1

1 THE BENEFITS OF MYCORRHIZAE ARE FREQUENCY-DEPENDENT: A CASE STUDY WITH A NON-

2 MYCORRHIZAL MUTANT OF PISUM SATIVUM

- 3
- 4 Gordon G. McNickle^{1,2,3,*}, Frédérique C. Guinel³, Anastasia E. Sniderhan³, Cory A. Wallace³, Allison S.
- 5 McManus, Melissa M. Fafard, and Jennifer L Baltzer³
- 6
- ¹ Department of Botany and Plant Pathology, Purdue University, 915 W State St., West Lafayette, IN,
- 8 47907
- ² Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907
- ³ Wilfrid Laurier University, Department of Biology, 75 University Avenue West,
- 11 Waterloo, ON N2L 3C5.
- 12 *corresponding author. gmcnickle@purdue.edu
- 13

14 ACKNOWLEDGEMENTS

- 15 Funding came from the Natural Sciences and Engineering Research Council of Canada for a Banting
- 16 postdoctoral fellowship to GGM, and Discovery funding to JLB; from Wilfrid Laurier University to JLB
- and FCG; from the Ontario Graduate Scholarship programme to AES; and from Purdue University
- 18 and USDA-NIFA Hatch funds, Grant/Award Number: 1010722 to GGM.

19

20 AUTHOR CONTRIBUTIONS

- 21 GGM, FCG, JLB and CAW designed the experiment, and carried out early (unpublished) pilot studies.
- 22 GGM, AES, ASM and MMF carried out the experiment, and harvest. ASM and CAW measured
- 23 mycorrhizal colonisation. GGM performed the stable isotope analysis, analysed the data, derived the
- 24 model, drafted the manuscript, and all authors contributed to revisions.

25 ABSTRACT

26	1. Mutualisms are remarkably common in the plant kingdom. The mycorrhizal association which
27	involves plant roots and soil fungi is particularly common, and found among members of the
28	majority of plant families. This association is a resource-resource mutualism, where plants trade
29	carbon-based compounds for nutrients, such as phosphorus and nitrogen, mined by the fungi.
30	2. Evolutionary models usually assume that a mutation grants a small number of individual plants
31	the ability to associate with mycorrhizal fungi, and that this subsequently spreads through the
32	population resulting in the evolution of mutualism. This frequency-dependent hypothesis has been
33	difficult to test, because it is rare to have members of the same species that are capable and
34	incapable of forming the mutualism.
35	3. Here we describe the results of an experiment that took advantage of a mutant pea (Pisum
36	sativum L. R25) that is incapable of forming mycorrhizal (or rhizobial) associations, and differs from
37	the wildtype (<i>P. sativum</i> cv. Sparkle) by a single recessive Mendelian allele (<i>Pssym8</i>). We grew each
38	genotype either alone or in every combination of pairwise mixed- or same-genotype. We also
39	present an evolutionary matrix game, which we parameterize from the experimental ¹⁵ N results,
40	that allows us to estimate the costs and benefits of the mutualism.
41	4. We find that there was no difference between R25 and WT when grown with a competitor of the
42	same genotype, but when R25 and WT compete, WT has a significant fitness advantage. From the
43	model, we estimate that the benefit in units of fitness (g pod mass) obtained from direct plant
44	nitrogen uptake is 22.2 g, and mycorrhizae increase this by only 0.6 g. The costs of plant nitrogen
45	uptake are 9.4 g, while the cost of trade with mycorrhizae is 0.1g.
46	5. From the model and experiment, we conclude that this relatively small cost-benefit ratio of the
47	mycorrhizal association is enough to drive the evolution of mutualism in frequency-dependent
48	selection. However, without the mutant R25 genotype we would not have been able to draw this
49	conclusion. This validation of frequency-dependent evolutionary models is important for continued
50	theoretical development.

51 INTRODUCTION

52	Mutualisms are remarkably common within the plant kingdom. For example, estimates
53	suggest that 80% of terrestrial plant species (92% of families) associate with soil fungi to form a
54	mutualistic mycorrhizal association (Wang & Qiu 2006). The mycorrhizal association is a resource-
55	trading mutualism where plants exchange carbon-based compounds for mineral nutrients with
56	fungi. Historically, it was thought that mycorrhizae primarily provided plants with phosphorus
57	(Sanders & Tinker 1973), but recent work has shown that arbuscular mycorrhizal fungi also transfer
58	substantial amounts of nitrogen (N) to plants from decomposed organic material (Leigh, Hodge $\&$
59	Fitter 2009; Hodge & Fitter 2010). Nitrogen is generally the main limiting resource for terrestrial
60	plants, and thus obtaining N via mutualism has the potential to dramatically affect plant fitness
61	(Chapin, Vitousek & Vancleve 1986; Vitousek & Howarth 1991).
62	Indeed, analysis of evolutionary models suggests that mutualisms such as mycorrhizae
63	evolve when there is a fitness advantage to individuals that engage in cooperative mutualisms
64	relative to those individuals that do not engage in mutualism (Nash 1950; Axelrod & Hamilton 1981;
65	Denison et al. 2003). Though the details differ, these eco-evolutionary models begin with an
66	assumption that the ancestral population had no mutualism, then an individual undergoes some
67	mutation(s) that give it access to a mutualistic partner. While mutation is necessary for evolution by
68	natural selection, on its own, mutation is not sufficient to cause a stable evolutionary change. Once
69	mutation confers the mutualism ability, those mutant individuals must subsequently out-compete
70	non-mutualistic residents in the population, resulting in the mutualism spreading through the
71	population. While this is logically intuitive, and supported by a wide array of models, testing this
72	preposition is difficult because it requires a mixture of individuals from the same species that can
73	and cannot form a mutualistic association.
74	It is straightforward to assess competition among plants which are either in a mutualistic
75	relationship or are not through the use of some combination of soil sterilization or inoculation

resperiments (Fitter 1977; Allen & Allen 1984; Moora & Zobel 1996; Hodge *et al.* 2000; Hodge 2001;

