "offset" that leads to a high median error in many tissues (Figure 3, Figure 4). However, 

the vervet clock leads to moderately high correlation coefficients in rhesus adipose (R=0.79),  

blood (R=0.83), brain cortex (R=0.75), liver (R=0.89), muscle (R=0.78) and skin (R=0.79) (Figure 3).  

 

Age related CpGs in vervets 

In total, 36,727 probes from HorvathMammalMethylChip40 were aligned to specific loci proximate to 6,110 

genes in the vervet monkey (Chlorocebus_sabaeus.ChlSab1.1.100) genome. The probes in this array were 

selected based on conservation in mammalian genomes, thus, our findings have high translatability into 

humans and other mammals. Epigenome-wide association studies (EWAS) of chronological age revealed that 

the age-related changes in DNAm are to a marked extent tissue-specific in the vervet monkey (Figure 5A). 

 

Pairwise scatter plots of the age EWAS signals (Supplementary Figure 5) revealed a moderate positive 

correlation among the peripheral tissues, blood and liver (r=0.63), whereas the correlations among the 

peripheral tissues and the brain cortex were markedly lower, i.e., liver and cortex (r=0.219), and blood and 

cortex (r=0.14). However, the moderate to low conservation and differences in p-value ranges in our analyzed 

tissue types may reflect a moderate sample size in non-blood tissues. 

 

The age EWAS results suggest that the cerebral cortex has the lowest number of DNAm changes associated 

with age (N= 916) compared to blood (N= 12,334) and liver (N= 4,454) at a nominal p-value < 10-10. This 
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lower number of the age-associated DNAm alterations is probably not due to statistical differences because 

both brain and liver had the same number of samples (N=48) and with similar age distribution (Table 1). 

Rather, we hypothesize that it can be attributed to the post-mitotic state of neurons in the brain compared to 

blood and liver cells. However, the lower number of age related CpGs in the brain could reflect heterogeneity 

of cell types in the bulk cortical brain tissues or technical issues (Zeisel et al. 2015; Tasic et al. 2016) that are 

difficult to dissect with absolute consistency. 

 

The genomic localization of top age-related DNAm changes and the proximate genes in each tissue are as 

follows (Figure 5A). The most significant EWAS signals in the blood are in a KIAA0408 exon (z = 19.1) and 

in a promoter of the SST gene (z = 18.3), which is encoding somatostatin acting as a negative regulator of 

growth hormone slowing aging in humans (Bartke 2019). In the cerebral cortex, the strongest EWAS signals 

are in an exon of the KCNC4 gene (z = 13.3) and in a promoter of the HOXC4 gene (z =13.5), which is a 

homeobox gene crucial during erythroid lineage differentiation (Bhatlekar et al. 2018), and which expression 

is associated with age in bone marrow stromal cells (Pasumarthy et al. 2017) and skin cell differentiation and 

tumors (Rieger et al. 1994). Given the identification of a gene involved in erythroid lineage among the brain 

clock sites, it is pertinent to note that the brains were perfused to remove blood prior to dissection. The top 

EWAS signals in the liver are in a promoter of the FOXG1 gene (z = 18.9), which mutations cause a severe 

neurodevelopmental disorder, the Rett syndrome (Ariani et al. 2008), and in an intron of the SIM1 gene (z = 

18.3).  

 

In the meta-analysis across these three tissue types, the top age-related DNAm changes included 

hypermethylation in LHFPL4 exon (z = 22.7), an exon of the FOXD3 gene (z = 22.6), which is a transcription 

repressor essential in embryogenesis controlling the multipotent mammalian neural crest, neuronal 

differentiation and fate (Teng et al. 2008; Mundell & Labosky 2011; Respuela et al. 2016), and a promoter of 

the TLX3 gene (z = 22.6), which is a transcription factor acting as a master regulator of neuronal differentiation 

in embryonic development and in embryonic stem cells (Kondo et al. 2008; Xu et al. 2008). 

