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Abstract

Population receptive field (pRF) modeling is a popular method to map the retinotopic organization of the

human  brain  with  fMRI.  While BOLD-based  pRF-maps  are  qualitatively  similar  to  invasively recorded

single-cell  receptive  fields  in  animals,  it  remains  unclear  what  neuronal  signal  they  truly  represent.  We

address this question with whole-brain fMRI and large-scale neurophysiological recordings in awake non-

human primates. Several pRF-models were independently fit to the BOLD signal, multi-unit spiking activity

(MUA) and local field potential (LFP) power in  distinct frequency bands. Our results provide a retinotopic

characterization  of  cortical  and  subcortical  areas,  suggest  brain-wide  compressive  (i.e.,  sublinear)  spatial

summation,  and  demonstrate  a  visually  tuned  deactivation  of  default  mode  network  nodes.  Cross-signal

analysis of pRF-map structure (eccentricity-size relation) indicates that the neural underpinnings of BOLD-

pRFs are area-specific. In V1, BOLD-pRFs mirror MUA, while in V4 they are more similar to the tuning of

the gamma LFP-power.

Introduction

The characterization of neural  response  selectivity is crucial  for  our understanding of the mechanisms of

perception and cognition. Receptive fields describe the range in feature space to which a neuron is sensitive

(Hartline,  1938;  Sherrington,  1906).  The term is  most  commonly used in  the  context  of  space,  where  it

describes stimulus locations that evoke or modulate neuronal responses, but it can be generalized to different

stimulus features. While the neural response that characterizes a receptive field has classically been the rate of

action potentials (Hubel and Wiesel, 1998, 1968, 1959), receptive fields can also be defined based on different

neural signals such as subthreshold activity (Priebe, 2008), aspects of the local field potential (Victor et al.,

1994), or fluorescence modulations derived from molecular calcium indicators (Bonin et al., 2011; van Beest

et al., 2019).

Non-invasive methods lack the spatial resolution to measure the receptive field properties of single neurons,

but they can characterize the receptive field properties of the aggregate neural signals they measure. The

retinotopic  organization  of  the  human  brain  has  been  characterized  with  functional  magnetic  resonance

imaging for decades (Wandell et al., 2007; Wandell and Winawer, 2010), first with phase-encoded approaches

that identify only the most effective visual field location to evoke a response in a voxel (Engel, 2012; Engel et

al., 1994; Sereno et al., 1995), and later also with methods that estimate both the location and size of a voxel’s

receptive field. This ‘population receptive field’ method (Dumoulin and Wandell, 2008; Wandell et al., 2007;

Wandell and Winawer, 2015, 2010) has rapidly become a popular method to map the functional organization

of the human brain. In addition to describing the retinotopic organization of retinal activation in cortical and

subcortical brain areas, the method has been used to map the cortical representation of other stimulus features

such as tonotopy (Thomas et al., 2015), numerosity (Harvey et al., 2015), tactile sensations (Puckett et al.,

2020), and visual timing (Harvey et al., 2020).
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The term ‘population receptive field’ highlights the analogy  to neuronal receptive fields. It is based on the

assumption that  the  blood oxygen level  derived  signal  (BOLD) that  is  measured  with  fMRI  reflects  the

aggregate response of a large population of neurons within a voxel. Indeed, there are qualitative similarities in

pRF-based  characterizations  of  the  retinotopic  organization  of  the  human  cortex  and  the

electrophysiologically determined receptive field (RF) organization of single neurons or multi-unit activity in

animals (Dumoulin and Wandell, 2008). However, these comparisons may be confounded by inter-species

differences, or differences in the measurement or analytical techniques that are used to generate pRF and RF

properties (Barlow et al., 1966; Hubel and Wiesel, 1968).

The original method to estimate pRFs from BOLD responses (Dumoulin and Wandell, 2008) uses a forward

modeling approach to fit the location and size of a symmetrical two-dimensional Gaussian pRF to the BOLD

responses.  This  is  done  by  minimizing  the  difference  between  the  measured  and  predicted  responses,

calculated  by  multiplying  the  estimated  pRF profile  with  the  stimulus  and convolving  the  result  with  a

hemodynamic response function (HRF) to account for neurovascular coupling (Fig 1D). Later efforts to refine

this linear pRF model have implemented a Difference-of-Gaussians pRF profile (DoG) to account for center-

surround pRF configurations (Zuiderbaan et al., 2012) (Fig 1C), or a static non-linearity to account for non-

linear spatial summation across  receptive fields (Britten and Heuer, 1999; Kay et al., 2013; Oleksiak et al.,

2011; Winawer et al., 2013). Both refinements provide better fits than the linear model, with the DoG-model

showing the strongest improvements in early visual cortical areas (Zuiderbaan et al., 2012), and the non-linear

spatial summation model showing better fit accuracy in more anterior extrastriate visual areas (Kay et al.,

2013).  The  static  non-linearity  parameter  in  the  non-linear  pRF  model  revealed sub-additive  spatial

summation in all visual areas. For this reason, the non-linear spatial summation model has also been called the

‘compressive spatial summation’ (CSS) model. It is common to constrain pRF models to positive pRFs, which

means that  the  presence of  a  stimulus  is  associated with  increases  of  the  BOLD signal.  A recent  study

expanded  this  approach  to  allow negative  pRFs  based  on  stimulus  driven  decreases  in  BOLD activity,

demonstrating  that  a  number  of  areas  in  the  so-called  default  mode  network  (DMN)  were  selectively

inactivated by visual stimuli in humans (Szinte and Knapen, 2019).

