1 The structural basis of the oncogenic mutant K-

2 Ras4B homodimers

3

4 Kayra Kosoglu¹, Meltem Eda Omur¹, Hyunbum Jang², Ruth Nussinov^{2,3}, Ozlem

5 Keskin⁴*, Attila Gursoy⁵

6

⁷ ¹ Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, 34450

- 8 Sariyer Istanbul, Turkey.
- 9 ² Computational Structural Biology Section, Frederick National Laboratory for Cancer
- 10 Research, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A.
- ³ Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine,
- 12 Tel Aviv University, Tel Aviv 69978, Israel
- ⁴ Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu,
- 14 34450 Sariyer Istanbul, Turkey
- ⁵ Department of Computer Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer
- 16 Istanbul, Turkey
- 17

18 * Corresponding author

- 19 E-mail: <u>okeskin@ku.edu.tr</u> (OK)
- 20
- 21 Current address for MEO: Vancouver Prostate Centre, University of British Columbia,
- 22 Vancouver V6H 3Z6, Canada

24 Abstract

25 Ras proteins activate their effectors through physical interactions in response to the 26 various extracellular stimuli at the plasma membrane. Oncogenic Ras forms dimer and nanoclusters at the plasma membrane, boosting the downstream MAPK signal. It was 27 28 reported that K-Ras4B can dimerize through two major interfaces: (i) the effector lobe 29 interface, mapped to Switch I and effector binding regions; (ii) the allosteric lobe interface 30 involving α 3 and α 4 helices. Recent experiments showed that constitutively active, oncogenic 31 mutant K-Ras4B^{G12D} dimers are enriched in the plasma membrane. Here, we perform 32 molecular dynamics simulations of K-Ras4B^{G12D} homodimers aiming to quantify the two 33 major interfaces in atomic level. To examine the effect of mutations on dimerization, two 34 double mutations. K101D/R102E on the allosteric lobe and R41E/K42D on the effector lobe interfaces were added to the K-Ras4B^{G12D} dimer simulations. We observed that the effector 35 lobe K-Ras4B^{G12D} dimer is stable, while the allosteric lobe dimer alters its helical interface 36 37 during the simulations, presenting multiple conformations. The K101D/R102E mutations 38 slightly weakens the allosteric lobe interface. However, the R41E/K42D mutations disrupt the 39 effector lobe interface. Using the homo-oligomers prediction server, we obtained trimeric, 40 tetrameric, and pentameric complexes with the allosteric lobe K-Ras4B^{G12D} dimers. However, 41 the allosteric lobe dimer with the K101D/R102E mutations is not capable of generating 42 multiple higher order structures. Our detailed interface analysis may help to develop inhibitor 43 design targeting functional Ras dimerization and high order oligomerization at the membrane 44 signaling platform.

45

47 Introduction

48 Ras proteins are small GTPases which couple cell-surface receptors to downstream 49 effectors regulating various cellular processes including cell cycle progression, cell 50 differentiation and survival, cytoskeletal organization, cell polarity and movement, and 51 vesicular and nuclear transport. Ras proteins cycle between two conformations: inactive GDP-52 bound and active GTP-bound forms [1, 2]. The extracellular stimuli lead to the activation of a 53 regulatory protein, guanine nucleotide exchange factor (GEF). GEFs induce the release of 54 guanosine diphosphate (GDP) from Ras and permits binding of guanosine triphosphate (GTP) 55 [3, 4]. Upon GTP binding, a conformational change occurs in downstream effector binding 56 region which allows the interaction of Ras with its effector proteins including Raf kinase, 57 phosphatidylinositol 3-kinase (PI3K), and Ral guanine nucleotide dissociation stimulator 58 (RalGDS) [5-8]. The activity of Ras is downregulated by GTPase activating proteins (GAPs). 59 Ras proteins have intrinsic GTPase activity, which means that they can hydrolyze GTP to 60 GDP. This hydrolysis reaction is extremely slow [2]. GAPs induce the GTPase activity of 61 Ras, thereby accelerates the process. Ras mutations that impair GTPase activity are 62 insensitive to GAPs, rendering mutant Ras proteins persistent in their active GTP-bound state, 63 thereby prolonging downstream signaling associated with oncogenic cell growth [3, 4]. 64 The three human Ras genes encode highly similar proteins: H-Ras, N-Ras and K-Ras. 65 The two K-Ras proteins arise from alternative splicing at their C-termini: K-Ras4A and K-Ras4B [9]. All have 189 amino acids except K-Ras4B that has 188 amino acids. The catalytic 66 67 domain contains functional P-loop (residues 10-17), Switch I (residues 30-38), and Switch II 68 (residues 60-76) regions, which are responsible for GTP hydrolysis and effector binding. 69 Upon dissociation of GDP and subsequent GTP binding, the conformational change is 70 observed in two regions of Ras; Switch I and Switch II. Switch I is responsible for interaction 71 with GAP and other effector proteins, while Switch II is involved in GEF binding. While the

72	catalytic domain (residues 1-166) of the four isoforms have high identity among each other (\sim
73	89%), the hypervariable region (HVR) of the four isoforms has low sequence identity (~ 8%)
74	(Fig 1) [10]. Despite being highly homologous, these isoforms may prefer different binding
75	partners, and have unique physiological functions [11]. K-Ras4B is confirmed as the most
76	frequently mutated isoform in RAS-driven cancers (86%), while N-Ras (11%) and H-Ras
77	(3%) are accordingly less mutated isoforms from The Catalog of Somatic Mutations in Cancer
78	(COSMIC) [12]. 98% of oncogenic Ras have amino acid mutations at the active site residues
79	G12, G13, and Q61 [1, 11, 13]. The mutation frequencies vary in K-Ras4B. G12 is the most
80	frequently mutated residue (89%), followed by G13 (9%) and Q61 (1%) residues [14]. G12
81	most frequently mutates to aspartic acid, G12D (36%), among three frequent mutations G12C
82	(14%) and G12V (23%) [9]. These mutations at conserved sites impair the intrinsic and GAP
83	catalyzed hydrolysis of GTP [15, 16].
84	
85	Fig 1. Comparison between Ras isoforms. Sequence similarity of the Ras catalytic domain
86	via multiple sequence alignment of four Ras isoform proteins.

87

88 Ras proteins have been defined as monomeric GTPases for a long time. Several studies have provided compelling evidences for existence of their higher order structures [17-89 90 25]. Nanoclusters of receptors in cell membranes have been known for a while. N-Ras-GDP 91 was found to form dimers in a model membrane [26]. H-Ras could dimerize on membrane 92 surfaces, and the Switch II region was involved in the dimerization [27]. The Raf kinases are 93 important molecules in Ras signaling pathway. It is known that Raf dimerization plays a 94 critical role in Ras dependent Raf activation [17, 28, 29]. Raf proteins are recruited to the cell 95 membrane upon Ras activation [22, 29-31]. Accordingly, the recruitment results in 96 dephosphorylation of inhibitory sites and the phosphorylation of activating sites within kinase

97 domain. It is believed that Ras dimerization contributes to Raf dimerization and Raf activation 98 [29, 32]. Spencer-Smith et al. [33] showed that a synthetic monoclonal protein, binding to the 99 α 4- β 6- α 5 region of H-Ras and K-Ras disrupting Ras dimerization. Ambrogio *et al.* showed 100 that dimerization was required to maintain the oncogenic function of mutant K-Ras [34]. We 101 recently showed that K-Ras4B can form stable dimers through allosteric lobe and this 102 dimerization enhances but not necessary for downstream signaling [19-22]. Despite all these 103 efforts, the mechanism how K-Ras4B dimerizes and promotes Raf activation is yet to be 104 discovered.

105 We have previously showed that wild-type K-Ras4B can form homodimers through 106 both allosteric and effector lobe dimer interfaces in silico and in vitro [19-22]. The allosteric 107 lobe dimer interface involves $\alpha 3$ and $\alpha 4$ helices (hereafter referred to as α -homodimer), while 108 the effector lobe dimer interface contains a shifted β -sheet extension between β 2 strands 109 (hereafter referred to as β -homodimer) (Fig 2). In this study, we adopted both homodimer 110 interfaces from wild-type K-Ras4B dimers and introduced the oncogenic G12D mutation to 111 K-Ras4B dimers. Explicit molecular dynamics (MD) simulations were performed on 112 oncogenic mutant K-Ras4B^{G12D} α -homodimer containing the α 3 and α 4 helical interface and 113 β -homodimer assembled through a shifted β -sheet extension. To test stability of the oncogenic 114 dimers, we applied two double mutations, K101D/R102E on the α -homodimer interface and 115 R41E/K42D on the β -homodimer interface studied in previous experiments [20], to the oncogenic dimer model systems. Two additional mutant systems, K-Ras4B^{G12D/K101D/R102E} α-116 homodimer (hereafter referred to as mutant α -homodimer) and K-Ras4B^{G12D/R41E/K42D} 117 118 (hereafter referred to as mutant β -homodimer) were also subject to explicit MD simulations in 119 solution. Presumably, we expect that the charge converted mutations at the dimeric interface 120 directly interfere with the dimer association. In our simulations, we observed that both 121 oncogenic K-Ras4B^{G12D} α - and β -homodimers are stable, with the oncogenic β -homodimer

122	being more stable than the oncogenic α -homodimer, consistent with our previous study of the
123	wild-type K-Ras4B dimer systems [19, 21]. However, the double mutations R41E/K42D
124	introduced in the effector lobe interface are more disruptive than the double mutations
125	K101D/R102E in the allosteric lobe interface. Both mutant α - and β -homodimers are less
126	stable than the oncogenic homodimers, being prone to interrupt dimer association.
127	
128	Fig 2. Structure of K-Ras4B homodimers and interface residues. The K-Ras4B α -
129	homodimer involving the symmetric $\alpha 3 - \alpha 4/\alpha 3 - \alpha 4$ helical alignment (upper row) and the β -

- 130 homodimer containing a shifted β -sheet extension between $\beta 2$ strands (lower row).
- 131

132 Materials and methods

133 Computational prediction of K-Ras4B dimers

The dimeric structures of the K-Ras4B were modeled by PRISM [38-40], which is a template-based protein-protein structure prediction algorithm. The outputs of PRISM were ranked based on the binding energy scores (BES). The GTP-bound K-Ras4B structure was obtained from the Protein Data Bank (PDB) (PDB ID: 3GFT). Then, the interface regions of the predicted dimers were identified by HotRegion which also gives the predicted hot spot clusters [41]. HotRegion identifies the important regions for the stability of protein-protein complexes.