77	Hodge 2003). In general, these studies find that plant-plant competition is stronger when plants
78	associate with mycorrhizae than when they do not (Fitter 1977; Hodge 2003), or that there is no
79	difference among competing plants with or without mycorrhizae (Allen & Allen 1984; Moora & Zobel
80	1996). At first glance, this seems to call into question the evolutionary models of mutualism.
81	However, these studies assume static relationships between the strategy (e.g. mutualism vs no
82	mutualism) and fitness of an individual regardless of the strategies of its neighbours, thus neglecting
83	tests of frequency-dependent selection. The key experimental treatment required to examine the
84	frequency-dependent evolution of mutualism, which would contain a mixture of mycorrhizal and
85	non-mycorrhizal competitors from the same population, was absent from all of these studies
86	because this situation is typically not possible to experimentally create.
87	Here, we combine a frequency-dependent evolutionary matrix game of cooperation with an
88	experiment that makes use of mutant peas which cannot associate with mycorrhizae. Using a model,
89	and an experiment designed to test the model, we ask: (1) what conditions are theoretically
90	necessary for the mycorrhizal association to be an evolutionarily stable strategy (ESS)? We then test
91	the model using a unique mutant of pea (<i>Pisum sativum</i> L. R25 (<i>Pssym8</i>)) which has been shown to
92	be incapable of forming arbuscular mycorrhizal associations (Balaji <i>et al</i> . 1994; Guinel & Geil 2002).
93	Using the experiment, we ask: (2) how does mycorrhizal association across frequency-dependent
94	competitive contexts change reproductive and vegetative yields?; (3) how does the competitive
95	context change the mycorrhizal colonization of wildtype pea roots?; and (4) how does the
96	mycorrhizal association across competitive contexts alter N uptake? Finally, (5) we combine the
97	model and experiment to estimate the costs and benefits of gathering nutrients with and without
98	the mycorrhizal association by solving model equations. Combined, we illustrate how the benefits of
99	mutualism in this case were indeed frequency-dependent; moreover, without the unique mutant,
100	we would have concluded that there were no benefits to this mutualism.

101

102 METHODS

5

103 Evolutionary game theoretic Model

104 Evolutionary game theory is useful for examining frequency-dependent interactions. 105 Following the logic of classic evolutionary games (e.g. the prisoners' dilemma Axelrod & Hamilton 106 1981; Poundstone 1992), we derived a simple matrix game with benefits and costs that allowed us 107 to conceptualize the competition between the R25 mutant and the wildtype (WT) cv. Sparkle based 108 only on their mutualistic associations. Let N_p be the nutrients that are plant-available, and let N_m be the nutrients that are fungus-109 110 available and traded to the plant. We assume N_m is derived from a separate pool of organic 111 nutrients that the plants cannot access without the aid of the mycorrhizal fungus (e.g. Hodge 2001; 112 Leigh, Hodge & Fitter 2009). Similarly, let c_n be the cost associated with nutrient uptake by the plant 113 (e.g. root tissue production, ATP synthesis) and let c_m be the cost to plants of obtaining nutrients via 114 mycorrhizal association (e.g. carbohydrate or lipid trade; (Rich et al. 2017)). Since our goal was to 115 consider competition within our own pot experiment, the model considers competition between 116 two plants with a fixed pool of resources, but one could extend this to any number of plants by 117 replacing 2 in any model equations with x, where x is the number of individuals interacting. 118 The two peagenotypes (R25 and WT) create four possible combinations of pair-wise 119 competition. First, when two R25 mutants compete, they only have access to plant-available 120 nutrients and we assume that on average each individual plant would access half of those nutrients. 121 R25 plants only pay the cost of obtaining nutrients that are plant-available (Fig 1a). Second, when 122 R25 competes with WT, the outcome for the R25 plant is the same: they compete and obtain only 123 half the available nutrients, and pay the cost of getting those nutrients themselves (Fig 1a). 124 However, when WT competes with R25, it has access to two nutrient pools. WT competes for the 125 plant-available pool of nutrients with R25 obtaining only half on average and paying the cost of 126 obtaining those nutrients, but WT also has access to 100% of the potentially tradeable pool of

127 nutrients accessible by the fungus, and incurs the cost associated with trading for those nutrients

128 (Fig 1a). Finally, when two WT plants compete, they share both nutrient pools on average, and pay

- both costs.
- 130 These interactions described above can be summarised in a two by two payoff matrix (Fig
- 131 1a) and by the following equations:
- 132 $G_{R25,R25} = \frac{N_p}{2} c_p,$ Eqns 1
- 133 $G_{R25,WT} = \frac{N_p}{2} c_p,$

134
$$G_{WT,R25} = \frac{N_p}{2} + N_m - c_p - c_m$$
, and

135
$$G_{WT,WT} = \frac{N_p}{2} + \frac{N_m}{2} - c_p - c_m,$$

136 Where $G_{i,j}$ is individual fitness of focal plant *i* competing against plant *j* in each of the four possible

- 137 pairwise interactions between R25 and WT.
- 138

139 Evolutionary stable strategy definition

140 In a matrix game, an ESS is identical to a Nash equilibrium (Maynard Smith & Price 1973; 141 Apaloo et al. 2014). An ESS is a strategy (or strategies) which once adopted by members of a 142 population leads to that population not being invaded by any alternative strategy (or strategies). 143 Mathematically, if we imagine that fitness is a function of strategies such that G(v, u) is the fitness 144 payoff of a focal player using strategy 'v' against a neighbour using strategy 'u' such that $v \neq u$, then 145 v is a pure ESS if and only if: G(v, v) > G(u, v) and G(v, u) > G(u, u). Alternatively, u is a pure ESS 146 when the inequalities are reversed. Importantly, under this definition, mixed ESS solutions are 147 possible where the two strategies may coexist (G(u, v) > G(v, v) and G(v, u) > G(u, u)). In 148 addition, priority effects are also possible where both strategies are ESS, but only one can occur at a 149 time depending on the history of mutation (G(v, v) > G(u, v) and G(u, u) > G(v, u)). Importantly, 150 the ESS can theoretically exist whether or not the exact equilibrium is ever achieved in nature 151 (Maynard Smith 1982).

7

153 Plant material

154	To examine the effects of mycorrhizal association on competition in a frequency-dependent setting,
155	we took advantage of the pea mutant R25 which has been characterized as a non-mycorrhizal
156	mutant. The R25 mutant was obtained from a background of the cultivar 'Sparkle' and was identified
157	from a screen of gamma-radiated seeds (Markwei & LaRue 1992). Remarkably, the non-mycorrhizal
158	phenotype is controlled by a single locus (<i>sym8</i>) that exhibits simple Mendelian dominance (Balaji <i>et</i>
159	al. 1994). This means that the mycorrhizal and non-mycorrhizal plants, which we will use in our
160	comparison, have a constant genetic background save for a single allele difference. This is exactly
161	the type of evolutionary situation most models envision, where a rare mutant emerges and
162	potentially invades a resident population. This allows us to test evolutionary theory in a novel way.
163	
164	Fungal material
165	The AM fungal strain used in this study was <i>Rhizophagus irregularis</i> ((Blaszk., Wubet, Renker
166	& Buscot) C. Walker & Schuessler 2010 as ['irregulare']) cv. DAOM 197918 originally obtained from
167	the Agriculture and Agri-Food Canada Glomeromycota in vitro collection (AAFC, Ottawa, ON,
168	Canada) and propagated by FCG using leek (Allium ampeloprasum (L.) cv. muhlenbergii) as a host. At
169	maturity, leek roots were assayed for mycorrhizal structures and, if present, the leek soil was stored
170	dry at 4°C.
171	
172	Experimental treatments
173	There were four competition treatments that match the four cells of the matrix game (Fig
174	1a). Treatments included: (i) WT versus WT; (ii) WT versus R25; (iii) R25 versus WT and; (iv) R25
175	versus R25 (Fig 1b). In each competition treatment, one of the two plants was randomly designated
176	a priori as 'focal', and the other as 'neighbour'. With this design, neighbour plants were only present
177	to impose competition, and only the focal plants would eventually be harvested. Thus, even though

the R25 versus WT and WT versus R25 treatments were essentially identical, we planted both and

