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Summary1

Dopamine is critical for working memory. However, its effects throughout the large-scale primate cortex are poorly2

understood. Here we report that dopamine receptor density per neuron, measured by receptor autoradiography in the3

macaque monkey cortex, displays a macroscopic gradient along the cortical hierarchy. We developed a connectome-4

and biophysically-based model for distributed working memory that incorporates multiple neuron types and a dopamine5

gradient. The model captures an inverted U-shaped dependence of working memory on dopamine. The spatial6

distribution of mnemonic persistent activity matches that observed in over 90 experimental studies. We show that7

dopamine filters out irrelevant stimuli by enhancing inhibition of pyramidal cell dendrites. The level of cortical8

dopamine can also determine whether memory encoding is through persistent activity or an internal synaptic state.9

Taken together, our work represents a cross-level understanding that links molecules, cell types, recurrent circuit10

dynamics and a core cognitive function distributed across the cortex.11

Keywords Dopamine · Working Memory · Large-scale brain model · inhibitory circuit · parvalbumin · somatostatin ·12

VIP · interneurons13

Introduction14

Our ability to think through difficult problems without distraction is a hallmark of cognition. When faced with a15

constant stream of information, we must keep certain information in mind and protect it from distraction. For instance,16
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while following a conversation, it is important to focus on and remember the words that you are listening to, while17

ignoring other sights and sounds around you. This brain function is called working memory. The underlying neural18

representation engages information-specific persistent neural activity which is internally sustained in the absence of19

external stimulation across multiple cortical and subcortical areas (Christophel et al. 2017; Courtney et al. 1997; Dotson20

et al. 2018; Funahashi et al. 1989; Fuster 1973; Guo et al. 2017; Kamiński and Rutishauser 2020; Konecky et al. 2017;21

Leavitt et al. 2017; Romo et al. 1999; Wang 2001; Warden and Miller 2010).22

Working memory and the prefrontal cortex are under the influence of monoaminergic modulation (Robbins and Arnsten23

2009). In fact, depletion of dopamine from the prefrontal cortex causes working memory deficits as severe as those24

seen by lesioning the prefrontal cortex (Brozoski et al. 1979). Dopamine neurons fire in response to stimuli that predict25

reward, but do not fire persistently during the delay period of working memory tasks (Cohen et al. 2012; Schultz26

et al. 1993). How might dopamine affect working memory if dopaminergic neurons do not fire during the delay?27

After dopamine neurons fire, dopamine is released, and dopamine levels remain elevated in the cortex for hundreds28

of milliseconds to tens of seconds, before being slowly cleared away (Cass and Gerhardt 1995; Garris and Wightman29

1994; Muller et al. 2014; Mundorf et al. 2001). Prefrontal neuron activity during working memory depends on precise30

levels of activation of the dopamine D1 receptors, with both too little and too much D1 receptor stimulation disrupting31

delay period activity (Vijayraghavan et al. 2007; Wang et al. 2019; Williams and Goldman-Rakic 1995).32

Experimental and modelling studies of dopamine on persistent activity in working memory have focused on isolated33

local brain regions, generally in the lateral prefrontal cortex (Brunel and Wang 2001; Durstewitz et al. 2000; Jacob34

et al. 2016; Vijayraghavan et al. 2016, 2007; Wang et al. 2019; Williams and Goldman-Rakic 1995), where it has35

been shown that dopamine can enhance persistent activity through its effects on the NMDA and GABA receptors36

(Seamans et al. 2001a,b; Seamans and Yang 2004; Wang et al. 2013). If the effects of dopamine are truly restricted37

to small areas of cortex, then dopamine seems unlikely to be able to engage the widespread distributed activity seen38

during active working memory. If dopamine could enable persistent activity across large parts of cortex, then firing39

of dopamine neurons in response to behaviourally relevant stimuli could be a candidate mechanism to engage active40

working memory.41

In spite of progress, our understanding remains far from complete. In this work, we tackled two open questions.42

First, how does dopamine modulate working memory across a multi-regional large-scale cortical system? Dopamine43

modulates neural activity through its receptors, of which the D1 receptor is the most common in cortex. The density of44

D1 receptors is known only for small sections of monkey cortex (Goldman-Rakic et al. 1990; Impieri et al. 2019; Lidow45

et al. 1991; Niu et al. 2020; Richfield et al. 1989). A detailed map of the density of D1 receptors across cortex would46

clarify the degree to which dopamine’s influence on cortical processing is restricted to specific sections of cortex, or47

distributed throughout cortical systems.48

Second, does dopamine contribute to robust working memory against distractors by virtue of differential impacts on49

different cell types? Drugs that promote synthesis or prevent reuptake of dopamine at the synapse make working50

memory less vulnerable to distracting stimuli (Fallon et al. 2017, 2016), and D1-agonists and antagonists determine how51

strongly neurons in prefrontal cortex encode distractor stimuli (Jacob et al. 2016). An early theoretical study proposed52

that inhibition targeted more strongly towards the dendrites, and away from the soma of pyramidal cells could increase53

the resistance of working memory to distraction (Wang et al. 2004a). Distinct inhibitory cell types primarily focus54
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their inhibition on the dendrites or soma of pyramidal cells, or on other inhibitory neurons (Adesnik et al. 2012; Jiang55

et al. 2015; Pfeffer et al. 2013; Tremblay et al. 2016). One intriguing possibility is that dopamine may shift the balance56

between distinct types of inhibitory neurons in order to keep distracting information from working memory.57

We first set out to examine whether dopamine D1 receptor densities across cortex represent random heterogeneity, or58

a systematic gradient of receptor expression. Using in-vitro autoradiography, we measured the density of dopamine59

D1 receptors across 109 areas of macaque cortex. We found a systematic gradient of D1 receptors, that increased60

along the cortical hierarchy and peaked in frontal and parietal cortices. We then built a large-scale computational61

model of macaque cortex that is endowed with multiple cell types and is capable of performing working memory tasks.62

Interactions between multiple cell types across cortex were modulated by the density of dopamine D1 receptor receptors,63

and constrained by retrograde tract-tracing data. We investigated whether dopamine could ignite active working64

memory representations across frontal and parietal cortex given the measured pattern of D1 receptor receptors and65

cortico-cortical connections. We found that sufficient dopamine release in the model led to persistent working memory66

activity throughout the cortex that closely matched experimentally observed mnemonic activity in nearly 20 cortical67

areas in macaque monkeys. Stimuli that evoked too little or too much dopamine release could still be remembered, but68

stored in an internal synaptic state instead of persistent neural firing, consistent with an activity-silent scenario (Rose69

et al. 2016; Stokes 2015; Wolff et al. 2017). In this case, however, memories were more vulnerable to distractions.70

Appropriate dopamine release in response to relevant and distracting stimuli could be learned through reinforcement.71

Our model simulations suggest that dopamine may render memories robust to distraction by altering interactions72

between distinct types of inhibitory cells, blocking external stimuli from entering frontal cortex and promoting recurrent73

excitatory activity. Together, our results uncover a macroscopic gradient of dopamine D1 receptor distribution and74

elucidate how differential dopamine actions on different cell types ensure distractor-resistant working memory activity75

throughout primate cortex.76

Results77

A hierarchical gradient of dopamine D1 receptors per neuron across monkey cortex78

To investigate how dopamine modulation may vary across cortical regions, we first analized D1 and D2 receptor79

distribution patterns throughout the macaque brain using in-vitro receptor autoradiography (Fig. S1; Supplementary80

Data). Autoradiography enables the quantification of endogenous receptors in the cell membrane through the use of81

radioactive ligands (Palomero-Gallagher and Zilles 2018). The highest densities (in fmol/mg protein) of both receptor82

types were found in the basal ganglia, with the caudate nucleus (D1 298±28; D2 188±30) and putamen (D1 273±40;83

D2 203 ± 37) presenting considerably higher values than the internal (D1 97 ± 34; D2 22 ± 12) or external (D184

55 ± 16; D2 30 ± 11) subdivisions of the globus pallidus. Cortical D1 receptor densities ranged from 49 ± 13 fmol/mg85

protein in area 4a of the primary motor cortex to 101 ± 35 fmol/mg protein in orbitofrontal area 11l. We found a86

systematic gradient of D1 receptors across the 109 cytoarchitectonically identified cortical areas, whereby densities87

reached maximal values in areas of the frontal and parietal cortex (Fig. 1A). The density of the D2 receptor in cortex is88

so low that it is not detectable by means of the here applied method.89
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Figure 1: A gradient of dopamine D1 receptors per neuron across monkey cortex. A i) 109 cortical regions were identified on the
basis of receptor and cytoarchitecture to create the Jülich macaque atlas. Shown here mapped onto the Yerkes19 cortical surface. A
ii) D1-receptor density is low in motor and sensory cortex, and relatively high in frontal and parietal cortex. Note that the receptor
density shown here does not take into account differences in neuron density across areas. B i) Collins et al., (2010) divided the
entire macaque cortex into 42 slabs of tissue, which we mapped onto the Yerkes19 surface. B ii) Neuron density across cortex. C i)
Injection sites for the studies of dendritic spine density by Elston and colleagues, mapped onto the Yerkes19 surface. See main text
for references. C ii) Number of dendritic spines on the basal dendrites of layer III pyramidal cells. D i) 40 injected areas in the
retrograde tract-tracing database of Kennedy and colleagues (Markov et al. 2014b). D ii) Cortical hierarchy, calculated based on
the laminar pattern of inter-areal connections. E) The density of D1 receptors divided by neuron density. Regions that have not
yet been measured shown in gray. F) There was a strong positive correlation between the D1 receptor density per neuron and the
cortical hierarchy, estimated independently based on the laminar origin of cortico-cortical connections. D1R, D1 receptor density.
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In order to compare the gradient of D1 receptors to other known gradients of anatomical organization in monkey cortex90

(Wang 2020), we carefully mapped the receptor data (Fig 1A), as well as data on neuronal density (Fig 1B) (Collins91

et al. 2010) and spine count (Fig 1C) (Elston 2000; Elston et al. 2001, 2005, 2011a, 2009, 2011b, 2010; Elston and92

Rockland 2002; Elston and Rosa 1997, 1998a,b; Elston et al. 1999) onto the Yerkes19 common cortical template, to93

which anatomical tract tracing data (Fig 1D i) has previously been mapped (Donahue et al. 2016).94

In order to investigate a possible relationship between the pattern of D1 receptors and the cortical hierarchy, we95

estimated the latter using laminar connectivity data (Markov et al. 2014a). Feedforward connections tend to originate96

in the superficial cortical layers. In contrast, feedback connections usually originate in the deep layers (Barone et al.97

2000; Felleman and Van Essen 1991; Markov et al. 2014a). If two areas are at a similar level of the hierarchy, then the98

connections usually arise evenly from the superficial and deep layers (Barone et al. 2000; Markov et al. 2014a). This99

pattern allowed us to estimate the hierarchy of 40 areas in macaque cortex (Barone et al. 2000; Markov et al. 2014a)100

(Fig 1D ii). This expands previous estimates of the hierarchy based on 29 or 30 areas from the same database (Markov101

et al. 2014a; Mejias et al. 2016).102

We divided the D1 receptor density by the neuron density (Collins et al. 2010) in order to give an estimate of the D1103

receptor density per neuron. D1 receptor density per neuron peaked in areas of frontal and parietal cortex, and was104

relatively low in early sensory cortex (Fig 1E). There was a strong positive correlation between the D1 receptor density105

per neuron and the cortical hierarchy (Fig 1F; r = 0.81, p = 2 × 10−8).106

A local cortical circuit with three types of inhibitory neurons107

We built a model of a local cortical circuit which contains pyramidal cells and three types of inhibitory neurons (Fig108

2A). The cortical circuit is based on a disinhibitory motif (Wang and Yang 2018; Yang et al. 2016), which was originally109

predicted theoretically (Wang et al. 2004a), and has since received much experimental support (Adesnik et al. 2012;110

Jiang et al. 2015; Pfeffer et al. 2013; Tremblay et al. 2016). We have updated details of the connectivity structure to111

reflect recent experimental findings (Adesnik et al. 2012; Jiang et al. 2015; Pfeffer et al. 2013; Tremblay et al. 2016).112