141

142 **Determination of the residues to be mutated**

143 The atomic interactions of K-Ras4B homodimers in the GTP-bound state were 144 investigated to the interface residues to be mutated. The change in binding free energy ($\Delta\Delta G$) 145 upon mutations was calculated by FoldX which estimates the stability effect of a mutation by 146 using an empirical method [42]. If the energy value of a mutation is $\Delta\Delta G > 0$ kcal/mol, then 147 that mutation will destabilize the structure, if the reverse effect is obtained then that mutation 148 will stabilize the structure.

149

150 Atomistic MD simulations

151 A total of four initial configurations, two α-homodimers and two β-homodimers of K-152 Ras4B-GTP, were subjected to the MD simulations. Our simulations closely followed the 153 protocol reported in previous studies [21, 22, 43-45]. All-atom additive CHARMM36 force 154 field [46] was used, and simulations were performed by NAMD [47]. Each system was run 155 for 300 ns resulting in a total of 1.2 µs MD simulations. K-Ras4B control and mutant systems 156 were neutralized by addition of 56 Na⁺ and 40 Cl⁻, 64 Na⁺ and 40 Cl⁻ ions, respectively. Mg²⁺ 157 ions are kept. Our protein complexes were simulated in $90 \times 90 \times 90$ Å³ virtual water boxes 158 created by using TIP3P explicit solvent model [48]. Before production runs, 10,000 steps of 159 minimization and 50,000 steps of dynamics runs were applied to our system. Dynamics were 160 run under NPT ensemble. The step size was 2 fs. To calculate the long-range electrostatic 161 interaction, particle mesh Ewald (PME) method was used. In the production runs, the 162 Langevin temperature control maintained the constant temperature at 310 K, and the pressure 163 was kept at 1 atm. The simulated trajectories were analyzed using CHARMM [49] and 164 Chimera [50].

165

166 Binding free energy calculation for the Ras dimers

167 To investigate the strengths of the interactions within the systems, we calculated 168 binding free energies using the molecular mechanics energies combined with the generalized 169 Born (GB) and surface area continuum solvation (MM-GBSA) method [51]. The average of 170 gas-phase and solvation free energy values were taken throughout 300 ns simulations. The

171	calculations were performed by CHARMM36 programming program. The average bindin	g
172	free energy is formulated as a sum of the gas phase contribution, the solvation energy	
173	contribution and the entropic contribution which is shown as:	
174		
175	$\Delta G = \Delta G_{gas} + \Delta G_{sol} - T \Delta S. \tag{1}$)
176		
177	The change in binding energy was calculated with the following formula for K-Ras4B din	ner
178	systems:	
179		
180	$\Delta G_b = \Delta G_b^{dimer} - \left(\Delta G_b^{monomer1} + \Delta G_b^{monomer2}\right). \tag{2}$)
181		
182	Results	
183	Selection of the mutant K-Ras4B dimeric systems	
184	In the initial structures of α - and β -homodimer models generated by PRISM, we	

185 extracted the interface residues (Table 1) and defined the most critical residues with their 186 corresponding energy scores calculated by FoldX for both interfaces (Table 2). These results 187 show that some residues are more critical in dimerization. I21, I24, Q25, H27, Y40, and R41 188 are found to be computational hot spots at the β-homodimer, and H94, R97, L133, S136, and 189 Y137 are found to be computational hot spots at the α-homodimer interfaces according to 190 HotRegion. Based on our previous studies [19, 20], we selected E98R, K101A/R102A, and 191 K101D/R102E mutations on the allosteric lobe interface, and S39/Y40A, R41A/K42A, and 192 R41E/K42D mutations on the effector lobe interface. In our previous studies [20], we tested 193 these mutants in vitro using the Bimolecular fluorescence complementation (BiFC) system, 194 investigating the Ras-Ras interactions in HEK293T cells. When there was an interaction

195	between Ras proteins, a strong fluorescence signal was expected. The signals were mainly
196	around the plasma membrane where K-Ras4B was located, suggesting the K-Ras4B proteins
197	interact. The cells expressing K101D/R102E double mutants (on top of G12D) yielded less
198	fluorescence signals compared to the cells expressing solely (K-Ras4B ^{G12D} , suggesting that
199	K101/R102 residues play a role in interaction between K-Ras4B proteins [20]. According to
200	our BiFC experiments, we selected two mutations with opposite charge, K101D/R102E for
201	the allosteric lobe interface and R41E/K42D, for the effector lobe interface, and introduced
202	them to the oncogenic KRas4B ^{G12D} α - and β -homodimers, respectively. There were four
203	simulation systems containing two allosteric lobe interface dimers, oncogenic K-Ras4BG12D
204	and mutant K-Ras4B ^{G12D/K101D/R102E} α -homodimers, and two effector lobe interface dimers,
205	oncogenic K-Ras4B ^{G12D} and mutant K-Ras4B ^{G12D/R41E/K42D} β -homodimers.

Table 1. Interface residues defined in the α- and β-homodimer structures.

·		
208	K-Ras4B-GTP	Interface residues
209	α-homodimer	E91, H94, H95, R97, E98, K101, R102, D105, S106, E107, K128, L133, R135, S136, Y137
210		
211	β-homodimer	I21, I24, Q25, H27, V29, E31, D33, I36, E37, D38,S39, Y40, R41, K42, Q43, L52
212		
213		
214		
215		
216		
217		

K-Ras4B-GTP	Mutations	ΔΔG (kcal/mol)
	S39A	0.0756
	Y40A	3.001
	S39A/Y40A	3.069
β-homodimer	R41E	9.931
p-nomounier	K42D	5.288
	R41E/K42D	15.894
	R41A	3.251
	K42A	3.192
	R41A/K42A	7.168
	E98R	8.04
	E98Q	3.393
	K101D	7.22
α-homodimer	R102E	5.587
	K101D/R102E	12.105
	E98A	3.831
	K101A	4.266
	R102A	3.844
	K101A/R102A	6.49

218 Table 2. K-Ras4B dimer binding free energy calculation by FoldX.

230

231 Stabilities of the oncogenic K-Ras4B^{G12D}-GTP α- and β-

232 homodimers

233 During the simulations, we observed that both oncogenic K-Ras4B^{G12D}-GTP α - and β -234 homodimers are stable. As can be seen from the time-series of snapshots (Fig 3), no 235 immediate dissociation of the dimers was monitored. However, we encountered large 236 fluctuations in the Switch I and II regions during the simulations (S1A Fig). Of interest 237 noticed for the oncogenic β-homodimer is that one of the K-Ras4B monomer yielded 238 relatively larger fluctuations in the Switch I region than the other monomer. Large 239 fluctuations of the Switch I loop are eminent when compared to the mutant β -homodimer (S2 240 Fig). The fluctuations induce conformational changes of the Switch I loop, which oscillates 241 between the closed and open catalytic site conformations. Similar observations were reported for both wild-type and mutant H-Ras-GTP in the open and closed states using the MDsimulations and crystallography experiments [52].

244

Fig 3. Simulated systems of the oncogenic K-Ras4B^{G12D} dimer complex. Time-series of
the oncogenic α-homodimer (upper row), and that of the oncogenic β-homodimer.

247

248 For the oncogenic α -homodimer, the salt bridge interactions are a major driving force 249 in stabilizing the dimer complex. Immediate drifting away of the proteins from the complex 250 can be prevented due to strong salt-bridge interactions between the K-Ras4B monomers. To 251 identify intermolecular interacting residue pairs that are responsible for the dimeric 252 association, the atomistic interactions at the interfaces were investigated. We observed 253 significant intermolecular salt bridge interactions at the interfaces (Table 3). For the 254 oncogenic α-homodimer, E107-K101 and K128-E91 are the most frequently observed pairs of 255 the salt bridge interaction at the interface. For the oncogenic β-homodimer, D37-K41 and 256 D33-K42 are the most frequently observed pairs of the salt bridge interactions at the interface. 257 In addition to the salt bridge formation, the intermolecular backbone hydrogen bonds (H-258 bonds) add to the stability of the β -homodimer. The H-bond interactions formed by the 259 interacting pairs, S39-S39 and D37-K41, strongly retain the β -sheet dimer interface. These 260 residues constitute the shifted β -sheet extension interface, consistent with previous 261 observations [19, 21]. 262 263 264

265

268	Dimer systems	Salt bridge interacting pairs M1 - M2 (%)
269 270 271	K-Ras4B ^{G12D} α-homodimer	E107 - K101 (34.8) K128 - E91 (38.3) E98 - K101 (18.5) K101 - E98 (6.3)
272 273	K-Ras4B ^{G12D} β-homodimer	D38 - K42 (51.2) K42 - D33 (47.5) E37 - R41 (41.9) D33 - K42 (40.9)
274 275 276	K-Ras4B ^{G12D/K101D/R102E} α-homodimer	D126 - K128 (7.6) K128 - D126 (6.6) E91 - R135 (7.0) R135 - E91(6.0)
277		K155 - E91(0.0)

267 Table 3. Salt bridge formations throughout the simulations.

278 Salt bridge formations throughout the simulation trajectories for the oncogenic

279 K-Ras4B^{G12D} α - and β -homodimers, and for the mutant K-Ras4B^{G12D/K101D/R102E}

280 α-homodimer. M1 and M2 denotes monomer 1 and 2, respectively.