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.08.288084; this version posted September 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

179	measured them independently to avoid pseudoreplication. In addition to the competition
180	treatments, there were also two controls where plants of each genotype were grown alone (Fig 1b).
181	There is some debate in the literature on the appropriate control in competition
182	experiments. Should one control for the nutrient environment (i.e. total nutrients provided per
183	plant, and soil nutrient concentration; (e.g. Gersani <i>et al.</i> 2001; McNickle & Brown 2014; Chen <i>et al.</i>
184	2015a)), or should one control for volume but not for the nutrient environment (e.g. Hess & De
185	Kroon 2007; Chen <i>et al.</i> 2015a)? Unfortunately, it is difficult to control both nutrients and pot
186	volume without confounding one of them with neighbour addition (McNickle in press), and thus one
187	assumption of our design was that both nutrient availability and soil nutrient concentration are
188	more important for belowground plant-plant competition than pot volume. Thus, in total there were
189	four competition treatments (all possible pairs of R25 and WT), and two no-competition controls
190	(two genotypes grown alone) replicated 15 times for a total of six treatments and 90 pots (Fig 1b).
191	
192	Greenhouse conditions
193	All plants were grown in 15-cm diameter, 15-cm high, standard plastic pots in the Wilfrid
193 194	All plants were grown in 15-cm diameter, 15-cm high, standard plastic pots in the Wilfrid Laurier University greenhouse in Waterloo, Ontario, Canada (43°28'28.1"N, 80°31'15.2"W) from June
193 194 195	All plants were grown in 15-cm diameter, 15-cm high, standard plastic pots in the Wilfrid Laurier University greenhouse in Waterloo, Ontario, Canada (43°28'28.1"N, 80°31'15.2"W) from June 1 to July 29, 2015. Artificial light was not used yielding approximately 15h:9h light:dark at this
193 194 195 196	All plants were grown in 15-cm diameter, 15-cm high, standard plastic pots in the Wilfrid Laurier University greenhouse in Waterloo, Ontario, Canada (43°28'28.1"N, 80°31'15.2"W) from June 1 to July 29, 2015. Artificial light was not used yielding approximately 15h:9h light:dark at this latitude and time of year. Temperature was maintained at approximately 25°C. The model assumed
193 194 195 196 197	All plants were grown in 15-cm diameter, 15-cm high, standard plastic pots in the Wilfrid Laurier University greenhouse in Waterloo, Ontario, Canada (43°28'28.1"N, 80°31'15.2"W) from June 1 to July 29, 2015. Artificial light was not used yielding approximately 15h:9h light:dark at this latitude and time of year. Temperature was maintained at approximately 25°C. The model assumed that all interactions occurred belowground, thus screens of corrugated white plastic were erected in
193 194 195 196 197 198	All plants were grown in 15-cm diameter, 15-cm high, standard plastic pots in the Wilfrid Laurier University greenhouse in Waterloo, Ontario, Canada (43°28'28.1"N, 80°31'15.2"W) from June 1 to July 29, 2015. Artificial light was not used yielding approximately 15h:9h light:dark at this latitude and time of year. Temperature was maintained at approximately 25°C. The model assumed that all interactions occurred belowground, thus screens of corrugated white plastic were erected in the middle of each pot so that plants could not interact above-ground (Fig 1b). Soil was a 1:1
193 194 195 196 197 198 199	All plants were grown in 15-cm diameter, 15-cm high, standard plastic pots in the Wilfrid Laurier University greenhouse in Waterloo, Ontario, Canada (43°28'28.1"N, 80°31'15.2"W) from June 1 to July 29, 2015. Artificial light was not used yielding approximately 15h:9h light:dark at this latitude and time of year. Temperature was maintained at approximately 25°C. The model assumed that all interactions occurred belowground, thus screens of corrugated white plastic were erected in the middle of each pot so that plants could not interact above-ground (Fig 1b). Soil was a 1:1 mixture of peat moss (Greenworld Garden Products, Pointe-Sapin, New Brunswick, Canada), and
193 194 195 196 197 198 199 200	All plants were grown in 15-cm diameter, 15-cm high, standard plastic pots in the Wilfrid Laurier University greenhouse in Waterloo, Ontario, Canada (43°28'28.1"N, 80°31'15.2"W) from June 1 to July 29, 2015. Artificial light was not used yielding approximately 15h:9h light:dark at this latitude and time of year. Temperature was maintained at approximately 25°C. The model assumed that all interactions occurred belowground, thus screens of corrugated white plastic were erected in the middle of each pot so that plants could not interact above-ground (Fig 1b). Soil was a 1:1 mixture of peat moss (Greenworld Garden Products, Pointe-Sapin, New Brunswick, Canada), and calcined clay gravel (Turface® MVP, PROFILE Products LLC, Buffalo Grove, Illinois, USA). In addition,
193 194 195 196 197 198 199 200 201	All plants were grown in 15-cm diameter, 15-cm high, standard plastic pots in the Wilfrid Laurier University greenhouse in Waterloo, Ontario, Canada (43°28'28.1"N, 80°31'15.2"W) from June 1 to July 29, 2015. Artificial light was not used yielding approximately 15h:9h light:dark at this latitude and time of year. Temperature was maintained at approximately 25°C. The model assumed that all interactions occurred belowground, thus screens of corrugated white plastic were erected in the middle of each pot so that plants could not interact above-ground (Fig 1b). Soil was a 1:1 mixture of peat moss (Greenworld Garden Products, Pointe-Sapin, New Brunswick, Canada), and calcined clay gravel (Turface® MVP, PROFILE Products LLC, Buffalo Grove, Illinois, USA). In addition, we added to the soil, at a rate of 0.01% by volume, ground WT pea shoots which had been labelled
193 194 195 196 197 198 199 200 201 202	All plants were grown in 15-cm diameter, 15-cm high, standard plastic pots in the Wilfrid Laurier University greenhouse in Waterloo, Ontario, Canada (43°28'28.1"N, 80°31'15.2"W) from June 1 to July 29, 2015. Artificial light was not used yielding approximately 15h:9h light:dark at this latitude and time of year. Temperature was maintained at approximately 25°C. The model assumed that all interactions occurred belowground, thus screens of corrugated white plastic were erected in the middle of each pot so that plants could not interact above-ground (Fig 1b). Soil was a 1:1 mixture of peat moss (Greenworld Garden Products, Pointe-Sapin, New Brunswick, Canada), and calcined clay gravel (Turface® MVP, PROFILE Products LLC, Buffalo Grove, Illinois, USA). In addition, we added to the soil, at a rate of 0.01% by volume, ground WT pea shoots which had been labelled beforehand with elevated ¹⁵ N by growing them with labelled ammonium nitrate. Our rationale for

to the plant (Hodge 2001; Leigh, Hodge & Fitter 2009; Hodge & Fitter 2010), and the isotopic

signature of the plants would let us determine nitrogen trade. This entire soil mixture was then

206 autoclaved at 120°C for 20 minutes in 10L batches.