What neuronal signal is  does the fMRI BOLD signal represent best? This basic question has far-reaching

consequences  for  the  interpretation  of  human  neuroimaging  results  in  terms  of  the  underlying  neuronal

mechanisms and is therefore a topic of ongoing debate and rigorous investigation (Arthurs and Boniface,

2002;  Bartels  et  al.,  2008;  Boynton,  2011;  Drew,  2019;  Ekstrom,  2010;  Goense  and  Logothetis,  2008;

Logothetis,  2010, 2003, 2003; Logothetis et al.,  2001; Logothetis and Wandell,  2004; Maier et al.,  2008;

Scholvinck et al., 2010; Winawer et al., 2013; Winder et al., 2017). Under some circumstances the BOLD

signal is in agreement with both neuronal spiking and the local field potential (LFP) dynamics (Mukamel et

al., 2005; Nir et al., 2007; Rees et al., 2000), while under other circumstances it is consistent with the LFP but

not with spiking (Maier et al., 2008; Niessing et al., 2005; Viswanathan and Freeman, 2007), or more rarely,

consistent with spiking, but not so much with the LFP (Lima et al., 2014). The LFP in itself is a complex

signal  and can  either  be  regarded  as  a  single  broadband  signal  by  taking  its  (rectified)  amplitude  or
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decomposed  into  a  number  of  frequency  components  with  time-varying  power.  Different  frequency

components  of  the  LFP  are  correlated  with  different  cognitive  processes  and  distinct  neurobiological

processes spurring elaborate theories on their potential functions (Buzsaki, 2006, 2004; Einevoll et al., 2013;

Fries, 2009; van Kerkoerle et al., 2014). The LFP is most commonly subdivided into delta (LFP-δ, ~1-4 Hz),

theta (LFP-θ,  ~4-8 Hz), alpha (LFP-α, ~8-16 Hz), beta (LFP-β, ~16-30 Hz) and gamma (LFP-γ, >30 Hz)

frequency bands, but the exact  ranges of these frequency bands are arbitrary and vary substantially across

studies. The gamma band is often further divided into a low gamma band (γlow, ~30-60 Hz) thought to reflect

synaptic potentials in the local cortical network and a high gamma band (γhigh,  >60 Hz) that more closely

reflects local spiking activity (Ray and Maunsell, 2014, 2011). In visual cortex, low frequency components

tend to dominate the LFP in the absence of visual stimulation, whereas higher frequency components become

prominent when stimuli are presented.

The complex relationship between the BOLD signal and underlying neuronal dynamics raises the question  of

what neuronal sensitivity is captured by the pRF method when it is applied to functional imaging data. This

question  becomes  especially  relevant  when  the  pRF-mapping  method  is  used  to  make  inferences  about

cognitive functions, for instance when comparing patients with control subjects in clinical studies (Dumoulin

and Knapen, 2018). We investigated the neuronal basis of the BOLD-pRF by comparing pRFs from fMRI and

large-scale neurophysiological recordings (1,024 chronic V1/V4 electrodes per subject) across awake non-

human primates (Fig. 1). Four different pRF models were fit to each of the recorded neural signals (BOLD,

MUA, and LFP-power, with LFP-power subdivided into five distinct frequency bands). These models were 1)

a positively constrained linear model (U-LIN), 2) an unconstrained linear model (P-LIN), 3) a non-linear

spatial summation model (CSS), and 4) a difference-of-Gaussians model (DoG). Cross-validated fitting results

were  compared  across  pRF models  within signals  and  across  signals  within models  to  obtain a  detailed

characterization of the spatial tuning of each signal type. We also compared the electrophysiological pRF

estimates with results obtained from conventional receptive field mapping procedures. Finally, we compared

the structure of pRF-based retinotopic maps across the visual field (i.e., eccentricity-size relationship) of the

BOLD-defined pRFs with the range of electrophysiology-pRFs. These intraspecies crossmodal comparisons

provide insight into the neurophysiological basis of the BOLD signal, and directly benchmark visual field

maps that are obtained with non-invasive methods against those from more precise invasive redordings.
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Figure 1. Experimental set-up and study design. (A) Monkeys  maintained fixation on a red dot while bars with high-contrast

moving checkerboards moved across the screen in eight different directions.  (B) Two animals performed the task in the MRI-

scanner. Two  other  animals  were  each  implanted  with  16  Utah  arrays  (1,024  electrodes/animal)  in  left  visual  cortex.  The

approximate locations of 14 V1 arrays V1 (red) and the 2 V4 arrays (blue) are depicted on the NMT standard macaque brain. (C)

Four  different  pRF  models  were  fit  to  all  data,  differing  in  their  pRF  shape  (location:  x,y;  size:  σ)  and  spatial  summation

characteristics.  The  Difference-of-Gaussians  (DoG)  pRFs  are  described  by  a  2D  Gaussian  with  an  excitatory  center  and  an

inhibitory surround (left panel: dark gray circle and light gray annulus respectively) yielding two size parameters (rightmost panel:

σ1, σ2). All other models are described with single Gaussians that are either constrained to be positive (third panel: solid line) or,

for  the  unconstrained  linear  model  (U-LIN),  allowed to  be negative (dashed  line).  Non-linear  spatial  summation  across  the

receptive  field  is  implemented  in  the  CSS  model  (second  panel:  dashed  line),  while  all  other  models  implemented  linear

summation (solid line). (D) The pRF model fitting procedure. A model pRF is multiplied with an ‘aperture version’ of the moving

bar stimulus to generate a predicted response. For fMRI data this prediction was convolved with either a monkey specific or a

canonical hemodynamic response function (HRF). The difference between the recorded neural signal (BOLD, MUA, LFP) and the

predicted response was minimized by adjusting the pRF model parameters. (E) Examples of data and model fits for a V1-voxel (top

panel), and a V1-electrode (middle and bottom panel). Average recorded activity (gray data points) depicts the BOLD signal (top),

MUA (middle) and LFP-power in the low gamma band (bottom). Black lines are the model fits for  a P-LIN pRF model. Light and

dark gray areas depict visual stimulation periods. In the white periods, the animals viewed a uniform gray background.
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Results

Four  macaque monkeys (Macaca mulatta)  participated in  this  study.  They were rewarded with fluid for

maintaining their  gaze fixed on a central  fixation point  presented on a  frontoparallel  screen.  While  they

fixated,  a  bar containing full  contrast  moving checkerboards traversed the screen behind a large circular

aperture in eight different directions (Figure 1). Two animals performed this task in a 3T horizontal bore MRI

scanner. They sat in the sphinx position and viewed a screen at the end of the bore while their whole-brain

BOLD activity was registered using a custom-built 8-channel phased array receive coil (Kolster et al., 2009).

Two other monkeys were each implanted with 1,024 electrodes (16 Utah arrays) in the visual cortex (V1, V4).