We grouped the pyramidal neurons into two separate populations. Each of these populations is selective to a particular113

visual feature (such as a region of visual space). Pyramidal cells excite all cell types in the circuit, with different114

strengths. We model two compartments in the pyramidal cells. One compartment represents the soma and proximal115

dendrites, and the other the distal dendrites. The dendrite is modelled as a simplified nonlinear function, adapted from116

Yang et al. 2016. Pyramidal cells target the soma and proximal dendrites of other pyramidal cells in the same cortical117

area (Kalisman et al. 2005; Markram et al. 1997; Petreanu et al. 2009). Each type of inhibitory neuron has a unique118

pattern of connectivity. The first inhibitory cell type targets the perisomatic area of the pyramidal cells. These cells119

express parvalbumin (PV) and are fast spiking (Jiang et al. 2015; Kawaguchi 1993, 1995). They are basket cells with120

axons that branch across wide distances, which allows them to inhibit pyramidal cells in neighboring populations121

(Helmstaedter et al. 2009; Kawaguchi 1995). They also inhibit other PV neurons (Jiang et al. 2015; Pfeffer et al.122

2013). Compared to other inhibitory neurons, PV neurons receive a smaller proportion of excitatory inputs via NMDA123

receptors (Lu et al. 2007; Wang and Gao 2009). The second type of inhibitory neuron targets the distal dendrites of124

excitatory cells. In non-human primates, dendrite-targeting cells express calbindin (DeFelipe et al. 1989). The best125

characterised dendrite-targeting cell type in rodents is the Martinotti cell, which expresses somatostatin (SST/CB)126

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2020. ; https://doi.org/10.1101/2020.09.07.286500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.286500
http://creativecommons.org/licenses/by-nc/4.0/


A PREPRINT - SEPTEMBER 7, 2020

(Wang et al. 2004b). These cells target all other cell types, while avoiding other Martinotti cells (Jiang et al. 2015).127

They also receive a strong lateral projection from pyramidal cells in neighboring columns (Adesnik et al. 2012) and128

receive most of their excitation via NMDA receptors (Lu et al. 2007). The third type of interneuron expresses vasoactive129

intestinal peptide and calretinin (VIP/CR) (Tremblay et al. 2016) and targets SST/CB inhibitory neurons (Lee et al.130

2013).131

Dopamine modulates interactions between multiple cell types.132

In our model, dopamine acted by increasing the synaptic strength of inhibition to the dendrite, and reducing the synaptic133

strength of inhibition to the cell body (Fig 2B) (Gao et al. 2003). In addition, dopamine increased the strength of134

transmission via NMDA receptors (Seamans et al. 2001a). On the other hand, high stimulation of D1 receptors resulted135

increased adaptation in excitatory cells (potentially an M-current, via KCNQ potassium channels, Arnsten et al. 2019),136

mimicking the net inhibitory effect of high concentrations of D1-agonists.137

A large-scale model of macaque cortex incorporating multiple macroscopic gradients138

We then built a large-scale model of macaque cortex where the local circuit (Fig 2A, left) acted as a building block. We139

placed the local circuit in each of 40 cortical areas across macaque cortex (Fig 2A, right). However, these local circuits140

varied across areas in three key properties, namely long-distance connectivity, strength of excitation and modulation by141

D1 receptors. We defined the connections between areas using quantitative retrograde tract-tracing data (Markov et al.142

2014b). This data was collected in the same lab under the same conditions for injections into 40 distinct cortical areas.143

This offers high fidelity reconstruction of the weighted and directed connections between neurons in large sections of144

macaque cortex (Kennedy et al. 2013). In the model, long-range connections are excitatory and target the dendrites145

of pyramidal cells (Petreanu et al. 2009). Long-range excitatory connections also target VIP/CR cells to a greater146

degree than PV or SST/CB cells (Lee et al. 2013; Wall et al. 2016). The frontal eye fields (FEF - areas 8m and 8l in147

the Jülich and Lyon macaque atlases) have an unusually high density of calretinin (here VIP/CR) cells (Pouget et al.148

2009). To account for this, we increased the proportion of long-range input to VIP/CR cells in FEF and reduced the149

strength of input to the PV and SST/CB cells. We also increased the relative strength of local VIP/CR connections and150

reduced the relative strength of local PV connections in FEF, but found that this had no effect on model behaviour, so151

the simulations here are presented without the local changes in FEF.152

The number of spines on the basal dendrites of layer III pyramidal neurons increases along the hierarchy (Chaudhuri et al.153

2015; Elston 2007). Approximately 90% of excitatory synapses on neocortical pyramidal cells are on dendritic spines154

(Nimchinsky et al. 2002). On this basis, we used the spine count to modulate the strength of excitatory connections155

across the cortex. The strength of dopamine modulation, as described in the previous section, depended both the global156

dopamine release and the local D1 receptor density across cortical areas.157

An inverted-U relationship between cortical D1 receptor stimulation and distributed working memory activity158

We simulated the large-scale cortical model during performance of the working memory task (Fig 2C) with different159

levels of dopamine release. Dopamine neurons fire bursts in response to stimuli predicting reward in working memory160

tasks (Schultz et al. 1993). Although striatal dopamine levels return to baseline relatively quickly following dopamine161

6

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2020. ; https://doi.org/10.1101/2020.09.07.286500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.286500
http://creativecommons.org/licenses/by-nc/4.0/


A PREPRINT - SEPTEMBER 7, 2020

E)

A) B)

C) Target Delay 

V1 46d

time (s) time (s)

fir
in

g 
ra

te
 (H

z)

D)

F)
DA = 0.5

DA = 1.5

DA = 2.5

Increasing D1 Stimulation

dopamine release

Figure 2: An inverted-U relationship between D1 receptor stimulation and distributed frontoparietal delay-period activity. A, left)
Local circuit design. The circuit contains two populations of excitatory cells (red and blue), with each selective to a particular
spatial location. The cell bodies (triangles) and dendrites (rectangles) are modeled as separate compartments. PV cells (green)
inhibit the cell bodies of both excitatory populations. SST/CB cells (purple) inhibit the dendrites of the local excitatory population.
VIP/CR cells (light brown) inhibit SST/CB cells. A, right) In order to construct the large-scale model, the local circuit in A) is placed
at each of 40 cortical locations (shown in colours). Cortical areas differ in three properties 1) the long-range connections, 2) the
spine count and 3) the dopamine D1 receptor density. B) Stimulation of D1 receptors affects the cortical circuit in three ways 1)
an increase of inhibition targeting the dendrites, with a corresponding decrease in inhibition to the soma of pyramidal cells, 2) an
increase in NMDA-dependent excitatory transmission for low-to-medium levels of stimulation and 3) increasing adaptation for
high levels of stimulation. C) Structure of the task. The cortical network was presented with a stimulus, which it had to maintain
through a delay period. D, left) Mean firing rate in the frontoparietal network at the end of the delay period, for different levels of
dopamine release. There is an inverted-U relationship between dopamine release and delay period activity across the frontoparietal
network. D, right) Mean delay-period activity of cortical areas as a function of dopamine release. All areas shown display persistent
activity in experiments (Leavitt et al. 2017). E) Activity is shown across the cortex at different stages in the working memory task
(left to right), with increasing levels of dopamine release (from top to bottom). Red represents activity in the excitatory population
sensitive to the location of the target stimulus. Very low or very high levels of dopamine release resulted in reduced propagation of
stimulus-related activity to frontal areas and a failure to engage persistent activity. Mid-level dopamine release enables distributed
persistent activity. F) Timecourses of activity in selected cortical areas. The horizontal bars indicate the timing of cue (red) input to
area V1. Activity in early visual areas such as V1 peaks in response to the stimulus, but quickly decays away after stimulus removal
for all levels of dopamine release. In contrast, there is dopamine-dependent persistent activity in area 46d of prefrontal cortex. DA,
cortical dopamine availability.
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meta-analysis of experimental data

simulation
persistent activity no persistent activity

p  = 0.004
p  = 0.71
p  = 0.46

A) B)

Figure 3: Long-range connectivity underlies the pattern of distributed working memory activity. A) There is a strong overlap (18/19 -
95%) between the pattern of persistent activity seen experimentally (Leavitt et al. 2017) and that predicted by the model. B) The
percent overlap with the experimental persistent activity pattern is shown for the simulation based on the real anatomical data (red
line) and for 10,000 simulations each based on shuffled long-range connections (green), shuffled D1 receptor pattern (orange) and
shuffled dendritic spine counts pattern (purple). The top row half of the image shows the probability density function, and the bottom
half the results of individual simulations based on shuffled anatomical data. The pattern of long-range connections was the most
important determinant of the working memory activity pattern.

release, in the cortex dopamine levels remain elevated for seconds (Cass and Gerhardt 1995; Garris and Wightman 1994;162

Muller et al. 2014; Mundorf et al. 2001), which is approximately the period of one trial in our simulations. Therefore,163

for the majority of simulations we approximated this by setting dopamine to a constant value for each trial.164

In simulations, stimulus-selective activity propagated from visual cortex to temporal, parietal and frontal cortex. Activity165

in visual cortex was relatively insensitive to dopamine (Fig 2E,F). In all cases, there was a strong transient response in166

visual areas, before a quick return to baseline firing rates, like V1 neurons recorded from behaving monkeys (Vugt et al.167

2018). We observed a similar transient response in somatosensory areas in response to stimulus input to somatosensory168

cortex (Fig S2), as seen experimentally (Romo and Rossi-Pool 2020). Delay-period activity in a large network of169

prefrontal, lateral parietal and temporal areas showed an inverted-U relationship with dopamine levels (Fig 2D). A170

similar pattern of delay period activity was observed following somatosensory input (Fig S2). A comparable inverted-U171

relationship has been observed in prefrontal cortex following local application of D1 receptor agonists during working172

memory tasks (Vijayraghavan et al. 2007; Wang et al. 2019). A mid-range level of dopamine release engaged a173

distributed pattern of persistent activity throughout these areas (Fig 2E, F), but to low or too high release led to only a174

transient response (Fig 2F). Thus our model suggests that the inverted-U relationship between D1 receptor stimulation175

and persistent activity affects activity throughout a distributed fronto-parietal network, with little effect on early sensory176

areas.177
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Long-range connectivity determines the distributed working memory activity pattern178

The pattern of areas showing working memory activity in the model closely matches the areas in which persistent179

activity has been seen experimentally during working memory tasks. Leavitt and colleagues collated data from over 90180

studies recording single-unit and multi-unit activity as monkeys performed delay tasks (Leavitt et al. 2017). For each181

studied area, they quantified the number of studies in which persistent activity was observed or not observed during182

the delay period of the task. They mapped this information onto the Lyon atlas (Kennedy et al. 2013; Markov et al.183

2013, 2014a,b), which allowed us to compare our simulation with the collated delay-period activity observed in over 90184

electrophysiology studies. We first divided the cortex into persistent activity and non-persistent activity areas for both185

the experimental data and simulation. Areas were classified in the persistent activity group if at least 3 more studies186

observed persistent delay period activity than a lack of such activity. We excluded areas that have been assessed in less187

than three studies. Areas in the simulation were classified as having persistent activity if, for the last 500ms of the trial,188

they had mean firing rates of at least 5Hz greater than the pre-stimulus baseline firing rates. Of the 19 cortical areas in189

which such activity has been assessed during the delay period in at least three papers, 18 were in agreement between the190

simulation and experimental results ( χ2 = 15.03, p = 0.0001, Fig 3A). Overall, the experimentally observed persistent191

activity from numerous studies is reproduced, validating the model. This allows us to inspect the anatomical properties192

that underlie the distributed activity pattern and gain insight into the brain mechanisms that may produce it.193

We repeated model simulations after shuffling the anatomical data. The delay period activity patterns for 30,000194

simulations based on the shuffled anatomy were compared to the pattern observed experimentally. Ten thousand195

simulations were run using shuffled long-range connections, shuffled D1 receptor expression and shuffled dendritic196

spine expression, separately. The overlap between the experimental persistent activity pattern and the model persistent197

activity pattern was strongly dependent on the pattern of long-range connections (p=0.0004), but not on the pattern of198