207 Seeds of each pea genotype were surface-sterilised in 0.4% sodium hypochlorite for ten 208 minutes, rinsed three times with deionized water, and then soaked in deionized water for 18 hours 209 prior to planting. Only those seeds that had swollen and imbibed water were planted to maximize 210 germination. To inoculate pots, the sterile soil mixture described above was mixed with soil from the 211 leek trap cultures at a ratio of 1:9. Since R25 cannot form associations with mycorrhizae, all soil in 212 the experiment was inoculated with live culture as a control, even soil on which the non-mycorrhizal 213 R25 would eventually grow. 214 Nutrients were added as a mineral nutrient solution (Miracle Grow[®] all-purpose water 215 soluble plant food, Scotts Canada Ltd, Mississauga, Ontario, Canada). Plants were fertigated with

216 200mL of 0.5g/L nutrient solution every 7 days on Monday afternoons and then irrigated with 200mL

of water every 7 days on Friday mornings. Fertigation began when the plants were 14 days old; so,

for the first 14 days plants only received water on Mondays and Fridays. Each pot in the entire

219 experiment was placed in its own individual circular tray. The trays collected any water or nutrients

that drained through the pot making each pot its own closed nutrient system, and where water was

only lost through evaporation or transpiration. Pots were arranged in a randomized block design to

222 control for potential microclimate effects within the greenhouse. In addition, because of the screens

223 erected to block competition for light, pots were turned one quarter turn every Monday and Friday

- to minimize the potential effects of any shading from the screens. The appropriate nutrient
- 225 concentration used was determined through a pilot experiment (Supplementary information).

226

227 Harvest

All plants were grown for 60 days until senescence began, and were then harvested. At harvest, above ground material was sorted into shoots and fruits. These samples were dried at 60°C and weighed. Below ground, fourteen 3cm-long root fragments were randomly sampled from each

231	focal plant in each pot; they were stained to assess mycorrhizal colonization as described below. In
232	the competition treatments, we could work down from the stems of each plant to ensure that we
233	collected only root fragments that belonged to focal plants. These root fragments were air-dried
234	until staining occurred. The remainder of the roots were washed on a 2mm sieve, dried and
235	weighed. For total root biomass, we attempted separation but were unable to separate the root
236	systems of the two plants.
237	
238	Estimation of mycorrhizal colonisation
239	Dried root fragments were rehydrated in deionized water for 25 minutes in 1.5mL centrifuge
240	tubes before staining (Vierheilig <i>et al.</i> 1998). Briefly, root fragments were cleared in 10% KOH in two
241	steps (one at 95°C for 10 minutes, and the other at 95°C for 5 minutes). Cleared root fragments were
242	rinsed twice with 5% acetic acid and stained with a 1:20 (v:v) mixture of black Indian ink (Scheaffer
243	Pen and Art Supply Co., Providence, Rhode Island, USA) and 5% acetic acid at 95°C for five minutes.
244	Fragments were de-stained with 5% acetic acid for 18 hours, and vacuum-infiltrated in glycerol (30%
245	and 60%, 20 minutes each); on each slide, 7 root fragments were mounted in 60% glycerol. In total,
246	we collected 14 fragments per plant and thus there were two slides per plant for a total of 240
247	slides.
248	Mycorrhizal colonisation was scored according to the magnified intersections method
249	described in McGonigle <i>et al.</i> (1990). All intersections between the root and the eyepiece cross hair
250	were examined for colonisation, and the depth of view was adjusted to examine the entire root. At
251	each intersect we counted the number of (a) arbuscules; (b) vesicles; and (c) intra-radicular hyphae;
252	we also noted any absence of mycorrhizal structure. These data allowed us to calculate the
253	proportion of root length colonized by each of the three mycorrhizal structures.
254	

255 Stable isotope analysis

256	Shoot material (leaves and stems) of focal plants were ground to a fine powder using a bead
257	mill (Mixer Mill MM400, Retsch GmBH, Haan, Germany). Approximately 3mg of ground tissue was
258	weighed into tin capsules (Part number 041061, Costech Analytical Technologies Inc, Valencia, CA,
259	USA). These samples were then processed by the University of California Davis Stable Isotope facility
260	using a PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20-20 isotope ratio
261	mass spectrometer (Sercon Ltd., Cheshire, UK). Importantly, and perhaps counter-intuitively, due to
262	fractionation of ¹⁵ N, lower levels of enrichment indicate more trade.
263	
264	Data analysis
265	In general, all data were analysed using general linear mixed effects models (GLMM) in R
266	(v3.3.2) using the lme4() and ImerTest() libraries, a type III sum of squares, and the Satterthwaite
267	approximation for denominator degrees of freedom when needed (Bates 2007; R-Development-
268	Core-Team 2009). To find adequately fitting models, we first tried to adjust to alternative probability
269	distributions, and failing that, we transformed data if necessary. A separate GLMM was fit for: i)
270	shoot, fruit, and root mass; ii) percent colonisation of intraradicular hyphae, arbuscules and vesicles,
271	and; iii) ¹⁵ N enrichment, and N concentration as detailed below for a total of eight analyses.
272	First, analysis of biomass data included the full factorial combination of treatment (mixed
273	genotypes grown together, same genotypes grown together, or plants alone) by genotype (WT or
274	R25 mutant) with block as a random intercept. Shoot and root biomass was analysed using a
275	Gaussian error distribution. Fruit biomass required $log(x + c)$ transformation to achieve an adequate
276	model fit using a Gaussian error distribution, where c was half the smallest fruit mass measured.
277	Significance was assessed using an F ratio test and a type III sum of squares.
278	Second, mycorrhizal colonisation was analysed with only treatment (mixed genotypes grown
279	together, same genotypes grown together, or plants alone) and microscope slide nested inside block
280	as a random intercept since two slides were separately scored per individual. Since these were count
281	data which were then used to calculate a proportion of root length colonized, we analysed them as a