281

282 Comparisons of oncogenic K-Ras4B^{G12D} dimers with mutant K-

283 Ras4B^{G12D/K101D/R102E} and K-Ras4B^{G12D/R41E/K42D} dimers

To investigate stabilities of the K-Ras4B dimeric systems, we calculated the center of 284 285 mass distance between two monomers in each dimer (Fig 4). For the oncogenic α -homodimer, the center of mass distance is measured ~35 Å, although large fluctuations in the distance are 286 287 observed at $t \sim 130$ ns. The fluctuations occur due to rearrangement of the helices at the dimer 288 interface, resulting that the dimer slightly alters the interface, shifting to an asymmetric helical 289 interface (Fig. 3). In contrast, the oncogenic β-homodimer stably maintains the center of mass 290 distance \sim 33 Å throughout the simulation. For the mutant α -homodimer, we also observed 291 large fluctuations in the distance at $t \sim 230$ ns due to rearrangement of the allosteric helices. 292 Similar to the oncogenic α -homodimer, the mutant α -homodimer also yields the asymmetric helical interface, retaining the dimeric association. However, for the mutant β-homodimer, we 293

294 observed that the dimer is not stable, separated into two monomers at the early stage of the 295 simulations. The separation is caused by the electrostatic repulsions between β 2 strands, 296 exerted from the mutated residues with opposite charges. After the separation, each separated 297 monomer is stable, exhibiting less fluctuations in the Switch I and II regions as compared to 298 those in the dimeric complex (**S1 Fig**).

299

300 **Fig 4. The center of mass distance**. Time series of the center of mass distance between two 301 monomers for the oncogenic K-Ras4B^{G12D} α- and β-homodimers (upper panels), and that for 302 the mutant K-Ras4B^{G12D/K101D/R102E} α-homodimer and K-Ras4B^{G12D/R41E/K42D} β-homodimer 303 (lower panels).

304

305 To identify intermolecular interacting residue pairs for the mutant α -homodimer, we 306 also examined the atomistic interactions at the interfaces (Table 3). We only investigated the 307 residue pairs for the mutant α -homodimer, since the mutant β -homodimer is separated, thus 308 no interface residue pairs. The residue pairs for the salt bridge interactions are different 309 compared to those in the oncogenic α -homodimer. This suggests that helices are aligned in a 310 different way at the interface, although both α -homodimers favor the similar asymmetric 311 helical interface. We found that 6 % of the residues are observed to be conserved 90% of the 312 time, 13% of the residues are observed to be conserved 70% of the time for the mutant α -313 homodimer.

314

315 Clustering analysis for K-Ras4B homodimers

316 To provide the best representative model of K-Ras4B dimer complexes, we clustered 317 the ensembles of the conformations over the simulation trajectories (**Fig 5**). We obtained 5 318 representative clusters for the oncogenic α -homodimer. The first and second clusters with

34.0% and 14.0% populations, respectively, exhibit the similar dimeric interactions using the 319 320 α 3- α 4- α 5 helices from one monomer and the α 2- α 3 helices from the other monomer. Unlike 321 the conformations from two highly populated clusters, the representative conformations from 322 next three less populated clusters are similar to each other. The initial dimeric interface is 323 formed by the symmetric $\alpha 3 - \alpha 4/\alpha 3 - \alpha 4$ helical alignment. During the course of the simulation, 324 the symmetric helical alignment (with 31% population) is steadily converted to an asymmetric 325 $\alpha 3 - \alpha 4 - \alpha 5 / \alpha 2 - \alpha 3$ helical alignment (with 48% population) (S3 Fig). The dimer adopts the 326 asymmetric helical alignment using the $\alpha 3 - \alpha 4/\alpha 3$ and $\alpha 5/\alpha 2$ interfaces. The asymmetric $\alpha 3$ -327 $\alpha 4/\alpha 3$ helical interface is commonly observed in the K-Ras4B dimer with the allosteric lobe 328 interface [21, 22]. The occurrence frequency of residue pairs that contributes interface 329 formation in the oncogenic α -homodimer are given in S1 Table. We also obtained 5 330 representative clusters for the oncogenic β -homodimer, and found that unlike the α -331 homodimer, the representative conformations from each cluster are similar to each other. The 332 oncogenic β -homodimer retains the shifted β -sheet extension interface with relatively high 333 affinity. We summarized the occurrence frequency of residue pairs that contributes interface 334 formation in the oncogenic β -homodimer in S2 Table.

335

Fig 5. Clustering analysis. Snapshots and populations of the five representatives for the most populated conformational clusters for the oncogenic K-Ras4B^{G12D} α-homodimer (left column) and β-homodimer (middle column). The same for the mutant K-Ras4B^{G12D/K101D/R102E} αhomodimer (right column).

340

For the mutant α-homodimer, we provide 5 clusters representing the best models for the mutant dimeric complex (**Fig 5**). No clusters for the mutant β-homodimer were obtained due to separation. Similar to the oncogenic α-homodimer, the mutant α-homodimer also

344	adopts the asymmetric helical alignment using the $\alpha 3-\alpha 4/\alpha 3$ interface, abandoning the initial
345	symmetric $\alpha 3 - \alpha 4/\alpha 3 - \alpha 4$ interface (S4 Fig). However, no $\alpha 5/\alpha 2$ interface was observed. The
346	representative clusters were sampled during the simulation in the order of their emergences,
347	cluster 4 \rightarrow cluster 5 \rightarrow cluster 1 \rightarrow cluster 2 \rightarrow cluster 3.

348

349 Binding energies for oncogenic K-Ras4B^{G12D} dimers

350 The binding free energies of the dimer systems were calculated by using the MM-351 GBSA method. The binding free energy of the oncogenic α -homodimer seems to be less 352 favorable than the oncogenic β -homodimer (**Table 4**), suggesting that the allosteric lobe 353 interface is not strong as the effector lobe interface, consistent with the wild-type case [19, 354 21]. The α -homodimer undergoes rearrangements of the allosteric helical interactions during 355 the simulations, contributing to the enthalpy changes for individual clusters. We observed 356 that, indeed each cluster has considerably different enthalpy changes for the oncogenic α -357 homodimer. These are specifically -54.8, -50.9, -44.1, -40.2 and -65.3 kcal/mol for cluster 1-358 5, respectively. Therefore, the initial complex was the most favorable one, then the energy 359 increased and after 150 ns, it became stable for clusters 1 and 2 (S5 Fig). In contrast, the 360 enthalpy change is relatively stable for the oncogenic β -homodimer.

361

362 Table 4. MM-GBSA results for the oncogenic K-Ras4B^{G12D} dimer complexes.

K-Ras4B ^{G12D}	ΔH (kcal/mol)	-T∆S (kcal/mol)	ΔG (kcal/mol)
α-homodimer	-49.6 ± 13.7	71.0	22.1
β-homodimer	-68.1 ± 8.2	75.9	7.8

363

366 Possible higher order complexes for the alpha control

367 K-Ras4B forms a functional dimer through the allosteric lobe interface. The $\alpha 3 - \alpha 4/\alpha 3$ -368 α 4 helical alignment was defined as a major K-Ras4B allosteric lobe interface, while the α 4-369 $\alpha 5/\alpha 4-\alpha 5$ helical alignment was appeared to be a minor interface [19, 21, 22, 53]. We provide 370 some possible higher order homo-complexes for the oncogenic α -homodimers (Fig 6, S6 Fig). 371 We used the cluster representatives from the Fig 5 (left column) as well as the minor α -372 homodimer structure using the $\alpha 4 - \alpha 5/\alpha 4 - \alpha 5$ helical interface from previous studies [19]. We 373 construct some possible trimers, tetramers, and pentamers, which are obtained by the 374 superimposition of the dimers. We selected the complex structures that have the C-termini 375 facing to the same surface, where each monomer will be bound to the membrane. All homo-376 complexes were generated by HSYMDOCK web-server [54]. As an initial input, we used 377 representative 1 and representative 3, 47.6% of all visited conformations. Representative 2 is 378 very similar to representative 1 (iRMSD < 1.614 Å); therefore, we did not consider it. 379 Interface residues are obtained by HotRegion web-server [41], and corresponding helices 380 were indicated. According to our results, trimer, tetramer, and pentamer formation occur via 381 α 3- α 4 and α 5 interfaces, exposing the effector binding sites. When we tried to form the higher 382 order oligomers starting with the cluster representatives of the mutant α -homodimers, we 383 could not manage to obtain regular trimers, tetramers or pentamers. This might suggest that 384 although the mutant α -homodimer is plausible, it is not possible to construct higher order 385 structures from them.

386

Fig 6. The predicted higher order homo-complexes. The trimer, tetramer and pentamer
 complexes using symmetry operations with the oncogenic K-Ras4B^{G12D} α-homodimer.

