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Abstract

Motivation: As the number of experimentally solved protein structures rises, it becomes increasingly
appealing to use structural information for predictive tasks involving proteins. Due to the large variation in
protein sizes, folds, and topologies, an attractive approach is to embed protein structures into fixed-length
vectors, which can be used in machine learning algorithms aimed at predicting and understanding
functional and physical properties. Many existing embedding approaches are alignment-based, which
is both time-consuming and ineffective for distantly related proteins. On the other hand, library- or
model-based approaches depend on a small library of fragments or require the use of a trained model,
both of which may not generalize well.
Results: We present Geometricus, a novel and universally applicable approach to embedding proteins
in a fixed-dimensional space. The approach is fast, accurate, and interpretable. Geometricus uses a
set of 3D moment invariants to discretize fragments of protein structures into shape-mers, which are
then counted to describe the full structure as a vector of counts. We demonstrate the applicability of this
approach in various tasks, ranging from fast structure similarity search, unsupervised clustering, and
structure classification across proteins from different superfamilies as well as within the same family.
Availability: Python code available at https://git.wur.nl/durai001/geometricus
Contact: aaltjan.vandijk@wur.nl, janani.durairaj@wur.nl

1 Introduction
The number of structures added to the Protein Data Bank (Bernstein et al.,
1977) has been increasing rapidly, with over 10,000 structures deposited
in 2019 alone. Meanwhile, major advances have been made in the areas
of homology-based and de novo protein structure modelling (Senior et al.,
2020). This increased availability of protein structures has enabled protein
biologists and bioinformaticians to start including structural data and
information in protein function studies instead of being confined to the
sole use of sequence data. These studies address a variety of questions,
such as finding remote protein homologs with a similar structural fold, or
defining the properties of a single protein family. Protein structures evolve
slower than sequences, and encode long-range contact and fold information
that are often crucial for protein activity. Hence, our understanding of
molecular biology can be greatly enhanced by the inclusion of protein
structures.

For both structures and sequences, choosing the right computational
method to generate a representation of a protein for comparison and
prediction purposes is crucial. This is especially true for machine learning
methods, which often require variable-length sequences of amino acids,
coordinate sets or other residue descriptors to be transformed into fixed-
length representations. These representations can be used as input for
supervised and unsupervised machine learning methods or be compared

using standard vector distance formulae. As proteins typically cover a wide
range of shapes, sizes and topological folds, the choice of representation is
not always straightforward and may depend on the scale of the study. For
instance, research questions addressing proteins within a single family
may opt to use alignment-based representations (Simossis et al., 2003;
Ma and Wang, 2014). These have the advantage of easy interpretability,
as each residue can be directly mapped to a column in the transformed
representation. However, alignment is computationally expensive and its
accuracy decreases with decreasing protein similarity.

To solve this, alignment-free methods were introduced, which learn
a reduced and condensed representation of proteins without an explicit
alignment. There are many examples of such approaches using machine
learning and deep learning methods to learn generic patterns and features
of the protein sequence space (Alley et al., 2019; Rao et al., 2019).
Structure-based representations also exist (Budowski-Tal et al., 2010;
Liu et al., 2018b) but are generally more difficult to generate due to the
three-dimensional nature of structures compared to the one-dimensional
sequences. Some structure-based "alignment-free" methods generate a
representation of a protein of the same length as the sequence and then
use sequence alignment or calculate sequence similarity to compare these
structural sequences in 1D (Lo et al., 2007; Le et al., 2009). The conserved
nature of protein structure circumvents the problem of decreasing accuracy
of sequence alignment in these approaches.
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Many structure embedding techniques make use of a library of small
structural fragments to which fragments of each input structure are
compared, usually requiring the calculation of rotations and translations
that would orient the input fragment and the library fragment in the same
position (Budowski-Tal et al., 2010). To reduce the computational load
of these structure-structure comparisons, library sizes are limited. Newer
techniques which make use of deep learning (Liu et al., 2018b), do not need
a library but still require a pre-trained model to generate new embeddings.
In both cases the size, scale and resolution of the embedding is highly
dependent on the initial choice of library fragments or training data used,
and thus may not be applicable to research questions about a different
protein set. Also, in both these approaches it is difficult to link predictive
importance to functionally important residues or structural regions, which
is often desired in studies aimed at understanding underlying mechanisms
in protein biology.