D1 receptors (p = 0.71) or dendritic spine count (p = 0.46) (Fig 3B).199

Working memory deficits are more severe following lesions to areas with high D1 receptor density200

Next, we examined whether lesions to individual cortical areas would affect working memory activity. The effect of201

lesions depended on both the area lesioned, and the level of cortical dopamine. Lesions to some cortical areas (such as202

areas 32, or TEO) had little effect on persistent activity in the frontoparietal network. The effect of other lesions was203

relatively heterogeneous. Lesions to areas LIP and 46d led to a drop in persistent activity in the remaining frontoparietal204

network for all dopamine levels (Fig 4A). In contrast, a lesion to area 8B led to a profound loss of frontoparietal activity205

for most dopamine levels, but for a restricted range, activity throughout the remaining frontoparietal network could be206

returned to close to the unlesioned state (Fig 4A). This suggests that for some lesions, D1 agonists or antagonists could207

be effective at restoring normal working memory functioning, but the correct treatment may depend on the baseline208

cortical dopamine levels of the patient. In contrast, other lesions seem relatively unresponsive to alterations in cortical209

dopamine levels.210

Lesions to area V1 and V2 led to a complete loss of visual working memory activity (Fig 4B). However, this was due to211

the fact that a visual stimulus must go through area V1 in order to gain access to the working memory system. We212

confirmed this by showing that lesions to V1 and V2 had no effect on working memory when somatosensory stimuli213

were used (with stimulus presented to primary somatosensory area 3). In the somatosensory working memory task,214
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A)

C)

B)

D)

Figure 4: Lesions to areas with a high dopamine D1 receptor density disrupt working memory activity. A) Lesions to areas such as
46d and LIP led to reduced delay period firing across for all levels of dopamine release. Following some lesions (such as to area 8B)
an optimal level of D1 receptor stimulation could restore close-to-normal working memory activity in the remaining network. B) The
level of disruption to distributed working memory activity following lesions to each area, quantified as the total loss of working
memory activity in the frontoparietal network summed across all dopamine release levels. Note that disruption to working memory
following lesions to V1 and V2 is due to the visual stimuli being applied to V1. C) Lesions to areas with a higher D1 receptor density
tended to have a larger impact on working memory activity. d) t-statistic for linear regressions predicting the drop in delay-period
activity. The t-statistic for each single predictor linear regression model is shown separately. DA, dopamine release. D1R, D1
receptor density.

lesions to early somatosensory areas, and frontoparietal network areas caused memory deficits (Fig S3). This clearly215

separates early sensory areas, which are required for signal propagation to the working memory system, from core216

cross-modal working memory areas in prefrontal and posterior parietal cortex.217

We quantified the effect of lesions as the difference between the inverted-U curved for the unlesioned and lesioned218

networks (Fig 4A). In this way, the lesions to area 8B and 46d have similarly large effects on average across all219

dopamine levels (Fig 4B,C). We then tested whether the anatomical data (namely the D1 receptor density, the spine220

count or the cortical hierarchy) could predict the effects of cortical lesions on working memory activity. D1 receptor221

density (F = 4.72, p = 0.036, Fig 4C) was the strongest predictor of the lesion effects, and adding hierarchy or spine222

count to the model did not significantly improve the fit (Fig 4D). Thus, lesions to areas with a higher D1 receptor223

density are more likely to disrupt working memory activity.224

Dopamine shifts between activity-silent and persistent activity modes of working memory225

We endowed the large-scale model with short-term plasticity in order to assess the possibility of activity-silent working226

memory in the large-scale network. Short-term plasticity was implemented at all synapses between excitatory cells227
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Figure 5: A dopamine-dependent shift between distractible activity-silent and distractor-resistant persistent-activity states. A i) Task
structure. A target stimulus was followed by a delay and a probe stimulus. A ii) For mid-level dopamine release, activity relating to
the target stimulus propagated from V1 through the hierarchy, and was maintained in persistent activity throughout the frontoparietal
network. Top: firing rates on the surface (left) and in selected areas (right). Bottom: synaptic efficacy. A iii) For low-level dopamine
release, activity (Top) in response to the stimulus was transient in visual and some frontoparietal areas. There was no persistent
activity through the delay period. However, in response to the probe stimulus, activity representing the original target stimulus was
regenerated throughout frontoparietal cortex. Bottom: The memory for the stimulus was stored as a short-term plasticity-dependent
increase in synaptic efficacy through the delay period. This was particularly prominent for synapses from neurons with their cell
bodies in sensory areas. B i) Task structure. A target stimulus was followed by a delay period, a distractor, another delay period and
a probe stimulus. B ii) For mid-level dopamine release, target-related activity was maintained in persistent activity throughout the
frontoparietal network, throughout the delay period through the distractor until the end of the trial. B iii) For low-level dopamine
release, frontoparietal activity related to the most recent stimulus (i.e. the distractor) was regenerated during this probe stimulus.
DA, dopamine release.
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(Hempel et al. 2000; Wang et al. 2004b) (using the same parameters as Mongillo et al. 2008), and from excitatory228

to SST/CB cells (Lee et al. 2013; Silberberg and Markram 2007). We investigated activity-silent representations229

by ’pinging’ the system, with a neutral stimulus, and reading out the activity generated in response, similar to the230

experimental protocol in Wolff et al. 2017 (Fig 5A i).231

For optimal mid levels of dopamine release (Fig 5A ii), the model generated persistent activity that was very similar to232

the network without short-term plasticity. For both low and high levels of dopamine release there was no persistent233

activity (Fig 5 A iii). However, when we ’pinged’ the system with a neutral stimulus, activity relating to the target cue234

was transiently generated throughout the frontoparietal network Fig 5 A iii). Short-term synaptic plasticity increased235

the synaptic efficacy for connections between neurons coding for the target stimulus during the delay period. However,236

most of the increase in synaptic efficacy was in synaptic connections from neurons in sensory areas (Fig 5 A iii). When237

short-term synaptic plasticity was restricted to neurons only in sensory areas, pinging the system still resulted in a238

reactivation of the target-related activity (Fig S4). This suggests that synaptic plasticity in local prefrontal cortical239

neurons is not required for activity-silent working memory. However, when we restricted short-term plasticity to only240

local connections, we could not regenerate activity related to the target stimulus with the ping. This suggests that241

short-term plasticity on long-range connections from sensory areas is required for activity-silent working memory in242

the large-scale cortical network. Furthermore, dopamine release can switch the system from an activity-silent, to a243

persistent activity regime.244

Why does the brain have two parallel systems for holding items in short-term memory? To explore this further, we245

simulated the model using a “ping protocol” (Rose et al. 2016; Wolff et al. 2017). After a behaviorally relevant cue246

(stimulus A) and during the delay period, we introduced a distractor (stimulus B) which should be filtered out by the247

network; then a neutral ping stimulus exciting both neural populations is presented (Fig 5B i). For mid-level dopamine248

release, persistent activity coding for the target stimulus is engaged, and maintained through the distractor and ping249

(Fig 5B ii). The distractor is only transiently represented in IT and LIP (compare with Suzuki and Gottlieb 2013), but250

does not reach most of the frontoparietal network. In the low and high dopamine cases, during the ping, activity-silent251

mechanisms regenerate activity related to the last encoded stimulus, namely the distractor, in frontal and parietal cortex252

(Fig 5B iii). This suggests that dopamine can switch the cortex from an activity-silent working memory mode to a253

robust, distractor-resistant persistent activity working memory mode.254

Dopamine increases distractor resistance by shifting the subcellular target of inhibition255

How does dopamine protect working memory from distraction? To examine this question, we analysed activity within256

VIP/CR and SST/CB neurons during a working memory task with a distractor (Fig 6A). SST/CB and VIP/CR neurons257

are in competition, as they mutually inhibit each other. When SST/CB cell firing is higher, the pyramidal cell dendrites258

are relatively inhibited; conversely when VIP/CR cell firing is higher, the pyramidal cell dendrites are disinhibited.259

Each cortical area in the model contains two selective populations of pyramidal, SST/CB and VIP/CR cells. We first260

analysed trials in which the model successfully ignores the distractor. In the target-selective populations, the VIP/CR261

neurons fire at a much higher rate than the SST/CB neurons (Fig 6B, C). Thus the dendrites of the pyramidal cells262

sensitive to the target are disinhibited, allowing long-range target-related activity to flow between cortical areas. In the263

distractor senstitive populations, throughout the frontoparietal network, the SST/CB neurons fire at a slightly higher rate264
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Figure 6: Dopamine increases distractor resistance by shifting the subcellular target of inhibition. A) Task structure. A target
stimulus was followed by a delay, a distractor stimulus and another delay period. B) For mid-level dopamine release, persistent
target-related activity (red) was present in the frontoparietal network through the delay and the distractor until the end of the trial.
Each cortical area contains populations of excitatory, somatostatin and VIP/CR cells that respond to the target stimulus (E1, SST1,
VIP1), separate populations sensitive to the distractor stimulus (E2, SST2, VIP2) and PV cells. B and C) Throughout the delay
period and distractor stimulus, activity in VIP1 is higher than in SST1, leading to disinhibition of the E1 dendrite. In contrast,
activity in VIP2 is slightly lower than in SST2, leading to inhibition of the E2 dendrite. D) We tested the causal effect of the SST2
activity, by transiently inactivating SST2 populations in the frontoparietal network during the presentation of the distractor stimulus
(simulating optogenetic inhibition). E) On trials in which SST2 populations were inhibited, activity relating to the distractor stimulus
propagated from early sensory areas to frontoparietal areas, and the network maintainted distractor-related activity until the end
of the trial. F) We then removed the dopamine modulation of somatic and dendritic inhibition, while keeping the other dopamine
effects as before. G,H) Without the dopamine-dependent switch towards dendritic inhibition, the network became distractible, with
distractor-related activity dominating at the end of the trial. I) We identified the model behaviour for different dopamine levels,
across different levels of dendritic and somatic inhibition. Consistently across dopamine levels, higher somatic, and lower dendritic
inhibition was associated with distractible working memory (blue). In contrast, lower somatic, and higher somatic inhibition was
associated with distractor-resistant working memory (red). High dendritic and high somatic inhibition results in no persistant
activity (white). The levels of dendritic and somatic inhibition associated with the standard dopamine modulation used in the rest of
the paper marked by a black square. DA, cortical dopamine availability.
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than the VIP/CR cells. Thus distractor-related activity from other cortical areas is blocked from entering the dendrites265

of distractor-sensitive pyramidal cells in frontal and parietal cortex.266

The relative inhibition of distractor-population dendrites is rather subtle. To test the importance of this effect, we simu-267

lated optogenetic inhibition of the SST/CB populations that inhibit the distractor-sensitive pyramidal cells (SST/CB2,268

Fig 6D). We transiently inhibited the SST/CB2 cells in the frontoparietal network during the presentation of the269

distractor. This transient inhibition of SST/CB2 cells was sufficient to switch the network to a distractible state, with the270

distractor stimulus held in working memory until the end of the trial (Fig 6E).271

As dopamine increases the strength of inhibition to the dendrites, and decreases inhibition to the soma, it is possible that272

this aspect of dopamine modulation enhances distractor-resistance of the system. We removed this effect of dopamine273

modulation, while applying the other effects of dopamine as before (Fig 6F). We repeated the working memory task with274

the distractor with a mid-level of dopamine, which normally results in distractor-resistant working memory (Fig 6 A,B).275

Without the shift of inhibition from the soma to the dendrite, the system becomes distractible (Fig 6G, H). We searched276

the parameter space, and found that, when local cortical areas were independently capable of maintaining persistent277

activity (e.g., µE,E = 1.25, gselfE,E = 0.33nA), high somatic inhibition and low dendritic inhibition was generally278

associated with distractibility (Fig 6I). Low somatic and high dendritic inhibition was associated with distractor-resistant279

behaviour (Fig 6I, S5). Therefore dopamine shifts inhibition from the soma to the dendrite, and stops distractor stimuli280

from sensory areas disrupting ongoing persistent activity in the frontoparietal network.281

