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Abstract 

Advances in spatial transcriptomics technologies enable optical profiling of morphological and 

transcriptional modalities from the same cells within tissues. Here, we present multi-modal 

structured embedding (MUSE), an approach to deeply characterize tissue heterogeneity through 

analysis of combined image and transcriptional single-cell measurements. We demonstrate that 

MUSE can discover cellular subpopulations missed by either modality as well as compensate for 

modality-specific noise. MUSE identified biologically meaningful cellular subpopulations and 

stereotyped spatial patterning within heterogeneous mouse cortex brain tissues, profiled by 

seqFISH+ or STARmap technologies. MUSE provides a framework for combining multi-modal 

single-cell data to reveal deeper insights into the states, functions and organization of cells in 

complex biological tissues. 

Introduction 

Living tissues are built from ensembles of cells in different states. Microscopy provides a classical approach 

to identify and characterize cell types through similarities in morphology1-3. Developments in single-cell 

transcriptomics technologies provide complementary approaches to characterize cells types through 

similarities in transcriptional states4-8. Both microscopy and single-cell transcriptomics approaches have 

provided deep insights into cellular state, function and organization. Recent advances in spatial 

transcriptomics technologies, such as spatial transcriptomics (ST)9, 10, sequential fluorescence in situ 

hybridization (seqFISH)11, 12, multiplexed error-robust fluorescence in situ hybridization (MERFISH)13, 14 and 

spatially-resolved transcript amplicon readout mapping (STARmap)15, enable simultaneous morphological 

and transcriptional profiling from the same single cells. Here, we explore the exciting possibility that 

techniques in machine learning can be used to combine information from microscopy and single-cell 

transcriptomics to provide deeper insights into cell-type compositions that comprise tissues. 

Methods that successfully combine multi-modal information hold the promise to identify biologically 

meaningful subpopulations that are missed by individual modalities and provide a more detailed description 

of tissue cell heterogeneity (Fig. 1a). However, effective approaches that combine multi-modal data need 

to overcome several challenges. Notable are requirements that: (requirement 1) discriminative information 
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in each modality should be captured in the combined data structure; and (requirement 2) limited 

information from a lower-quality modality should improve—and not reduce—the resolution of the 

subpopulation structure that is learned from the higher-quality modality. 

Here, we present a multi-modal structured embedding (MUSE) approach that addresses these 

requirements. MUSE uses a deep-learning architecture to extract and integrate information from each 

modality into a meaningful joint representation. A self-reconstruction loss ensures that information from 

each modality is not lost in the process of building the joint latent representation, and a self-supervised loss 

ensures that phenotypic similarity of cells in each modality is preserved in the joint representation. We 

demonstrate these ideas first using synthetic data with known ground truth. Then we apply MUSE to two 

single-cell spatial transcriptomics datasets of neural cortex12, 15, which have the desirable properties for 

methods validation that many cell types have stereotyped morphologies, transcriptional biomarkers and 

positions within the tissue. 

Results 

MUSE architecture and training 

MUSE is built on a standard multi-view autoencoder (AE) neural network architecture16, 17 (Fig. 1b). 

Learning is conducted in three steps: 1) modality-specific transformations: the input features x and y 

are transformed into latent representations hx and hy; 2) pseudo-label learning: clustering on feature 

spaces hx and hy are performed independently to obtain pseudo-labels lx and ly for each modality; and 3) 

joint feature learning: the modality-specific features hx and hy are merged and transformed into a joint 

latent feature representation z. The learning process is guided by minimizing combined self-reconstruction 

and self-supervised loss functions. The self-reconstruction loss resembles the standard AE loss function, 

which encourages the learned joint feature representation (z) to faithfully retain information from the original 

individual input feature modalities (x and y). The self-supervised learning exploits triple-loss functions18, 19 

to encourage cells with the same cluster label (i.e. with the same pseudo label in either lx or ly) to remain 

close—and cells with different cluster labels to remain far apart—in the joint latent space. During model 

training, the transformation, pseudo-label learning and joint feature learning steps are iteratively performed. 

Model parameters in the whole neural network are jointly updated in each iteration (Methods). Finally, after 
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model training, graph clustering is performed on the joint latent features (z) using PhenoGraph20, 21 to 

identify latent subpopulations (Methods). 

Combined analysis improves cell subpopulation identifications 

To evaluate the performance of MUSE, we initially made use of simulated transcript and morphology data 

where ground truth subpopulation assignment for each cell and modality is known (Methods and 

Supplementary Fig. 1). As benchmarks, MUSE was compared with three existing approaches that enabled 

combining data: canonical correlation analysis (CCA)22, multi-omics factor analysis v2 (MOFA+)23, 24, and a 

multi-view autoencoder (AE). Results using a single modality were presented using principle component 

analysis (PCA) as reference. For each method, graph clustering was used to identify the underlying 

subpopulation structures, and the accuracy to correctly discover true cell subpopulations was quantified 

using the adjusted Rand index (ARI)25. 