389

390

391 **Discussion**

392 Monomeric Ras can bind Raf, however Raf should act as a dimer, which can be 393 facilitated by Ras dimerization [18, 21]. Using *in silico* and *in vitro* methods, we previously 394 demonstrated that wild-type K-Ras4B in the GTP-bound state can dimerize through two 395 major interfaces involving the allosteric and effector lobe interfaces [19, 21, 22]. The 396 allosteric lobe interface yields a functional α -homodimer, since the effectors can bind to the 397 exposed effector binding site. In contrast, the effector lobe interface produces a nonfunctional 398 β-homodimer, since the dimer shares the same interface with the effectors. K-Ras4B favors to 399 form a major α -homodimer using α 3 and α 4 helices at the allosteric lobe, but the population 400 of a dimer involving $\alpha 4$ and $\alpha 5$ helices is low. A major K-Ras4B β -homodimer contains a 401 shifted β -sheet extension between β 2 strands. The β -homodimer exhibits relatively higher 402 affinity than the α -homodimer. A minor K-Ras4B β -homodimer reveals a β -sandwich 403 interface involving side-chain interactions of β 1, β 2, and β 3 strands. The β -sandwich interface 404 emerged from the exact β -sheet alignment due to H-bonds mismatch between β 2 strands [19, 405 21]. A similar nonfunctional β-sandwich dimer stabilized by two BI-2852 molecules was 406 recently discovered [35-37].

407 Our oncogenic K-Ras4B^{G12D} α -homodimer retains the dimeric association. The 408 oncogenic α -homodimer favors an asymmetric helical alignment using the $\alpha 3 - \alpha 4/\alpha 3$ and 409 $\alpha 5/\alpha 2$ interfaces, abandoning the symmetric $\alpha 3 - \alpha 4/\alpha 3 - \alpha 4$ helical alignment. We observed that 410 the asymmetric $\alpha 3 - \alpha 4/\alpha 3$ helical interface is popular among K-Ras4B dimers with the 411 allosteric lobe interface [21, 22]. The oncogenic β -homodimer is relatively stable during the 412 simulations, preserving the same interface as observed in the wild-type simulations [19, 21]. 413 The mutant Ras4B^{G12D/K101D/R102E} α -homodimer marginally preserves the allosteric lobe 414 interface using the similar asymmetric $\alpha 3 - \alpha 4/\alpha 3$ helical interface as observed for the oncogenic case, while the mutant K-Ras4B^{G12D/R41E/K42D} β-homodimer is dissociated at the 415

416 early in the simulations. The asymmetry in the conformation of functional Ras dimer may 417 help to deduce the shape of the nanoclusters, the higher order homo-complexes, suggesting 418 that it is less likely linear but more likely curved or circular. Using the HSYMDOCK web-419 server [54], we delineate K-Ras4B nanoclusters as the trimeric, tetrameric, pentameric shapes 420 using the oncogenic K-Ras4B^{G12D} α -homodimer interface. However, no higher order homo-421 complex is predicted for the mutant Ras4B^{G12D/K101D/R102E} α -homodimer due to the weak 422 dimeric interface.

423 The β -homodimer with the effector lobe interface overlaps with the binding region of its effectors, whereas the α -homodimer with the allosteric lobe helical interface is believed to 424 425 promote Ras dimerization [20, 22] and thus Raf dimerization. Recent site-directed 426 mutagenesis and cellular localization experiments showed that K101D/R102E double mutations on the allosteric lobe of K-Ras4BG12D reduce dimerization at the plasma membrane 427 428 and slightly decrease downstream phosphorylated extracellular signal-regulated kinase (ERK) 429 levels [20]. In contrast, R41E/K42D double mutations on the effector lobe retain dimerization 430 at the plasma membrane but completely abrogate ERK phosphorylation. Both double 431 mutations increase Akt phosphorylation. The altered phosphorylation levels on the 432 downstream effectors are composite results of the mutations affecting the Ras dimerization 433 and the HVR dynamics interrupting the Ras interaction at the plasma membrane. In line with 434 the experiments, the mutant K-Ras4B^{G12D/K101D/R102E} α -homodimer exhibits relatively weak 435 dimer interface in solution, and thus reducing dimerization and decreasing pERK levels at the 436 plasma membrane. On the other hand, the mutant K-Ras4B^{G12D/R41E/K42D} β-homodimer is 437 unstable in solution, but the experiments verified dimerization at the plasma membrane. This 438 indicates that the mutant avoids unfavorable effector lobe interface, instead promoting 439 dimerization through the allosteric lobe interface at the membrane. However, it was observed

that the mutant K-Ras4B^{G12D/R41E/K42D} mutant blocks ERK phosphorylation in the MAPK

441 pathway, since it cannot activate Raf-1 [20].

Our simulations verified that the major effector lobe interface is made of a single state and the major allosteric lobe interface has several states. Although the effector lobe interface is more stable than the allosteric lobe interface, the functional dimeric interface is through the allosteric lobe interface containing α 3 and α 4 helices with the exposed effector binding sites for recruiting two Rafs to the plasma membrane [21, 22]. The multiple interfaces observed for the allosteric lobe interface might help to draw functional K-Ras4B nanoclusters.

448

449 Acknowledgements

450 This work has been supported by TUBITAK Research Grant No: 114M196. This project has

451 been funded in whole or in part with federal funds from the National Cancer Institute,

452 National Institutes of Health, under contract HHSN26120080001E. The content of this

453 publication does not necessarily reflect the views or policies of the Department of Health and

454 Human Services, nor does mention of trade names, commercial products, or organizations

455 imply endorsement by the U.S. Government. This Research was supported [in part] by the

456 Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer

457 Research. Computations have been performed at the high-performance center, Koc University

458 and at the high-performance computational facilities of the Biowulf PC/Linux cluster at the

459 National Institutes of Health, Bethesda, MD (https://hpc.nih.gov/).

460

461 Author Contributions

462 K.K. and M.E.O. performed the molecular dynamics studies. K.K. analysed data, prepared

tables and figures. H.J. guided the simulations. R.N., H.J. A.G. and O.K. designed and

464 conceptualized the project. H.J., K.K., M.E.O., O.K. and A.G. performed the article writing.

- 465 H.J, and O.K. made critical revisions and approved final version. All of the authors reviewed
- 466 and approved the final manuscript.