Learning to optimally time dopamine release via reinforcement282

We have shown how dopamine can render the cortex resistant to distraction, but one potential objection is that a283

behavioral relevant cue does not always precede a distractor. As a matter of fact, in real life we experience a constant284

flow of sensory inputs, our working memory system must be flexible in determining the timing of relevant versus285

irrelevant information. In laboratory experiments, one can assess this flexibility by presenting stimuli to be ignored286

before the relevant stimulus appears (e.g. Atlan et al. 2018). Dopamine neurons fire in response to task-relevant stimuli287

(Schultz et al. 1993), but should not fire in response to task-irrelevant distracting stimuli. We hypothesised that the288

correct timing of dopamine release could be learned by simple reward-learning mechanisms.289

We added a simplified model of the ventral tegmental area (VTA) with GABAergic and dopaminergic neurons to our290

large-scale cortical model (Fig 7A). Cortical pyramidal cells target both GABAergic and dopaminergic cells in the VTA291

(Soden et al. 2020). Dopaminergic cells are also strongly inhibited by local VTA GABAergic cells (Soden et al. 2020).292

Dopamine is released in cortex in response to VTA dopaminergic neuron firing, and cortical dopamine levels slowly293

return to baseline following cessation of dopaminergic neuron firing (Cass and Gerhardt 1995; Garris and Wightman294

1994; Muller et al. 2014; Mundorf et al. 2001). The synaptic strengths of cortical inputs from the selected populations295

to VTA populations are increased following a reward, and weakened following an incorrect response (Harnett et al.296

2009; Soltani and Wang 2006).297

We tested the model on the target-distractor-ping task introduced earlier (Fig 5B i; 7 B). For the first 30 trials, the298

first stimulus (Cue 1, red) was rewarded (rule 1). For the following 30 trials the second stimulus (Cue 2, blue) was299

rewarded (rule 2). For the final 30 trials, we switched back to rule 1 (Fig 7B). By the seventh trial of the first block300

distractor-resistant persistent activity emerges, and the first cue is correctly remembered. This behaviour remained301
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Figure 7: Reward-dependent learning of dopamine release appropriately engages persistent activity mechanisms. A) We designed a
simplified VTA model and connected this bidirectionally to the large-scale cortical model. The VTA contained dopaminergic and
GABAergic neuron populations. Dopamine was released dynamically depending on dopaminergic neuron activity. The strength of
cortical inputs to VTA dopaminergic and GABAergic cells was updated at the end of each trial on the basis of trial outcome and
choice. B) We simulated a task with two cues (red and blue) followed by a probe stimulus. The rewarded stimulus changed every 30
trials. Following each switch, after a few trials the network learns to store the appropriate stimulus in distributed persistent activity.
This depends on high dopamine release in response to the rewarded stimulus and low release in response to the unrewarded stimulus.

15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2020. ; https://doi.org/10.1101/2020.09.07.286500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.286500
http://creativecommons.org/licenses/by-nc/4.0/


A PREPRINT - SEPTEMBER 7, 2020

until the next block. Following a few trials of the second block, dopamine release in response to the first stimulus was302

reduced, and neural populations throughout the cortex only transiently represented the first (now irrelevant) stimulus.303

However, dopamine response to the second stimulus increased, so that persistent activity was engaged following the304

second stimulus. Following the second rule switch, the system again switched back to engaging persistent activity305

in response to the first cue. Additionally, the number of trials to a successful switch gradually decreased with each306

switch. We further tested the model on a version of the task in which the relevant red cue could be shown either307

first or second within a block, before the blue cue became relevant in the second block. The model was also able to308

learn this task, although it took more trials (10-15) to learn the switch (for the first few blocks). Thus, with simple309

reward-learning mechanisms, the optimal timing of dopamine release can be learned, allowing flexible engagement of310

distributed persistent activity in working memory.311

Discussion312

Traditional neural network models of working memory and dopamine have focused on simulating activity within a313

local cortical circuit (Brunel and Wang 2001; Durstewitz et al. 2000). Here, by combining large-scale systematic314

receptor anatomy with large-scale cortical modelling, we show that dopamine can engage distributed persistent activity315

across multiple cortical areas underlying conscious, active working memory. The discovery of a macroscopic gradient316

of dopamine D1 receptor density per neuron, reported here for the first time, enabled us to investigate dopamine317

modulation across the large-scale primate cortex in a connectome- and biophysically- based model. The model318

represents a cross-level computational platform, endowed with multiple cell types. Our work leads to new predictions319

that would not have been possible with local circuit models. First, filtering out distractors to ensure robust working320

memory depends on dopamine action by virtue of shifting subcellular inhibition in favor of input control at dendrites321

of pyramidal neurons, and plasticity in the dopamine system can flexibly learn what stimuli are behaviorally relevant322

in a sequence of stimuli occurring in time. Second, when a short-term memory trace is encoded by an active-silent323

synaptic mechanisms, we found that short-term synaptic plasticity of long-range cortical connections is more important324

than local connections. ’Activity silent’ memory strength is always the strongest for the latest stimulus, so this cannot325

subserve working memory in the presence of distractors. Third, the effect of lesioning a cortical area depends not only326

on that area’s connectivity with the rest of the system but also the strength of its dopamine modulation.327

A gradient of D1 receptors along the cortical hierarchy328

Dopamine exerts a powerful influence on cortical computations across a range of cognitive functions (Brozoski et al.329

1979; Goldman-Rakic 1995). By quantifying the D1 receptor density across cortical areas, we can identify the limits330

to which dopamine can modulate cortical activity. In order to create a high-resolution, and high-fidelity map of331

cortical dopamine receptor architecture, we used quantitative in-vitro receptor autoradiography (Zilles and Palomero-332

Gallagher 2017). PET and SPECT scans provide the advantages of in-vivo measurements, such as information on333

individual and group differences, but are limited in spatial resolution and signal-to-noise ratio (Cassidy et al. 2016;334

Cools and D’Esposito 2011; Froudist-Walsh et al. 2017a; Laruelle et al. 1996; Roffman et al. 2016) and are often335

unreliable for cortical measurements (Egerton et al. 2010; Farde et al. 1988). Gene expression methods have certain336

advantages, especially RNA sequencing which can provide cell-specific data. However, mRNA expression is not always337
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closely related to, or even positively correlated with the receptor density at the synapse (Arnatkeviciute et al. 2019;338

Schwanhäusser et al. 2011). Receptor density at the synapse is the functionally important quantity, and is directly339

measured here. The map of D1 receptor density here greatly expands previous descriptions of D1 receptor densities340

(Goldman-Rakic et al. 1990; Impieri et al. 2019; Lidow et al. 1991; Niu et al. 2020; Richfield et al. 1989). We show341

that D1 receptor density increases along the cortical hierarchy, peaking in prefrontal and posterior parietal cortex. This342

gradient of dopamine receptors is an anatomical basis by which dopamine can modulate higher cognitive processing.343

An inverted-U relationship between dopamine and distributed working memory activity344

Previous experimental and modelling studies have shown an inverted-U relationship between D1 receptor stimulation345

and persistent activity in the prefrontal cortex in monkeys performing working memory tasks (Brunel and Wang 2001;346

Vijayraghavan et al. 2007; Wang et al. 2019). Stimulation of VTA (presumably leading to cortical dopamine release) in347

resting monkeys also has an inverted-U effect on cortical activity in distributed areas across cortex (Murris et al. 2020).348

By constructing a novel-large scale model based on the D1 receptor map and tract-tracing data, we were able to show349

that the inverted-U relationship between D1 receptor stimulation and persistent activity held across frontal and parietal350

cortex during working memory. A network of frontal and parietal areas engaged in persistent activity together within a351

wide range of D1 receptor stimulation, with some variability in the degree to which D1 receptor stimulation affected352

persistent activity within areas. The working memory activity pattern was strikingly similar to that seen experimentally,353

according to a meta-analysis of 90 electophysiology studies of delay period activity in monkey cortex (Leavitt et al.354

2017). By analysing the model, we found that the pattern of long-range connections was the strongest determinant of355

the pattern of working memory activity.356

Lesions to areas with a high D1 receptor density disrupt working memory357

Working memory activity was disrupted most strongly by lesions to areas with a high D1 receptor density, a prediction358

that can be tested experimentally. Human patients with traumatic brain injury often have working memory deficits359

(Dunning et al. 2016). Pharmacological treatment of these deficits, including with dopaminergic drugs, has seen mixed360

success (Froudist-Walsh et al. 2017b). Our model simulations suggest that for lesions to some cortical areas D1 agonists361

or antagonists could be effective at restoring normal working memory functioning, but the correct treatment may depend362

on the baseline cortical dopamine levels of the patient. In the future, our model could be adapted to simulate the working363

memory deficits and potential treatments of neurology or psychiatry patients based on their particular anatomy and364

patterns of cortical dopamine release or receptor density (Abi-Dargham et al. 2002; Cassidy et al. 2016; Pettersson-Yeo365

et al. 2011; Slifstein et al. 2015).366

Ignition, silent activity and maintenance367

The strong and distributed activation of frontal and parietal cortex is reminiscent of the ignition response to consciously368

observed stimuli (Dehaene and Changeux 2011; Dehaene et al. 1998, 2003; Vugt et al. 2018). Conscious ignition369

and working memory maintenance have similar spatial patterns of activity (Trübutschek et al. 2017), and it has been370

suggested that conscious ignition is a first step to the entry of information to working memory (Mashour et al. 2020).371

However, for very low or high levels of D1 receptor stimulation, it was possible to maintain stimulus information in the372
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absence of persistent activity, via synaptic mechanisms. This was possible regardless of whether the original stimulus373

resulted in prefrontal activity. Unconscious working memory results in similarly correct behavioural performance,374

without the characteristic frontoparietal delay-period activity (Trübutschek et al. 2017, 2019). Unconscious working375

memory is thought to rely on ‘activity-silent’ synaptic mechanisms (Stokes 2015; Trübutschek et al. 2017). Slow cellular376

and synaptic processes may not only contribute to such mechanisms but also induce trial-by-trial history-dependent377

effects (Barbosa et al. 2020; Bliss and D’Esposito 2017; Carter and Wang 2007; Pereira and Wang 2015). Previous378

models of working memory with short-term synaptic plasticity have focused on local activity in the prefrontal cortex379

(Mongillo et al. 2008; Stokes 2015), and thus implicitly imply that it is short-term plasticity in local connections380

between prefrontal neurons that stores the memory trace. These models also assume that prefrontal neurons must have381

been sufficiently activated by the original stimulus in order to enable local short-term facilitation, a proposition that382

seems inconsistent with unconscious working memory. We show that short-term facilitation in long-range feedforward383

connections from early sensory areas to frontal and parietal cortex is a potential substrate for ‘activity-silent’ working384

memory in the absence of an initial prefrontal response to the stimulus. Given that experimental and modelling evidence385

suggests that manipulation of stored information requires a re-emergence of strong distributed activity (Masse et al.386

2019; Trübutschek et al. 2019), the silent state may be better described as ‘short-term memory’, as noted by other387

authors (Mashour et al. 2020; Masse et al. 2020). The brain may then reserve widespread persistent activity for388

important information that must be used and manipulated to drive behavior. The model in Barbosa et al. 2020 suggests389

nonspecific excitatory or inhibitory currents could account for switches between active and silent states. We propose390

that dopamine could in fact account for the switch from silent to active state. Indeed, due to the inverted-U relationship391

between dopamine and persistent firing, a dopamine response to the reward at the end of a trial could also terminate392

persistent activity. Our model also suggests that memories stored in the active state are more robust to distraction393

compared to memories stored in the silent state. This suggests that dopamine may be released in order to focus attention394

on salient items in working memory, and protect them from distraction.395

Dopamine increases distractor resistance by shifting the subcellular target of inhibition396

The resilience of the active working memory state in the model depended on SST/CB cells blocking distracting inputs397

from sensory areas to the dendrites of pyramidal cells in frontal and parietal cortex. Previous modelling work on local398

cortical circuits has suggested that greater dendritic and less somatic inhibition could increase distractor-resistance399