We first used the simulated data to assess the ability of MUSE to capture discriminative information from 

each modality (requirement 1 above). How is performance affected as the ability to discriminate 

subpopulations in each modality decreases? We retained 10 ground truth subpopulations in the full multi-

modal space and degraded the ability of both single modalities to resolve these subpopulations by randomly 

merging a different group of cell cluster assignments for each modality (Methods). Transcriptional data 

were simulated using a published single-cell RNA simulator26, 27, and morphological features were simulated 

using a multi-layer neural network (Methods). As cluster numbers decreased, the factorization method 

MOFA+ maintained an accuracy level comparable to either single-modality approach while MUSE 

exceeded the single-modality benchmarks (Figs. 1c). Visualization of the latent space suggested the utility 

of the triplet-loss function: cells originating from the same subpopulation in either modality remained close 

and all true subpopulations remained well distinguished (Supplementary Fig. 2). How is performance 

affected as the number of ground-truth subpopulations increases? A potential advantage for multi-modal 

analysis is the ability discover more fine-grained population composition by combining heterogenous 

cellular properties; however, accuracies tend to decrease with increasing cellular heterogeneity. Here, we 

held the total number of cells constant but increased the number of subpopulations. As the number of 

clusters increased, CCA, AE and MOFA+ did not achieve higher ARIs than the single-modality benchmark 
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methods; however, the guided combination of MUSE consistently outperformed single-modality methods 

(Supplementary Fig. 3). 

We next assessed the performance of MUSE as data quality in one modality degrades (requirement 2 

above). Two persistent problems in single-cell data are sequencing dropouts and noise in feature 

measurements28, 29. First, we varied dropout level for the transcript modality while leaving the simulation 

parameters for the morphology modality unchanged (Methods); as before, 10 ground-truth clusters were 

used. Morphology alone provided an average accuracy of ~0.6 ARI (Fig. 1d, horizontal dashed lines). As 

the dropout rate increased, the accuracy of all methods degraded, but only MUSE was able to retain the 

accuracy of morphology alone. Visualizing the results in latent space suggested that MUSE representations 

maintained a discernable subpopulation structure of 10 clusters (Fig. 1e). Second, we changed the noise 

level in both modalities, using additive Gaussian random noise with increasing variance (Supplementary 

Fig. 4). MUSE largely performed better or equal to the benchmark single-modality methods, though at 

extremely high noise levels the performance of MUSE and all other combined methods were strongly 

compromised.  

Finally, we note that the choice of latent dimension had only a minimal effect on the accuracy of 

subpopulation identification for all compared methods (Supplementary Fig. 5); further, the accuracy of 

MUSE was not affected by input dimension (Supplementary Fig. 6). While MUSE is reasonably fast for 

current experimental data sizes (e.g. 1000 samples in 1.5 minutes on a standard desktop, Methods), MUSE 

is slower than all other compared methods due to the inclusion of graph clustering during structured self-

supervised training, (Supplementary Fig. 7). All simulation parameters used in experiments were 

summarized in Supplementary Table 1. 

Together, these results indicated that direct combination of two feature modalities does not guarantee a 

better cell-subpopulation decomposition. The structured self-supervised used by MUSE enabled capturing 

and combining discriminative information that was not available from either modality alone. Further, MUSE 

was not unduly confounded by poor data quality in either one or both modalities. Thus, MUSE satisfied the 

two requirements we set a priori for a combined multi-modal method. 

MUSE analysis of mouse cortex layers (seqFISH+) 
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A critical challenge in assessing single-cell analysis on real data is often a lack of ground truth. However, 

tissues with stereotyped spatial organization of cell types can provide independent evidence to evaluate 

the quality of learned representations and identified subpopulations30, 31. A particularly good example of this 

is the multi-layer pattern of spatial organization in the brain cortex32, 33. Thus, we applied MUSE to two 

experimental mouse cortex datasets. 

The first cortex dataset was obtained using seqFISH+ technology12. This dataset includes expression 

profiles of 10,000 genes and cell images with DAPI and Nissl staining for 523 cells. For the transcript 

modality, we used a standard preprocessing pipeline for scRNA and selected highly variable genes as input 

features x (Methods). For the morphological modality, we input the DAPI and Nissl images for each cell 

(based on the provided cell masks) into a pre-trained deep neural network (Google Inception-v334) to extract 

morphological properties as input features y (Methods). We extended subpopulation analyses to include 

four approaches in each of three classes—using only transcriptional features x (PCA, ZIFA, SIMILR and 

scScope; with detailed descriptions in Methods), only morphological features y (PCA, MDS, Isomap and 

tSNE), or the combination of both x and y (CCA, MOFA+, AE and MUSE). As before, cell clusters and 

cluster numbers were identified automatically by performing graph clustering on the latent cell 

representations z (Methods). 

Many clusters identified from each method were spatially co-localized (Methods; Supplementary Figs. 8 

and 9) and showed layer-like structure (Figs. 2a and b, Supplementary Fig. 10). Layer-specific markers 

were used to assign clusters to the cortex layers, and MUSE was able to identify all four layers (L2/3, L4, 

L5 and L6; Figs. 2c, d and Supplementary Figs. 11, 12). By examining MUSE clusters within the same 

cortex layers, we observed that the morphology modality refined distinctions provided by the transcript 

modality (e.g. in L2/3, distinct distributions of morphological features between the subpopulations were 

evident; Fig. 2e and Supplementary Fig. 13). Combing morphological and transcriptional profiles provided 

a refined dissection of cell diversity within the cortex. 