282	binomial GLMM where the response variable was the proportion of root length colonised, with the
283	logistic regression weighted by the total number of observations (Harrison 2015). Significance was
284	assessed with a type III Wald's Chi, which is appropriate for binomial mixed models (Bolker et al.
285	2009).
286	Finally, the nitrogen data were analysed in a manner similar to the biomass data with the ful
287	factorial combination of treatment (mixed genotypes grown together, same genotypes grown
288	together, or plants alone) by genotype (WT or R25 mutant) with block as a random intercept.
289	Although N concentration and ¹⁵ N enrichment were both proportion data, unlike the mycorrhizal
290	data they were not based on counts, making a binomial distribution inappropriate. We thus arcsine
291	square root transformed both N variables for continuity to achieve adequate model fits with a
292	Gaussian distribution.
293	
294	RESULTS
295	Model
296	From the ESS definition, and eqns 1, then we find that R25 is the ESS when:
297	$\frac{N_p}{2} - c_p > \frac{N_p}{2} + N_m - c_p - c_m$, and $\frac{N_p}{2} - c_p > \frac{N_p}{2} + \frac{N_m}{2} - c_p - c_m$. eqn 2a
298	Eqn 2a can be simplified to:
299	$N_m < c_m$, and $\frac{N_m}{2} < c_m$. eqn 2b
300	Similarly, WT is ESS when the opposite conditions to eqn 2a are met,
301	$N_m > c_m$, and $\frac{N_m}{2} > c_m$. eqn 3
302	Interestingly, there is only one more possible solution to this matrix game, which can be
303	interpreted as alternative stable states, where both strategies are ESS, but they cannot coexist.
304	Under this solution, priority effects determine which strategy would be found within the population,
305	but only one strategy can exist at a time. This occurs under the limited range of nutrients where
306	each genotype does better in monoculture than in mixture. That is when,

In general, matrix games have a fourth possible solution where the two strategies coexist

13

307
$$N_m > c_m$$
, but $\frac{N_m}{2} < c_m$. eqn 4

308

309 within a population. However, this solution is not possible in this game because it requires $N_m < c_m$, but $\frac{N_m}{2} > c_m$, 310 egn 5 which is logically impossible because $N_m > \frac{N_m}{2}$. 311 312 Since N_m and c_m are the only relevant parameters in determining the ESS, we can 313 summarise the conditions in eqns 1-5 graphically in N_m and c_m space showing all possible 314 combinations of nutrient availability and mutualism costs and the resulting ESS solutions (Fig 1c). 315 316 Experiment: plant biomass 317 Biomass was analysed with the competition treatment (same genotype, mixed genotype or 318 alone) crossed with focal genotype (R25 or WT) in a full factorial design that also included block as a 319 random effect. 320 Beginning with fruit biomass, which represents life-time reproductive effort (i.e. fitness) in 321 this annual plant, there was a significant interaction between treatment and genotype (Table 1). 322 Post-hoc comparisons revealed that this interaction was driven by the WT genotype grown in 323 competition obtaining significantly more fruit biomass than plants in other treatments (Fig 2a). 324 However, when WT was grown in competition with another WT, the fruit biomass was not 325 statistically different from that of R25 nor was it different from that of either genotype grown alone 326 (Fig 2a). For shoot biomass, only the genotypes were significantly different, and the WT was larger 327 than the mutant in all treatments (Table 1, Fig 2b). For root biomass, there were no significant 328 differences among treatments or genotypes (Table 1, Fig 2c). However, roots of the two competing 329 plants could not be separated; thus in the mixed genotype competition treatments, it is difficult to 330 draw conclusions about root biomass. 331

14

332 Experiment: mycorrhizal colonisation

333	Since we confirmed that the R25 mutant is physiologically incapable of forming an
334	association with arbuscular mycorrhizal fungi because of a mutation in the sym8 locus (Fig S3; Balaji
335	et al. (1994)), the analysis only included the colonisation of the WT roots across the competition
336	treatments (alone, mixed genotype, or same genotype) with block as a random effect. There were
337	no significant differences in the proportion of root length colonised by either the intraradicular
338	hyphae (χ^2 =3.04, df=2, p=0.2181, Fig 3a) or the arbuscules (χ^2 =2.02, df=2 p=0.3634, Fig 3b).
339	However, there was a significant difference in vesicles among the treatments (χ^2 =328824.0, df=2,
340	p<0.0001, Fig 3c). All three treatments were different where plants grown alone had the highest
341	number of vesicles, followed by plants grown in mixed genotype competition, and finally by WT
342	competing with WT plants.
343	
344	Experiment: nitrogen trade
345	Both ¹⁵ N enrichment and shoot N concentration were analysed with the competition
346	treatment (same genotype, mixed genotype or alone) crossed with genotype (R25 or WT) in a full
347	factorial design with block as a random effect. For 15 N enrichment, the main effects of treatment
348	and genotype were statistically significant, but their interaction was not (Table 2). Thus, we plotted
349	these data for each treatment and genotype (Fig 4a), as well as for each genotype with all
350	treatments combined (Fig 4b) to show most clearly the main effects in the absence of an interaction.
351	Post-hoc tests revealed that plants that experienced competition of any type were more enriched in
352	¹⁵ N than plants grown alone (Fig 4a), while the R25 mutant was more enriched than the WT (Fig 4b)
353	as expected due to fractionation during mycorrhizal trade.
354	For total N concentration, only the genotype was statistically significant, and the WT had
355	higher N content than the non-mycorrhizal mutant (Table 2, Fig 4c). This indicates that mycorrhizal

358 Combining model and experiment:

359	From our harvest data, we can use the fruit mass of these annual plants as an estimate of
360	life-time fitness payoffs (G) to solve for the parameter values required to determine the ESS. To do
361	this, we combined means according to the GLMM and post-hoc analyses (Table 1, Fig 2a) to obtain
362	the payoff matrix shown in Table 3.
363	To estimate N_p we begin with the fact that we know that the R25 mutant obtained all of its
364	N through direct uptake as N_p , while the WT obtained some N itself as N_p and some through trade
365	as N_m (Fig S3, Fig3b). The pea genotypes significantly differed in the N concentration of their tissues
366	with the WT having significantly higher N concentrations than the mutant by an average of 2.7%. We
367	assume that the other 97.3% of N in the WT tissues must have come as N_p . Thus, if we assume that
368	WT plants have the same N_p as R25 plants, then we know that:
369	$N_p + N_m = 1.027 N_p$ Eqn 7a
370	And therefore that
371	$N_m = 0.027 N_p$ Eqn 7b
372	
373	Substituting mean fitness as G and $N_m = 0.027N_p$ into eqns 1 gives us the following three
374	equations with three unknowns that can be rearranged to find:
375	$1.73 = 0.5N_p - c_p$, Eqns 8
376	$2.23 = 0.527 N_p - c_p - c_m$, and
377	$1.93 = 0.5135N_p - c_p - c_m,$
378	The solutions to this set of equations are $N_p = 22.2$ (and therefore, $N_m = 0.6$ via eqn 7b), $c_p = 9.4$,
379	and $c_m = 0.1$. From eqns 2 and 3, the mycorrhizal association is expected to evolve when $\frac{N_m}{2} > c_m$,
380	and since $rac{0.6}{2} > 0.1$, then mycorrhizal mutualism is an ESS within our model and experimental
381	system. It might seem trivial for our model to return what we already knew: that the wildtype was
382	the ESS, and the mutant artificially created by gamma radiation was not ESS. However, the value of

a validated model which we have failed to reject is that it can be exported to other systems to make
novel predictions.