467

468 **References**

 Ensembles, Allostery, and Signaling. Chem Rev 116(11):6607-6665. https://10.1021/acs.chemrev.5b00542 PMID: 26815308 Simanshu DK, Nissley DV, McCormick F (2017) RAS Proteins and Their Regulators in Human Disease. Cell 170(1):17-33. https://10.1016/j.cell.2017.06.009 PMID: 28666118 Stanley RJ, Thomas GM (2016) Activation of G Proteins by Guanine Nucleotide Exchange Factors Relies on GTPase Activity. PLoS One 11(3):e0151861. https://10.1371/journal.pone.0151861 PMID: 26986850 Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865-877. https://10.1016/j.cell.2007.05.018 PMID: <u>17540168</u> Corbett KD, Alber T (2001) The many faces of Ras: recognition of small GTP-binding proteins. Trends Biochem Sci 26(12):710-716. https://10.1016/s0968-0004(01)01974-0 PMID: <u>11738594</u> Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299-1304. https://10.1126/science.1062023 PMID: 11701921 Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16(10):382-387. https://10.1016/s068-0004(01)90156-p PMID: 1785141 Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap IA, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. https://10.1074/jbc.21.12.6794 PMID: 8636102 Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: 26985062 Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-1	469	1.	Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, et al. (2016) Ras Conformational
 Simanshu DK, Nissley DV, McCormick F (2017) RAS Proteins and Their Regulators in Human Disease. Cell 170(1):17-33. https://10.1016/j.cell.2017.06.009 PMID: 28666118 Stanley RJ, Thomas GM (2016) Activation of G Proteins by Guanine Nucleotide Exchange Factors Relies on GTPase Activity. PLoS One 11(3):e0151861. https://10.1371/journal.pone.0151861 PMID: 26986850 Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865-877. https://10.1016/j.cell.2007.05.018 PMID: 17540168 Corbett KD, Alber T (2001) The many faces of Ras: recognition of small GTP-binding proteins. Trends Biochem Sci 26(12):710-716. https://10.1016/s0968-0004(01)01974- 0 PMID: 11738594 Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299-1304. https://10.1126/science.1062023 PMID: 11701921 Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16(10):382-387. https://10.1016/0968- 0004(91)90156-p PMID: 1785141 Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules RA finase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: 8636102 Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1042/jcs.182873 PMID: 26985062 Johnson CW, Reid D, Parker JA, Salter S, Knihtla R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1158/1541-7786.MCR-14-0535 PMID: 2556693 Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic			
 in Human Disease. Cell 170(1):17-33. https://10.1016/j.cell.2017.06.009 PMID: 28666118 Stanley RJ, Thomas GM (2016) Activation of G Proteins by Guanine Nucleotide Exchange Factors Relies on GTPase Activity. PLoS One 11(3):e0151861. https://10.1371/journal.pone.0151861 PMID: 26986850 Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865-877. https://10.1016/j.cell.2007.05.018 PMID: 17540168 Corbett KD, Alber T (2001) The many faces of Ras: recognition of small GTP-binding proteins. Trends Biochem Sci 26(12):710-716. https://10.1016/s0968-0004(01)01974- 0 PMID: 11738594 Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299-1304. https://10.1016/s0968-0004(01)01974- 004(91)90156-p PMID: 1785141 Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16(10):382-387. https://10.1016/0968- 0004(91)90156-p PMID: 1785141 Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: 8636102 Hobs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: 26985062 Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.778866 PMID: WOS:000407220100026 Hutps://10.1074/jbc.M117.77886 PMID: WOS:000407220100026 Hutps://10.1074/jbc.M117.778866 PMID: 25566993 Forbes SA,		•	
 28666118 Stanley RJ, Thomas GM (2016) Activation of G Proteins by Guanine Nucleotide Exchange Factors Relies on GTPase Activity. PLoS One 11(3):e0151861. https://10.1371/journal.pone.0151861 PMID: 26986850 Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865-877. https://10.1016/j.cell.2007.05.018 PMID: <u>17540168</u> Corbett KD, Alber T (2001) The many faces of Ras: recognition of small GTP-binding proteins. Trends Biochem Sci 26(12):710-716. https://10.1016/s0968-0004(01)01974- 0 PMID: <u>11738594</u> Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299-1304. <u>https://10.1126/science.1062023</u> PMID: <u>11701921</u> Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16(10):382-387. <u>https://10.1016/0968- 0004(91)90156-p</u> PMID: <u>1785141</u> Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. <u>https://10.1074/jbc.271.12.6794</u> PMID: <u>8636102</u> Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. <u>https://10.1242/jcs.182873</u> PMID: <u>26985062</u> Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1158/1541-7786.MCR-14-0535 PMID: <u>2556693</u> Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. <u>https://10.1188/1541-7786.MCR-14-0535 PMID: 25566993</u> Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et a		2.	
 Stanley RJ, Thomas GM (2016) Activation of G Proteins by Guanine Nucleotide Exchange Factors Relies on GTPase Activity. PLoS One 11(3):e0151861. https://10.1371/journal.pone.0151861 PMID: 26986850 Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865-877. https://10.1016/j.cell.2007.05.018 PMID: <u>17540168</u> Corbett KD, Alber T (2001) The many faces of Ras: recognition of small GTP-binding proteins. Trends Biochem Sci 26(12):710-716. <u>https://10.1016/s0968-0004(01)01974-0</u> PMID: <u>11738594</u> Vetter JR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299-1304. <u>https://10.1126/science.1062023</u> PMID: <u>11701921</u> Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16(10):382-387. <u>https://10.1016/0968-0004(91)90156-p</u> PMID: <u>1785141</u> B Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. <u>https://10.1074/jbc.271.12.6794</u> PMID: <u>26985062</u> Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. <u>https://10.1158/1541-7786.MCR-14-0535 PMID: 25566993</u> Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. <u>https://10.1158/1541-7786.MCR-14-0535 PMID: 25566993</u> Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. <u>https:/</u>			
 Excharge Factors Relies on GTPase Activity. PLoS One 11(3):e0151861. https://10.1371/journal.pone.0151861 PMID: 26986850 Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865-877. https://10.1016/j.cell.2007.05.018 PMID: 17540168 Corbett KD, Alber T (2001) The many faces of Ras: recognition of small GTP-binding proteins. Trends Biochem Sci 26(12):710-716. https://10.1016/s0968-0004(01)01974-0 PMID: 11738594 Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299-1304. https://10.1126/science.1062023 PMID: 11701921 Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16(10):382-387. https://10.1016/0968-0004(91)90156-p PMID: 1785141 Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: 8636102 Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: 26985062 Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1016/js05-603. https://10.1074/jbc.271.12.656993 Porbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. https://10.103/nar/gkq929 PMID: 20952405 Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 			
 https://10.1371/journal.pone.0151861 PMID: 26986850 Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865-877. https://10.1016/j.cell.2007.05.018 PMID: 17540168 Corbett KD, Alber T (2001) The many faces of Ras: recognition of small GTP-binding proteins. Trends Biochem Sci 26(12):710-716. https://10.1016/s0968-0004(01)01974-0 PMID: 11738594 Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299-1304. https://10.1126/science.1062023 PMID: 11701921 Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16(10):382-387. https://10.1016/0968-0004(01)0156-p PMID: 1785141 Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: 8636102 Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: 26985062 Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.2150-603. https://10.1158/1541-7786.MCR-14-0535 PMID: 25566993 Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID: 20952405 Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 		3.	
 Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865-877. https://10.1016/j.cell.2007.05.018 PMID: <u>17540168</u> Corbett KD, Alber T (2001) The many faces of Ras: recognition of small GTP-binding proteins. Trends Biochem Sci 26(12):710-716. <u>https://10.1016/s0968-0004(01)01974-</u> <u>0</u> PMID: <u>11738594</u> Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299-1304. <u>https://10.1016/s0968-0004(01)01974-</u> <u>01701921</u> Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16(10):382-387. <u>https://10.1016/0968- 0004(91)90156-p</u> PMID: <u>1785141</u> Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. <u>https://10.1074/jbc.271.12.6794</u> PMID: <u>8636102</u> Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. <u>https://10.1242/jcs.182873</u> PMID: <u>26985062</u> Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. <u>https://10.1074/jbc.M117.778886 PMID: WOS:000407220100026</u> Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. <u>https://10.1158/1541-7786.MCR-14-0535</u> PMID: <u>25566993</u> Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. <u>https://10.1093/nar/gkq929</u> PMID: <u>20952405</u>			
 control of small G proteins. Cell 129(5):865-877. https://10.1016/j.cell.2007.05.018 PMID: <u>17540168</u> Corbett KD, Alber T (2001) The many faces of Ras: recognition of small GTP-binding proteins. Trends Biochem Sci 26(12):710-716. https://10.1016/s0968-0004(01)01974- 0 PMID: <u>11738594</u> Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299-1304. https://10.1126/science.1062023 PMID: <u>11701921</u> Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16(10):382-387. https://10.1016/0968-0004(91)90156-p PMID: <u>1785141</u> Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: <u>26985062</u> Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: <u>26985062</u> Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.7788.6 PMID: WOS:000407220100026 Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1158/1541-7786.MCR-14-0535 PMID: 25566993 Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID: 20952405 Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 			
 PMID: <u>17540168</u> Corbett KD, Alber T (2001) The many faces of Ras: recognition of small GTP-binding proteins. Trends Biochem Sci 26(12):710-716. <u>https://10.1016/s0968-0004(01)01974-0</u> 0 PMID: <u>11738594</u> 6. Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299-1304. <u>https://10.1126/science.1062023</u> PMID: <u>11701921</u> 7. Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16(10):382-387. <u>https://10.1016/0968-0004(91)90156-p</u> PMID: <u>1785141</u> 8. Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. <u>https://10.1074/jbc.271.12.6794</u> PMID: <u>8636102</u> 9. Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. <u>https://10.1242/jcs.182873</u> PMID: <u>269850662</u> 10. Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.778886 PMID: <u>WOS:000407220100026</u> 11. Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1093/nar/gkq929 PMID: <u>20952405</u> 507 13. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 		4.	
 Corbett KD, Alber T (2001) The many faces of Ras: recognition of small GTP-binding proteins. Trends Biochem Sci 26(12):710-716. https://10.1016/s0968-0004(01)01974- 0 PMID: <u>11738594</u> Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299-1304. https://10.1126/science.1062023 PMID: <u>11701921</u> Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16(10):382-387. https://10.1016/0968- 0004(91)90156-p PMID: <u>1785141</u> Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: <u>8636102</u> Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: <u>26985062</u> Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.778866 PMID: <u>WOS:000407220100026</u> Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1158/1541-7786.MCR-14-0535 PMID: <u>25566993</u> Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID: <u>20952405</u> Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 			
 proteins. Trends Biochem Sci 26(12):710-716. https://10.1016/s0968-0004(01)01974- 0 PMID: <u>11738594</u> Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299-1304. https://10.1126/science.1062023 PMID: <u>11701921</u> Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16(10):382-387. https://10.1016/0968- 0004(91)90156-p PMID: <u>1785141</u> Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: <u>8636102</u> Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: <u>26985062</u> Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.778886 PMID: <u>WOS:000407220100026</u> 11. Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1158/1541-7786.MCR-14-0535 PMID: <u>25566993</u> 12. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID: <u>20952405</u> 13. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 			
 ⁴⁸³ 0 PMID: <u>11738594</u> ⁴⁸⁴ 6. Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299-1304. <u>https://10.1126/science.1062023</u> PMID: <u>11701921</u> ⁴⁸⁷ 7. Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16(10):382-387. <u>https://10.1016/0968-0004(91)90156-p</u> PMID: <u>1785141</u> ⁴⁹⁰ 8. Herrmann C, Horn G, Spargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. <u>https://10.1074/jbc.271.12.6794</u> PMID: <u>8636102</u> ⁴⁹³ 9. Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. <u>https://10.1242/jcs.182873</u> PMID: <u>26985062</u> ⁴⁹⁶ 10. Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. ⁴⁹⁹ <u>https://10.1074/jbc.M117.778886</u> PMID: <u>WOS:000407220100026</u> ⁵⁰⁰ 11. Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. <u>https://10.1158/1541-7786.MCR-14-0535</u> PMID: <u>25566993</u> ⁵⁰³ 12. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. <u>https://10.103/nar/gkq929</u> PMID: <u>20952405</u> ⁵⁰⁷ 13. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 	481	5.	Corbett KD, Alber T (2001) The many faces of Ras: recognition of small GTP-binding
 Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299-1304. https://10.1126/science.1062023 PMID: 11701921 Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16(10):382-387. https://10.1016/0968- 0004(91)90156-p PMID: <u>1785141</u> Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: <u>8636102</u> Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: <u>26985062</u> Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.778886 PMID: WOS:000407220100026 Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1158/1541-7786.MCR-14-0535 PMID: 25566993 Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID: 20952405 Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 	482		proteins. Trends Biochem Sci 26(12):710-716. <u>https://10.1016/s0968-0004(01)01974-</u>
 dimensions. Science 294(5545):1299-1304. https://10.1126/science.1062023 PMID: 11701921 7. Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16(10):382-387. https://10.1016/0968- 0004(91)90156-p PMID: 1785141 8. Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: 8636102 9. Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: 26985062 10. Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.778886 PMID: WOS:000407220100026 11. Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1158/1541-7786.MCR-14-0535 PMID: 2556693 12. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID: 20952405 13. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 	483		<u>0</u> PMID: <u>11738594</u>
 11701921 Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16(10):382-387. https://10.1016/0968- 0004(91)90156-p PMID: 1785141 Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: 8636102 Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: 26985062 Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.77886 PMID: WOS:000407220100026 Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1158/1541-7786.MCR-14-0535 PMID: 25566993 Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID: 20952405 Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 	484	6.	Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three
 Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16(10):382-387. https://10.1016/0968- 0004(91)90156-p PMID: <u>1785141</u> Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: <u>8636102</u> Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: <u>26985062</u> Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.778886 PMID: <u>WOS:000407220100026</u> Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1158/1541-7786.MCR-14-0535 PMID: <u>25566993</u> Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. <u>https://10.1093/nar/gkq929</u> PMID: <u>20952405</u> Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 	485		dimensions. Science 294(5545):1299-1304. https://10.1126/science.1062023 PMID:
 molecular switch. Trends Biochem Sci 16(10):382-387. https://10.1016/0968- 0004(91)90156-p PMID: 1785141 Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: 8636102 Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: 26985062 Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.778886 PMID: WOS:000407220100026 I1. Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1158/1541-7786.MCR-14-0535 PMID: 25566993 Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID: 20952405 Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 	486		11701921
 489 0004(91)90156-p PMID: <u>1785141</u> 490 8. Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of 491 the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative 492 effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol 493 Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: <u>8636102</u> 494 9. Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a 495 glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: <u>26985062</u> 496 10. Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases 497 K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by 498 allosteric effects. J Biol Chem 292(31):12981-12993. 499 https://10.1074/jbc.M117.778886 PMID: WOS:000407220100026 500 11. Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific 501 Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. 502 https://10.1158/1541-7786.MCR-14-0535 PMID: <u>25566993</u> 503 12. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining 504 complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic 505 Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID: 506 <u>20952405</u> 507 13. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 	487	7.	Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal
 Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: <u>8636102</u> Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: <u>26985062</u> Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.778886 PMID: WOS:000407220100026 Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1158/1541-7786.MCR-14-0535 PMID: <u>25566993</u> Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID: <u>20952405</u> Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 	488		molecular switch. Trends Biochem Sci 16(10):382-387. https://10.1016/0968-
 the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: <u>8636102</u> Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: <u>26985062</u> Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.778886 PMID: <u>WOS:000407220100026</u> Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1158/1541-7786.MCR-14-0535 PMID: <u>25566993</u> Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. <u>https://10.1093/nar/gkq929</u> PMID: <u>20952405</u> Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 	489		0004(91)90156-p PMID: 1785141
 the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: <u>8636102</u> Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: <u>26985062</u> Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.778886 PMID: <u>WOS:000407220100026</u> Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1158/1541-7786.MCR-14-0535 PMID: <u>25566993</u> Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. <u>https://10.1093/nar/gkq929</u> PMID: <u>20952405</u> Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 	490	8.	Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of
 effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: 8636102 Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: 26985062 Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.778886 PMID: WOS:000407220100026 11. Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1158/1541-7786.MCR-14-0535 PMID: 25566993 Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID: 20952405 Frior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 	491		
 Chem 271(12):6794-6800. https://10.1074/jbc.271.12.6794 PMID: 8636102 Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: 26985062 Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.778886 PMID: WOS:000407220100026 https://10.1074/jbc.M117.778886 PMID: WOS:000407220100026 Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1158/1541-7786.MCR-14-0535 PMID: 25566993 Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID: 20952405 Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 	492		
 Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287-1292. <u>https://10.1242/jcs.182873</u> PMID: <u>26985062</u> Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. <u>https://10.1074/jbc.M117.778886</u> PMID: <u>WOS:000407220100026</u> Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. <u>https://10.1158/1541-7786.MCR-14-0535</u> PMID: <u>25566993</u> Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. <u>https://10.1093/nar/gkq929</u> PMID: <u>20952405</u> Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 	493		
 glance. J Cell Sci 129(7):1287-1292. https://10.1242/jcs.182873 PMID: 26985062 Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.778886 PMID: WOS:000407220100026 Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1158/1541-7786.MCR-14-0535 PMID: 25566993 Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID: 20952405 Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 	494	9.	
 Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, et al. (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. <u>https://10.1074/jbc.M117.778886</u> PMID: WOS:000407220100026 11. Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. <u>https://10.1158/1541-7786.MCR-14-0535</u> PMID: <u>25566993</u> 12. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. <u>https://10.1093/nar/gkq929</u> PMID: <u>20952405</u> 13. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 	495		
 K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.778886 PMID: WOS:000407220100026 Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1158/1541-7786.MCR-14-0535 PMID: 25566993 Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID: 20952405 Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 	496	10.	• • • • • • • • • • • • • • • • • • • •
 allosteric effects. J Biol Chem 292(31):12981-12993. https://10.1074/jbc.M117.778886 PMID: WOS:000407220100026 Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1158/1541-7786.MCR-14-0535 PMID: 25566993 Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID: 20952405 Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 			
 https://10.1074/jbc.M117.778886 PMID: WOS:000407220100026 Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. https://10.1158/1541-7786.MCR-14-0535 PMID: 25566993 Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID: 20952405 Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 			
 Parker JA, Mattos C (2015) The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. <u>https://10.1158/1541-7786.MCR-14-0535</u> PMID: <u>25566993</u> Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945-950. <u>https://10.1093/nar/gkq929</u> PMID: <u>20952405</u> Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 			
 501 Differences in The Catalytic Domain. Mol Cancer Res 13(4):595-603. 502 <u>https://10.1158/1541-7786.MCR-14-0535</u> PMID: <u>25566993</u> 503 12. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining 504 complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic 505 Acids Res 39(Database issue):D945-950. <u>https://10.1093/nar/gkq929</u> PMID: 506 <u>20952405</u> 507 13. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 		11.	
 502 <u>https://10.1158/1541-7786.MCR-14-0535</u> PMID: <u>25566993</u> 503 12. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining 504 complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic 505 Acids Res 39(Database issue):D945-950. <u>https://10.1093/nar/gkq929</u> PMID: 506 <u>20952405</u> 507 13. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 			
 503 12. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining 504 complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic 505 Acids Res 39(Database issue):D945-950. <u>https://10.1093/nar/gkq929</u> PMID: 506 20952405 507 13. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in 			
504complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic505Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID:5062095240550713.Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in		12.	
505Acids Res 39(Database issue):D945-950. https://10.1093/nar/gkq929 PMID:5062095240550713.Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in			
5062095240550713.Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in			
507 13. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in			
		13	
JUO UAHUUI, UAHUUI NUS ZZITULZ4JZ-Z40Z HUDS ZZUULAJOZAJA Z UAN-11-Z0ZZ	508		cancer. Cancer Res 72(10):2457-2467. https://10.1158/0008-5472.CAN-11-2612
509 PMID: 22589270			