MUSE analysis of mouse cortex layers (STARmap) 

The second cortex dataset was obtained using STARmap technology. For the transcript modality, this 

dataset contained expression profiles of 1,020 genes; however, for the morphological modality, only cell 
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shape masks were provided. The data were processed for the different comparison methods to obtain latent 

representations and subpopulations as in the previous cortex dataset (Supplementary Fig. 14). 

We visualized the ability of different methods to “discover” cortical layer structure based on pseudo-colored 

cortex depth (Fig. 3a). SIMLR and MUSE identified the highest number of spatially co-localized clusters 

(Fig. 3b, Supplementary Figs. 15 and 16), and the clusters from MUSE were well separated in latent 

space (Figs. 3a and c). Based on anatomic annotations from the original paper, which labeled all seven 

layers in the cortex sample, MUSE successfully identified all neuron and non-neuron layers (Fig. 3d; 

Methods). 

Analysis of multi-modal clusters identified by MUSE 

As a case study, we analyzed STARmap clusters identified from individual (based on PCA) or combined 

(based on MUSE) modalities in the joint latent space provided by MUSE (Fig. 4a). We classified clusters 

based on whether MUSE 1) refined, 2) reproduced or 3) discovered new clusters compared to those 

obtained from single modal analyses (Supplementary Figs. 17 and 18). 

The “refined” MUSE clusters were poorly separated based on transcript features, yet were reasonably 

well separated based on morphology features (Fig. 4b, and Supplementary Fig. 19). In the combined 

analysis, MUSE employed the morphological diversity to further dissect cells into subgroups. Cell masks 

provided in this dataset are shown sampled randomly from each cluster, and morphological differences 

(e.g. small cell sizes of Cluster 11) can be seen (Fig. 4b, bottom). The “reproduced” MUSE clusters were 

distinct based on transcript features alone (Fig. 4c, top panel). Differential expression analysis allowed us 

to annotate these clusters as astrocytes, hippocampus neurons, oligodendrocytes or smooth muscle cell 

(SMC) types (Fig. 4c, bottom panel), which have distinct and identifiable transcriptional expression patterns. 

The “discovered” MUSE clusters were missed from the single modalities, which individually provided only 

weak differences (Fig. 4d, top panel). Here, the combination of weak heterogeneities from both modalities 

enabled MUSE to identify distinct L2/3, L5 and L6 structures (Fig. 4d, right bottom panel). 

Discussion 
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Characterizing cell heterogeneity is fundamental to understanding how tissues are organized and function. 

Two widely used and well-validated methods to study cell diversity are microscopy, to capture 

morphological differences, and scRNA sequencing, to capture transcriptional differences. Here, we 

developed a deep-learning framework, MUSE, to combine observations from both single-cell morphology 

and transcript modalities. MUSE makes use of a learning architecture that encourages synthesis of 

subpopulation structure observed in either modality. We demonstrated, for both synthetic and real biological 

data, that MUSE can reveal novel subpopulation structure and tissue organization missed by single-

modalities or other methods.  

It is evident that combined analysis across -omics modalities will increase our power to understand tissue 

heterogeneity35, 36. The machine learning approach of MUSE – with its parallelized autoencoder architecture 

and self-supervised learning approach – is designed to be extensible across modalities. MUSE is posed to 

leverage and coalesce advances as new measurement modalities, deeper profiling approaches, and 

modality-specific analysis are developed.  
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Methods 

Multi-modal structured embedding 

MUSE learns joint latent features by incorporating heterogeneity of morphological and transcriptional 

modalities. For a single-cell spatial transcriptomics dataset with 𝑛 cells, transcriptional and morphological 

profiles are represented as 𝑋 ∈ ℝ!×# and 𝑌 ∈ ℝ!×$, where the 𝑖th row of each matrix is the transcriptional 

(𝑥%) or morphological (𝑦%) feature from the same cell 𝑖. 

Zero-inflated multi-modal autoencoder 

The whole autoencoder structure is illustrated in Supplementary Fig. 20. Features from two modalities (𝑥% 

and 𝑦%) are input into a multi-modal autoencoder, and a latent representation for each modality is learned 

by the encoder layer: 

ℎ&! = 𝑓'()*+,-"(𝑥%) 

ℎ.! = 𝑓'()*+,-#(𝑦%) 

where 𝑓'()*+,-"(∙), 𝑓'()*+,-#(∙) are multi-layer neural networks for two modalities and ℎ&! , ℎ.! ∈ ℝ
/ are latent 

representations with the same low dimension extracted from high-dimensional original inputs. The 

activation function in the last layer of the two encoders is chosen as tanh(∙) to ensure the same scale for 

the two representations. Then the initial joint representation 𝑧% is learned by combing ℎ&! and ℎ.!: 

𝑧% = 𝑓'()*+,-$5concat8ℎ&! , ℎ.!9: 

where concat(∙) function concatenates two latent representations into one vector and the neural network 

encoder 𝑓'()*+,-$(∙) further encodes the vector into a joint representation 𝑧% ∈ ℝ0. The joint representation 

𝑧% will be optimized by structured self-supervised loss. 