385

386 DISCUSSION

387 Evolutionary models suggest that mutualism evolved because it conferred an advantage to 388 mutualistic individuals over non-mutualistic individuals in a population, and thus it became the ESS 389 (Axelrod & Hamilton 1981). However, such models are not always easy to empirically validate and test. The game theoretic model we presented here which was specific to the R25 mutant pea 390 391 system supported this classical finding. Previous studies of plant-plant competition with and without 392 mycorrhizal associations have generally found that either competing plants perform worse in the 393 presence of the fungi (Fitter 1977; Hodge 2003), or that there is no difference among competing 394 plants with or without mycorrhizal partners (Allen & Allen 1984; Moora & Zobel 1996). Indeed, if we had only considered R25 vs R25 and WT vs WT treatments in our study, though the shoots of WT 395 396 were larger than R25, we would have also concluded that there was no fitness advantage to the 397 mycorrhizal association (Fig 2a). However, the use of the R25 mutant allowed us to examine the full 398 frequency-dependent context, and it revealed that the mycorrhizal WT had an advantage in terms of 399 reproductive output only when it competes with a non-mycorrhizal R25 mutant. When this result is 400 placed within the fitness payoff matrix of the evolutionary game, it reveals that mutualism is an ESS 401 even though there was no difference in either pure population.

402 At first, the lack of difference in fitness within the R25 vs R25 treatment and WT vs WT 403 treatments might seem like evolution should be indifferent to whether plants form mycorrhizal 404 associations, but the key to frequency-dependence is its context-dependence. Using the notation 405 from our definition of ESS, we could write this result as $G_{R25,R25} = G_{WT,WT}$, but note that this 406 comparison is not relevant to the definition of the ESS that requires either $G_{WT,WT} > G_{R25,WT}$ and 407 $G_{WT,R25} > G_{R25,R25}$, or the opposite to achieve one of the two possible pure ESSs. That is, the 408 relative fitness of either pure population is entirely irrelevant to the question of what trait should be

409	favoured by natural selection. Since the ESS is about rare mutants invading pure populations, or pure
410	populations resisting invasion (Maynard Smith & Price 1973; Maynard Smith 1982), we cannot over
411	emphasize how important the mixed genotype (i.e. R25 vs WT and WT vs R25) treatments are to
412	understanding the frequency-dependent benefits of mutualism.
413	When combined, the model and the experiment allowed us to generate estimates of the
414	costs and benefits of mycorrhizal association. These calculations express both costs and benefits in
415	units of fitness under the assumption that N uptake and fitness are correlated (Fig S1c). We
416	estimated all the model parameters, but the most interesting is to compare $rac{N_p}{2}-c_p$ and $rac{N_m}{2}-c_m$,
417	which represent the net-benefit obtained by the plant's own foraging behaviour versus the net
418	benefit in increments of fitness obtained from association with mycorrhizal fungi, respectively. Since
419	$\frac{N_p}{2} - c_p = 1.73$, and $\frac{N_m}{2} - c_m = 0.2$, this means that mycorrhizal plants in this experiment gained
420	approximately 11% of their reproductive output as a direct benefit of the mutualistic association
421	with mycorrhizal fungi. In the WT vs R25 treatments, this 11% benefit manifested as a significant
422	increase in reproductive output (Fig 2a). However, in the WT vs WT treatment, both plants had this
423	benefit, and so it was not apparent (Fig 2a).
424	A key caveat to these conclusions is that we assume that N_p remains unchanged in both R25
425	and WT genotypes. This requires that the plant does not adjust its own foraging activities when
426	mycorrhizae are present. We feel that this is valid because the two genotypes differed only by one
427	allele at a single locus. Another caveat is that interactions between two plants are far from a
428	population-level context. Indeed, competition among two plants is the absolute minimum design to
429	examine such questions, but a range of population densities would allow a stronger test (Hart,
430	Freckleton & Levine 2018).
431	So far, we have only discussed the plants, but there are two partners in this association and
432	it is worth considering the success of the fungal partner. Arbuscule and intraradicular hyphae
433	colonisation did not vary among treatments, but we found a significant effect of our competition
434	treatments on the colonisation of vesicles inside pea roots such that the most vesicles were

18

435	contained in plants grown alone, fewer in the mixed genotype competition pots, and fewer still in
436	the same genotype competition pots (Fig 3c). Vesicles are storage organs of the fungi that
437	accumulate lipids and can also become propagules upon root death (Biermann & Linderman 1983).
438	Thus, one interpretation of our data is that potential fungal propagules (an admittedly weak
439	surrogate of fungal fitness) also declined along a gradient of increasing competition intensity for the
440	plants. This might suggest that there was increased fungal competition when the fungus was
441	connected to more than one host. This could be similar to a tragedy of the commons game among
442	plants, where plants over-proliferate tissues to maximize their competitive ability (Gersani et al.
443	2001; Mcnickle & Dybzinski 2013). This over-proliferation occurs in roots, leaves and stems and,
444	while ESS maximizes competitive ability, it tends to reduce reproductive output (Dybzinski et al.
445	2011; Mcnickle et al. 2016). Our results may suggest that the fungal partner, acting as an extension
446	of the root system, is also increasing its number, and length, of hyphae to maximize its competitive
447	ability. This allocation of resources towards growth of the extraradicular hyphae in the soil could be
448	at the expense of vesicle differentiation, as is indicated by the reduced number of vesicles (Fig 3c).
449	The evidence for this is weak, and we have no data about the fungus behaviour outside of plant
450	roots, but we suggest this is an interesting hypothesis that requires future attention.
451	Related to this possible tragedy of the commons response in the fungi, we highlight that no
452	over-proliferation leading to a tragedy of the commons was observed for the roots. This seems to
453	be a consistent finding for pea (Meier <i>et al.</i> 2013; Chen <i>et al.</i> 2015b) (McNickle in press, but see
454	(O'Brien, Gersani & Brown 2005)).
455	
456	Conclusion

457 Here we combined an evolutionary game theoretic model and an experiment with loss of 458 function pea mutants that could not form mycorrhizal associations to show that the benefits of 459 mycorrhizal cooperation are frequency-dependent. We used a mutant pea genotype that differs by 460 one allele from the WT to examine the full factorial evolutionary context contained in models (Fig 1).

461	First, we showed that mycorrhizal association would be the ESS when half the potential fitness
462	benefits are greater than the costs of the association (Fig 1c). Second, we showed that the
463	reproductive output of mycorrhizal plants was only significantly greater than that of non-mycorrhizal
464	plants in the frequency-dependent context of WT versus mutant (Fig 2a). Third, the only fungal
465	structures that varied across competition treatments were the vesicle storage organs, the number of
466	which declined with increasing competition intensity of plants (Fig 3c). Finally, we combined the
467	experiment and the model to calculate the costs and benefits of plant nutrient capture and plant
468	trade with the mycorrhizal fungus; we estimated that 11% of mycorrhizal plant fitness was directly
469	attributable to the mutualism. Importantly, without the R25 mutant that is incapable of forming
470	mycorrhizal associations, we would have concluded that mycorrhizae conferred no advantage. This
471	result highlights the importance of frequency-dependent selection in ecology and evolution. We
472	propose that what has been commonly called the mutualism-parasitism continuum of mycorrhizal
473	associations (Johnson, Graham & Smith 1997) might be better described as a more beneficial – less
474	beneficial continuum.