They performed the same task in  an upright  primate chair  while neuronal  activity (MUA and LFP) was

registered simultaneously from all electrodes.

After preprocessing (see Material and Methods) we independently fit four pRF models to the average BOLD

time-courses. These models were: (1) a linear pRF model constrained on positive visual responses (P-LIN)

(Dumoulin and Wandell, 2008), (2) an unconstrained version of the linear pRF model that is also capable of

capturing negative visual responses (U-LIN), (3) a non-linear ‘compressive spatial summation’ (CSS) pRF

model (Kay et al., 2013), and (4) a difference-of-Gaussians pRF model (DoG) (Zuiderbaan et al., 2012) (Fig.

1). Fitting results were assessed based on the percentage of variance explained (R2) and a range of model

parameters describing the pRF size, shape and location (see Material and Methods for details).

BOLD pRFs

All models provided good fits to the BOLD time-courses in a range of cortical and subcortical areas known

for their involvement in visual processing. The absolute percentage of variance in the BOLD signal that was

explained by the pRF models was smaller than typically obtained in human neuroimaging studies, but this is

not unexpected in neuroimaging studies with awake behaving animals. For both monkeys, we found robust

retinotopic information in occipital, temporal, and parietal cortex (Figure 2). All these areas were responsive

to stimuli in the contralateral visual field and retinotopic maps were consistent with previous reports (Figure

2C).  Weaker and sparser retinotopic information was also observed in the frontal  cortex,  e.g.  around the

arcuate sulcus (area 8, including the Frontal Eye Fields) and in the ventrolateral prefrontal cortex (VLPFC).

For the remainder of the manuscript we use a voxel inclusion criterion of R 2 > 5% unless otherwise noted.

While  fit  accuracy  was  generally  much higher  than  5% for  visual  areas  (Figure  2A,  bottom panel)  this

relatively low threshold also allows inclusion of areas with weaker retinotopic information,  including the

more frontal areas and some subcortical regions (where the signal that is picked up by our surface coils ha d a

much lower SNR(. Figure 2B shows the  number of voxels within a range of areas for which the models

explained  more  than  5%  of  the  variance  (See  Supplemental  Figure  S1  for  proportionals).  Functional

parcellation of visual areas based on field sign inversions around horizontal and vertical meridians lined-up

well with a probabilistic atlas, co-registered to the individual animal’s anatomy (D99, Reveley et al., 2016).
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Figure 2. PRF model fits and retinotopic maps. (A) R2 value map of the CSS pRF-model projected on the surface rendering of the

brains of two monkeys (M1, M2). The right panel illustrates that the R2 value in the visual cortex is generally much higher than

5% (going up to ~90%) but the chosen color range in the left panels also visualizes the weaker retinotopic information elsewhere

in the cortex.  (AS: Arcuate Sulcus;  CS:  Central  Sulcus;  IPS:  Intraparietal  Sulcus;  LatS:  Lateral  Sulcus;  LuS:  Lunate Sulcus;  STS:

Superior Temporal Sulcus) (B) Number of voxels with an R2 value larger than 5% per brain area and subject for each model. Note

the logarithmic scale. See Supplemental Figure S1 for proportions per ROI, and Supplemental Table T1 for all ROI abbreviations.

(C) Polar angle maps for both subjects, derived from the fits with the CSS model, thresholded at R2 > 5%, and displayed on the

inflated cortical surfaces.  Functional delineation of several visual areas is superimposed. (IPS: Intraparietal Sulcus; STS: Superior

Temporal Sulcus; FEF: Frontal Eye Fields).

Subcortically,  the  lateral  geniculate  nucleus  (LGN),  pulvinar  and  striatum  were  dissociable  from  their

surrounding areas on the basis of a higher pRF fit accuracy. In both monkeys, the bilateral LGNs contained

clear retinotopic maps (Figure 3A). Results were less consistent for the pulvinar and striatum. A retinotopic

organization was evident in the bilateral pulvinar of M1, but some of the pRFs in M2 were rather large and

crossed the vertical meridian resulting in noisy polar angle maps (Figure 3A). In M2, we found a robust

retinotopic map for the contralateral visual field in the head of the  caudate nucleus and anterior putamen

(Figure 3B). These maps were also present,  but  less pronounced,  in M1. In the more posterior  putamen,

retinotopic maps were noisier, and they seemed to be dominated by the ipsilateral visual field (Figure 3C). In

both animals, the right ventral striatum (Nucleus Accumbens) contained pRFs that were sensitive to the lower

right  (i.e.,  ipsilateral)  visual  field.  No  consistent  visual  tuning  was  observed in  the  left  ventral  striatum

(Supplemental Figure S2).
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Cross-validated fit accuracies were pooled across subjects and compared across the four pRF models (Figure

4A).  This  comparison  revealed  that  the  CSS  model  generally  provided  better  fits  to  the  data  than  the

conventional  P-LIN model  (Kruskal-Wallis  test  on all  four  models,  H = 21326,  df  = 3,  p = 0;  post-hoc

Tukey’s HSD multiple comparisons of mean rank, R2
CSS > R2

P-LIN, p < 0.0001). Similar to what has previously

been shown in humans, the advantage of the CSS model over the P-LIN model increased when moving up the

early visual hierarchy, with a notable exception for V4 where the difference was about the same as in V1

(Supplemental Figure S3). Both the U-LIN and DoG models also performed better than the standard P-LIN

model (Kruskal-Wallis, Tukey’s HSD, both p < 0.0001), with the DoG having slightly better fits on average

than the U-LIN model (Kruskal-Wallis, Tukey’s HSD, p < 0.0001). The advantage of the DoG model over the

P-LIN model decreased from V1 to areas higher in the visual hierarchy, like V4 and MT.