To address these disadvantages of existing approaches, we introduce
Geometricus, a novel structure embedding technique based on 3D rotation-
invariant moments. Moment invariants were proposed in the 1960s for 2D
images (Hu, 1962) and have been used extensively in the image processing
field for object detection (Rizon et al., 2006) and character recognition
(Flusser and Suk, 1994) among other applications. In the 1980s they were
subsequently adapted to the 3D field (Sadjadi and Hall, 1980), and found
applications in the fields of robotics (Se et al., 2001), gesture recognition
(Kratz and Rohs, 2011), brain morphology (Mangin et al., 2004), and even
in structural biology (Sommer et al., 2007). Rotation-invariant moments
yield identical output when performed on any translated and/or rotated
version of a set of continuous or discrete three-dimensional coordinates.
This implies that coordinate sets can be compared without the need for
superposition. Alternatively, any set of coordinates can be represented by
a number of these moments.

To generate a Geometricus embedding for a protein structure, we
fragment the structure into overlapping k-mers based on sequence, as
well as into overlapping spheres, calculated for a certain radius, based
on 3D coordinate information. Moment invariants are calculated for each
of the coordinate sets corresponding to these structural fragments, and
then binned into shape-mers, each of which represent a set of similar
structural fragments. Counting the occurrences of these shape-mers across
the protein yields a representation of the whole protein structure as a
fixed-length vector of counts, similar to an amino acid k-mer count
vector describing a protein sequence. As the moment invariant calculation
is simple, the entire embedding process runs in the order of tens of
milliseconds per protein and is easily parallelized. In addition, each
element in the count vector can be mapped back to the residues forming the
corresponding shape-mer, allowing for interpretation of predictive residues
on par with alignment-based approaches. The shape-mer binning process is
easily controllable, allowing for coarse shape-mer definitions for divergent
proteins with distinct structures, or a fine-grained resolution for closely
related proteins from the same family. This makes Geometricus suitable
for a variety of tasks where library-based or model-based embeddings
would struggle or require expensive retraining.

We demonstrate the effectiveness and versatility of Geometricus
embeddings in a variety of machine learning approaches and
other applications applied to datasets of varying structure similarity.
Geometricus can be used for very fast structure similarity searches, while
maintaining accuracy close to that obtained by alignment-based methods.
The innate simplicity of the approach enables flexibility in application,
such that embeddings can be optimized for the task at hand, as we
demonstrate using datasets with proteins from different superfamilies and
within the same family. Geometricus is available as a Python library at
https://git.wur.nl/durai001/geometricus.

2 Methods

2.1 Protein Embedding

To generate embeddings for a set of proteins, we define so-called shape-
mers which are analogous to sequence k-mers. A shape-mer represents
a set of similar structural fragments, each a collection of coordinates
in 3D space. The following sections describe the process of generating
these structural fragments, their subsequent conversion into rotation- and
translation-invariant moments, the moment-based grouping of structural
fragments into shape-mers, and finally, shape-mer counting to obtain the
resulting embedding.

2.1.1 Protein Fragmentation
We consider two different ways of dividing a protein with l residues into
structural fragments, using its α-carbon coordinates, α = {αi|αi =

(αx
i , α

y
i , α

z
i ), i : 1, ..., l}.

1. k-mer based - for a given value of k, a protein is divided into l
k-mer-based structural fragments, {Ck

i , i : 1, ..., l} where

Ck
i = {αj |j ∈ (max(1, i− bk/2c),min(l, i+ bk/2c))}

Here bc converts a floating point number to the closest integer value
below it.

2. radius based - for a given radius r, a protein is divided into l radius-
based structural fragments {Cr

i , i : 1, ..., l} where

Cr
i = {αj |d(αi,αj) < r}

with d(αi,αj) being the Euclidean distance between αi and αj .
Practically, this is accomplished by constructing a KD-Tree onα,

using the KD-tree implementation in ProDy v1.10.11(Bakan et al.,
2011) and querying by radius with each αi as the center.