20

475 **REFERENCES**

476 Allen, E.B. & Allen, M.F. (1984) Competition between plants of different successional stages -477 mycorrhizae as regulators. Canadian Journal of Botany-Revue Canadienne De Botanique, 62, 478 2625-2629. 479 Apaloo, J., Brown, J.S., McNickle, G.G., Vincent, T.L.S. & Vincent, T.L. (2014) Ess versus nash: Solving evolutionary games. Evolutionary Ecology Research, 16, 293-314. 480 481 Axelrod, R. & Hamilton, W.D. (1981) The evolution of cooperation. *Science*, **211**, 1390-1396. 482 Balaji, B., Ba, A.M., LaRue, T.A., Tepfer, D. & Piché, Y. (1994) Pisumsativum mutants insensitive to 483 nodulation are also insensitive to invasion in-vitro by the mycorrhizal fungus, 484 Gigasporamargarita. Plant Science, 102, 195-203. 485 Bates, D.M. (2007) Linear mixed model implementation in Ime4. 486 Biermann, B. & Linderman, R.G. (1983) Use of vesicular-arbuscular mycorrhizal roots, intraradical 487 vesicles and extraradical vesicles as inoculum. New Phytologist, 95, 97-105. 488 Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H. & White, J.S.S. 489 (2009) Generalized linear mixed models: A practical guide for ecology and evolution. Trends 490 in Ecology & Evolution, 24, 127-135. Chapin, F.S., Vitousek, P.M. & Vancleve, K. (1986) The nature of nutrient limitation in plant-491 492 communities. American Naturalist, 127, 48-58. 493 Chen, B.J.W., During, H.J., Vermeulen, P.J., De Kroon, H., Poorter, H. & Anten, N.P.R. (2015a) 494 Corrections for rooting volume and plant size reveal negative effects of neighbour presence 495 on root allocation in pea. *Functional Ecology*, **29**, 1383-1391. 496 Chen, B.J.W., During, H.J., Vermeulen, P.J., De Kroon, H., Poorter, H. & Anten, N.P.R. (2015b) Data 497 from: Corrections for rooting volume and plant size reveal negative effects of neighbour 498 presence on root allocation in pea. Dryad. 499 Denison, R.F., Bledsoe, C., Kahn, M., O'gara, F., Simms, E.L. & Thomashow, L.S. (2003) Cooperation in 500 the rhizosphere and the "free rider" problem. *Ecology*, **84**, 838-845. 501 Dybzinski, R., Farrior, C., Wolf, A., Reich, P.B. & Pacala, S.W. (2011) Evolutionarily stable strategy 502 carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: 503 An analytically tractable, individual-based model and quantitative comparisons to data. 504 American Naturalist, **177**, 153-166. 505 Fitter, A.H. (1977) Influence of mycorrhizal infection on competition for phosphorus and potassium 506 by 2 grasses. New Phytologist, 79, 119-125. 507 Gersani, M., Brown, J.S., O'Brien, E.E., Maina, G.M. & Abramsky, Z. (2001) Tragedy of the commons 508 as a result of root competition. Journal of Ecology, 89, 660-669. 509 Guinel, F.C. & Geil, R.D. (2002) A model for the development of the rhizobial and arbuscular 510 mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the 511 establishment of these two symbioses. Canadian Journal of Botany-Revue Canadienne De 512 Botanique, 80, 695-720. 513 Harrison, X.A. (2015) A comparison of observation-level random effect and beta-binomial models for 514 modelling overdispersion in binomial data in ecology & evolution. *PeerJ*, **3**, e1114. 515 Hart, S.P., Freckleton, R.P. & Levine, J.M. (2018) How to quantify competitive ability. Journal of 516 Ecology, 106, 1902-1909. 517 Hess, L. & De Kroon, H. (2007) Effects of rooting volume and nutrient availability as an alternative explanation for root self/non-self discrimination. *Journal of Ecology*, **95**, 241-251. 518 519 Hodge, A. (2001) Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient 520 capture from, glycine patches in soil. New Phytologist, 151, 725-734. 521 Hodge, A. (2003) Plant nitrogen capture from organic matter as affected by spatial dispersion, 522 interspecific competition and mycorrhizal colonization. New Phytologist, 157, 303-314.

523 524	Hodge, A. & Fitter, A.H. (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. <i>Proceedings of the National Academy of</i>
525	Sciences of the United States of America, 107, 13754-13759.
526	Hodge, A., Stewart, J., Robinson, D., Griffiths, B.S. & Fitter, A.H. (2000) Competition between roots
527	and soil micro-organisms for nutrients from nitrogen-rich patches of varving complexity.
528	Iournal of Ecology 88 , 150-164
520	Johnson N.C. Graham I.H. & Smith F.A. (1997) Functioning of mycorrhizal associations along the
530	mutualism-narasitism continuum New Phytologist 135 575-586
530	Leigh L Hodge A & Eitter A H (2009) Arbuscular mycorrhizal fungi can transfer substantial
532	amounts of nitrogen to their bost plant from organic material New Phytologist 181 199-
532	207
524	Markwei C.M. & LaPue T.A. (1992) Phonotypic characterization of sym8 and sym9. 2 genes
525	conditioning non-nodulation in <i>Disum</i> satiyum 'Sparklo' <i>Canadian Journal of Microbiology</i>
222	
550	30, 340-334. Maynard Smith 1 (1983) Evolution and the theory of games Combridge University Press New York
557 E20	Maynard Smith, J. (1982) Evolution and the theory of games. Cambridge Oniversity Press, New York.
530	Magnard Smith, J. & Price, G.R. (1975) Logic of animal connect. <i>Nature</i> , 246 , 15-16.
559	Micoongle, T.P., Miller, M.H., Evans, D.G., Fairchild, G.L. & Swan, J.A. (1990) A new method which
540	gives an objective-measure of colonization of roots by vesicular arbuscular mycormizal fungi.
541	New Phytologist, 115, 495-501.
542	MicNickle, G.G. & Brown, J.S. (2014) An ideal free distribution explains the root production of plants
543	that do not engage in a tragedy of the commons game. Journal of Ecology, 102 , 963–971.
544	MicNickle, G.G. & Dybzinski, R. (2013) Game theory and plant ecology. <i>Ecology Letters</i> , 16 , 545-555.
545	McNickle, G.G., Gonzalez-Meler, M.A., Lynch, D.J., Baltzer, J.L. & Brown, J.S. (2016) The world's
546	biomes and primary production as a triple tragedy of the commons foraging game played
547	among plants. <i>Proceedings of the Royal Society B: Biological Sciences,</i> 283, 20161993.
548	Meier, I.C., Angert, A., Falik, O., Shelef, O. & Rachmilevitch, S. (2013) Increased root oxygen uptake in
549	pea plants responding to non-self neighbors. <i>Planta, 238,</i> 577-586.
550	Moora, M. & Zobel, M. (1996) Effect of arbuscular mycorrhiza on inter- and intraspecific competition
551	of two grassland species. <i>Oecologia</i> , 108, 79-84.
552	Nash, J.F. (1950) The bargaining problem. <i>Econometrica</i> , 18 , 155-162.
553	O'Brien, E.E., Gersani, M. & Brown, J.S. (2005) Root proliferation and seed yield in response to spatial
554	heterogeneity of below-ground competition. <i>New Phytologist</i> , 168, 401-412.
555	Poundstone, W. (1992) <i>Prisoner's dilemma</i> . Doubleday, New York, New York.
556	R-Development-Core-Team (2009) R: A language and environment for statistical computing. R
557	Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, URL
558	http://www.R-project.org/.
559	Rich, M.K., Nouri, E., Courty, PE. & Reinhardt, D. (2017) Diet of arbuscular mycorrhizal fungi: Bread
560	and butter? <i>Trends in Plant Science, 22,</i> 652-660.
561	Sanders, F.E. & Tinker, P.B. (1973) Phosphate flow into mycorrhizal roots. <i>Pesticide Science</i> , 4 , 385-
562	395.
563	Vierheilig, H., Coughlan, A.P., Wyss, U. & Piché, Y. (1998) Ink and vinegar, a simple staining technique
564	for arbuscular-mycorrhizal fungi. <i>Applied and Environmental Microbiology,</i> 64, 5004-5007.
565	Vitousek, P.M. & Howarth, R.W. (1991) Nitrogen limitation on land and in the sea - how can it occur.
566	Biogeochemistry, 13, 87-115.
567	Wang, B. & Qiu, YL. (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants.
568	Mycorrhiza, 16, 299-363.
569	
505	