Next, we use sparse weight matrices 𝑤& and 𝑤. to selectively activate entries in 𝑧% for the reconstruction of 

the original features 𝑥% and 𝑦%: 

𝑧%
(&) = 𝑧%𝑤& 

𝑧%
(.) = 𝑧%𝑤. 
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where 𝑤& , 𝑤. ∈ ℝ0×0 are sparse matrices that only employ a subset of the entries in 𝑧% to generate modality-

specific features 𝑧%
(&) and 𝑧%

(.). Finally, features for each modality are reconstructed by decoders: 

𝑥<% = 𝑓3,)*+,-"8𝑧%
(&)9 

𝑦<% = 𝑓3,)*+,-# =𝑧%
(.)> 

where 𝑓3,)*+,-"(∙) and 𝑓3,)*+,-#(∙) are multi-layer neural networks that expand latent representations into 

reconstructed features 𝑥<% and 𝑦<%.  

Self-reconstruction loss 

For the transcriptional modality, dropout is a major limitation due to the challenges of tracking fluorescent 

spots across multiple imaging rounds. Therefore, transcript profiles from in situ sequencing usually include 

a large proportion of zeros. Here we use a zero-inflated reconstruction error for the transcript modality to 

remove the effects of zeros entries: 

𝐿-,)*(45-6)5" =
1
𝑛A

‖sign(𝑥%) ∘ (𝑥% − 𝑥<%)‖7
∑sign(𝑥%)

!

%89

 

where sign(∙) is a sign function that returns either 0 or 1 based on whether 𝑥% is zero or not (respectively); 

∘ is the Hadamard product that conducts element-wise product of two vectors. The loss function calculates 

reconstruction errors for non-zero expression then averages them over non-zero entry numbers (∑sign(𝑥%)). 

For the morphological modality, we used the standard reconstruction loss: 

𝐿-,)*(45-6)5# =
1
𝑛A

‖𝑦% − 𝑦<%‖7/𝑞
!

%89

 

The overall reconstruction loss is the combination of the two modality losses with the sparsity constraint: 

𝐿-,)*(45-6)5 = 𝐿-,)*(45-6)5" + 𝐿-,)*(45-6)5# + 𝜆-,:6;<-=><5=*(	 =‖𝑤&‖7 + M𝑤.M7> 

where 𝜆-,:6;<-=><5=*(	 is the regularization hyperparameter and is determined through analysis on simulation 

data (Supplementary Fig. 21a). 

Structured self-supervised loss. 
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Feature properties, noise levels and distributions, dropout levels are intrinsically different between the 

image and transcript modalities. To extract useful information from each modality and increase the quality 

of the joint latent feature 𝑧%, we further used structured self-supervised learning to encourage the structure 

of each modality to be maintained in the joint latent space.  

To identify modality-specific population structure, clustering is performed for cell 𝑖 using the latent feature 

from each modality (ℎ&! , ℎ.!) independently. Here, PhenoGraph20 was used to identify sample structures. 

The optimal cluster number is determined automatically on sample graph structures, an approach that is 

widely used in single-cell analysis. Here, cluster labels for cell 𝑖 with respect to modality features 𝑥% and 𝑦% 

are denoted by 𝑙&! and 𝑙.!, respectively. Cells with the same labels are similar to each other in (at least) one 

modality. Clusters from each modality are used as supervising labels to improve the learning of joint latent 

feature 𝑧% via the triplet loss: 

𝐿5-=@;,5" =
1
𝑛Amax=M𝑧% − 𝑧@*4"M7 − M𝑧% − 𝑧(,:"M7 + 𝜀, 0>

!

%89

 

𝐿5-=@;,5# =
1
𝑛Amax=S𝑧% − 𝑧@*4#S7

− S𝑧% − 𝑧(,:#S7
+ 𝜀, 0>

!

%89

 

where in 𝐿5-=@;,5", sample 𝑧% is the anchor, 𝑧@*4" is a positive sample from the same cluster as the anchor 

based on clusters from modality 𝑥, and 𝑧(,:" is a negative sample from a different cluster; 𝜀 is the margin; 

𝐿5-=@;,5# is defined in the same way using clusters from modality 𝑦. The triplet loss pushes the distance 

difference between anchor-positive and -negative samples to be greater than the margin so that the loss 

approaches its minimum (i.e. 0). As the choice of margin 𝜀 is hard to predetermine due to the uncertainty 

of feature distributions in two modalities, an adaptive method was used to automatically determine the 

margin value (refer to Optimization of MUSE).  

Loss function 

The overall loss function for training is the combination of the self-reconstruction and self-supervised losses: 

𝐿 = 𝐿-,)*(45-6)5 + 𝜆46@,-A=4, =𝐿5-=@;,5" + 𝐿5-=@;,5#> 
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where 𝜆46@,-A=4,  is the hyperparameter to balance the contribution from triplet loss terms and was 

determined by simulation experiments (Supplementary Fig. 21b). 