510 511 512	14.	Nussinov R, Jang H, Tsai CJ, Cheng F (2019) Precision medicine review: rare driver mutations and their biophysical classification. Biophys Rev 11(1):5-19. https://10.1007/s12551-018-0496-2 PMID: 30610579
513	15.	Lu S, Jang H, Nussinov R, Zhang J (2016) The Structural Basis of Oncogenic
514	101	Mutations G12, G13 and Q61 in Small GTPase K-Ras4B. Sci Rep 6:21949.
515		https://10.1038/srep21949 PMID: 26902995
516	16.	Pantsar T, Rissanen S, Dauch D, Laitinen T, Vattulainen I, et al. (2018) Assessment of
517	10.	mutation probabilities of KRAS G12 missense mutants and their long-timescale
518		dynamics by atomistic molecular simulations and Markov state modeling. PLoS
519		Comput Biol 14(9):e1006458. https://10.1371/journal.pcbi.1006458 PMID: 30199525
520	17.	Inouye K, Mizutani S, Koide H, Kaziro Y (2000) Formation of the Ras dimer is
521	17.	essential for Raf-1 activation. J Biol Chem 275(6):3737-3740.
522		https://10.1074/jbc.275.6.3737 PMID: 10660519
523	18.	Chen M, Peters A, Huang T, Nan XL (2016) Ras Dimer Formation as a New
524	10.	Signaling Mechanism and Potential Cancer Therapeutic Target. Mini-Rev Med Chem
525		16(5):391-403. https://10.2174/1389557515666151001152212 PMID:
526		WOS:000369073100007
527	19.	Muratcioglu S, Chavan TS, Freed BC, Jang H, Khavrutskii L, et al. (2015) GTP-
528	17.	Dependent K-Ras Dimerization. Structure 23(7):1325-1335.
529		https://10.1016/j.str.2015.04.019 PMID: 26051715
530	20.	Muratcioglu S, Aydin C, Odabasi E, Ozdemir ES, Firat-Karalar EN, et al. (2020)
531	20.	Oncogenic K-Ras4B Dimerization Enhances Downstream Mitogen-activated Protein
532		Kinase Signaling. J Mol Biol 432(4):1199-1215. https://10.1016/j.jmb.2020.01.002
533		PMID: 31931009
534	21.	Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R (2016) Membrane-
535		associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers.
536		Biochem J 473(12):1719-1732. https://10.1042/BCJ20160031 PMID: 27057007
537	22.	Jang H, Zhang M, Nussinov R (2020) The quaternary assembly of KRas4B with Raf-1
538		at the membrane. Comput Struct Biotechnol J 18:737-748.
539		https://10.1016/j.csbj.2020.03.018 PMID: 32257057
540	23.	Prakash P, Zhou Y, Liang H, Hancock JF, Gorfe AA (2016) Oncogenic K-Ras Binds
541		to an Anionic Membrane in Two Distinct Orientations: A Molecular Dynamics
542		Analysis. Biophys J 110(5):1125-1138. https://10.1016/j.bpj.2016.01.019 PMID:
543		26958889
544	24.	Zhou Y, Hancock JF (2015) Ras nanoclusters: Versatile lipid-based signaling
545		platforms. Biochim Biophys Acta 1853(4):841-849.
546		https://10.1016/j.bbamcr.2014.09.008 PMID: 25234412
547	25.	Zhou Y, Liang H, Rodkey T, Ariotti N, Parton RG, et al. (2014) Signal integration by
548		lipid-mediated spatial cross talk between Ras nanoclusters. Mol Cell Biol 34(5):862-
549		876. https://10.1128/MCB.01227-13 PMID: 24366544
550	26.	Guldenhaupt J, Rudack T, Bachler P, Mann D, Triola G, et al. (2012) N-Ras forms
551		dimers at POPC membranes. Biophys J 103(7):1585-1593.
552		https://10.1016/j.bpj.2012.08.043 PMID: 23062351
553	27.	Lin WC, Iversen L, Tu HL, Rhodes C, Christensen SM, et al. (2014) H-Ras forms
554		dimers on membrane surfaces via a protein-protein interface. Proc Natl Acad Sci U S
555		A 111(8):2996-3001. https://10.1073/pnas.1321155111 PMID: 24516166
556	28.	Freeman AK, Ritt DA, Morrison DK (2013) The importance of Raf dimerization in
557		cell signaling. Small GTPases 4(3):180-185. https://10.4161/sgtp.26117 PMID:
558		<u>23985533</u>