22

571

Table 1: Results of GLMM on plant growth using the lme4() and lmerTest() libraries in R.Denominator degrees of freedom (Den df) were estimated using the Satterthwaite approximationand a Gaussian distribution. The fruit mass data were log(x+c) transformed to achieve model fit,where c was half the smallest measured value. All models included block as a random intercept.Bold with * indicates statistical significance at p<0.05.</td>

	Fruit			
Factor	Num df	Den df	F	р
Treatment	2	135	2.82	0.0633
Genotype	1	135	9.63	0.0023
Treatment X Genotype	2	135	3.84	0.0239
	Shoot			
Factor	Num df	Den df	F	р
Treatment	2	143.0	0.05	0.955
Genotype	1	143.0	6.95	0.0093
Treatment X Genotype	2	143.0	1.22	0.299
	Root			
Factor	Num df	Den df	F	р
Treatment	2	124.1	1.92	0.150
Genotype	1	123.1	0.21	0.647
	2	122.2	0.00	0.040

572

23

 Table 2: Results of GLMM on %¹⁵N enrichment and nitrogen concentration (% mass/mass) of plant

shoot material using the Ime4() and ImerTest() libraries in R. Denominator degrees of freedom (Den

df) were estimated using the Satterthwaite approximation. All models included block as a random

effect.

	% ¹⁵ N enrichm	ent				
Factor	Num df	Den df	F	р		
Treatment	2	65.7	22.28	<0.0001		
Genotype	1	66.0	9.73	0.0027		
Treatment X Genotype	2	65.9	0.08	0.9198		
	N Concentration					
Factor	Num df	Den df	F	р		
Treatment	2	65.7	1.71	0.1886		
Genotype	1	65.8	4.34	0.0403		
Treatment X Genotype	2	65.7	1.68	0.1951		

574

24

576 **Table 3**: Parameterized values for *G* in each interaction estimated via mean lifetime

577 reproductive yield of all plants.

Neighbour

		R25	WT
cal	R25	1.73 (95% Cl: 1.61 – 1.85)	1.73 (95% CI: 1.61 – 1.85)
Ē	WT	2.23 (95% Cl: 1.99 – 2.47)	1.93 (95% Cl: 1.76 - 2.10)

578

580

581

582

583 FIG 1: Basic frequency-dependent matrix game for genotype competition (a) and schematic of 584 experimental design (b). Grey trapezoids represent pots, and black vertical lines represent 585 corregated plastic screens erected to prevent above ground interaction. R25 mutant plants are 586 coloured red, and WT plants are coloured blue. There were four competition treatments 587 representing all possible pairs of mutant and WT as either focal and neighbour as captured by the 588 matrix game. Additionally, each plant was grown alone in pots of half the size as a per-plant nutrient 589 control. Thus, there were six treatments in total. The ESS solutions to the matrix game for all 590 possible values of parameter space is shown (c). The blue line represents $N_m = c_m$, and the red line represents $\frac{N_m}{2} = c_m$. When the costs of mutualism (c_m) are greater than half the benefits $(\frac{N_m}{2})$, 591 plants should never engage in mutualism (R25 is ESS). When the costs of mutualism (c_m) are less 592 593 than the maximum benefits of mutualism (N_m), then plants should always engage in mutualism (WT is ESS). In the limited set of nutrient conditions where $N_m > c_m$, but $\frac{N_m}{2} < c_m$, either strategy can 594 be ESS depending on the history of mutations, but they cannot coexist. Instead, a priority effect will 595 favour whichever genotype evolved first within the region and this is defined by $N_m > c_m$, but 596 $\frac{N_m}{2} < c_m.$ 597

600 FIG 2: The fruit (a), shoot (b), and root (c) production of plants, with R25 shown in red and WT in 601 blue either grown alone, in mixed genotype competition (i.e. R25 vs WT and WT vs R25), or in same 602 genotype competition (i.e. R25 vs R25, or WT vs WT). Letters indicate significant differences in 603 means from post-hoc comparisons, while ns indicates a lack of statistical significance. The raw data 604 are plotted with a jitter around the boxplots. Note that in (c) we could not separate the roots of 605 plants in competition and so the data shown represent the roots of both plants combined, and the 606 colour represents the genotype of the focal plant even though in mixed treatments the roots of the 607 neighbour were also weighed.

608

Fig 3: The colonisation of roots as a proportion of length by the mycorrhizal structures of (a)
intraradicular hyphae, (b) arbuscules and (c) vesicles. Note R25 is incapable of forming mycorrhizal
associations (Fig S3), and so the data shown are only for WT plants. The raw data are plotted with a
jitter around the boxplots. Letters represent significant differences among the treatments on the xaxis and ns indicates no statistical significance.

⁶¹⁵

FIG 4: Shoot stable isotope enrichment across both treatments and genotypes (a), as well as just
among genotypes (b). The total N concentration of shoots is also shown in percent (mass/mass) (c).
WT is shown in blue and the mutant R25 in red. In each panel, the raw data are plotted with a jitter
around the boxplots. Letters or * represent significant differences among the treatments on the xaxis. In panel (b), the genotypes are highlighted because the interaction between treatment and
genotype was not significant for %15N enrichment (Table 2), and thus pooled genotypes 15N
enrichment was used to parameterize the model.