(Wang et al. 2004a), and that selective disinhibition of the dendrite (through VIP/CR cells) could selectively allow400

information to be passed through the network (Yang et al. 2016). In our large-scale model, VIP/CR cells selectively401

disinhibited the dendrites of cells selective to the target stimulus, allowing target-related activity to flow through the402

cortical network. D1 receptors in monkey cortex are more strongly expressed on SST/CB neurons than other interneuron403

types (Mueller et al. 2019), and application of dopamine to a frontal cortex slice increases inhibition to the dendrite, and404

decreases inhibition to the soma of pyramidal cells (Gao et al. 2003). We found that, as long as local cortical areas405

(or potentially cortico-subcortical loops) are capable of maintaining persistent activity, then shifting the balance of406

inhibition from the soma to the dendrite can allow for maintenance of an active representation of a stimulus in persistent407

activity, while shielding it from distracting input from sensory areas.408

Distractor-resistance in response to all stimuli could render the working memory system inflexible, and unresponsive409

to new, potentially important inputs. Inspired by previous models of prefrontal cortex and basal ganglia (Braver and410
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Cohen 2000; Frank 2005), we show that using simple reward-based learning, the timing of dopamine release to the411

cortex can be learned in order to engage distributed persistent activity throughout the frontoparietal network in response412

to behaviourally-relevant stimuli. In contrast, irrelevant, or less salient stimuli result in lower dopamine release, and413

may be remembered via silent mechanisms, or forgotten.414

Conclusion415

We uncovered a macroscopic gradient of dopamine D1 receptor density along the cortical hierarchy. By building416

a novel large-scale anatomically-constrained model of monkey cortex, we show how dopamine can engage robust417

distributed persistent activity mechanisms across connected higher cortical areas, and protect memories of behaviourally418

relevant-stimuli from distraction. As distributed persistent activity is necessary for the manipulation of thoughts in419

working memory (Masse et al. 2019; Trübutschek et al. 2019), dopamine release in the cortex may be a key step towards420

higher cognitive thought.421

Methods422

Overview of anatomical data423

In this study, we combine post-mortem anatomical data on receptor densities, white matter connectivity, neuron424

densities and dendritic spine counts. Each of these four anatomical measures was originally quantified using different425

parcellations of cortex. Large sections of the temporal lobe are not yet quantified for either the receptor autoradiography426

data, or the tract-tracing connectivity data. Collection of this data is underway and will be made available in future427

studies. With the exception of the receptor densities in the superior parietal lobe (Impieri et al. 2019) and intraparietal428

sulcus (Niu et al. 2020), all D1 receptor densities are reported for the first time in this study.429

A note on notation430

Subscripts in square brackets, such as [k] are used to denote cortical areas themselves. Subscripts not in brackets, such431

as i are used to denote populations of neurons within a cortical area. Superscripts are used to provide further clarifying432

information. We use the convention that targets are listed before sources, so that gi,j would denote the strength of a433

connection from neural population j to neural population i. Parameter values are listed in Table 4.434

Quantification of receptor density across cortex - in-vitro autoradiography435

We analysed the brains of three adult male Macaca fascicularis specimens (between 6 and 8 years old; body weight436

between 5.2 and 6.6 kg) obtained from Covance, Münster, where they were used as control animals for pharmaceutical437

studies performed in compliance with legal requirements.438

All experimental protocols were in accordance with the guidelines of the European laws for the care and use of animals439

for scientific purposes. Animals were sacrificed by means of an intravenous lethal dose of sodium pentobarbital. Brains440

were removed immediately from the skull, and brain stem and cerebellum were dissected off in close proximity to the441

cerebral peduncles. Hemispheres were separated and then cut into a rostral and a caudal block by a cut in the coronal442

plane of sectioning between the central and arcuate sulci. These blocks were frozen in isopentane at -40C to -50C, and443
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then stored in airtight plastic bags at -70C. Each block was serially sectioned in the coronal plane (section thickness 20444

µm) using a cryostat microtome (CM 3050, Leica, Germany). Sections were thaw-mounted on gelatine-coated slides,445

freeze-dried overnight and processed for visualization of D1 or D2 receptors, cell bodies (Merker 1983) or myelin446

(Gallyas 1979). Quantitative in-vitro receptor autoradiography was applied to label dopaminergic D1 and D2 receptors447

according to previously published protocols (Palomero-Gallagher and Zilles 2018; Zilles et al. 2002) encompassing448

a preincubation, a main incubation and a final rinsing step. For visualization of the D1 receptor, sections were first449

rehydrated and endogenous substances removed during a 20 minute preincubation at room temperature in a 50 mM450

Tris-HCl buffer (pH 7.4) containing 120 mM NaCl, 5 mM KCl, 2 mM CaCl2 and 1 mM MgCl2. During the main451

incubation, sections were incubated with either 0.5 nM [3H]SCH 23390 alone (to determine total binding), or with 0.5452

nM [3H]SCH 23390 and 1 mM of the displacer mianserin (to determine the proportion of displaceable, non-specific453

binding) for 90 minutes at room temperature in the same buffer as used for the preincubation. Finally, the rinsing454

procedure consisted of two 20 minutes washing steps in cold buffer followed by a short dip in distilled water. For455

visualization of the D2 receptor, sections were preincubated 50 mM Tris-HCl buffer (pH 7.4) containing 150 mM NaCl456

and 1% ascorbate. In the main incubation, sections were incubated with either 0.3 nM [3H]raclopride alone, or with457

0.3 nM [3H]raclopride and 1 µM of the displacer 1 µM butaclamol for 45 minutes at room temperature in the same458

buffer as used for the preincubation. Rinsing consisted of six 1 minute washing steps in cold buffer followed by a short459

dip in distilled water. Specific binding is the difference between total and non-specific binding. Since the ligands and460

binding protocols used resulted in a displaceable binding, which was less than 5% of the total binding, total binding461

is considered to be equivalent of specific binding. Sections were dried in a cold stream of air, exposed together with462

plastic scales of known radioactivity against tritium-sensitive films (Hyperfilm, Amersham) for six (for the D1 receptor)463

or eight (for the D2 receptor) weeks, and ensuing autoradiographs processed by densitometry with a video-based image464

analysing technique (Palomero-Gallagher and Zilles 2018; Zilles et al. 2002). Autoradiographs were digitized using a465

CCD-camera, and stored as 8-bit grey value images with a spatial resolution of 2080x1542 pixels. Grey values (g) in466

the co-exposed scales as well as experimental conditions were used to create a regression curve with which grey values467

in each pixel of an autoradiograph were transformed into binding site densities (Bmax) in fmol/mg protein by means of468

the formula469

Bmax =
gR

EBW bsa
· K

D + L

L
(1)

whereR is the radioactivity concentration (cpm) in a scale, E the efficiency of the scintillation counter used to determine470

the amount of radioactivity in the incubation buffer, B the number of decays per unit of time and radioactivity, Wb the471

protein weight of a standard, Sa the specific activity of the ligand, KD the dissociation constant of the ligand, and L the472

free concentration of the ligand during incubation. For visualization purposes solely, autoradiographs were subsequently473

pseudo-colour coded by linear contrast enhancement and assignment of equally spaced density ranges to a spectral474

arrangement of eleven colours.475

Cortical areas were identified by cytoarchitectonic analysis and receptor densities measured at comparable sites in the476

adjacent sections processed for receptor visualization. The mean receptor density for each area over a series of 3–5477

sections per animal and receptor was determined by density profiles extracted vertical to the cortical surface using478

Matlab-based in house software (Palomero-Gallagher and Zilles 2018).479
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Neuronal density data480

The in-vitro autoradiography data accurately quantifies the density of receptors across cortex. However, it is important481

to bear in mind that the density of neurons also varies across the cortex. Collins and colleagues measured the density482

of neurons across the entire macaque cortex using the isotropic fractionator (a.k.a. brain soup) method (Collins et al.483

2010). After mapping the neuron density data from the study by Collins et al. 2010 and the receptor data to a common484

atlas, we divided the receptor density by the neuron density, to obtain an estimate of D1 receptors per neuron in each485

cortical area.486

Retrograde tract-tracing487

The inter-areal connectivity data in this paper is part of an ongoing effort to map the cortical connectome of the macaque488

using retrograde tract-tracing (Markov et al. 2013, 2014a,b). For each target area, a retrograde tracer was injected into489

the cortex. The tracer was taken up in the axon terminals in this area, and retrogradely transported to the cell bodies490

of neurons that projected to the target. These cell bodies could be throughout the brain. Each of these cell bodies in491

cortex was counted as a labelled neuron (LN). The amount of labelled neurons was counted in all cortical areas except492

for the injected target area. The cortical areas that send axons to the target area are called source areas. As there are493

uncontrollable differences in tracer volume and uptake between injections, we estimated the strength of connections as494

follows. For a given injection, the total number of cell bodies in the cortex outside of the injected (target) area was495

counted. The number of labeled neurons was within a source cortical area was then divided by the number of labeled496

neurons in the whole cortex (excluding the target area), to give a fraction of labeled neurons (FLN). The FLN was497

averaged across all injections in a given target area. For this calculation, we include all areas in the entire cortical498

hemisphere ( nareas = 91 ).499

FLN[k,l] =
LN[k,l]∑nareas

l=1 LN[k,l]

(2)

In addition, for each connection we defined the supragranular labeled neurons (SLN) as the fraction of neurons in the500

source area whose cell bodies were in the superficial (aka supragranular) layers.501

SLN[k,l] =
LNsupra

[k,l]

LNsupra
[k,l] + LN infra

[k,l]

(3)

The subiculum (SUB) and piriform cortex (PIR) have a qualitatively different laminar structure to the neocortical areas,502

and thus supra- and infra-laminar connections (and thus the SLN) from these areas are undefined. We thus removed all503

connections from these areas from the following calculations ( nareas,SLN = 89 ). These connectivity matrices will be504

available on core-nets.org.505

Estimation of the cortical hierarchy506

Following (Markov et al. 2014a), we estimate the hierarchical position h of each area using the SLN values of its507

connections. Feedforward connections tend to originate in the supragranular layers, while feedback connections tend508

to originate in the deep layers of the source area (Barone et al. 2000; Felleman and Van Essen 1991). Moreover, if509
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a target area occupies a much higher hierarchical position than the source area, a greater proportion of the neurons510

emerge from the supragranular layers of the source area than if the two areas are closer in the hierarchy (Barone et al.511

2000). Likewise for the feedback connections, a greater hierarchical distance between the areas implies that the higher512

area sends a greater proportion of it projections from the infragranular layers. This implies that the fraction of neurons513

coming from the supragranular layers in a given connection gives an estimate of the relative hierarchical position of two514

connected areas (Barone et al. 2000; Markov et al. 2014a).515

Here, following (Markov et al. 2014a), we estimate a set of hierarchical levels (one per area) that best predicts the SLN516

values for all connections in the dataset.517

The model to estimate the hierarchy has the form518

g(E(SLN)) = Xβ (4)

where g is a function that links the SLN of the connection between areas to the hierarchical distance between them. β519

is a column vector of length nareas,SLN , containing the hierarchy values to be estimated. X is an incidence matrix520

of shape nconns × nareas,SLN , where nconns (= 2619) is the number of connections between cortical areas in the521

remaining dataset. Each row in X represents a connection, and each column represents a cortical area. All entries522

in each row equal 0 except for the column corresponding to the source area, which has a value of -1, and the target523

(recipient) area, which has a value of 1 (Strang 1993).524

The hierarchical values can be estimated with maximum likelihood regression. However, the model is singular (the525

rows sum to zero). In order to make the model identifiable, we therefore removed one column from X . We chose to526

remove the column corresponding to area V1, which is therefore forced to have a hierarchical value of 0. However, the527

choice of column is unimportant, as it is possible to estimate negative hierarchical values (in the case that other areas528

are lower than V1 in the hierarchy).529

We used the beta-binomial model. The binomial parameter p corresponds to the proportion of successes. This is thought530

to be a random variable following a Beta distribution. The beta-binomial distribution depends on two parameters, the531

mean (µ, here the SLN), and the dispersion (φ). The beta-binomial model can account for the overdispersion of the532

neural count data. Note that the SLN of each measured connection is input into the model, without averaging across533

repeated injections.534

The likelihood is written as535

f(µ, φ; q, n) =

(
n

q

)B(µ(
1 − φ

φ
) + q, (1 − µ)(

1 − φ

φ
) + n− q

)
B

(
µ(

1 − φ

φ
), (1 − µ)(

1 − φ

φ
)