Optimization of MUSE 

MUSE is trained on raw features and reference labels from two modality and optimizes joint latent features 

and cluster labels iteratively.  

First, we obtain an estimate of the margin 𝜀 used in triplet loss. To accomplish this, we train the model 

without supervised terms by setting 𝜆46@,-A=4, = 0, which is equivalent to a multi-modal autoencoder with 

zero-inflated loss in the transcript modality. We then estimate 𝜀 as the differences between medians in the 

top and bottom 20% values in the pairwise distance matrix from the initialized joint latent 𝑧%. 

Then, we optimize the whole MUSE model using iterative training (over the complete loss function):  

1) Fixing the network parameters, update the cluster labels 𝑙&! and 𝑙.! by using clustering on ℎ&! , ℎ.! (see 

below). 

2) Fixing cluster labels 𝑙&! and 𝑙.!, optimize the network parameters to obtain updated ℎ&! , ℎ.! and 𝑧%.  

Clustering 

During training, clustering and labels for each independent modality were obtained using PhenoGraph20 

with the Louvain method, which determines optimal cluster number automatically. After optimization, the 

same procedure was used to obtain clusters and labels for the joint latent space. For all PhenoGraph 

analysis, we used the same default 30 nearest neighbors to construct graph. We note that the architecture 

of MUSE is flexible, and other (e.g. modality-specialized) clustering approaches can be used instead of 

PhenoGraph to provide cluster labels 𝑙&! and 𝑙.!. 

Spatial transcriptomics data preprocessing 

We made use of two cortex datasets from seqFISH+12 and STARmap15, respectively. The seqFISH+ data 

includes 523 cells from 5 fields of views in a mouse cortex. For each cell, 10,000 RNAs were profiled using 

in situ sequencing. DAPI and Nissl stains were used in imaging, and cells were segmented manually based 

on their morphology. The STARmap dataset mapped 973 cells for mouse visual cortex, and each cell has 
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1,020 gene measurements. Cells were identified using watershed segmentation and segmentation masks 

were provided. 

Transcriptional analysis 

For both datasets, we performed preprocessing based on gene count data. We selected the top 500 most 

variable genes (genes with zero counts for all cells were excluded by default). Gene counts were normalized 

by library size and transformed using log(1+x) before input into the tested models. Transcript analyses were 

performed using scanpy python package (version 1.4.4)37. 

Morphological analysis 

For seqFISH+ data, we segmented single-cell images from tissue images for each imaging channel 

independently using the provided segmentation masks. Each cell-segmentation region was placed at the 

center of an empty image with 299×299 pixels. Then, DAPI and Nissl channels were independently input 

into the pretrained Inception v3 deep neural network. The output of the last network layer (with 1,024 

dimensions) from each cell was concatenated into a long vector. PCA was applied to compress these 

feature vectors to 500-dimensional feature vectors. Vectors were scaled to have same mean value on all 

cells as in transcript features and then were used as input to the tested models. For STARmap data (which 

lacked cell markers), we directly placed the provided cell-segmentation masks over blank images then input 

them into the same pretrained neural network as for seqFISH+. Outputs from the last layers were also 

compressed using PCA and scaled to obtain single-cell morphological features. For both implementations, 

we used the Inception-v3 network34 with pretrained parameters provided by TensorFlow Hub 

(https://tfhub.dev/).  

Simulation experiment setup 

We generated simulated ground-truth class labels 𝑙 ∈ {1,… , 𝐿}! for 𝑛 cells and 𝐿 possible cluster (i.e., cell 

subpopulation) assignments (see Supplementary Table 1 for values of all parameters below). We 

simulated the situation for which only a proportion of true cluster identities could be observed from each 

modality, but all clusters could be discriminated using both modalities (Supplementary Fig. 1). To 

accomplish this, we divided the true clusters into two non-overlapping groups that were each assigned to 
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one of the two modalities. Then, in each group, clusters were merged with probability 𝑝 providing observed 

cluster labels 𝑙& , 𝑙. for the two modalities. 

For example, 10 ground-truth clusters, labeled {1, … ,10}, could be divided into groups 𝐺9 = {1,… ,5}, 𝐺9 =

{6,… ,10} with modality 1 considering merges from 𝐺9  but not 𝐺9 , and vice versa for modality 2; after 

merging, modality one might have seven clusters formed clusters {1 ⋅ 2 ⋅ 3, 4 ⋅ 5,6,7,8,9,10} while modality 

two might have six clusters formed from {1,2,3,4,5,6 ⋅ 7 ⋅ 8 ⋅ 9 ⋅ 10} (where " ⋅ " indicates merged clusters). 

While each modality can only distinguish a subset of the clusters, the combination has the potential to 

distinguish all of them. 