 

The most significant enrichment of EWAS signals for biological terms according to the GREAT analysis was 

observed for the genes associated with the CpG probes hypermethylated with age in meta analysis 

(Supplementary Figure 6). The top enrichment was observed for the targets of the Polycomb proteins SUZ12 

(BENPORATH_SUZ12_TARGETS) and EED (BENPORATH_EED_TARGETS), and genes possessing the 

trimethylated H3K27 mark in their promoters (BENPORATH_ES_WITH_H3K27ME3). Given that the 

polycomb complexes are involved in the chromatin remodeling resulting in epigenetic silencing of genes, such 

as homeobox genes, and that they were implicated in the modulation of brain aging (Kennerdell et al. 2018), 

the enrichment for the polycomb targets and genes with H3K27ME3 in their promoters among the 

hypermethylated CpGs with age is consistent with age-related gene repression. A highly significant 

enrichment was also observed for genes involved in DNA binding (sequence-specific DNA binding, DNA 

binding, sequence specific DNA binding transcription factor activity) suggesting the role of transcriptomic 

regulation in aging, and nervous system (nervous system phenotype, abnormal nervous system morphology) 

and development (lethality during fetal growth through weaning). 

 

We analyzed the distribution of age-associated CpGs in different tissues across different genomic regions, 

including promoters, UTRs, exons, introns, and intergenic sequences (Figure 5B). The percentage of age-

associated CpGs in the promoters was higher in all models (EWAS in individual tissues and in meta-analysis) 

compared to the background (i.e., all CpGs on the chip). Moreover, the most significant age-related DNAm 

changes were hypermethylation events in the promoters and 5’UTRs. These findings corroborate the role of 

CpGs in the promoters and the gain of methylation with age observed in other species (Johnson et al. 2012).  

 

Using the upset plot analysis, we identified the CpGs that showed consistent age associated DNAm changes 

in multiple tissues (Figure 5C). We observed 58 of such shared CpGs undergoing age-related DNAm 
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alterations in blood, cerebral cortex, liver, and meta-analysis. They were located proximate to 39 genes and 

included 34 CpGs hypermethylated and 5 CpGs hypomethylated with age. The top affected CpGs included 

hypermethylation in LHPL4 exon, FOXD3 exon, TLX3 promoter, and hypomethylation in SP1 exon, a CpG 

downstream of CD46, and TRPS1 intron (Figure 5C). Some of these genes are implicated in aging 

phenotypes. For example, SP1 is a key regulator of mTORC1/P70S6K/S6 signaling pathway (Astrinidis et al. 

2010; Finotti et al. 2015) and is involved in several aging-associated diseases including cancer (Zhang et al. 

2014), hypertension (Yang & Kaye 2009), atherosclerosis (Dunzendorfer et al. 2004), Alzheimer’s (Santpere 

et al. 2006), and Huntington diseases (Chen-Plotkin et al. 2006).  

 

We examined the transcriptional factor motifs enriched for the top CpGs located in promoters or 5’UTRs with 

DNAm changes in either direction of each tissue (Figure 5D). The top TF motif most significantly enriched 

for the top EWAS CpGs was Zfp161 (ZBTB14 in human) motif hypomethylated with age in the cerebral 

cortex. At the next levels, hypomethylated CpGs showed a strong enrichment for the Atf1 and several immune-

related TF motifs such as Jundm2, FOS, JUN, and CREB in the liver. TFAP2C was a TF motif 

hypermethylation in all tissues. This motif is involved in cell-cycle arrest, germ cell development, and it is 

implicated in several types of cancer (Bryant et al. 2012; Penna et al. 2013).  

 

Discussion 

Based on the ~37 thousand CpG probes on the custom Mammalian methylation array 

(HorvathMammalMethylChip40), we generated DNA methylation data from three tissue types (brain, blood, 

liver) in the vervet monkey. These samples represent the most comprehensive dataset thus far of methylomes 

in vervets across multiple tissues and ages. We obtained high quality DNAm data, as reflected in the perfect 

clustering pattern of the samples by tissue type without any intermixture between different tissue samples 

within the clusters. Using these DNAm data, we trained and validated highly accurate age estimators 

(epigenetic clocks) that apply to the entire life course (from birth to old age), and identified genes associated 

with the aging process in the vervet. 

 

These data allowed us to construct a highly accurate multi-tissue age estimator (pan-clock) based on three 

vervet tissue types (brain, blood, liver), and clocks developed based on individual vervet tissues. This gives 

us confidence that these vervet clocks will work on new vervet samples from other tissue types as well. 