) (5)

where q is the number of neurons projecting from the supragranular layers, n is the number of neurons projecting from536

all layers, and B is the beta function defined as537

B(x, y) =

∫ 1

0

px−1(1 − p)y−1dp (6)
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with x, y > 0. We fit the model using µ = Φ(Xβ), where Φ is the cumulative Gaussian, as it maps the real numbers538

to the (0,1) range. Φ−1 = g in equation 3 is the probit link function. The hierarchy is estimated by minimising the539

log-likelihood. For more details see (Markov et al. 2014a).540

We then rescaled the hierarchy so that the maximum hierarchial value within the 40 region complete subgraph (containing541

all injected areas) equaled 1:542

h[k] =
β[k]

max(βsubgraph)
(7)

for all cortical areas k in the complete 40-area subgraph.543

Integration of anatomical datasets544

All anatomical data was mapped to the appropriate parcellations on the Yerkes19 surface. For the present study, we545

mapped all data to the 40 area Lyon subgraph Markov et al. 2014b, as the areas in this parcellation were generally larger546

than those in the Jülich macaque atlas (Impieri et al., 2019; Niu et al., 2020; Rapan et al., In Prep; Niu et al., In prep;547

this paper) and the Queensland (spine count) injection sites (Elston 2007), and closer to standard areal descriptions than548

the Vanderbilt (neuronal density) (Collins et al. 2010) sections.549

The receptor densities were quantified in 109 cortical regions defined by cyto- and receptor-architecture. The delineation550

of cortical region borders in the superior parietal lobe is described in (Impieri et al. 2019). Using the same method,551

anatomists (NPG, MN, LR) identified cortical areas on the basis of the receptor and cyto-architecture. See Figure 1 and552

associated data for the definition of the areas. Anatomists (NPG, MN, LR) carefully drew and independently revised553

defined borders on the Yerkes19 cortical surface (Donahue et al. 2016) to enable comparison with other data types. The554

D1 receptor data was mapped to the Lyon atlas as follows. For each area in the Lyon atlas, we searched for overlaps555

with areas in the Jülich macaque atlas. If more than 50% of the vertices within the area were also in the Jülich macaque556

atlas, the D1 receptor density for the area was calculated. All vertices within each Jülich area were assigned the mean557

value for that area. We averaged the D1 receptor density across all vertices that lay within both the Lyon area and558

the Jülich macaque atlas, thus performing a weighted average of the D1 receptor densities according to the degree of559

spatial overlap. Thirty-two of the 40 Lyon areas were assigned D1 receptor density in this way, with the remaining eight560

areas not overlapping sufficiently with the Jülich macaque atlas. Due to the strong positive correlation between the D1561

receptor/neuron density and the hierarchy (Fig 1), for the simulations we inferred values for the remaining eight regions562

using linear regression with hierarchy as the independent variable and D1 receptor/neuron density as the independent563

variable.564

Neuron density data was taken from (Collins et al. 2010). In the original paper, the cortex was divided into 42 regions565

and displayed on a flatmap, with anatomical landmarks labeled (Fig 2 and S1 of that paper). The borders of these566

regions were drawn on the Yerkes19 surface by SFW with reference to the original paper (Collins et al. 2010), several567

anatomical papers from the same group (Beck and Kaas 1999; Cerkevich et al. 2014; Kaas 2004), the Jülich (109 areas)568

and the Lyon (Markov-132) atlases (Donahue et al. 2016; Markov et al. 2014b), and were independently assessed by569

anatomists (LR, MN, NPG). The neural density data covered the entire cortex. As such, we assigned neural density to570
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each area in the Lyon atlas, weighted by the spatial overlap with the original areas in the Vanderbilt atlas. D1 receptor571

density was divided by the neuron density to give the D1 receptor/neuron density in each area.572

The Lyon atlas used to define the interareal connectivity data (Markov et al. 2014b) is already available on the Yerkes19573

surface (Donahue et al. 2016). The complete subgraph including bidirectional connectivity has since been expanded574

from 29 areas in Donahue et al. 2016 to 40 areas in this paper.575

For the spine count data, outlines of the 27 injection sites were drawn on the Yerkes19 surface by SFW with reference to576

the original papers (most of which had substantial anatomical description and hand-drawn maps), as well as anatomical577

papers cited within the original papers (Cavada and Goldman-Rakic 1989; Preuss and Goldman-Rakic 1991) and the578

Lyon and Jülich macaque atlases. Again, boundaries were independently assessed by anatomists (LR, MN, NPG). Spine579

count data was expressed according to injection sites, rather than entire cortical areas. As such, we found the number of580

vertices from each injection site overlapping with each area in the Lyon atlas. For each Lyon area, the spine count was581

an average of the spine counts for all the injection sites overlapping with the area, weighted by the number of vertices582

of each injection site contained within the area. In this way we estimated the spine counts on pyramidal cells in 24 of583

the 40 regions in the Lyon atlas. Based on the strong positive correlation between spine count and cortical hierarchy (r584

= 0.61, p = 0.001), and following previous work (Chaudhuri et al. 2015; Mejias and Wang 2019), we inferred the spine585

count for the remaining regions based on the hierarchy using linear regression.586

Delineations of the areal borders for each atlas, and the anatomical data in the Yerkes19 space will be made available on587

the BALSA database upon publication.588

Overview of dynamical models589

We first describe the connectivity structure of our local circuit model, and how dopamine modulates the efficacy of590

these connections. We then describe a large-scale dynamical model, in which the local circuit is used as a building591

block, and placed in each of 40 cortical areas. We describe the various steps to building the large-scale model, including592

how to connect the cortical areas, apply heterogeneity of excitation and the gradient of dopamine. Lastly, we describe593

how we simulated working memory tasks, lesions and optogenetic inhibition in this model.594

Description of the local cortical circuit595

We describe a local cortical circuit containing populations of four distinct types of neurons. This is conceptually related596

to previous computational models of working memory involving multiple types of interneurons (Tanaka 1999; Wang597

et al. 2004a), and uses a mean field reduction of a spiking model (Brunel and Wang 2001; Wong and Wang 2006). PV,598

SST/CB and VIP/CR cells differed in the threshold and slope of their input-output function (f-I curve) (Bacci et al.599

2003), local (Adesnik et al. 2012; Jiang et al. 2015; Muñoz et al. 2017; Pfeffer et al. 2013; Tremblay et al. 2016) and600

long-range connectivity (Lee et al. 2013; Wall et al. 2016), adaptation rates (Kawaguchi 1993; Mendonça et al. 2016;601

Schuman et al. 2019), and NMDA/AMPA ratio (Lu et al. 2007).602

The connectivity structure and strengths of the local circuit, are based on a synthesis of anatomical and physiological603

studies, and are captured in the local connectivity matrix G (Tables 1 and 2) (Jiang et al. 2015; Kalisman et al. 2005; Lee604

et al. 2013; Ma et al. 2012; Markram et al. 1997; Pfeffer et al. 2013; Silberberg and Markram 2007; Walker et al. 2016).605
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Note that connection probability and synaptic strength between neural types are generally positive correlated (Jiang606

et al. 2015). This simplifies the process of identifying the relative strengths of connections between neural populations607

in the circuit.608

to

from



GE E1soma E2soma

E1soma gselfE,E 0

E2soma 0 gselfE,E

PV gPV,E gPV,E

SST1 gselfSST,E gcrossSST,E

SST2 gcrossSST,E gselfSST,E

V IP1 gV IP,E 0

V IP2 0 gV IP,E


to

from


GdendI,[k] SST1 SST2

E1dend gDAEdend,SST,[k] 0

E2dend 0 gDAEdend,SST,[k]



Table 1. Left: Local excitatory output connections target excitatory and inhibitory populations. Right: SST/CB

interneurons target the dendrites of pyramidal cells.

to

from



GsomaI,[k] PV SST1 SST2 V IP1 V IP2

E1soma gDAEsoma,PV,[k] 0 0 0 0

E2soma gDAEsoma,PV,[k] 0 0 0 0

PV gPV,PV gPV,SST gPV,SST 0 0

SST1 0 0 0 gSST,V IP 0

SST2 0 0 0 0 gSST,V IP

V IP1 0 gV IP,SST 0 0 0

V IP2 0 0 gV IP,SST 0 0


Table 2. PV cells inhibit the cell body of pyramidal cells, but are themselves inhibited by other PV cells and SST/CB609

cells. SST/CB cells and VIP/CR cells mutually inhibit each other.610

See Table 4 for all parameter values.611

Dopamine modulation612

The density of dopamine D1 receptors per neuron was rescaled, so that the area with minimum density ρrawmin was set to

zero, and the area with maximum density ρrawmax was set to one, with all other areas lying in between.

ρ[k] =
ρraw[k] − ρrawmin

ρrawmax − ρrawmin

for all cortical areas k.613

Network behavior was investigated for differing amounts of cortical dopamine availability ( λDA ). The specific value614

of λDA used for each simulation is shown in the figures and main text. Note that for Figure 7, λDA is calculated615

dynamically throughout each trial. Cortical dopamine availability is related to the fraction of occupied D1 receptors616

λocc through a sigmoid function. The fraction of occupied D1 receptors thus lies between 0 and 1, as expected.617
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λocc =
eb
o(λDA−co)

1 + ebo(λDA−co)
(8)

Dopamine increases the proportion of inhibition onto the dendrites of pyramidal cells (Gao et al. 2003). Therefore, we618

simulated the effect of dopamine on dendritic inhibition as follows. The total amount of dendritic inhibition increases619

(from a minimum to a maximum strength) as the total amount of occupied receptors increases. The total amount of620

occupied receptors is equal to the receptor density multiplied by the fraction of occupied receptors.621

gDAEdend,SST,[k] = gminEdend,SST
+ λoccρ[k](g

max
Edend,SST

− gminEdend,SST
) (9)

Dopamine decreases the proportion of inhibition onto the soma of pyramidal cells (Gao et al. 2003). Therefore, we622

simulated the effect of dopamine on somatic inhibition as follows. The total amount of somatic inhibition decreases623

(from a maximum to a minimum strength) as the total amount of occupied receptors increases.624

gDAEsoma,PV,[k] = gmaxEsoma,PV + λoccρ[k](g
min
Esoma,PV − gmaxEsoma,PV ) (10)

Dopamine also increases the strength of excitatory synaptic transmission via NMDA receptors (Seamans et al. 2001a).625

We modeled this with a sigmoid function, so that dopamine primarily increases NMDA conductances at low and626

medium dopamine concentrations, before reaching a plateau (Brunel and Wang 2001).627

ν[k] =
eb
ν(λoccρ[k]−cν)

1 + eb
ν(λoccρ[k]−cν)

(11)

Here bν sets the slope of the sigmoid function, cν sets the midpoint.628

The effects of dopamine on NMDA transmission is then defined as629

νDA[k] = 1 + αν[k] (12)

where α controls the strength of dopamine modulation on NMDA transmission.630

High levels of D1 agonism lead to a reduction in pyramidal cell firing, particularly during the delay period of working631

memory tasks. D1 receptor stimulation may lead to inhibition of ongoing activity by engaging an intracellular pathway632

involving cyclic AMP, protein kinase A and either HCN or KCNQ channels (Arnsten et al. 2019; Gamo et al. 2015;633

Vijayraghavan et al. 2007). The mechanisms by which HCN channels may hyperpolarise the cell are still under634

debate (George et al. 2009; Pereira 2014). We simulated an increase in adaptation for very high levels of D1 receptor635

stimulation with a sigmoid function, so that adaptation increases at high dopamine concentrations, before reaching a636

plateau.637

µM[k] =
eb
M (λoccρ[k]−cM )

1 + eb
M (λoccρ[k]−cM )

(13)
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Description of dynamical variables638