Figure 3. Subcortical retinotopy. (A) Thalamic pRFs. Both the lateral geniculate nucleus (LGN, left) and the pulvinar (PULV, right)

contained retinotopic maps of the contralateral visual field in both monkeys (M1: top, M2, bottom). Voxels were thresholded at

R2 > 3% for these polar angle visualizations,  due to the generally poorer fits. Results from the CSS model are shown in a ‘glass’

representation of the individual animals’ brains. Other models produced comparable results. (B) In M2, the head of the caudate

nucleus in the striatum contained retinotopic maps of the lower contralateral visual  field.  (C) In the more posterior striatum of

M2, retinotopic information was also present. While spatial preferences were more mixed here, there seemed to be a dominant

representation of the ipsilateral visual field.
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There was a subset of voxels for which both the DoG and U-LIN models provided much better pRF fits than

the  P-LIN  and  CSS  models  (Figure  4A).  This  dichotomy  suggests  that  these  voxels  might  be  best

characterized by a reduction or suppression of their BOLD activity in response to visual stimulation. Models

that  are capable of capturing negative BOLD responses (DoG and U-LIN) estimated pRFs for these voxels

with either a negative gain parameter (U-LIN, median gain = -0.31, Wilcoxon Signed Rank one-tailed (g < 0),

z = -43.9356, p = 0) (Figure 4B) or a strong inhibitory component (DoG, median normalized suppressive

amplitude = 1.14, IQR 0.98-1.29) (Figure 4E, Supplemental Figure S4). There were two categories of voxels

for which negative pRF fits outperformed positive pRF fits. First, in visual cortex there were voxels for which

the negative component pRFs (fit with DoG or U-LIN) were all rather large and foveally located within the

first several degrees from the center of the visual field, while positively constrained models (e.g., P-LIN)

estimated pRFs for the same voxels to be smaller and peripherally located (Figure 4C,F).

This pattern was significant (Wilcoxon Signed Rank tests, Eccentricity: U-LIN vs. P-LIN, z = -46.40, p = 0,

median(P-LIN - U-LIN) = 6.84; DoG vs. P-LIN, z = -49.35, p = 0, median(DoG - U-LIN) = 4.71; Size: U-LIN vs. P-LIN, z

= 33.25, p < 10-240, median(P-LIN - U-LIN) = -1.11) and is consistent with the observation that these voxels respond

positively to peripheral stimuli but reduce their activity when visual stimuli are presented in the foveal region

of visual space. Such a pattern has previously been demonstrated in humans (Smith et al., 2004) and with

simultaneous fMRI and direct electrical stimulation of foveal V1 regions in monkeys (Shmuel et al., 2006).

The cortical locations of these particular voxels is also consistent with this explanation. In V1, for instance,

voxels with the above-described tuning profile were located on the medial side of the occipital pole, an area

where neurons tend to be sensitive for visual stimulation in the peripheral contra-lateral visual field (Figure

4D). We also found voxels for which both the DoG and P-LIN models estimated foveal receptive fields with

the DoG model outperforming the P-LIN model. These voxels were not clustered, but scattered throughout the

visual cortex (Supplemental Figure S5). The second category of voxels with good negative pRF fits comprised

voxels for which the positively constrained models could not fit pRFs at all, suggesting that these voxels could

only be characterized by a visually tuned reduction in BOLD activity. These voxels were primarily located

around the lateral sulcus, in the medial occipital parietal cortex and at the superior border of the superior

temporal sulcus in the lateral occipital parietal cortex (Figure 4G).

The fitting procedures for all models were performed both with a monkey-specific hemodynamic response

function (HRF, see Material and Methods for details on how these were estimated) and with a canonical

‘human’ HRF. The difference between the two is that the monkey-specific HRF had a slightly faster decay

than the canonical HRF (Supplemental Figure S5A). The choice of HRF had a surprisingly small effect on the

fitting accuracy (Supplemental Figure S5). For the P-LIN and CSS models, there was a small but significant

advantage of using the specific monkey HRF over a canonical HRF in terms of the percentage of variance

explained (Wilcoxon Signed Rank, P-LIN: z = 8.41, p < 0.0001; CSS: z = 16.39, p < 0.0001). This overall

difference was  primarily driven by the early visual areas that were used to estimate the monkey HRF and

contained  most  voxels  with  retinotopic  information.  For  the  DoG  model,  the  canonical  HRF  fits  were

consistently better in all areas except for the early visual areas resulting in an overall significant advantage
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across  all  voxels  (z  =  -29.79,  p  <0.0001).  For  the  U-LIN model  the  difference  between HRFs  was  not

significant for the analysis across all voxels (z = 0.97, p = 0.33). In all cases however, the effect sizes were

very small (mean(mHRF-dHRF) ± standard deviation, P-LIN: 0.09  ± 1.92%, U-LIN: 0.04  ± 2.01%, CSS: 0.16  ±

1.83%, DoG: -0.11 ± 2.12%) and the estimated pRF sizes and locations were highly comparable across HRFs

(Size(mHRF-dHRF), P-LIN: -0.07 ± 1.10 dva, U-LIN: -0.05 ± 1.68 dva, CSS: -0.19 ± 7.66 dva, DoG: -0.19 ± 1.68

dva; Eccentricity(mHRF-dHRF), P-LIN: -0.07 ± 2.13 dva, U-LIN: -0.09 ± 2.30 dva, CSS: -0.02 ± 1.93 dva, DoG: -

0.08 ± 2.43 dva). For this reason, we only included the results obtained with the faster monkey-specific HRF

in post-fit analyses of the MRI results.

The estimated pRF sizes were generally larger for areas higher in the visual cortical hierarchy (Felleman and

van Essen, 1991). The well-described positive correlation between RF eccentricity and size (Dumoulin and

Wandell, 2008) was evident in the monkey fMRI results for all areas with a substantial number of well-fit

voxels and the slope of the eccentricity-size relation was generally larger in higher cortical areas (Figure 5A-

C).