While the k-mer based approach is effective in describing structural
fragments that are sequential in nature, such as α-helices and loops, the
radius-based approach can capture long-range structural contacts as seen
in β-sheets, as well as distinct interaction patterns in space, as found
in enzyme active sites. Both fragmentation methods have O(l) time
complexity.

Each resulting structural fragment is then transformed into four
moment invariants, described in the next section. In our examples and
results section we use a k of 16 and a radius r of 10 Å as a compromise
between specificity of the structural fragments and effectiveness of the
moment invariants. In principle, optimization of these parameters could
lead to further improvements of our approach for specific applications, but
we leave this open for future exploration.

2.1.2 Moment Invariants
Three-dimensional moment invariants are computed using the formula of
the central moment, defined below for a discrete set of c coordinates, with
(x, y, z) being the centroid:

µpqr =

c∑
i=1

(xi − x)p(yi − y)q(zi − z)r

Using this formula, we then compute four moments that were
previously used in a structural bioinformatics study to describe enzyme
active sites (Sommer et al., 2007). These include the three second-order
rotation invariants (O3, O4, and O5) described by Mamistvalov (1998)
and a fourth invariant, F , described by Flusser et al. (2003). These four
moment invariants are defined below:
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O3 = µ200 + µ020 + µ002

O4 = µ200.µ020 + µ200.µ002 + µ020.µ002

−µ2110 − µ2101 − µ2011

O5 = µ200.µ020.µ002 + 2µ110.µ101.µ011

−µ002.µ2110 − µ020.µ2101 − µ200.µ2011

F = 15µ2111 + µ2003 + µ2030 + µ2300 − 3µ102.µ120 − 3µ021.µ201

−3µ030.µ210 − 3µ102.µ300 − 3µ120.µ300

−3µ012.(µ030 + µ210)− 3µ003(µ021 + µ201)

+6µ2012 + 6µ2120 + 6µ2201 + 6µ2210 + 6µ2021 + 6µ2102

Thus, any structural fragment can be represented by a vector
(O3, O4, O5, F ). Moment invariant calculation is implemented using
Numba v0.48.0 (Lam et al., 2015) and has O(c) time complexity which
is negligible for small values of c, as seen for k=16 (i.e. a maximum c of
16) and r=10 (c = 18± 6).

2.1.3 Discretization to Shape-mers
While the moment invariants obtained for each structural fragment
can be directly compared, discretizing them enables collecting sets of
fragments that resemble each other across multiple proteins. We convert
the continuous and real-valued moment invariants to discrete shape-mers
as follows:

(O′3, O
′
4, O
′
5, F
′) = (bm× ln(O3)c, bm× ln(O4)c,

bm× ln(O5)c, bm× ln(F )c)

Here m is the resolution parameter, which defines the coarseness of the
shape-mers, with higher values leading to more fine-grained separation
of structural fragments. Thus, a shape-mer is defined by four discrete
numbers and can describe any number of structural fragments. Figure
1 gives examples of moment invariant and shape-mer calculations (with
m = 1) for three synthetic coordinate sets generated with the equation
{αi = (R cos(i), R sin(i), i), i : 1, ..., 16} for R = 0, 0.5, and 2
respectively, each rotated by ±45◦, and translated by ±10Å along the
x-axis.

Fig. 1. A. Three synthetic structural fragments, with a rotation of ±45◦ and translation
of ±10Å between the middle fragment and the two outer ones. B. Moment invariants
(O3, O4, O5, F ) for each fragment. The three rotated and translated versions
have the same moment invariant values. C. The natural log-transformed versions of
(O3, O4, O5, F ) and D. shape-mers (O′3, O

′
4, O
′
5, F
′) for each fragment.