559	29.	Nan X, Tamguney TM, Collisson EA, Lin LJ, Pitt C, et al. (2015) Ras-GTP dimers
560		activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc Natl Acad Sci
561		U S A 112(26):7996-8001. https://10.1073/pnas.1509123112 PMID: 26080442
562	30.	Nan X, Collisson EA, Lewis S, Huang J, Tamguney TM, et al. (2013) Single-molecule
563		superresolution imaging allows quantitative analysis of RAF multimer formation and
564		signaling. Proc Natl Acad Sci U S A 110(46):18519-18524.
565		https://10.1073/pnas.1318188110 PMID: 24158481
566	31.	Li S, Jang H, Zhang J, Nussinov R (2018) Raf-1 Cysteine-Rich Domain Increases the
567		Affinity of K-Ras/Raf at the Membrane, Promoting MAPK Signaling. Structure
568		26(3):513-525 e512. https://10.1016/j.str.2018.01.011 PMID: 29429878
569	32.	Sarkar S, Garcia AE (2019) Presence or absence of Ras-dimerization shows distinct
570		kinetic signature in Ras-Raf interaction. bioRxiv:810150. https://10.1101/810150
571		PMID:
572	33.	Spencer-Smith R, Koide A, Zhou Y, Eguchi RR, Sha F, et al. (2017) Inhibition of
573		RAS function through targeting an allosteric regulatory site. Nat Chem Biol 13(1):62-
574		68. https://10.1038/nchembio.2231 PMID: 27820802
575	34.	Ambrogio C, Kohler J, Zhou ZW, Wang H, Paranal R, et al. (2018) KRAS
576		Dimerization Impacts MEK Inhibitor Sensitivity and Oncogenic Activity of Mutant
577		KRAS. Cell 172(4):857-868 e815. https://10.1016/j.cell.2017.12.020 PMID:
578		29336889
579	35.	Kessler D, Gmachl M, Mantoulidis A, Martin LJ, Zoephel A, et al. (2019) Drugging
580		an undruggable pocket on KRAS. Proc Natl Acad Sci U S A 116(32):15823-15829.
581		https://10.1073/pnas.1904529116 PMID: <u>31332011</u>
582	36.	Kessler D, Gollner A, Gmachl M, Mantoulidis A, Martin LJ, et al. (2020) Reply to
583		Tran et al.: Dimeric KRAS protein-protein interaction stabilizers. Proc Natl Acad Sci
584		U S A 117(7):3365-3367. <u>https://10.1073/pnas.1921236117</u> PMID: <u>32047042</u>
585	37.	Tran TH, Alexander P, Dharmaiah S, Agamasu C, Nissley DV, et al. (2020) The small
586		molecule BI-2852 induces a nonfunctional dimer of KRAS. Proc Natl Acad Sci U S A
587		117(7):3363-3364. https://10.1073/pnas.1918164117 PMID: 32047043
588	38.	Baspinar A, Cukuroglu E, Nussinov R, Keskin O, Gursoy A (2014) PRISM: a web
589		server and repository for prediction of protein-protein interactions and modeling their
590		3D complexes. Nucleic Acids Res 42(Web Server issue):W285-289.
591		https://10.1093/nar/gku397 PMID: 24829450
592	39.	Ogmen U, Keskin O, Aytuna AS, Nussinov R, Gursoy A (2005) PRISM: protein
593		interactions by structural matching. Nucleic Acids Res 33(Web Server issue):W331-
594		336. <u>https://10.1093/nar/gki585</u> PMID: <u>15991339</u>
595	40.	Tuncbag N, Gursoy A, Nussinov R, Keskin O (2011) Predicting protein-protein
596		interactions on a proteome scale by matching evolutionary and structural similarities at
597		interfaces using PRISM. Nat Protoc 6(9):1341-1354. <u>https://10.1038/nprot.2011.367</u>
598		PMID: <u>21886100</u>
599	41.	Cukuroglu E, Gursoy A, Keskin O (2012) HotRegion: a database of predicted hot spot
600		clusters. Nucleic Acids Res 40(Database issue):D829-833. <u>https://10.1093/nar/gkr929</u>
601		PMID: <u>22080558</u>
602	42.	Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, et al. (2005) The FoldX web
603		server: an online force field. Nucleic Acids Res 33(Web Server issue):W382-388.
604	40	https://10.1093/nar/gki387 PMID: 15980494
605	43.	Muratcioglu S, Jang H, Gursoy A, Keskin O, Nussinov R (2017) PDEdelta Binding to
606		Ras Isoforms Provides a Route to Proper Membrane Localization. J Phys Chem B
607		121(24):5917-5927. https://10.1021/acs.jpcb.7b03035 PMID: 28540724

608	44.	Ozdemir ES, Jang H, Gursoy A, Keskin O, Li Z, et al. (2018) Unraveling the
609		molecular mechanism of interactions of the Rho GTPases Cdc42 and Rac1 with the
610		scaffolding protein IQGAP2. J Biol Chem 293(10):3685-3699.
611		https://10.1074/jbc.RA117.001596 PMID: 29358323
612	45.	Ozdemir ES, Jang H, Gursoy A, Keskin O, Nussinov R (2018) Arl2-Mediated
613		Allosteric Release of Farnesylated KRas4B from Shuttling Factor PDEdelta. J Phys
614		Chem B 122(30):7503-7513. https://10.1021/acs.jpcb.8b04347 PMID: 29961325
615	46.	Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, et al. (2017) CHARMM36m: an
616		improved force field for folded and intrinsically disordered proteins. Nat Methods
617		14(1):71-73. https://10.1038/nmeth.4067 PMID: 27819658
618	47.	Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, et al. (2005) Scalable
619		molecular dynamics with NAMD. J Comput Chem 26(16):1781-1802.
620		https://10.1002/jcc.20289 PMID: 16222654
621	48.	Durell SR, Brooks BR, Ben-Naim A (1994) Solvent-Induced Forces between Two
622		Hydrophilic Groups. J Phys Chem 98(8):2198-2202. https://10.1021/j100059a038
623		PMID:
624	49.	Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, et al. (2009)
625		CHARMM: The Biomolecular Simulation Program. J Comput Chem 30(10):1545-
626		1614. https://10.1002/jcc.21287 PMID: WOS:000267269600001
627	50.	Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF
628		Chimeraa visualization system for exploratory research and analysis. J Comput
629		Chem 25(13):1605-1612. https://10.1002/jcc.20084 PMID: 15264254
630	51.	Gohlke H, Case DA (2004) Converging free energy estimates: MM-PB(GB)SA
631		studies on the protein-protein complex Ras-Raf. J Comput Chem 25(2):238-250.
632		<u>https://10.1002/jcc.10379</u> PMID: <u>14648622</u>
633	52.	Shima F, Ijiri Y, Muraoka S, Liao J, Ye M, et al. (2010) Structural basis for
634		conformational dynamics of GTP-bound Ras protein. J Biol Chem 285(29):22696-
635		22705. https://10.1074/jbc.M110.125161 PMID: 20479006
636	53.	Prakash P, Sayyed-Ahmad A, Cho KJ, Dolino DM, Chen W, et al. (2017)
637		Computational and biochemical characterization of two partially overlapping
638		interfaces and multiple weak-affinity K-Ras dimers. Sci Rep 7(1):40109.
639		https://10.1038/srep40109 PMID: 28067274
640	54.	Yan Y, Tao H, Huang SY (2018) HSYMDOCK: a docking web server for predicting
641		the structure of protein homo-oligomers with Cn or Dn symmetry. Nucleic Acids Res
642		46(W1):W423-W431. https://10.1093/nar/gky398 PMID: 29846641
643		