The neural populations interact via synapses that contain NMDA, AMPA and GABA receptors. Each receptor has its639

own dynamics, governed by the following equations.640

The synaptic variables are updated as follows (Wang 1999; Wong and Wang 2006; Yang et al. 2016)641

dsNMDA

dt
= − s

NMDA

τNMDA
+ (1 − sNMDA)γNMDArE (14)

dsAMPA

dt
= − s

AMPA

τAMPA
+ γAMPArE (15)

dsGABA

dt
= − s

GABA

τGABA
+ γIrI (16)

dsGABA,dend

dt
= − s

GABA,dend

τGABA,dend
+ γIrI (17)

where s is the synaptic drive onto a particular receptor type, τ is the time constant of decay of that receptor and γNMDA,642

γAMPA and γI are constants. rE and rI are the firing rates of the presynaptic excitatory and inhibitory cells targeting643

the NMDA, AMPA and GABA receptors, calculated below. Note that the inhibition onto the dendrite is slower than644

inhibition elsewhere (τGABA,dend > τGABA) (Ali and Thomson 2008). Hence we calculate dynamics of dendritic and645

somatic inhibition separately.646

Adaptation acts to reduce the firing rate when the rate is high, using the equation described in (Engel and Wang 2011),647

da

dt
= − a

τa
+ r (18)

where a is the adaptation variable, τA is the adaptation time constant, and r is the firing rate of the neural population.648

NMDA/AMPA ratio649

The fraction of excitatory postsynaptic current that is dependent on NMDA vs AMPA receptors differs by cell type650

(e.g. with relatively more current via the NMDA receptors in SST/CB vs PV cells) (Lu et al. 2007). Thus, we allowed651

the strength of excitatory transmission via NMDA and AMPA receptors to vary by cell type, described in the NMDA652

fraction, κ (Table 4).653

Modulation of excitatory connections by dendritic spines654

ζ[k] =
ζraw[k] − ζrawmin

ζrawmax − ζrawmin

for all cortical areas [k].655

z[k] = zmin + ζ[k](1 − zmin) (19)

where zmin sets the lower bound for the modulation of excitatory connections by the spine count, ζ.656
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Description of local currents657

The local NMDA current is calculated as follows658

INMDA,local
i,[k] = z[k]κiν

DA
[k]

∑
jε{E1,E2}

gEi,js
NMDA
j (20)

where the local excitatory connections via the NMDA receptors are scaled by the NMDA receptor fraction κi, the659

dendritic spine count z[k] and the D1 receptor stimulation νDA[k] for all populations of neurons i and cortical areas k.660

Similarly local excitatory connections via the AMPA receptors are scaled by the AMPA receptor fraction 1− κi and the661

dendritic spine count z[k].662

IAMPA,local
i,[k] = z[k](1 − κi)

∑
jε{E1,E2}

gEi,js
AMPA
j (21)

Local inhibitory connections are not explicitly modulated by the dendritic spine count (as spines are the locations of663

synapses between excitatory cortical neurons). Note however, that the connectivity structure gGABA is modulated by664

the dopamine receptor density and occupancy (See Tables 1, 2 and 4).665

IGABAi =
∑

jε{Inh}

gGABAi,j sGABAj (22)

where Inh is the set of inhibitory neuron populations.666

The currents onto the dendrites are calculated separately, in order to calculate the nonlinear transformation of the current667

in the dendrite. They depend on the noise and background currents, so are described below.668

Description of noise and background currents669

Noise is modeled as an Ornstein-Uhlenbeck process, separately for each population.670

τAMPA dI
noise(t)

dt
= −Inoise(t) + η(t)

√
τAMPAσ2

noise (23)

where σnoise is the standard deviation of the noise and η is Gaussian white noise with zero mean and unit variance.671

A constant background current Ibg was also added to each population (Table 4). This represents input from brain areas672

that are not explicitly modeled.673

Description of the adaptation current674

We include adaptation in excitatory cells (Kawaguchi 1993), SST/CB (Kawaguchi 1993, 1995) and VIP/CR cells675

(Mendonça et al. 2016; Schuman et al. 2019), but not PV cells (Kawaguchi 1993, 1995). This is reflected in their676

differing adaptation strengths gadaptPV and gadapt, where gadaptPV = 0.677

The adaptation current is678

Iadapti,[k] = (gai + gmi µ
M
[k])ai,[k] (24)

for all local populations i and cortical areas k.679
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Note that gai represents the non-dopamine dependent adaptation, while gmi µ
M
[k] controls the dopamine-dependent680

adaptation, which depends on both dopamine release and receptor density (equation 13).681

Large-scale connectivity structure682

Each of the cortical areas is connected using connectivity strengths derived from the retrograde tract-tracing data. Parts683

of this dataset of been included in previous publications (Markov et al. 2013, 2014a,b). The long-range connectivity684

matrices are built from the FLN matrix. However, as noted in (Mejias et al. 2016), the FLN matrix spans 5 orders of685

magnitude. The relationship between anatomical and physiological connectivity strengths is not clear, but if we were to686

use the raw FLN values in the large-scale model, many of the weaker connections would become irrelevant. To deal687

with this, we rescale the FLN matrix in order to increase the influence of smaller connections while maintaining the688

topological structure (Mejias et al. 2016; Mejias and Wang 2019).689

w[k,l] =
FLN b1

[k,l]∑nsub

l=1 FLN b1
[k,l]

(25)

Here we restrict calculations to the injected cortical areas i, j, allowing for complete bidirectional connectivity within690

the subgraph (nsub = 40 ). We use the same parameter values as in (Mejias et al. 2016; Mejias and Wang 2019) (Table691

4) to construct our interareal connectivity matrix W .692

As noted previously, feedforward projections tend to originate in the supragranular layers, while feedback connections693

originate in the deep layers. Feedforward and feedback connections also likely have different cellular targets. Therefore694

it is useful to separate the long-distance feedforward and feedback connections.695

wsupra[k,l] = SLN[k,l]w[k,l] (26)

winfra[k,l] = (1 − SLN[k,l])w[k,l] (27)

Interareal population interactions696

The majority of interareal connections contain a mixture of axons projecting from deep and superficial layers. Long697

distance connections onto excitatory cells primarily target the distal dendrites (Petreanu et al. 2009) (Table 3). Therefore,698

in the model we assume that long-distance connections target the dendrites of excitatory cells. VIP/CR cells receive699

the strongest long-distance inputs of all inhibitory cells, while SST/CB receives the weakest (Lee et al. 2013; Wall700

et al. 2016) (Table 3, Table 4). This suggests that long-range connections effectively disinhibit the dendrite in the701

target area by exciting VIP/CR interneurons, while concurrently exciting the dendrite, to maximize the probability702

of information passing from the source area into the target area. Following Mejias and Wang 2019 we assume that703

feedback connections target inhibitory cells more strongly than feedforward connections.704

Excitatory cells in different cortical areas with the same receptive fields are more likely to be functionally connected705

(Zandvakili and Kohn 2015). This is reflected in our model as follows. In the source area, there are two excitatory706

populations, 1 and 2, each sensitive to a particular feature of a visual stimulus (such as a location in the visual field).707
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Likewise in the target area, there are two populations 1 and 2, sensitive to the same visual features. We assume that708

90% of the output of population 1 in the source area goes to population 1 in the target area, and the remaining 10% to709

population 2. The converse is true for population 2 in the source area (it targets 10% population 1, 90% population 2;710

Table 3, Table 4).711

to

from



JE,E E1soma E2soma

E1soma 0 0

E2soma 0 0

E1dend gLR,selfE,E gLR,crossE,E

E2dend gLR,crossE,E gLR,selfE,E

 to

from



JI,E E1soma E2soma

PV gLRPV,E gLRPV,E

SST1 gLRSST,E 0

SST2 0 gLRSST,E

V IP1 gV IP,E 0

V IP2 0 gV IP,E


Table 3. Long-range targets onto excitatory (left) and inhibitory (right) cells712

Disinhibitory circuit in the frontal eye fields713

The frontal eye fields (areas 8m and 8l in the model), have a very high percentage of calretinin neurons, and relatively714

fewer parvalbumin and calbindin neurons (Pouget et al. 2009). To account for this in the model, we relatively increased715

the long-range inputs to VIP/CR cells in areas 8m and 8l, as detailed in Table 4. These changes are critical for persistent716

activity in areas 8l and 8m, but otherwise do not greatly affect the behavior of the model. Without this change, the717

overlap between the simulated delay activity pattern and the experimental delay activity pattern (as in Figure 3) is718

still extremely high (17/19 areas correct, chi-square = 12.31 p = 0.0004), and the activity pattern depends on both the719

long-range connectivity (p = 0.001), and D1 receptor distribution (p = 0.008), but not the spine count (p = 0.19). All720

other results are unchanged.721

Calculation of long-range currents722

Long-range interactions are applied as follows:723

INMDA,E,E
i[k] = z[k]µ

E,EνDA[k] κi

nsub∑
l=1

wsupra[k,l]

∑
jε{E1,E2}

gE,Ei,j SNMDA
j[l] (28)

where z[k] is the dendritic spine count for area k (as defined above), µE,E is the long-range connectivity strength onto724

excitatory cells (See Table 4), νDA[k] is the degree of dopamine modulation of NMDA currents for area k, κi is the725

NMDA/AMPA fraction for population i, w[k,l] is the connection strength from area l to area k, gE,Ei,j sets the long-range726

strength from population j to population i (Tables 3 and 4) and SNMDA
j[l] is the synaptic NMDA drive from population j727

in source area l.728

Similarly,729

INMDA,I,E
i[k] = z[k]µ

I,EνDA[k] κi

nsub∑
l=1

winfra[k,l]

∑
jε{E1,E2}

gI,Ei,j S
NMDA
j[l] (29)
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The total long-range current via the NMDA receptors, is simply the concatenation of the two above terms INMDA,E,E730

and INMDA,I,E .731

INMDA,LR = (INMDA,E,E , INMDA,I,E) (30)

The long-range AMPA current is calculated similarly,732

IAMPA,E,E
i[k] = z[k]µ

E,E(1 − κi)
nsub∑
l=1

wsupra[k,l]

∑
jε{E1,E2}

gE,Ei,j SAMPA
j[l] (31)

733

IAMPA,I,E
i[k] = z[k]µ

I,E(1 − κi)
nsub∑
l=1

winfra[k,l]

∑
jε{E1,E2}

gI,Ei,j S
AMPA
j[l] (32)

IAMPA,LR = (IAMPA,E,E , IAMPA,I,E) (33)

Description of dendritic currents734

The inhibitory current onto the dendrite comes from SST/CB cells and is modulated by dopamine (Table 1, equation 8)735

Idend,inhi =
∑

jε{SST1,SST2}

gGABA,dendi,j sGABAj (34)

The distal dendrites receive long-range input (from neurons in other areas), noise and background input. In addition,736

if the area receives a stimulus directly, then the external stimulus also targets the dendrites. Note that most local737

connections target the area around the soma (Markram et al. 1997; Petreanu et al. 2009). This is reflected in the model738

by having local connections exclusively target the soma compartment of pyramidal cells.739

Idend,exci,[k] = INMDA,LR
i,[k] + IAMPA,LR

i,[k] + Istimi,[k] + Inoisei,[k] + Ibackgroundi (35)

The dendritic nonlinearity is adapted from (Yang et al. 2016) and modeled as follows:740

Isoma,dend = fI(I
dend,exc, Idend,inh) = c1.