However, we cannot rule out that these clocks could fail in some highly specialized cell types. Epigenetic age 

estimators that focus on specific tissues or cell types can have greater accuracy than multi-tissue age estimators 

(Horvath, Oshima, et al. 2018). 

 

The vervet pan-clock showed an overall high to moderate accuracy of age estimates in a wide range of tissues 

in macaque and humans (except the lymph nodes in humans), despite the phylogenetic distance of ~12 Mln 

between the vervet and macaque, and ~29 Mln years between the vervet and human lineages (Kumar et al. 

2017). The preservation of the predictive effect of the clock CpGs suggests a marked conservation of the aging 

mechanisms in the Catarrhini parvorder. Given that the vervet pan-clock can effectively predict age in 

numerous tissues, even in a different primate species, we anticipate that the pan-clock may also serve as an 

effective age estimator for various tissues beyond these included in the pan-clock construction.  

 

Marked conservation of the clock constructed based on the Caribbean-origin vervets across different primate 

species suggest that this clock could provide accurate age estimates not only for different species but also for 

vervets from African populations, although we did not test it in these populations. The genetic architecture of 

VRC vervets is simplified compared to that of wild African vervets due to genetic bottlenecks (Warren et al. 

2015). While the methods used to create the clock presumably favors methylation sites for which genetic 

variance is low, one concern is that the bottlenecks may have driven to fixation in the VRC certain genetic 

variants that might not be fixed in other populations and that might confound age estimates in wild Caribbean 
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vervets and especially wild African vervets. Therefore, the vervet clock results should be interpreted with 

caution and would benefit from a validation in African vervet samples.  

 

Epigenetic clocks for humans have found many biomedical applications including the measure of age in 

human clinical trials (Horvath & Raj 2018; Fahy et al. 2019). This instigated development of similar clocks 

for mammals such as mice (Petkovich et al. 2017; Cole et al. 2017; Wang et al. 2017; Stubbs et al. 2017; 

Thompson et al. 2018; Meer et al. 2018). While rodent models have obvious advantages, it can be challenging 

to translate findings from rodents to primates (Perrin 2014; Hatzipetros et al. 2014). NHPs play an 

indispensable role in aging studies and preclinical work of anti-aging treatments (Lankau et al. 2014; Mattison 

& Vaughan 2017). Lifespan and healthspan studies, as well as assessments of anti-aging interventions in 

primates remain costly and time consuming. The development of suitable biomarkers promises to greatly 

reduce the costs and time needed for carrying out studies in these primates. To increase the chance that findings 

in vervets translate to humans, we created dual species clocks, human-vervet clocks, for absolute and relative 

age. The bias due to differences in maximum lifespan is mitigated by the generation of the human-vervet 

clocks for relative age clock, which embeds the estimated age in context of the maximal lifespan recorded for 

the relevant species. The mathematical operation of generating a ratio also generates a more biologically 

meaningful value, because it indicates the relative biological age and possibly fitness of the organism in 

relation to its own species. The high accuracy of these clocks demonstrates that one can build epigenetic clocks 

for two species based on a single mathematical formula. 

 

A critical step toward crossing the species barrier was the use of a mammalian DNA methylation array that 

profiled 37 thousand CpG probes that were highly conserved across numerous mammalian species. We expect 

that the availability of these clocks will provide a significant boost to the attractiveness of the vervet as a 

translational model for health, developmental, and aging research. The vervet pan-clock and tissue-specific 

clocks are biomarkers that can facilitate studies of the course of biological aging in the context of various 

genetic factors and environmental exposures (for example, preclinical testing of rejuvenating therapies). 

 

Beyond their utility, these epigenetic clocks reveal several salient features with regards to the biology of aging. 

First, the vervet multi-tissue clock re-affirms the implication of the human multi-tissue clock, which is that 

aging might be a coordinated biological process that is harmonized throughout the body. Second, the ability 

to combine these two multi-tissue clocks into a single human-vervet multi-tissue clock attests to the high 

conservation of the aging process across two evolutionary distant primate species, whose lineages diverged 

~29 million years ago (Kumar et al. 2017). Treatments that alter the epigenetic age of vervets according to our 

human-vervet clocks are likely to exert similar effects in humans. 