2.1.4 Counting Shapes
Given a set of n proteins, we generate a collection of shape-mers for
each protein. The total number of shape-mers s is then the number of
distinct shape-mers observed across all n proteins. A count vector of
length s is calculated for each protein with each element recording the
number of times the corresponding shape-mer appears in that protein. This
counting is done separately for the k-mer and radius based approaches, as
they represent different types of structural fragments. The two resulting
count vectors are concatenated to form the final protein embedding. The
entire embedding process has a time complexity of O(nl) and takes
around 50 milliseconds CPU time for proteins of medium length (400-
600 residues). Note that different values for m (the resolution parameter)
and different input sets of proteins will lead to different sets of shape-
mers and embedding sizes. This allows the user to generate feature spaces
tailored to the problem at hand.

2.2 Datasets

We apply Geometricus to a number of datasets to demonstrate the wide
applicability of shape-mer based protein embedding. These are described
below. The remaining sections use the acronyms defined here to refer to
these datasets.

1. CASP11 - 87,573 protein structures from the Critical Assessment
of protein Structure Prediction XI (Moult et al., 2016) training set,
obtained from the ProteinNet data source (AlQuraishi, 2019).

2. CATH20 - The CATH database of protein structures (Pearl et al.,
2003) categorizes proteins hierarchically based on secondary structure
class (C), architecture (A), topology (T), and homology (H). From the
CATH hierarchy, we selected 3,673 proteins with <20% sequence
identity to each other from the top five most populated CAT categories.
Table 1 shows the number of proteins per CAT category.

3. SCOP-Lo - The Structural Classification of Proteins (SCOP) database
(Murzin et al., 1995) provides a detailed classification of structures
based on their topologies and folds. We adapted the SCOP-Lo dataset
from Lo et al. (2007). This dataset comprises 23,912 target proteins
from ASTRAL SCOP 1.67 further divided into sets with 10%,
30%, 70% and 100% maximum sequence identity within each group
respectively. It also contains a query set of 83 proteins each with
at least two proteins from the same SCOP family in the 10% target
protein set, and <10% sequence identity to other proteins in the query
set.

4. Pfam10 - The Protein families database (Pfam) (Bateman et al.,
2002) collates a large set of protein families. Out of the twenty
most populated Pfam domains, the ten accessions with most available
structures are considered, resulting in a total of 3,053 structures. Table
2 lists the number of proteins for each of these ten Pfam accessions.

5. CMGC - 1,822 human protein structures in the CMGC kinase family
were collected from the Kinase-Ligand Interaction Fingerprints and
Structures (KLIFS) database (Kooistra et al., 2016). These are further
divided into 660 cyclin-dependent kinases (CDK), 527 mitogen-
activated protein kinases (MAPK), 268 casein kinase 2 (CK2)
proteins, 160 dual specificity Tyrosine regulated kinases (DYRK),
122 glycogen synthase kinases (GSK), 61 cdc2-like kinases (CLK),
16 serine/threonine-protein kinases (SRPK), and 8 cyclin-dependent
kinase-like kinases (CDKL).

6. MAPK - The 527 MAP kinases from the CMGC dataset are
considered separately. These comprise 271 p38 MAPK structures
(p38), 147 extracellular signal-regulated kinases (ERKs), and 109
c-Jun N-terminal kinases (JNKs).

Note that the low sequence identity between the proteins in many of
these datasets clearly underlines the need for structure-based embedding.
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Class Architecture Topology
No. of

Proteins

Mainly
Alpha

Orthogonal Bundle
Arc Repressor
Mutant, subunit A

465

Mainly Beta Sandwich Immunoglobulin-like 700
Mainly Beta Sandwich Jelly Rolls 401

Alpha Beta
3-Layer (aba)
Sandwich

Rossman Fold 1,660

Alpha Beta 2-Layer Sandwich Alpha-Beta Plaits 447

Table 1. Number of proteins in each CAT category in the CATH20 dataset

Pfam
Accession

Short name Description
No. of

Proteins

PF00005 ABC_tran ABC transporter 187
PF00069 Pkinase Protein kinase domain 438
PF00076 RRM_1 RNA recognition motif. (a.k.a.