The static non-linearity parameter (n) that models non-linear spatial summation in the fits with the CSS model

was smaller than one in all functional areas (Wilcoxon Signed Rank, one-tailed, all ROI’s with more than four

voxels R2 > 5%, p < 0.001), indicating the presence of compressive spatial summation (Figure 5D). This is

similar to what has previously been demonstrated for human visual cortex (Kay et al., 2013; Winawer et al.,

2013). The estimated values of the exponential parameter in early visual cortex of the monkey are comparable

to  what  was  previously  reported  for  human  V1.  However,  while  values  became  a  lot  lower  in  human

extrastriate  cortex  (indicating  stronger  spatial  compression),  they  were  fairly  similar  throughout  monkey

cortex suggesting that spatial compression may be global but less pronounced in monkey visual cortex.
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Figure 4. Comparison of MRI-based  fit-results from the four pRF models. (A)  Binned scatter-plots comparing the fit accuracy

across pRF models. Data is binned in two-dimensional R2 bins of 1% X 1%, with the color-map indicating the number of voxels in

each 2D bin. These plots indicate that the CSS model fits the data best across the board while the DoG and U-LIN models give

good fits for voxels that are more poorly characterized by the P-LIN and CSS models. (B) Distribution of gain values of the U-LIN

pRF fits for voxels where the cross-validated R2  of the U-LIN model was larger than 5% and at least 5% higher than that of the P-

LIN  model.  Negative gain  values  indicate  a  negative  or  suppressed  BOLD response  (arrow  indicates  the  median,  -0.31).  (C)

Distribution of the differences in estimated eccentricity from the U-LIN and P-LIN models for the same voxels as in (B). Positive

values indicate that the pRFs estimated by the P-LIN model  were more peripherally located than those estimated by the U-LIN

model (arrow indicates the median, 6.84 dva). The inset displays the mean (± standard deviation) of the pRF sizes for the U-LIN

and P-LIN models. (D) One cluster of voxels for which the U-LIN model fit better than the P-LIN model was located in the medial

occipital lobe (left panel) where voxels had a high eccentricity for P-LIN pRFs (right panel).  (E) Distribution of the normalized

suppressive surround amplitude values from the DoG pRF fits (a in Equation 4 of the Material & Methods section). Values larger

than one indicate that the amplitude of the suppressive surround Gaussian is larger than that of the excitatory center (arrow

indicates median, 1.14). (F) Distribution of the differences in estimated eccentricity from the DoG and P-LIN models for the same

voxels as in (E). Positive values indicate that the P-LIN model estimated pRFs to be more peripherally located than the U-LIN

model (arrow indicates the median, 4.71 dva). Note that in addition to the peak in the distribution around the radius of the visual

stimulus  (i.e.,  8  dva)  that  is  also  present  in  (C),  there  is  a  second  peak  around  zero,  indicating  that  the  DoG  model  also

outperforms the P-LIN when it estimates pRFs to be in a highly similar location (see also Supplemental Figure S4). (G) Clusters of

voxels that were well-captured by the negative pRFs of the U-LIN model but not by the positive pRFs of the P-LIN model were

located around the lateral sulcus (LatS), in the medial occipital parietal cortex (mOP), and in the lateral occipital parietal cortex

(lOP).
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Figure 5.  Characterization of  pRF estimates  from the CSS model.  (A)  Eccentricity-size relationship for  subcortical  areas.  (B)

Eccentricity size relationship for early and mid-visual areas in the occipital and temporal lobes. (C) Eccentricity size relationship for

parietal and frontal cortical areas. Lines in all panels are linear fits with a significant slope (p < 0.01). Confidence intervals are

omitted in this figure to avoid clutter, but this information can be found in Supplemental Figure S7. Note that some fit lines

overlap to a large extent. (D) Mean values of the static non-linearity in the CSS model for voxels with R 2 > 5% per ROI. When the

exponential parameter (n) in the CSS equals one, the CSS model is the same as the conventional P-LIN model (dashed gray line).

Values lower than one indicate subadditive or compressive spatial summation (Kay et al., 2013). The exponent parameter value

was significantly below one for all areas with more than four voxels above the R2 threshold, but not distinctly different along the

visual cortical hierarchy. Error bars indicate the standard deviation.
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Multi-unit spiking activity pRFs

The same four pRF models (P-LIN, U-LIN, CSS, and DoG) were also independently fit to the MUA dynamics

and the power in five different frequency bands of the LFP. We obtained excellent fits based on the MUA for

all pRF models, covering a large proportion of the lower right visual field (Figure 6, Supplemental Figure S8).

The locations of estimated pRFs from individual electrodes on the same arrays are clustered in space,  with

more medial electrode arrays representing a more peripheral region of the visual field. Fit accuracies were

generally  much  higher  in  terms  of  the  percentage  of  variance  explained  for  the  electrophysiology  data

compared to the fMRI data.

Figure 6. Visual field coverage of pRF from Utah arrays. (A) In both monkeys (M3, M4), most Utah arrays were implanted in the

superior part of left V1. The location of MUA-based pRFs are plotted with the individual arrays color-coded. These pRFs represent

the lower right visual field. Only electrodes with R2 > 50% in the CSS model are included in these plots. (B) Same as in (A), but for

the fewer electrode arrays implanted in V4 of the left hemisphere. Note the different scale in the lower panel. Supplementary

Figure S8 plots the same data, but as a heat-map that takes pRF sizes into account.

Cross-validated comparisons of fit accuracy showed significant differences across the models (Kruskal-Wallis

test on all four models: HV1 = 204.63, dfV1 = 3, pV1 < 0.0001; HV4 = 13.4, dfV4 = 3, pV4 < 0.01) (Figure 7). Post-

hoc pairwise comparisons (Tukey’s HSD) revealed that the CSS and DoG models were generally able to

explain a higher percentage of variance than the linear models, although for V4 the advantage of the CSS

model over the P-LIN model was only significant when electrodes with a poor fit accuracy (R2 < 25%) were

excluded from the comparison (V1, all electrodes: CSS vs. P-LIN, p < 0.001, DoG vs. P-LIN, p < 0.001; V4,

all electrodes: CSS vs. P-LIN, p = 0.16, DoG vs. P-LIN, p < 0.001; V1, electrodes with R 2 > 25%: CSS vs. P-

LIN, p < 0.001, DoG vs. P-LIN, p < 0.001; V4, electrodes with R2 > 25%: CSS vs. P-LIN, p < 0.02, DoG vs.