 

Beyond the laboratory, vervet monkeys from wild populations are increasingly used in biomedical and 

anthropological research (Turner et al. 2019). Tooth eruption patterns are typically used as a practical predictor 

of developmental stage in wild vervets and other NHPs (Ockerse 1959; Turner et al. 1997). Although these 

patterns approximate the developmental stage of an individual, their utility is limited in terms of accurate 

prediction of chronological age, particularly in adults with a fully developed dental pattern, in which 

distinguishing among various stages of adulthood and senescence is difficult. In animals of unknown 

chronological age, the epigenetic clock can enable more accurate estimates of chronological age and thus 

decrease the confounding effects of age, increase the statistical power of analysis, and decrease the number of 

animals needed for studies, according to the 'Three Rs': replacement, reduction and refinement. In addition, it 

can improve monitoring of health status in natural populations, provide insight into life history, and enable 

identification of lifespan modulating factors in the context of a natural habitat. 

 

Materials and Methods 

 

Study subjects 
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All animals used in this study were Caribbean-origin vervet monkeys (Chlorocebus sabaeus) from the VRC 

at Wake Forest School of Medicine. The VRC colony is an extended multigenerational pedigree established 

from 57 founders imported from the islands of St. Kitts and Nevis in the West Indies. The introduction of new 

animals to the pedigree ended in the mid-1980s (Jasinska et al. 2013). The colony members are socially reared 

in extended family groups mimicking the natural social composition of vervet monkey troops in the wild. 

Group sizes range from 11 to 23 animals, with one or two intact adult males included in each group. Unfamiliar 

males are rotated into each group every 3–5 years. The pedigree structure is genetically confirmed (Huang et 

al. 2015). All colony-born vervets have known chronological age accurate to 1 day.  

 

Beyond applications in aging studies, animals from VRC are used in a wide range of research in areas such as 

the efficacy and enhancement of vaccines for infectious diseases, e.g., influenza and dengue (Kim et al. 2015; 

Holbrook et al. 2016; Briggs et al. 2014), investigations of diabetes, metabolic disease and obesity (Kavanagh 

et al. 2017; Kavanagh et al. 2016; Kavanagh et al. 2013); and the development of novel non-invasive 

biomedical imaging methodologies (Prabhakaran et al. 2017; Maldjian et al. 2014). 

 

Ethics statement 

The Wake Forest School of Medicine facilities are certified by the Association for Assessment and 

Accreditation of Laboratory Animal Care. The animal handling and sample collection procedures in this study 

were performed by a veterinarian after review and approval by the UCLA and VA Institutional Animal Care 

and Use Committees. Both housing and sample collection were in compliance with the US National Research 

Council Committee’s Guidelines for Care and Use of Laboratory Animals (National Research Council et al. 

2011) and met or exceeded all standards of the Public Health Service's “Policy on the Humane Care and Use 

of Laboratory Animals” (Office of Laboratory Animal Welfare n.d.). 

 

Vervet tissue samples 

For this study, we selected a total of 240 samples representing the entire vervet lifespan, from neonatal to 

senile stages: 144 samples from the peripheral blood, 48 samples from the liver, and 48 samples from the 

cortical brain area BA10. The brains were perfused to remove blood prior to dissection (Jasinska et al. 2017). 

The targeted brain area BA10 was very small, and brain samples were dissected as bulk tissues, collecting, to 

the extent feasible without the benefit of microscopy, the full thickness of the cortex while avoiding the 

underlying white matter (Jasinska et al. 2017). One outlier blood sample (202943350003_R03C01 from 

animal 1992020) was excluded from analysis on the basis of the DNAm profile. The remaining 143 blood 

samples included 14 pairs of biological replicates collected from 14 individuals at two different time points 

3.9–10.93 years apart. Peripheral blood was collected through venipuncture with standard procedures. Liver 

and brain cortical tissues were collected during necropsies (Jasinska et al. 2017). 

 

Genomic DNA was isolated from blood and liver samples primarily through Puregene chemistry (Qiagen). 

DNA from the liver was extracted manually and that from the blood was extracted with an automated Autopure 

LS system (Qiagen). DNA was extracted from old liver tissues and clotted blood samples manually with a 

QIAamp DNA Blood Midi Kit and DNeasy Tissue Kit according to the manufacturer’s protocol (Qiagen, 

Valencia, CA). DNA from BA10 was extracted on an automated nucleic acid extraction platform AnaPrep 

(Biochain) with a magnetic bead based extraction method and Tissue DNA Extraction Kit (AnaPrep). 