RRM, RBD, or RNP domain)
269

PF00096 zf-C2H2 Zinc finger, C2H2 type 144
PF00400 WD40 WD domain, G-beta repeat 906
PF00440 TetR_N Bacterial regulatory proteins,

tetR family
164

PF02518 HATPase_c Histidine kinase-, DNA gyrase
B-, and HSP90-like ATPase

87

PF12796 Ank_2 Ankyrin repeats (3 copies) 263
PF13561 adh_short_C2 Enoyl-(Acyl carrier protein)

reductase
273

PF13855 LRR_8 Leucine rich repeat 322

Table 2. Number of proteins for each Pfam accession in the Pfam10 dataset

2.3 Visualization of shape-mers and Geometricus
embeddings

To visualize two commonly occurring k-mer-based shape-mers from the
CASP11 dataset, we first randomly selected 1,000 structural fragments
described by them. From these 1,000, one fragment was randomly chosen
as the base and the remaining were superposed to the base using the Kabsch
algorithm (Kabsch, 1976). For each fragment, the best superposition to the
base of that fragment and its flipped version, in terms of the minimum Root
Mean Square Deviation (RMSD), is taken in order to account for 360◦

rotations. We also visualized two radius-based shape-mers using two of
their structural fragments shown in the context of their respective protein
structures.

The Geometricus embeddings of the Pfam10, CMGC, and MAPK
datasets, generated for different values of them parameter, were reduced to
two dimensions using the Python implementation (v0.3.10) of the Uniform
Manifold Approximation and Projection (UMAP) algorithm by McInnes
et al. (2018), with the cosine similarity metric and default settings.

2.4 Structure similarity search

We demonstrated how Geometricus can be used in structure-based
similarity searches by applying it to the CATH20 and SCOP-Lo datasets.
A pair of proteins is called similar if they share the same CAT category for
the CATH20 dataset or the same SCOP category for the SCOP-Lo dataset,
and dissimilar otherwise.

Typically, in structure similarity search applications, similarity scores
are calculated for a small set of query proteins against a larger predefined
and preprocessed target set of structures. Here, the target set determines
which collection of shape-mers will be used in the search. For the CATH20
dataset, 70% of the proteins are randomly chosen as the target set. The

SCOP-Lo dataset already has four defined target sets (10%, 30%, 70%,
and 100% sequence redundant sets) which are each evaluated separately.

The pairwise similarity measure between two proteins is defined as
the cosine similarity of their Geometricus embedding vectors, constructed
with a low resolution (m = 0.25) to reflect the major structural differences
expected between proteins in these two datasets. Proteins with a similarity
score above a threshold t are predicted to be similar and those below t are
predicted as dissimilar. We calculated similarity scores for all CATH20
proteins against the CATH20 target set, and the 83 SCOP-Lo query proteins
against each of the four sequence redundant SCOP-Lo target sets. ROC-
AUC curves were constructed by varying t to evaluate the correctness of
the similarity search in these five cases.

2.5 CATH classification

A k-nearest neighbor classifier from the scikit-learn python library v0.22.1
(k=5, metric="cosine") was trained to predict the CAT category for the
proteins in the CATH20 dataset with 50% of the data randomly chosen
for training and the remaining for testing. We repeated this five times and
report the average accuracy.

2.6 MAP kinase classification

To demonstrate the applicability of Geometricus for interpretable machine
learning on protein structures, we performed classification on the MAPK
dataset to predict the type of MAP kinase (namely p38, ERK, or JNK)
from protein structure. This was accomplished using the decision tree
classifier from the scikit-learn Python library (v0.22.1) (Pedregosa et al.,
2011), with a random 70%-30% split of training and test data. The top two
most predictive shape-mers from the trained classifier were then mapped
back to the residues that they correspond to and visualized on one p38
structure (PDB ID: 3QUE), one ERK structure (PDB ID: 2OJJ) and one
JNK structure (PDB ID 4KKG) using PyMOL (DeLano et al., 2002).

3 Results

3.1 Shape-mers capture common structural fragments
across protein structures

We performed moment-invariant and shape-mer calculations on over
87,000 proteins in the CASP11 dataset to understand their distributions
and patterns found across structurally divergent proteins. Figure 2A shows
the log-distribution of each of the four moment invariants for the k-mer-
and radius based structural fragmentation approaches. The radius-based
approach shows wider distributions in general, which can be expected:
different locations in a protein have different densities of residues leading
to differing numbers of coordinates in the radius-based approach, while
the k-mer based approach largely produces fragments with k coordinates
except for some shorter fragments at the N- and C-terminal ends of each
protein.