P-LIN, p < 0.01). When all channels were included, there was no significant difference between the CSS and

DoG models  (V1:  p  =  0.74;  V4:  p  =  0.79)  but  for  V1  electrodes  with  good  pRF fits  the  CSS  model

significantly outperformed the DoG model (R2 > 25%; V1: p < 0.05). There were no electrodes for which the

U-LIN model showed a clear advantage over the P-LIN model (V1 and V4, p = 1), suggesting that there were
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no purely negative pRFs in spiking activity for the V1 and V4 regions covered by the electrode arrays. For

electrodes where the DoG model performed better than the P-LIN model, both models generally estimated a

similar pRF location (Median position difference = 0.56, IQR 0.12 – 1.00 dva), but there was a substantial

contribution of the suppressive surround (median normalized suppressive amplitude = 0.71, IQR 0.56 – 0.86).

The exponential parameters (n) in the MUA-based fits of the non-linear CSS model were significantly lower

than one (R2 > 25%; mean 0.37 ± std 0.23;  Wilcoxon Signed Rank, one-tailed, z = -33.49, p < 0.001), and

highly similar to the MRI-based values in V1 (Wilcoxon Rank Sum test, z = 0.30, p = 0.76).

The size of the estimated pRFs generally increased with eccentricity (Figure 12A,B). Notable exceptions to

this  well-known relationship  between the  eccentricity  and  size  of  visual  receptive  fields  were  the  pRFs

estimated from responses recorded with the V1 electrode arrays located most medially on the occipital surface

in both monkeys (Supplemental Figure S9). While the pRF locations for the electrodes on these arrays were as

expected based on their cortical location (rather peripheral in the lower contralateral visual hemifield), their

sizes were about a factor of three smaller than predicted from the trend in the data from the other arrays. The

gray matter of the medial primary visual cortex is thinner than that of lateral V1, and the deviating arrays were

physically  located  in  the  posterior-medial  corner  of  the  craniotomy  (Supplemental  Figure  S9).  It  is

conceivable that closure of the craniotomy may have exerted pressure on the 1.5 mm long shanks of the Utah

array electrodes, causing their tips to extend beyond the cortical gray matter into the underlying white matter

where they might  have picked up signals  from thalamic afferents  (i.e.,  the  geniculostriate  pathway).  We

decided to exclude the results from electrodes on these arrays from analyses that use pRF size as a variable.

Figure 7. Comparison of MUA-based fit-results from the four pRF models.  Scatter-plots comparing the fit accuracy across pRF

models. Each dot represents an electrode. Black dots are V1 electrodes, green dots are V4 electrodes.

There was a good correspondence between the MUA-pRFs and the receptive fields (MUA-RF) estimated with

our  laboratory’s  standard  RF-mapping  method  for  the  same  electrodes  (Supplementary  Figure  S10).

Whenever both methods were able to estimate a (p)RF accurately (R2 > 25% for pRF method, SNR > 3 for RF

method), their estimated locations were highly similar (median distance between CSS-pRF and RF center, V1:

0.40, IQR 0.21 – 0.58 dva; V4: 0.84, IQR 0.11 – 1.57 dva). On average, the classic method estimated slightly
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smaller RFs than the pRF method (CSS model, V1: Median size difference = 0.39 dva, IQR 0.19 – 0.59 dva;

Wilcoxon Signed Rank z = 27.17, p < 0.001; V4: Median size difference = 0.75 dva, IQR -0.07 – 1.57 dva;

Wilcoxon Signed Rank z = 9.09, p < 0.001), but since the two methods have different definitions of what

constitutes a receptive field size these differences are difficult to interpret.

Local Field Potential pRFs

The local field potential signal (LFP) was split into five frequency bands (LFP-θ: 4-8 Hz; LFP-α: 8-16 Hz;

LFP-β: 16-30 Hz; LFP-γlow: 30-60 Hz; LFP-γhigh: 60-120 Hz) for which we calculated the power fluctuations

over time using a multi-taper approach (Bokil et al., 2010). Each pRF model was independently fit to each

LFP frequency band to estimate pRFs. The models differed significantly in their fit accuracy for all LFP

components in both V1 and V4 (Kruskal-Wallis test for each LFP component separately, p < 0.01), except for

LFP- γhigh in V4 where there were no such differences (p = 0.27). Detailed evaluation of fit accuracy across

models for the LFP signals revealed some interesting patterns (Figure 8, Supplementary Figure S11). The

higher  frequency components  (LFP-γlow  and LFP-γhigh)  largely mirrored the MUA results  with excellent  fit

accuracy  for  a  large  proportion  of  the  electrodes,  especially  in  V1.  For  LFP-γlow pRFs,  the  CSS model

outperformed all other models in both V1 and V4 (Tukey’s HSD; all p < 0.01), except for the DoG model in

V4 where the difference did not reach significance (p = 0.07). For LFP-γhigh pRFs in V1, both the CSS and

DoG outperformed the P-LIN and U-LIN model (all p < 0.001) with no difference between them (p = 0.55).

The  U-LIN  model  did  not  perform  any  better  than  the  P-LIN  model  for  these  higher  frequency  LFP

components  (all  p  >  0.99),  indicating  that  there  were  no  negative  pRFs  observed  in  the  gamma-power

dynamics. For some electrodes, the DoG model did a little better than the CSS model for LFP-γlow (Figure 8).

While this may weakly suggest the presence of a center-surround structure in LFP-γ low  pRFs, the overall fit

accuracy remained too low to draw robust conclusions (R2 < 25%).

This pattern was different for the lower-frequency LFP components. For the lowest frequency band tested

(LFP-θ), fit accuracies were generally low, but better for the DoG model than for any of the other models

(Tukey’s HSD; all p < 0.01). For LFP-α and LFP-β, both effects were present. There were advantages of the

CSS and DoG models for electrodes with high fit accuracies, as well as advantages of the DoG and U-LIN

models for electrodes with poor fits for the positively constrained CSS and P-LIN models.  This dispersed

pattern of model advantages for the LFP-α and LFP-β suggests that there may be two types of pRF signals

captured by this LFP component. The occurrence of negative pRFs in these LFP frequency bands was further

investigated  by  specifically  selecting  electrodes  that  had  a  U-LIN fit  accuracy  of  at  least  20%  and  an

advantage of U-LIN over P-LIN of at  least  5%. Naturally,  these electrodes had significant  negative gain

values for both LFP-α and LFP-β (LFP-α: median gain = -247.87, IQR = 208.34; Wilcoxon Signed Rank one-

tailed (g < 0),   z = -10.45, p < 0.0001; LFP-β: median gain = -94.81, IQR = 60.33; Wilcoxon Signed Rank

one-tailed (g < 0),   z = -10.12, p < 0.0001) (Figure 9A). Comparing the P-LIN and U-LIN locations and sizes

of the pRFs for these electrodes revealed that the negative U-LIN pRFs were both smaller (Wilcoxon Signed
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Rank; LFP-α: z = -8.20, p < 0.0001; LFP-β: z = -9.78, p < 0.0001) and more foveal (Wilcoxon Signed Rank;