 

Human tissue samples 

To build the human-vervet clock, we analyzed previously generated methylation data from n=852 human 

tissue samples (adipose, blood, bone marrow, dermis, epidermis, heart, keratinocytes, fibroblasts, kidney, 

liver, lung, lymph node, muscle, pituitary, skin, spleen) from individuals whose ages ranged from 0 to 93 

years. These human methylation data are described in (Horvath, Singh, et al. 2020). The tissue samples came 

from three sources. Tissue and organ samples were from the National NeuroAIDS Tissue Consortium 

(Morgello et al. 2001). Blood samples were from the Cape Town Adolescent Antiretroviral Cohort study 
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(Horvath, Stein, et al. 2018). Skin and other primary cells were provided by Kenneth Raj (Kabacik et al. 2018). 

Ethics approval (IRB#15-001454, IRB#16-000471, IRB#18-000315, IRB#16-002028). 

 

Rhesus tissue samples 

To validate the vervet clock cross species, we utilized the CpG methylation data described in a companion 

paper (Horvath, Zoller, et al. 2020).  

 

DNA methylation data 

All DNAm data used was generated using the custom Illumina chip "HorvathMammalMethylChip40", so 

called the mammalian methylation array. The mammalian methylation array is an attractive tool for DNAm 

assessment in primates, because it comprises 38K probes, including nearly ~36 K probes targeting CpG sites 

in highly conserved regions in mammals. Briefly, two thousands out of 38 K probes were selected based on 

their utility for human biomarker studies: these CpGs, which were previously implemented in human Illumina 

Infinium arrays (EPIC, 450K) were selected due to their relevance for estimating age, blood cell counts, or 

the proportion of neurons in brain tissue. The remaining 35,988 probes were chosen to assess cytosine DNA 

methylation levels in mammalian species. Toward this end, highly conserved CpGs across 50 mammalian 

species were selected: 33,493 Infinium II probes and 2,496 Infinium I probes. Not all probes on the array are 

expected to work for all species, but rather each probe is designed to cover a certain subset of species, such 

that overall all species have a high number of probes. The particular subset of species for each probe is 

provided in the chip manifest file can be found at Gene Expression Omnibus (GEO) at NCBI as platform 

GPL28271. The SeSaMe normalization method was used to define beta values for each probe (Zhou et al. 

2018).  

 

Penalized Regression models 

Details on the clocks (CpGs, genome coordinates) and R software code are provided in the Supplement. 

Penalized regression models were created with glmnet (Friedman et al. 2010). We investigated models 

produced by both “elastic net” regression (alpha=0.5). The optimal penalty parameters in all cases were 

determined automatically by using a 10 fold internal cross-validation (cv.glmnet) on the training set. By 

definition, the alpha value for the elastic net regression was set to 0.5 (midpoint between Ridge and Lasso 

type regression) and was not optimized for model performance.  

 

We performed a cross-validation scheme for arriving at unbiased (or at least less biased) estimates of the 

accuracy of the different DNAm based age estimators. For validation of the clocks, we used leave-one-out 

LOO cross-validation (LOOCV) in which one sample was left out of the regression, then predicted the age for 

the remaining samples and iterated this process over all samples. 

 

A critical step is the transformation of chronological age (the dependent variable). While no transformation 

was used for the multi-tissue clock for vervets, we did use a log linear transformation for the dual species 

clock of chronological age (Supplement). 

 

Relative age estimation 

To introduce biological meaning into age estimates of vervets and humans that have very different lifespan; 

as well as to overcome the inevitable skewing due to unequal distribution of data points from vervets and 

humans across age range, relative age estimation was made using the formula: Relative age= 

Age/maxLifespan where the maximum lifespan for the two species was chosen from the anAge database 

(Magalhães et al. 2007). Maximum age of vervets and humans was 30.8 and 122.5 years, respectively. 

 

Epigenome wide association studies of age 
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EWAS was performed in each tissue separately with the R function "standardScreeningNumericTrait" in the 

"WGCNA" R package (Langfelder & Horvath 2008). Next the results were combined across tissues with 

Stouffer's meta analysis method. 