Shape-mers were computed from the moment invariants using a
resolutionm of 1 (see Methods). The resulting 565 k-mer shape-mers and
703 radius shape-mers do not all represent the same number of structural
fragments. Figure 2B shows the log10 distribution of structural fragment
counts represented by each shape-mer. Some shape-mers, at the right
end of Figure 2B, are found over a million times, and unsurprisingly
represent common structural fragments such as short, well-defined α-
helices. One k-mer based and one radius-based example are shown in
Figure 2C1 and Figure 2D1 respectively, both found across most of the
proteins in the CASP11 dataset. Conversely, the shape-mers on the very
left end of the Figure 2B represent only one structural fragment, likely
loops or specific folds which are structurally and functionally unique and
thus rare. The remaining shape-mers describe anywhere between one and a
million fragments and may be specific to certain superfamilies or families
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Fig. 2. A. Natural log distribution of each of the four moment invariants across k-mer based structural fragments (in blue) and radius-based structural fragments (in orange) from proteins
in the CASP11 dataset. B. Histogram of (log10 transformed) counts of fragments described by each shape-mer. C. Two examples of k-mer based shape-mers, shown using a thousand
randomly selected fragments, superposed. D. Two examples of radius-based shape-mers, magnified, and highlighted as black dots on two protein structures in which they are found.

of proteins. Figure 2C2 shows an extended roll-like shape-mer found in
almost 10,000 proteins and Figure 2D2 shows a sparse radius shape-mer
found on the surfaces and ends of 5,000 proteins.

3.2 Geometricus can be used for fast and accurate
structure similarity search and topology classification

A common application of structure-based embeddings is to perform a fast
similarity search for an input structure across a database of structures
and return the most similar candidates. We demonstrate the performance
of Geometricus on this task using CATH and SCOP classifications as a
ground truth measure of protein similarity.

Figure 3 shows the Receiver Operating Characteristic (ROC) curves
for the CATH20 dataset and for various sequence redundancy levels of
the SCOP-Lo dataset, along with their corresponding area under the curve
(AUC) values. The all vs. all similarity calculation for the 3,673 proteins
in the CATH20 dataset took 250 milliseconds. For the SCOP-Lo dataset,
query vs. target similarity calculation for the 83 query proteins against the
10% target dataset (with 4,332 proteins) took 4 milliseconds and the 100%
target set (with 23,912 proteins) took 20 milliseconds. Generating the target
dataset embeddings was also fast, taking 2 minutes for the CATH20 dataset
and 15 minutes for the 100% SCOP-Lo dataset (excluding file parsing time
as this depends on the speed of the disk). Target set embedding time is not
as important as search time, as it only has to be run once. Embedding each
additional query protein takes 20-60 milliseconds depending on its length.

A k-nearest neighbors classification of the CATH20 dataset into the five
CAT classes showed a high accuracy of 82%.

In both these applications, Geometricus performs favourably compared
to results reported by other alignment-free approaches applied to
comparable datasets (Le et al., 2009) (Lo et al., 2007; Budowski-Tal
et al., 2010), which typically achieve search AUCs between 0.75 and 0.85
and fold classification accuracy up to 75%. For the structural alphabets
defined by Le et al. (2009) classification accuracy increases to 80%
upon using more sophisticated SVM classifiers with tailored kernels.
This approach is not investigated here but would likely improve our fold
classification accuracy further. Geometricus comes close to the highly
accurate alignment-based methods (Le et al., 2009) (with search AUCs
exceeding 0.9 and fold classification accuracy exceeding 90%) at a mere
fraction of the computational cost.