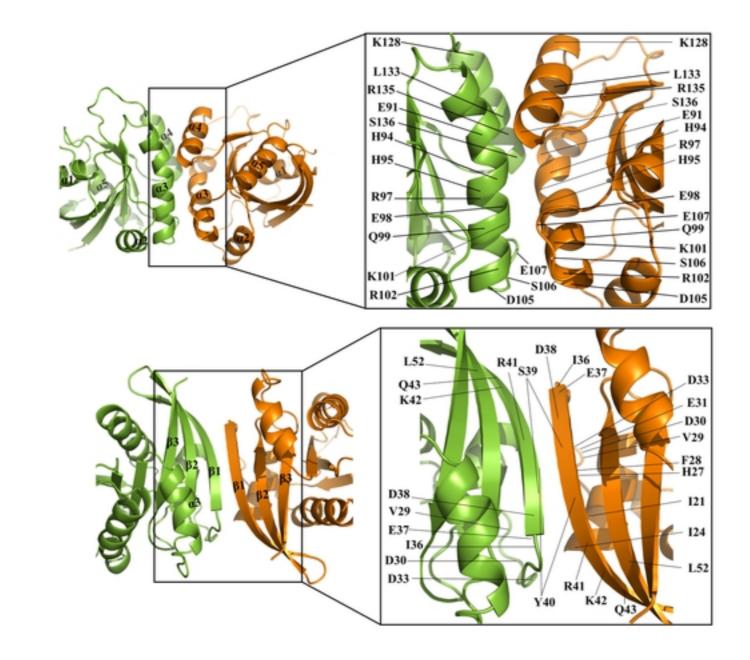
644 Supporting information

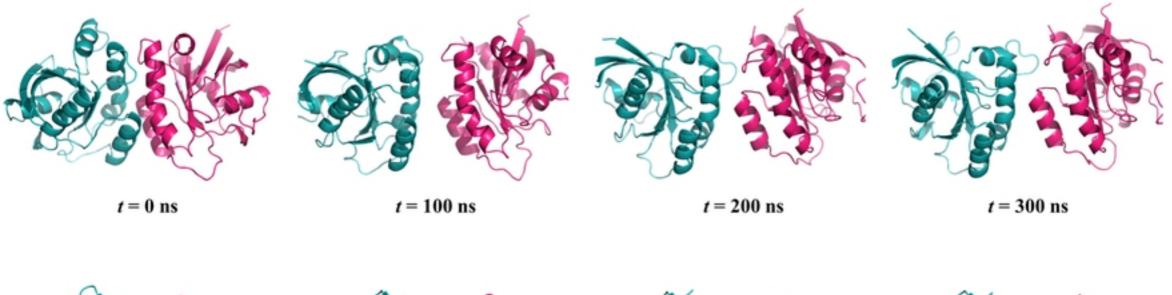
- 645 **S1 Fig. The root-mean-square fluctuation (RMSF) of each system**. (A) The RMSF of the
- 646 oncogenic K-Ras4B^{G12D} α and β -homodimers, and (B) the same of the mutant K-
- 647 Ras4B^{G12D/K101D/R102E} α-homodimer and K-Ras4B^{G12D/R41E/K42D} β-homodimer.

649	S2 Fig. Fluctuations	in the Switch	I regions. Switch	h I regions c	of the oncogenic K-
047	Sa rig. riuctuations	m une switten.	I I CZIUIIS. DWILC.	n i regions c	n une oncogenne ix

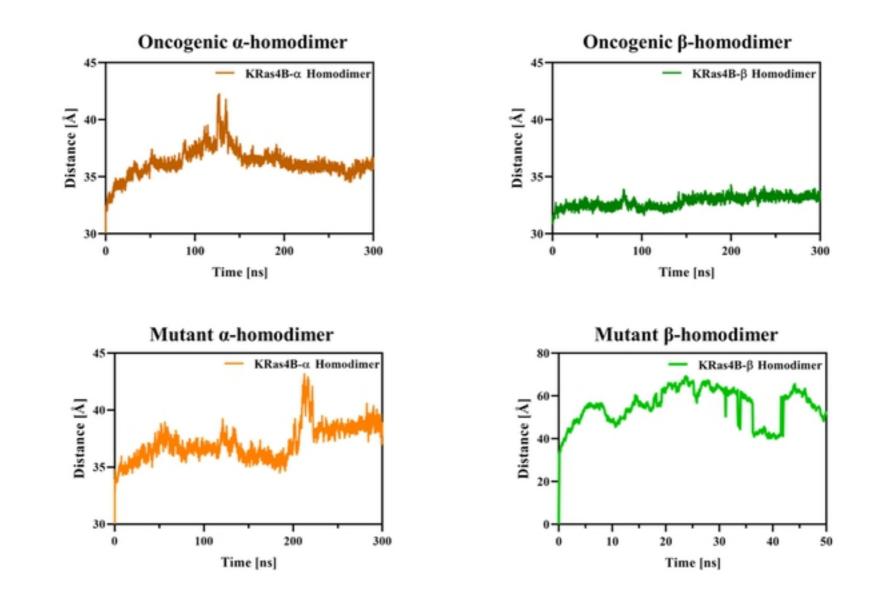
- 650 Ras4B^{G12D} β-homodimer (left panel) as compared to that of the mutant K-Ras4B^{G12D/R41E/K42D}
- 651 β-homodimer.
- 652 S3 Fig. Highly populated clusters representing the conversion of interfaces. Interfaces
- 653 shifted from the symmetric $\alpha 3 \alpha 4/\alpha 3 \alpha 4$ helical alignment (with 31% population) towards the
- asymmetric helical alignment involving the $\alpha 3 \alpha 4/\alpha 3$ and $\alpha 5/\alpha 2$ interfaces (with 48%)
- 655 population) for the oncogenic K-Ras4B^{G12D} α -homodimer.
- 656
- 657 **S4 Fig. Snapshots representing the conversion of interfaces**. Snapshots representing the
- 658 conversion of interface from the symmetric $\alpha 3 \alpha 4 / \alpha 3 \alpha 4$ helical alignment to the asymmetric
- 659 $\alpha 3 \alpha 4/\alpha 3$ helical alignment for the mutant K-Ras4B^{G12D/K101D/R102E} α -homodimer (upper
- be panels), and the dissociation of the mutant K-Ras4B^{G12D/R41E/K42D} β-homodimer (lower
- 661 panels).
- 662
- 663 S5 Fig. Time series of the enthalpy changes, ΔH , during the simulations for the
- 664 oncogenic K-Ras4B^{G12D} α-homodimer (upper panel) and β-homodimer (lower panel).

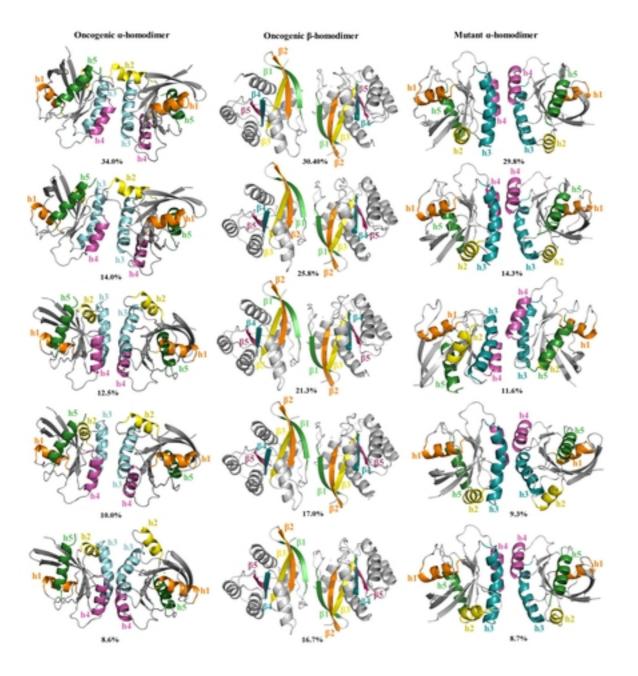
665


- 666 S6 Fig. Some examples of the predicted higher order homo-complexes. The trimer,
- 667 tetramer and pentamer complexes using symmetry operations with the oncogenic K-
- 668 Ras4B^{G12D} α-homodimer and the interface residues together with the secondary structure
- 669 elements in these complexes are listed.


670


	β^3 10 α^{17}	
KRAS-4A	MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAG	60
KRAS-4B	MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAG	60
HRAS	MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAG	60
NRAS	MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAG	60
	a2 P-loop Switch I	
	$\xrightarrow{\alpha_2} \xrightarrow{\beta_4} \xrightarrow{\beta_4} \xrightarrow{\alpha_3} \xrightarrow{\alpha_5} \xrightarrow{\beta_5}$	
KRAS-4A	QEEYSAMRDQYMRTGEGFLCVFAINNTKSFEDIHHYREQIKRVKDSEDVPMVLVGNKCDL	120
KRAS-4B	QEEYSAMRDQYMRTGEGFLCVFAINNTKSFEDIHHYREQIKRVKDSEDVPMVLVGNKCDL	120
HRAS	QEEYSAMRDQYMRTGEGFLCVFAINNTKSFEDIHQYREQIKRVKDSDDVPMVLVGNKCDL	120
NRAS	QEEYSAMRDQYMRTGEGFLCVFAINNSKSFADINLYREQIKRVKDSDDVPMVLVGNKCDL	120
	Switch II	
	$\lambda \alpha \alpha$	
KRAS-4A	PSRTVDTKQAQDLARSYGIPFIETSAKTRQRVEDAFYTLVREIRQYRLKKISKE-EKTPG	179
KRAS-4B	PSRTVDTKQAQDLARSYGIPFIETSAKTRQGVDDAFYTLVREIRKHKE <mark>KM-</mark> SKD-GKKKK	178
HRAS	AARTVESRQAQDLARSYGIPYIETSAKTRQGVEDAFYTLVREIRQHKL <mark>RKLNPPDESGPG</mark>	180
NRAS	PTRTVDTKQAHELAKSYGIPFIETSAKTRQGVEDAFYTLVREIRQYRM <mark>KKLNSSDDGTQG</mark>	180


KRAS-4A	CVKIKKCIIM	189		
KRAS-4B	KKSKTKCVIM	188		
HRAS	CMSCK-CVLS	189		
NRAS	CMGLP-CVVM	189		
HVR				


1	\rightarrow	86	Effector Lobe
87	\rightarrow	166	Allosteric Lobe
167	\rightarrow	188/189	HVR