 

CpG set Enrichment analysis 

The significant CpGs for each tissue were selected for enrichment analysis. The first enrichment analysis was 

done for transcriptional factor motifs. Using the MEME motif discovery algorithm (Bailey et al. 2009), we 

predicted the probes that are located on TF motifs from five databases: Jasper, Taipale, Taipaledimer, Uniprob, 

and TRANSFAC. The overlap of selected CpGs based on the EWAS was tested with the predicted background 

using a hypergeometric test. 

 

Genome annotation 

The gene-level enrichment was done using GREAT analysis (McLean et al. 2010) and human Hg19 

background. The background probes were limited to 24,799 probes that were mapped to the same gene in the 

Vervet Monkey genome. Gene set enrichment was done for gene ontology, molecular pathways, diseases, 

upstream regulators, human and mouse phenotypes. 

 

We aligned microarray probes to the vervet reference genome Chlorocebus_sabeus 1.1 GCF_000409795.2 

(Warren et al. 2015). CpG sites were annotated in relation to the nearest genes based on the vervet gene 

annotations: Ensembl Chlorocebus sabaeus Annotation Release 100 (Pruitt et al. 2012). In total, 35,898 probes 

from the mammalian BeadChip array could be aligned to ChlSab1.1.100 genome (Ensembl). The alignment 

was done using the QUASR package (Gaidatzis et al. 2015), with the assumption for bisulfite conversion 

treatment of the genomic DNA. Following the alignment, the CpGs were annotated based on the distance to 

the closest transcriptional start site using the Chipseeker package (Yu et al. 2015). 

 

URLs 

Vervet reference genome, ftp://ftp.ensembl.org/pub/release-100/fasta/chlorocebus_sabaeus/  

NCBI’s vervet gene annotations, ftp://ftp.ensembl.org/pub/release-100/gtf/chlorocebus_sabaeus/  
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Figure legends 

 
Figure 1: Cross-validation study of epigenetic clocks for vervet monkeys and humans. A-D) Four 

epigenetic clocks that only apply to vervet. Leave-one-sample-out estimate of DNA methylation age (y-axis, 

in units of years) versus chronological age for A) all available vervet tissues, B) vervet blood, C) vervet 

cerebral cortex, D) vervet liver. Ten fold cross validation analysis of the human-vervet monkey clocks for 

E,F) chronological age and G,H) relative age, respectively. E,G) Human samples are colored in magenta and 

vervet samples are colored by vervet tissue type, and analogous in F,H) but restricted to vervet samples 

(colored by vervet tissue type). Each panel reports the sample size (in parenthesis), correlation coefficient, 

median absolute error (MAE). 

 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.289801doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289801
http://creativecommons.org/licenses/by-nc/4.0/


 

13 

 

 
Figure 2. The multi-tissue epigenetic clock for vervets applied to individual tissues. Leave-one-sample-

out estimate of age based on DNA methylation data (x-axis) versus chronological age (in units of years) for 

A) all tissues, B) blood, C) cerebral cortex, D) liver. Each panel reports the sample size, Pearson correlation 

coefficient and median absolute deviation (median error). 
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Figure 3. Multi-tissue vervet monkey clock applied to tissues from rhesus macaques. Each dot 

corresponds to a tissue sample from rhesus macaques: A) adipose, B) blood, C) brain cortex, D) kidney, E) 

liver, F) lung, G) muscle, H) skin. The y-axis reports the age estimate according to the multi-tissue vervet 

clocks. The predicted DNAm age in macaque tissues according to the vervet pan-clock (y-axis) and 

chronological age of the rhesus specimens (x-axis). The number of samples is shown in parentheses; cor – 

Pearson’s correlation, MAE – median absolute error. 
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Figure 4. Multi-tissue vervet clock applied to 16 tissue types from humans. Each dot corresponds to a 

human tissue samples. The predicted DNAm age in human tissues according to the vervet multi-tissue clock 

(y-axis) and chronological age of the human specimens (x-axis). The number of samples is shown in 

parentheses; cor – Pearson’s correlation, MAE – median absolute error. 
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Figure 5. Epigenome-wide association study of age in tissues from Chlorocebus sabaeus. A) Manhattan 

plots of the EWAS results in different tissues. Stouffer meta analysis was used to combine the results across 

different tissues. The coordinates are estimated based on the alignment of Mammalian array probes to 