3.3 Geometricus can be used across and within protein
families

Unlike library-based or deep learning-based structure embedding
techniques, Geometricus can be adapted to the type and scale of the
problem at hand without sacrificing speed, via the m (resolution)
parameter. When comparing proteins from different superfamilies, a
coarse discretization of structural fragments is preferred as it is expected
that these proteins will have very different structures. However, as the
specificity of the problem increases, the proteins under investigation start
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Fig. 3. ROC curves for an all vs. all structure similarity search using Geometricus
embeddings on the CATH20 dataset (dark blue) and four similarity searches of 83 query
proteins on different sequence redundant target sets from the SCOP-Lo dataset (10% - light
blue, 30% - orange, 70% - green, and 100% - red). True positives were determined using
CATH and SCOP classifications, as described in the Methods.

resembling each other more. In such cases, more specific binning of
fragments, i.e a higher resolution, is advantageous to better capture their
differences. This is demonstrated in Figure 4 with the Pfam10, CMGC,
and MAPK datasets.

The Pfam10 dataset (Figure 4A) consists of proteins that contain
one of ten fairly divergent Pfam domains. A low resolution of 0.25
(leading to 26 k-mer based shape-mers and 28 radius-based shape-mers)
already separates these ten Pfam accessions into well-defined clusters.
Some similar accessions, such as the Protein kinase domain (Pkinase) and
the Histidine kinase-like ATPase (HATPase_c) cluster closer together as
expected. Higher resolutions perform worse on this dataset, as comparable
structural fragments are split across different shape-mers.

The CMGC dataset (Figure 4B) contains proteins from a group
of kinases called the CMGC group (named after the initials of some
members). As these proteins are more evolutionarily and functionally
related, a higher resolution of 0.5 (resulting in 78 k-mer shape-mers and
93 radius shape-mers) is required to achieve a good separation between
the individual families within this group.

Finally, the MAPK dataset (Figure 4C) consists of MAP kinases, a
family of proteins which relay signals from the cell surface to coordinate
growth, stress and other responses. This family is divided into subfamilies,
here simplified into the p38, ERK, and JNK categories, each of which
relay different types of growth and stress signals. A high resolution of 2
(resulting in 1098 k-mer shape-mers and 908 radius shape-mers) separates
these subfamilies.

Thus, the feature space generated by Geometricus can be altered
depending on the structural similarity expected between the proteins under
consideration. This is especially advantageous in situations where the
proteins under study are from the same family or subfamily and share
a common structural fold, or in the case of mutation studies where local
structure alterations occur due to single residue changes. In contrast, other

embedding techniques are often optimized for divergent structures, and
would likely assign the same embedding to each protein in these cases.

3.4 Geometricus can be used as input for interpretable
machine learning

Typically, when analysing highly similar proteins as found in the MAPK
dataset, one would also be interested in interpreting the results to find
functionally important residues or structural regions. Such insights can be
directly be applied to select candidate residues for mutational studies or
used in directed evolution techniques to engineer proteins and enzymes
with desired properties such as substrate specificity (Ding et al., 2014),
drug-target binding affinity (Michael et al., 1992), interaction specificity
(Fariselli et al., 2002), or thermostability (Jia et al., 2015) among others.
Geometricus embeddings are well-suited for this kind of learning as each
element of an embedding can easily be mapped back to the specific residues
of the shape-mer it represents.

We demonstrate this with a classification problem defined for the
MAPK dataset, namely to predict the specific subfamily of a MAP
kinase. A simple decision tree trained on 70% of the data and tested
on the remaining 30% showed an accuracy of 96% for this task. More
interestingly, this trained classifier can now be inspected for predictive
features. We mapped the top two shape-mers considered the most
predictive by the decision tree back to all the residues and locations at which
they occur across all the MAPK proteins. These locations are visualized on
three example proteins, one from each of the three subfamilies (Figure 5A;
shape-mer 1 in red, shape-mer 2 in blue). Figure 5B details the percentage
of proteins from each subfamily which contain each of the two shape-
mers, and the average number of times they appear per protein. The first
appears more often in p38 kinases at a higher frequency per protein,
while the second favors the ERK kinases with over three occurrences
per protein on average. Looking at the structures themselves, it becomes
clear which particular locations (highlighted and magnified) cause this
difference in frequencies, even in such highly similar structures. While this
is a simple example, it demonstrates the potential for using Geometricus
in interpretable machine learning tasks for protein families.