For the transcriptional modality, we followed the same scRNA-seq simulation framework as used in 

SIMILR26 and scScope27. In short, we generated latent codes 𝑧%
(&) ∈ ℝ/  for cell 𝑖 using a multivariable 

normal (MVN) distribution:  

𝑧%
(&)~A 𝜋0,%MVN(𝜇0 , Σ0)

C

089
, 

where 𝐾 is the total cluster number; 𝜋0,% = 1 if cell 𝑖 was assigned to cluster 𝑘 in 𝑙& and otherwise 0; 𝜇0 ∈

ℝ/  was sampled from a uniform distribution with Σ0 ∈ ℝ/×/  the identity matrix. Raw transcriptional 

features were generated through a linear transformation by 𝑥%DEF = 𝐴(&)𝑧%
(&), where entries in the random 

projection matrix 𝐴(&) ∈ ℝ#×/  were randomly sampled from the uniform distribution between [−0.5,0.5]. 

Gaussian noise was added to features 𝑥%!G%HI = 𝑥%DEF + 𝜀 , where 𝜀  was sampled from a Gaussian 

distribution 𝑁(0, 𝜎7). Next, dropout in the count matrix with dropout rate proportional to expression level 

was simulated as:  

𝑥% = 𝑥%!G%HI𝛿5exp8−𝛼𝑥%!G%HI9 < 𝜂:, 

where δ[∙] is an indicator function that outputs 1 if the argument is true and otherwise 0; 𝛼 is the decay 

coefficient that controls dropout levels (set by default to 0.5); 𝜂 is a random value sampled from the uniform 

distribution between [0, 1]. We input 𝑥% to all methods for analysis. 
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For the morphological modality, we generated latent codes 𝑧%
(.) ∈ ℝ/  using the same mixture model 

procedure as above with modality labels 𝑙.. To add complexity to these “image-based” features, we passed 

these latent codes through a two-layer, non-linear network: 

𝑦%
(9) = sigmoid =𝐴9

(.)𝑧%
(.)>, 

𝑦%
(7) = sigmoid =𝐴7

(.)𝑦%
(9)>, 

where 𝐴9
(.) ∈ ℝ$×/  and 𝐴7

(.) ∈ ℝ$×$  were matrices randomly sampled from the uniform distribution 

[−0.5, 0.5]; sigmoid(∙) is the sigmoid function to non-linearly transform the data. Finally, as above we added 

random noise and dropouts to 𝑦%
(7) to obtain final morphological features 𝑦%. As a heuristic, the number of 

dropouts in this modality was set to 0.1 in order to obtain reasonably similar ARI scores for clustering based 

on each modality alone.  

Analysis of gene expression data 

Differential analysis of expression data  

With cluster labels, we identified differentially expressed genes using fold changes and p-values. For each 

cluster, we compared within vs. across cluster gene expression of cells. Log2 Fold changes were calculated 

based on mean gene expressions of these two groups to reveal the average expression differences. P-

values were derived from one-sided ranksum test on expression profiles between the two groups to 

measure overall expression distribution differences.  

Annotation of cortex layers 

For the seqFISH+ data, marker genes that identify different cortex layers were obtained from the literature32 

(in our case, four different genes were used to identify four different layers; Supplementary Fig. 11). Next, 

clusters with layer-like structures were identified (see below for score). Finally, for each layer-like cluster, 

the maximally overexpressed marker gene was used to assign each cluster to a layer.  

For the STARmap data, anatomic layer labels were provided15. This allowed clusters to be annotated based 

on their spatial positions in the tissue section. First, clusters with significant spatial colocalization patterns 

(based on spatial colocalization score) were identified for annotation. Next, a 1-dimensional kernel density 
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estimation (KDE) with Gaussian kernels was performed along the provided x-coordinate of the image 

(corresponding to the cortex axis) for each cluster to model the spatial density of cells in the tissue. Finally, 

clusters were assigned to anatomic layers where peaks of cell spatial densities were located. In our 

implementation, kernel density estimation was performed using the KernelDensity function from sklearn 

python library with bandwidth determined by Scott’s rule.  

Evaluation of identified subpopulations 

Spatial co-localization score and evaluation 

To quantify the spatial enrichment in the tissue for cell clusters, we designed a spatial co-localization score 

based on the statistic used in gene-set enrichment analysis (GSEA)38. 

For all cells, we first calculated the cell-cell distance matrix 𝐷 = {𝑑%J} ∈ ℝ!×!, where 𝑑%J is the Euclidean 

distance between cells 𝑖 and 𝑗 on the image. The distance matrix was further converted into similarity 𝑅 =

{𝑟%J} ∈ ℝ!×! by taking 𝑟%J = 1/𝑑%J , 𝑖 ≠ 𝑗. As the similarity matrix is symmetric, only one similarity score is 

used for each cell pair (𝑖 < 𝑗). All off-diagonal, upper-triangle entries (𝑟%J , 𝑖 < 𝑗) in 𝑅 were ordered into a list 

and re-indexed by rank 𝐿 = {𝑟0}, where 𝑟0 is the similarity score in position 𝑘 of 𝐿. If 𝑛 is the total number of 

cells, then the size of 𝐿 is given by 𝑁 = (𝑛 − 1)(𝑛 − 2)/2. 