LFP-α: z = -10.93, p < 0.0001; LFP-β: z = -10.37, p < 0.0001) than the positive P-LIN pRFs (Figure 9B). Note

that this is different from what we observed with fMRI where the negative pRFs were also more foveally

located but substantially larger than the positively constrained fits for the same voxels. Electrodes for which

the DoG model outperformed the P-LIN in LFP-α and LFP-β (R2 > 20 and 5% better for DoG than for P-LIN)

had substantial suppressive surround amplitudes (Amplitude of the suppressive surround for LFP-α: median =

-20.79, IQR = 18.06; for LFP-β: median = -8.58, IQR = 6.31) (Figure 9C). They were again much more

foveally located than the pRFs estimated by the P-LIN based on the exact same signal (Wilcoxon Signed

Rank; LFP-α: z = -15.79, p < 0.0001; LFP-β: z = -17.12, p < 0.0001).  

Figure  8.  Comparison of  LFP-based  fit-results  from the four  pRF models  for  V1 electrodes.  Scatter-plots  comparing  the fit

accuracy across pRF models and LFP frequency bands. Each dot represents an electrode. Note how the pRF models that are able

to capture negative responses (DoG, U-LIN) fit better to the lower frequency components of the LFP (α, β). Supplemental Figure

S11 shows similar results for the V4 electrodes.

Are the electrodes with good pRF fits based on the MUA the same ones that can be fit well based on the LFP

signal? In Figure 10, fit  accuracy for the CSS and DoG models are compared across electrophysiological
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signals recorded from the same electrode. Fit accuracy values differed significantly across neuronal signals

(Kruskal-Wallis, H = 5371.40, df = 5, p = 0). The comparison of R2 values for each combination of signals is

visualized as a two-dimensional scatter-histogram with the color-map indicating how many electrodes fall

within a two-dimensional bin of R2 pairs. Electrodes that fall on the diagonal of the subplots have comparable

fit accuracies for the two signal types. For electrodes above the diagonal, fits were better based on the signal

on the y-axis, while for electrodes below the diagonal, fit accuracy was higher for the signal on the x-axis.

Asterisks in the plot indicate which signal had significantly higher R2 values. In general, and for both models,

pRF fits based on MUA were better when than those based on low frequency LFP components (LFP-θ, LFP-

α, LFP-β) and similar to those based on LFP-γlow. Fits based on the LFP-γhigh were generally better than those

based on any of the other signals. Within the LFP, higher frequency components yielded better fits than lower

frequency components, with a smaller difference between  LFP-α and LFP-β than between any other signal

pair. These patterns were also present in the P-LIN and U-LIN model results (Supplemental Figure S12).

While fit quality differs substantially across electrophysiological signals on the same electrode, the different

signals did generally estimate the same pRF location, which in turn aligned well with receptive field locations

that were determined with conventional RF-mapping methods for the same electrodes (Shown for the CSS

model in Figure 11). Differences in estimated pRF location across signals were generally smaller than one

degree visual angle (Figure 11A). Because of the previously demonstrated dissociation between positive and

negative pRFs in the low LFP frequencies (LFP-α and LFP-β in particular), we performed a similar analysis

on the fits of the U-LIN in which we separated the positive and negative pRFs (Supplemental Figure S13).

This analysis showed that the negative low frequency LFP pRFs were generally closer to the MUA and high

frequency LFP pRFs on the same electrodes than the positive ones.

In  order  to  compare  pRF  size  across  signals  while  taking  into  account  that  pRF  sizes  will  depend  on

eccentricity as well, we normalized all pRF sizes to the MUA pRF size on the same electrode. Receptive

fields determined with conventional RF-mapping methods were smallest (but note that the size definition is

also  different),  while  LFP-based  pRFs  were  generally  larger  than  MUA-based  pRFs.  Within  the  LFP

frequency bands, the low-frequency LFP signals had larger pRFs than the high-frequency LFP signals: LFP-θ

and LFP-α pRFs were about a factor two larger than the MUA pRFs, while LFP-γhigh pRFs were less than 1.5

times larger than MUA-pRFs. In general though, there was substantial variation in the pRF size relation across

signals.  

The eccentricity-size relationship that we observed for BOLD-pRFs and MUA-pRFs was also observed for

some components of the LFP, but not for all (Figure 12). There were not enough above-threshold electrodes

(R2 > 50%) to estimate the eccentricity-size relationship for  LFP-θ. In V1, pRF-sizes estimated by the CSS

model increased with eccentricity for LFP-β, LFP-γlow, and LFP-γhigh, but not for LFP-α (Figure 12A). When

the eccentricity-size relationship was determined separately for positive and negative U-LIN pRFs for LFP-α

and  LFP-β,  it  became  clear  that  for  LFP-α,  neither  positive  nor  negative  pRFs  exhibited  a  significant

eccentricity-size  relationship (Supplemental  Figure  S14).  While  this  relationship  was  significant  for  both
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positive and negative LFP-β pRFs, the actual slope was negligibly small for the positive pRFs (slope for LFP-

β+: 0.04, p < 0.01; slope for LFP-β-: 0.27, p< 0.001). In V4, there were not enough channels with high-quality

fits for the low-frequency LFP components to estimate an eccentricity size relationship, but for the LFP-γ low

and LFP-γhigh, pRF-size consistently increased with eccentricity (Figure 12B).