4 Conclusion
We have presented a novel, fast and accurate approach for protein structure
embedding with a wide range of applications. Geometricus uses 3D
rotation invariant moments to describe structural fragments such that they
can be easily compared across proteins without the need for superposition
or alignment. This allows for a blazing fast embedding technique that takes
milliseconds to generate an embedding of a protein, and scales linearly with
the number of proteins.

The simplicity of this approach also brings with it versatility, as
Geometricus does not depend on a fixed library of predefined fragments
and can instead grow or shrink depending on the scale of the problem
at hand. Therefore, it is readily applied to more specialised prediction
tasks focusing on a single protein family with a conserved structural fold
where other structure embedders would likely struggle to resolve each
protein. The explicit mapping between residues and shape-mers further
allows the user to trace back from a predictive model to predictive residues
and structural regions, which can broaden our understanding of specific
protein and enzyme mechanisms. This makes Geometricus well-suited
for machine learning tasks where interpretation is a concern along with
accuracy.

While this initial version of Geometricus uses four rotation-invariant
moments, more such invariants have been studied (Žunić et al., 2016) and
could be added to increase the specificity of a shape-mer. Another possible
extension is to include solvent accessibility or amino acid descriptors as
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Fig. 4. The effect of the resolution parameter m on different datasets. A, B, and C represent the Pfam10, CMGC, and MAPK datasets respectively. 1, 2, and 3 represent resolutions of 0.25,
0.5, and 2. As the structural similarity between proteins increases, higher resolutions are needed to achieve a good separation of pre-existing clusters in each dataset.

Fig. 5. A. The occurrences of two shape-mers (colored red and blue respectively) most predictive in separating MAPK subfamilies visualized on three MAPK structures: 1. p38 structure
(PDB ID: 3QUE), 2. ERK structure (PDB ID: 2OJJ) and 3. JNK structure (PDB ID: 4KKG). For each shape-mer, one location in a structure where it is present is magnified across all
three structures and discussed in the text. B. The percentage of proteins containing a shape-mer and the average number of times a shape-mer appears per protein across the three MAPK
subfamilies, for 1. the first shape-mer (red) and 2. the second shape-mer (blue).
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rotation-invariant aspects of a residue set. While these additions would
likely not be so helpful in tasks spanning diverse proteins, such as
structure similarity search, they may be useful in tasks involving enzyme
mechanisms (Heckmann et al., 2018) or protein/ligand interactions and
hotspots (Liu et al., 2018a; Zheng et al., 2019) where the accessibility
of a structure fragment as well as its physicochemical and electrostatic
properties matter as much as its shape.

Geometricus thus combines a set of highly attractive features that sets it
apart from other structure embedding and structure similarity techniques. It
is much faster than alignment-based algorithms such as Madej et al. (2014)
and Ye and Godzik (2004), and at the same time highly accurate compared
to other alignment-free techniques such as Le et al. (2009) and Lo et al.
(2007). Unlike most techniques, its independence from a fragment library
or predefined training set allows for broad application to generate feature
sets for machine learning, even for differentiating mutants - something
that has not been explored due to the focus of current techniques on
divergent proteins. The shape-mer approach allows for easy interpretability
and possible association of specific shapes to function, and its simplicity
allows for ease of expansion. Shape-mer similarity could also be utilized
to train structure-informed sequence embedding techniques, similar to the
approach detailed by Bepler and Berger (2019), or as part of a scoring
function to assess protein model quality, a field in which topology has
been shown to play a crucial role (Garg et al., 2016).

Improvements in homology and de novo modelling techniques have
greatly expanded the number of proteins for which we can accurately model
structure. This means that future structure-based machine learning tasks
will likely be augmented with structural models to obtain large datasets
comparable to those used in sequence-based predictive approaches, where
such a fast and versatile structural embedder would be useful. Given the
prominent role in present-day bioinformatics of both structural modelling
and machine learning, Geometricus embeddings, with possible further
embellishments, may lead to breakthroughs in understanding protein
function.
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