We define two scores that allow us to assess whether a cluster label, 𝐶 , is consistent with distance 

similarities. First, let 𝑆K ⊂ 𝐿 be the set of similarity scores 𝑟0 obtained from cells within 𝐶 and define: 

𝑃K(𝑆K , 𝑘) =
1
𝑁H%

A 𝑟L
D&∈N%,
LO0

, 

where 𝑁H% = ∑ 𝑟0D'∈N% . Second, for 𝑟0 ∉ 𝑆K (i.e., at least one cell is not in 𝐶), define: 

𝑃¬K(𝑆K , 𝑘) =
1

𝑁 − 𝑁Q
A 1
D&∉N%,
LO0

, 

where 𝑁K = (𝑛S − 1)(𝑛S − 2)/2 is the size of 𝑆K (𝑛S is the number of cells in 𝐶). The spatial co-localization 

score (SCS) for 𝐶  is defined as the maximal signed deviation between distributions 𝑃K(𝑆K , ⋅	)  and 

𝑃¬K(𝑆K , ⋅	). 
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To derive a significance p-value, we constructed null SCS distribution by permuting cluster labels and 

calculating corresponding scores 1000 times. The p-value is defined as the proportion of scores greater 

than SCS on non-permuted labels. Source code for the SCS calculation is provide on GitHub. 

Cluster accuracy evaluation with adjusted Rand index 

For simulation studies, where ground truth subpopulation labels were given, we evaluated clustering 

performance using the adjusted Rand index (ARI)25. An ARI near 1 indicates a strong match to ground truth 

clustering, while values near 0 suggest random assignment. In the implementation, we used the 

adjusted_rand_score function from sklearn.metrics python package. 

Feature quality evaluation with Silhouette Coefficient 

The quality of latent features were evaluated by the compactness of the clusters in the latent space using 

the Silhouette coefficient39. A score of 1 indicates highest density in latent space. In our implementation, 

we employed the silhouette_score function from sklearn.metrics python package. 

Comparing methods 

All compared methods were run on the same input features (see above data processing section; single-

modal methods took features from only one modality) to learn 100-dimensional latent representations. 

Subpopulations were identified based on latent representations using PhenGraph20. All methods were 

configured with default parameters (unless specifically noted) and were run on the same Linux desktop 

(Ubuntu 18.04.3 LTS operation system) with Xeon E5 CPU and Nvidia Titan X GPU (Driver Version: 

418.87.00, CUDA Version: 10.1).  

The software packages used for comparisons are as follows.  

Transcriptional feature learning methods: Principle component analysis (PCA): sklearn 0.20.3 python 

package. Zero-Inflated Factor Analysis (ZIFA)40: ZIFA.fitModel() from ZIFA python package (v0.1). Single-

cell Interpretation via Multi-kernel LeaRning (SIMLR)26: python implementation of SIMLR (v0.1.3). 

scScope27: python implementation scScope (v0.1.5). 
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Morphological feature learning methods: PCA: as above. Multi-dimensional scaling (MDS), Isometric 

mapping (Isomap), and t-distributed stochastic neighbor embedding (tSNE): sklearn.manifold python library 

(v0.20.3). We note that the tSNE method can only support maximal 3-dimension latent representations. 

Multi-modal feature learning methods: 

Correlation analysis (CCA) learns linear transformations of multiview data and maximizes their correlations 

in latent spaces, and we chose the transformation of the transcript data for clustering: sklearn python 

package (v0.20.3). Multi-omics factor analysis v2 (MOFA+)24 was designed to combine multi-omics data 

using the multiview matrix factorization: mofapy2 package (v0.3) with factors = 100, iteration = 500, group 

number = 1 and view number = 2 to learn 100-dimension joint features. Autoencoder (AE) learns joint 

representations based on reconstruction loss from two modal features: in the implementation, we used the 

same neural network structure as in MUSE with standard reconstruction loss with all learning parameters 

(learning step, iteration numbers, etc.) the same as used in MUSE. Multi-modal structured embedding 

(MUSE): software is implemented in python 3.7.3 with NumPy, SciPy, PhenoGraph and TensorFlow 

packages (details were provided at https://github.com/AltschulerWu-Lab/MUSE); hyperparameter values 

were chosen through simulation study (Supplementary Fig. 21) and are provided in Supplementary Table 

2. 

Software used in the study 

Software packages use in the study can be accessed via following links 

PhenoGraph: https://github.com/jacoblevine/PhenoGraph 

ZIFA: https://github.com/epierson9/ZIFA 

SIMLR: https://github.com/bowang87/SIMLR_PY 

scScope: https://github.com/AltschulerWu-Lab/scScope 

MOFA+: https://github.com/bioFAM/MOFA2 

seaborn: https://seaborn.pydata.org/ 

sklearn: https://scikit-learn.org/ 
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Data and code availability 

Single-cell spatial transcriptomics datasets: 

seqFISH+: transcript data were downloaded from the GitHub page of seqFISH+ project (date: August 1, 

2019; link: https://github.com/CaiGroup/seqFISH-PLUS). Nissl and DAPI stained images were provided by 

authors of seqFISH+ paper. 

STARmap: raw data were downloaded from the project page (https://www.starmapresources.com/data at 

July 2, 2019). Transcript profiles and cell segmentation masks were extracted from data using the python 

pipeline provided by authors at https://github.com/weallen/STARmap. 