ChlSab1.1.100 genome assembly from ENSEMBL. The direction of associations with p < 1e-20 (red dotted 

line) is highlighted by red (hypermethylated) and blue (hypomethylated) colors. Top 30 CpGs was labeled by 

the neighboring genes. B) Location of top CpGs in each tissue relative to the closest transcriptional start site. 
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Top CpGs were selected at p < 10-10 and further filtering based on z score of association with chronological 

age for up to 500 in a positive or negative direction. The number of selected CpGs: blood, 1000; cortex, 777; 

liver, 1000; meta-analysis, 1,000. The grey color in the last panel represents the location of 35,898 mammalian 

BeadChip array probes mapped to ChlSab1.1.100 genome. C) Upset plot representing the overlap of aging-

associated CpGs based on meta-analysis or individual tissues. Neighboring genes of the overlapping CpGs 

were labeled in the figure. D) Transcriptional motif enrichment for the top CpGs in the promoter and 5`UTR 

of the neighboring genes. The motifs were predicted using the MEME motif discovery algorithm, and the 

enrichment was tested using a hypergeometric test (Bailey et al. 2009). In total, 19,087 CpGs were predicted 

to be located on the motifs and were used as the background. nCommonCpGs indicates the number of target 

CpGs that overlapped with the background CpGs on the analyzed motif.  

 

  

 

 

 

 

 

 

Table 1. Description of the data by tissue type.  

Tissue N No. 

Female 

Mean 

Age 

Min. 

Age 

Max. 

Age 

Blood 144 100 10.2 0.0027 25 

Cortex 48 25 3.15 0 22.9 

Liver 48 28 2.81 0 21.8 

N=Total number of tissues. Number of females. Age: mean, minimum and maximum.  
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SUPPLEMENTARY MATERIAL 

 

 
Supplementary Figure 1. Unsupervised hierarchical clustering of tissue samples. Average linkage 

hierarchical clustering based on the interarray correlation coefficient (Pearson correlation). A height cut-off 

of 0.05 led to branch colors that correspond to Tissue type (second color band: blue - brain cortex from day 0 

to 22 years of age, maroon – liver from day 0 to 21 years of age, turquoise – blood from day 1 to 25 years of 

age), sex (females – pink, males – blue). Age is shown in the scale from youngest (white) to oldest (red). 
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Supplementary Figure 2. The DNAm age predictions by using the blood-specific clock in pairs of blood 

samples collected from the same animals at two different time points. Predicted age (y-axis) is shown relative 

to chronological age (x-axis) for pairs of samples collected from 14 individuals. 
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Supplementary Figure 3. Vervet pan-clock applied to macaque tissues. The predicted DNAm age in 

human tissues according to the vervet pan-clock (y-axis) and chronological age of the human specimens (x-

axis). The number of samples is shown in parentheses; cor – Pearson’s correlation, MAE – median absolute 

error. 
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Supplementary Figure 4. The conservation DNAm age estimated with the vervet pan-clock in human 

tissues. The predicted DNAm age in human tissues according to the vervet pan-clock (y-axis) and 

chronological age of the human specimens (x-axis). The number of samples is shown in parentheses; cor – 

Pearson’s correlation, MAE – median absolute error. 
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Supplementary Figure 5. Epigenome wide association study of correlation in three different tissues. 

Each dot corresponds to a CpG. Z statistics for a correlation test of age in the blood, cerebral cortex, and liver. 

Pairwise scatter plots reveal a strong positive correlation (r=0.63) between EWAS results in the blood and 

brain tissue. 
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Supplementary Figure 6. Enrichment analysis of the top CpGs associated with DNAm age in each tissue 

and in meta analysis. The analysis was done using the genomic region of enrichment annotation tool 

(McLean et al. 2010). The gene level enrichment was done using GREAT analysis (McLean et al. 2010) and 

human Hg19 background. The background probes were limited to 24,799 probes that were mapped to the 

same gene in the vervet monkey genome. The top three enriched datasets from each category (Canonical 

pathways, diseases, gene ontology, human and mouse phenotypes, and upstream regulators) were selected and 

further filtered for significance at p < 10-4.  
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