[
tanh

(
Idend,exc + c3I

dend,inh + c4

c5e−I
dend,inh/c6

)]
+ c2 (36)

where Isoma,dend is the total current passed from the dendrite to the soma, Idend,exc and Idend,inh are the total741

excitatory and inhibitory current onto the dendrite, respectively. c1 to c6 control the gain, shift, inversion point and742

shape of the nonlinear function. These parameters are set to ensure that strong inhibition to the dendrite effectively743

blocks dendritic activity, but has little effect on somatic firing if the soma is directly stimulated (See Table 4) (Marlin744

and Carter 2014).745

Application of external stimuli for tasks746

In all simulations, the first stimulus is applied for 400ms. The second stimulus (Figures 5-7) is applied 600ms after747

the removal of the target stimulus for another 400ms. The two stimuli are of equal strength and duration, although748

the results are robust to a range of stimulus strengths (See Table 4 for parameter values). For Figures 2-7 in the main749
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text, a stimulus was applied to the dendrite of excitatory population 1 in area V1. For Figures 5-7 a second stimulus750

was applied to the dendrite of excitatory population 2 of area V1. For Supplementary Figures 2 and 3, the stimuli751

were applied to area 3 of primary somatosensory cortex instead. In all equations, the target and distractor stimuli are752

designated by the term Istim.753

Total current in large-scale model754

The total current equals the sum of all long-range, local and external inputs, and intrinsic currents.755

Itotal = INMDA,LR+IAMPA,LR+INMDA,local+IAMPA,local+IGABA,local+Isoma,dend+Iadapt+Inoise+Ibg+Istim

(37)

Description of f-I curves756

The f-I (current to frequency) curve of the excitatory population is757

f(ItotalE ) =
aItotalE − b

1 − e−d(aI
total
E −b)

(38)

where rE is the firing rate of an populations of excitatory cells, ItotalE is the total input to the population, a is a gain758

factor, d determines the shape of f(ItotalE ), such that if d is large, f(ItotalE ) acts like a threshold-linear function, with759

threshold b (Abbott and Chance 2005).760

The f-I curves for the inhibitory neuron populations are modeled using a threshold-linear function761

f(Itotali ) =

{
ciI

total
i + r0i for Itotali ≥ −r0i /ci

0, otherwise

}
(39)

where ri is the firing rate of a population of inhibitory cells, Itotali is the total input to the population.762

The threshold r0i and slope ci depend on the cell type i (Bacci et al. 2003). See Table 4 for parameter values.763

The firing rates are updated as follows764

τAMPA dR

dt
= −R+ f(Itotal) (40)

for all cell types.765

Short-term synaptic plasticity766

For Figure 5, we added short-term plasticity to synapses from excitatory cells to excitatory cells and SST/CB cells as767

follows (Mongillo et al. 2008).768

dsNMDA

dt
= − s

NMDA

τNMDA
+ xu(1 − sNMDA)γNMDAγxurE (41)

dsAMPA

dt
= − s

AMPA

τAMPA
+ xuγAMPAγxurE (42)
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du

dt
=
U − u

τu
+ U(1 − u)rE (43)

dx

dt
=

1 − x

τx
− uxrE (44)

with U = 0.2, τu = 1.5s, τx = 0.2s, as in Mongillo et al. 2008. We also added a term γxu = 2.5 to account for the769

fact that the product xu is usually less then 1, and to keep firing rates similar to those in other simulations.770

Comparing the simulated and experimental patterns of delay activity771

In Figure 3, we compare the activity pattern of the model to the experimental pattern, and investigate its dependence on772

anatomical features. To shuffle anatomical connections, we shuffled connections within rows of the FLN matrix, so773

that the distribution of connections and connection strengths to each area remained constant, with the identity of the774

connections changing. The same reordering was applied to the SLN matrix. D1 receptor densities and spine counts775

were shuffled separately. Results were visualised using a custom version of a Raincloud Plot (Allen et al. 2019) to776

enable concurrent visualisation of the distribution and individual simulation results.777

Lesioning of cortical areas778

In Figure 4, we simulate the effects of a lesion to individual cortical areas. We do this by removing all input and779

output connections of the lesioned area in the connectivity matrices WE,E and W I,E . For the statistical analysis of the780

relationship between anatomical features and visual effects, we removed areas V1 and V2 from the analysis. This was781

due to the fact that these areas were crucial to the propagation of the visual stimulus, but not working memory per se782

(Fig 4 and Fig S3). We performed a stepwise-linear regression approach. However, in order to allow for fair comparison783

between the anatomical predictors, for Fig 4D, we show the t-statistics for individual linear regression models with each784

anatomical predictor separately.785

Simulated optogenetic inhibition of SST2 populations786

In Figure 6, we simulate the effects of optogenetic inhibition to the SST2 populations in cortical areas in the frontoparietal787

network. The frontoparietal network is defined according to the results of Leavitt et al. 2017, as in Figure 3. To do this,788

we apply an external inhibitory stimulus of 0.1nA to these populations for the duration of the distractor stimulus. This789

may be possible experimentally (initially in mice), by identifying cells that are both active to the distractor stimulus (via790

a cfos immediate early gene promotor) and expressing SST, and optogenetically inhibiting them (Abbas et al. 2018; Liu791

et al. 2012).792

Dynamics and connectivity within VTA793

For Figure 7, we investigate whether the dynamics of dopamine release can be learned in order to selectively maintain794

the desired working memory content. Note both dopaminergic and GABAergic cells in the VTA receive excitatory795

input from the cortex, while the majority of inhibition to dopaminergic cells comes from local VTA GABAergic cells796

(Soden et al. 2020).797
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The total current input to the dopamine cells in VTA is

ItotalDA = IbgDA +

nareas∑
k=1

2∑
j=1

cvta,ctxEj gvta,ctxDA,Ej
SkNMDA,Ej +

nareas∑
k=1

2∑
j=1

cvta,ctxEj gvta,ctxDA,Ej
SkAMPA,Ej + gvtaDA,IS

vta
GABA

where gvta,ctxDA,Ej
sets the maximum strength of cortical-VTA connections. cvta,ctxEj is the fraction of synapses in an up798

state (Soltani and Wang 2006), and is updated via reinforcement learning (see below). Initial values are cvta,ctx1 = 0.7,799

cvta,ctx2 = 1. gvta,ctxDA,Ej
= 0.047nA and gvtaDA,I = −0.55nA.800

The input to VTA inhibitory cells is801

Itotalvta,I = Ibgvta,I +

nareas∑
k=1

2∑
j=1

cvta,ctxEj gvta,ctxI,Ej
SkNMDA,Ej +

nareas∑
k=1

2∑
j=1

cvta,ctxEj gvta,ctxI,Ej
SkAMPA,Ej

where gvta,ctxI,Ej
= 0.02nA802

Synaptic inputs to the VTA inhibitory are driven by facilitating synapses (Soden et al. 2020), as in equations 41-44, but803

with x = 0.87 held constant and τu = 200ms804

The firing rates of the dopamine cells rDA as in equations 37 and 39. The firing rates of GABAergic cells are updated805

as in equations 38-39.806

Cortical dopamine availability807

For Figure 7, dopamine availability in the cortex λDA depends on the firing rates in the dopamine neurons as follows:

dλDA

dt
= −λ

DA

τDA
+ γDArDA

where τDA = 3s and γDA = 0.05.808

Reward-based learning809

The fraction of cortex to VTA synapses in the up state is updated according to the outcome of the previous trial, using810

the simplified learning rule of Soltani and Wang 2006811

cEj(T + 1) = cEj(T ) + α[1 − cEj(T )]

if target j is selected and rewarded and

cEj(T + 1) = cEj(T ) − α[cEj(T )]

if target j is selected and not rewarded. T is the current trial and α = 0.2 is the learning rate.812
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Table 4. Parameters for Numerical Simulations

Parameter Description Value

gselfE,E , gPV,E , gselfSST,E ,

gcrossSST,E , gV IP,E

Excitatory synaptic

strengths

0.18nA, 0.174nA,

0.0435nA, 0.0435nA,

0.058nA

gminEsoma,PV
, gmaxEsoma,PV

,

gPV,PV

PV synaptic strengths -0.001nA, -0.4nA,

-0.18nA

gminEdend,SST
, gmaxEdend,SST

,

gPV,SST , gV IP,SST

SST/CB synaptic

strengths

-0.09nA, -0.11nA,

-0.17nA, -0.1nA

gSST,V IP VIP/CR synaptic

strengths

-0.05nA

τNMDA, τAMPA E synaptic time constants 60ms,2ms

τGABA, τGABA,dend I synaptic time constants 5ms, 10ms

τa adaptation time constant 100ms

γNMDA, γAMPA, γI synaptic rise constants 1.282, 5, 2

κPV , κother NMDA
NMDA+AMPA fraction 0.8, 0.9

zmin Min spine val 0.45

σnoise std. dev. of noise 0.005nA

IbgEsoma , IbgiεInh, IbgEdend Background inputs 0.31nA, 0.30nA, 0.03nA

c1−6 Dendrite parameters 0.12nA, 0.13624nA, 7,

0nA, 0.00964nA, 0.02nA

gaPV , gaother Adaptation strength 0nA, -0.004nA

a, b, d f-I curve (E) 0.135 Hz/nA, 54Hz,

0.308s

cSST,V IP , r0SST,V IP f-I curve (SST, VIP) 132Hz/nA, 33Hz

cPV , r0PV f-I curve (PV cells) 330Hz/nA, 95Hz

b1 rescale FLN 0.3

gLR,selfE,E , gLR,crossE,E Long-range E targets 0.9, 0.1

gLRPV,E , gLRSST,E , gLRV IP,E Long-range I targets 0.31, 0.22, 0.47

gLR,FEFPV,E , gLR,FEFSST,E ,

gLR,FEFV IP,E

Long-range I targets FEF 0.2, 0.1, 0.7

bo, co D1 occupancy 2, 1

bN , cN , α DA-NMDA modulation 0.35, 10, 0.6

bM , cM , gmE , gmI DA-M current 0.85, 14, -0.5, 0

µE,E , µI,E Long-range connectivity 1.45, 2.24

Istim target/distractor stimulus 0.1nA (main figures),

0.2nA (Figs S2 and S3)

813
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Figure S1: Exemplary coronal sections through the macaque brain and processed for visualization of dopamine D1 and D2 receptors
by means of quantitative in-vitro receptor autoradiography. Note, that D2 receptor density in cortex is so low, that it is not detectable
by means of the here applied method. Scale bar codes for receptor densities in fmol/mg protein.
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Figure S2: Dopamine release enables distributed somatosensory working memory. A) Structure of the task. The cortical network
was presented with a stimulus, which it had to maintain through a delay period. The tactile stimulus is presented to primary
somatosensory cortex (area 3). B, left) Mean firing rate in the frontoparietal network at the end of the delay period, for different
levels of dopamine release. There is an inverted-U relationship between dopamine release and delay period activity across the
frontoparietal network, as for visual working memory. B, right) Mean delay-period activity of cortical areas as a function of
dopamine release. All areas shown display persistent activity in experiments (Leavitt et al. 2017). C) Activity is shown across the
cortex at different stages in the working memory task (left to right), with increasing levels of dopamine release (from top to bottom).
Red represents activity in the excitatory population sensitive to the location of the target stimulus. Very low or very high levels of
dopamine release resulted in reduced propagation of stimulus-related activity to frontal areas and a failure to engage persistent
activity. Mid-level dopamine release enables distributed persistent activity. D) Timecourses of activity in selected cortical areas.
The horizontal bars indicate the timing of cue (red) input to area V1. Activity in early somatosensory areas such as area 3 peaks in
response to the stimulus, but quickly decays away after stimulus removal for all levels of dopamine release. In contrast, there is
dopamine-dependent persistent activity in area OPRO. E) The pattern of activity at the end of the delay period is highly overlapping
following visual and somatosensory working memory tasks. DA, cortical dopamine availability.
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A) B)

Figure S3: Lesions to visual areas do not disrupt somatosensory working memory. A) Lesions to areas such as 46d and LIP led to
reduced delay period firing across for all levels of dopamine release. Lesions to ares 3 and 2 of somatosensory cortex disrupted the
ability to perform the somatosensory working memory task. In contrast, lesions to visual areas such as V1 did not significantly affect
somatosensory working memory. B) Map showing the severity of lesions to cortical areas on somatosensory working memory. More
severe effects are shown in deeper red.
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Figure S4: Activity-silent working memory without short-term plasticity in local prefrontal synapses. Reactivation of latent working
memory representations was possible upon pinging the system, with short-term plasticity only on connections from neurons in
sensory areas.
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Figure S5: Distractor-resistance depends on the high dendritic inhibition. We identified the model behaviour for different dopamine
levels, across different levels of dendritic and somatic inhibition. Consistently across dopamine levels, higher somatic, and lower
dendritic inhibition was associated with distractible working memory (blue). In contrast, lower somatic, and higher somatic
inhibition was associated with distractor-resistant working memory (red). High dendritic and high somatic inhibition results in no
persistant activity (white). The levels of dendritic and somatic inhibition associated with the standard dopamine modulation used in
the rest of the paper marked by a black square. Note that high PV modulation by dopamine results in lower PV inhibition of the soma.
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