Simulated tool for multi-modality data generation: 

Simulation code is available from GitHub https://github.com/AltschulerWu-Lab/MUSE. 

MUSE: 

MUSE is provided as a python package under MIT license and can be installed through “pip install 

muse_sc”. Source and demonstration code are available on GitHub https://github.com/AltschulerWu-

Lab/MUSE. 
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Figure legends 

 

Figure 1 | Overview of MUSE and performance evaluation on simulated data. (a) Cartoon indicating 

how single-cell morphological and transcriptional data from a tissue (rectangular slide) can be combined to 

reveal high-resolution characterization of tissue heterogeneity. (b) Overview of MUSE architecture. MUSE 

combines features from transcripts (x) and morphology (y) into a joint latent representation z. The 

reconstruction and triplet losses encourage subpopulation structure from each modality to be faithfully 

maintained in z. (c-e) Performance evaluations using simulated data. (c) Accuracy of identifying ground-

truth high-resolution subpopulations (k=10) from lower-resolution single-modality subpopulations (k=10, 8 

or 6). 1,000 cells with transcriptional and morphological profiles were simulated. Cluster accuracy is 

quantified using the adjusted Rand index (ARI); mean+std is shown for 10 replicates. (d) Accuracy of 

identifying ground-truth clusters over a range of dropout levels from the transcriptional modality. Dashed 
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lines: min, ave and max ARI of morphology-modality alone. x-axis: ARI of PCA analysis on transcript-

modality alone. y-axis: ARI of combined-modality methods. 3-, 4-, 5-pointed shapes: comparison of results 

for randomly chosen datasets, also visualized in panel (e). (e) tSNE visualizations of latent representations 

from single- and combined-modality methods. Colors: ground truth subpopulation labels in simulation.  
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Figure 2 | Evaluation of MUSE on seqFISH+ mouse cortex data. Analysis of cells (n=523) based on 

transcript (top 500 variable genes) and/or morphology (DAPI and Nissl images) modalities. (a) Numbers 

(left) and scores (right) of clusters whose cells show spatial co-localization in the tissue (Methods). Right 

box plot: median (center line), interquartile range (box) and data range (whiskers). (b) Visualization of 

spatial density in the tissue section for clusters with co-localization patterns. Top: clusters were mapped to 

the tissue and spatial density was quantified by kernel density estimations. Bottom: spatial density plot for 

each cluster. Coordinates in each subfigure are the same as the density plot in the top. (c-d) Spatial 

mapping and tSNE plots of cell clusters with co-localization patterns based on (c) transcript-only analysis 

using PCA or (d) MUSE. Other transcript-only methods reveal similar spatial patterns (Supplementary Fig. 

10). Layers were annotated using marker genes identified from differential expression analysis (Methods). 

Cell colors: consistent with PCA or MUSE in (a) (respectively). (e) Visualization of clusters in the same 
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layers identified by MUSE. Plots: first principle component (PC1) of raw features from each modality. 

Density graphs (top, right):  Gaussian kernel density estimations. 
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Figure 3 | Evaluation of MUSE on STARmap cortex data. Analysis of cells (n=972) based on transcript 

(top 500 variable genes) and/or morphology (segmentation mask) modalities. (a) tSNE visualization of 

latent representations by different methods with pseudo-colors labeling cortex depth along x-coordinate. (b) 

Numbers of identified clusters with or without significant spatial co-localization properties. (c) Feature 

quality evaluation by cluster compactness in latent space using Silhouette coefficient. (d) Spatial mapping 

and annotations of clusters with significant spatial co-localization patterns. Significantly co-localized 

clusters are identified using spatial co-localization score with permutation test. Clusters are assigned to one 

layer with respect to the anatomic annotations by original paper (Methods).  
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Figure 4 | Analysis of MUSE clusters. (a) MUSE-identified clusters are categorized based on whether 

they refined, reproduced or discovered clusters compared to the single-modality PCA-identified clusters. 

tSNE visualization using MUSE latent space: cluster labels from transcript-only (PCA, left), morphology-

only (PCA, middle) or combined (MUSE, right) analyses. (b) “Refined” MUSE clusters. Top: tSNE 

visualization of latent spaces. Middle: density plots of 5 MUSE clusters in transcriptional and morphological 

spaces using 2D kernel density estimation. Bottom: topography of cell size in tSNE representation of 

morphological space. Color: cell sizes. Points: cells in the 5 MUSE clusters. Cell masks: randomly selected 

cells. (c) “Reproduced” MUSE clusters. Top: tSNE visualization of latent spaces. Middle: Venn diagrams: 

number of overlapping cells between PCA transcript-only (grey outline) and MUSE (black outline) clusters. 

Bottom: “Reproduced” MUSE clusters identify astrocyte (Astro.), hippocampus neurons (Hippo.), 

oligodendrocyte (Oligo.) and smooth muscle cell (SMC) types (Methods). (d) “Discovered” MUSE clusters. 
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Top: tSNE visualization of latent spaces. Bottom: “Discovered” MUSE clusters tend to be more layer specific 

than transcript-only clusters (density maps above tissue representations). 
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