For  the  CSS  model  fits,  the  exponential  parameter  that  indicates  the  nature  of  spatial  summation,  was

significantly below one for all LFP components (R2 > 25%; Wilcoxon Signed Rank, all  p < 0.0001). It also

increased  with  LFP frequency,  indicating  that  spatial  compression  is  present  in  all  LFP pRFs  but  more

pronounced in the lower frequency components (Median, IQR;  LFP-θ 0.19, 0.15; LFP-α 0.27, 0.21; LFP-β

0.31, 0.19; LFP-γlow 0.34, 0.20; LFP-γhigh 0.40, 0.27) (Kruskal-Wallis test across LFP frequency bands, H =

387.97, df = 4, p < 0.0001; post-hoc Tukey’s HSD multiple comparisons of mean rank showed that the only

pairwise comparison that was not significant at p < 0.05 was between LFP-θ and LFP-α). Note, that pRF sizes

were generally also larger for lower LFP frequencies. Furthermore, all exponential parameter values were

furthermore in the same range as the MRI-based values in V1 (Wilcoxon Rank Sum tests; MRI vs. LFP-θ z =

1.61, p = 0.11; MRI vs. LFP-α 0z = 1.07, p = 0.29; MRI vs. LFP-β z = 0.75, p = 0.45; MRI vs. LFP-γlow z =

0.51, p = 0.61; MRI vs. LFP-γhigh z = -0.003, p = 0.997).

Figure 9. Negative pRFs in low frequency LFP components. (A) Distributions of gain values for the U-LIN model fits of the LFP-α

(left panel) and LFP-β (right panel) signals for electrodes that have a fit accuracy of R 2 > 20% and for which the U-LIN model

outperformed the P-LIN model by at least 5%. The gray histogram in the insets show the distribution for all electrodes with only

the R2 > 20% requirement.  (B) Histograms of differences in estimated eccentricity from the P-LIN and U-LIN models for  the

electrodes included in (A). Positive values indicate that the P-LIN model estimated a more eccentric pRF than the U-LIN model.

The inset shows the mean pRF size (± std) as estimated by the two models. (C) Distributions of normalized suppressive surround

amplitude values for the DoG model fits of the LFP-α (left panel) and LFP-β (right panel) signals for electrodes that have a fit

accuracy of R2 > 20% and for which the DoG model outperformed the P-LIN model by at least 5%. (D) Histograms of differences in

estimated eccentricity from the P-LIN and DoG models for the electrodes included in (C). Positive values indicate that the P-LIN

model estimated a more eccentric pRF than the DoG model.
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Figure  10.  Comparison  of  pRF  fit  accuracies  for  MUA and LFP signals  from  the  same electrodes.  (A)  Binned scatter  plots

comparing the R2 values of pRF fits from the CSS model based on different electrophysiological signals. The gray line indicates

similar fit accuracy for the two signals. Colors indicate the number of electrodes in a 4 × 4 % two-dimensional bin (logarithmic

scale). Asterisks indicate which of the two signals has significantly higher R2 values (Kruskal-Wallis, with post-hoc Tukey’s HSD

multiple comparisons of mean rank, *p < 0.05, **p < 0.001). (B) Same as in (A) but for the DoG model. Supplemental Figure S12

shows similar results for the P-LIN and U-LIN models.

Figure 11. Comparison of pRF location and size from different electrophysiological signals on the same electrode, estimated by

the CSS model. (A) Median distance (left) and half the IQR (right). For this comparison electrodes were only included when their

pRF fit accuracy R2 > 25% (MUA, LFP) or the SNR was higher than 3 (MUA-RF). (B) Relative pRF size for the same electrode pairs as

in (A). For each signal, pRF/RFs were normalized by the MUA-pRF from the same electrode (dashed line). Horizontal lines indicate

the median, colored rectangles depict the IQR.
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Comparison of pRF eccentricity-size relationship between fMRI and electrophysiology signals

The eccentricity-size relationship of pRFs across the cortex is perhaps an important feature of retinotopic

maps. Since we observed this characteristic  across all signals for which we modeled pRFs it  constitutes an

excellent basis to investigate what neuronal tuning profile is best captured by the BOLD-fMRI pRF-maps. We

used Linear Mixed Models (LMM) to investigate the effects of pRF eccentricity and signal type on pRF size.

Within signal types, a significant effect of eccentricity with a positive slope indicates that pRFs get larger

when their location is more eccentric. In a comparison between signals, a significant effect of signal type

indicates a difference in pRF size independent of eccentricity, while a significant interaction between signal

type and eccentricity implies that the slope between eccentricity and size (i.e., the structure of the pRF-map) is

different across signal types. A comparison of the slope across signals can provide a more detailed picture of

the nature of this difference.

We first performed this analysis on the results of the CSS model since this model generally performed best for

all signal types (inclusion thresholds were R2 > 50% for electrophysiology signals and R2 > 5% for MRI).

Comparisons were done separately for V1 and V4 (voxels and electrodes). In V1, significant eccentricity-size

relationships existed for MRI, MUA, LFP-β, LFP-γlow, and LFP-γhigh (Figure 12A). All these relationships had

positive eccentricity-size slopes. Signals with significant eccentricity-size relationships were further tested in

a single LMM that revealed a highly significant interaction effect of Signal Type × Eccentricity (F = 11.88, df

= 4, p < 0.0001) indicating that the eccentricity-size slope depends on the type of signal used to estimate the

pRFs. We further investigated these differences with pairwise LMM’s that compared the MRI-pRFs against

each  electrophysiological  signal  with  a  significant  eccentricity-size  relationship.  This  analysis  revealed

significant interactions between signal type and eccentricity for MRI vs. LFP-β (F = 10.44, df = 1, p < 0.01),

LFP-γlow (F = 23.60, df = 1, p < 0.001), and LFP-γhigh (F = 6.66, df = 1, p < 0.01), but not for MRI vs. MUA (F

= 0.01, df = 1, p = 0.92), providing evidence for the idea that the structure of the BOLD-based pRF map in V1

(or at least the eccentricity-size relationship) is most similar to that of MUA-pRFs (Figure 12C).  

This analysis was also performed for V4 (Figure 12B) where we had fewer electrodes. Fit quality for these

electrodes was generally low for the low-frequency components of the LFP and as a consequence it was not

possible to estimate any eccentricity-size relationships for LFP-θ, LFP-α, and LFP-β. For MUA, LFP-γlow, and

LFP-γhigh there were significant positive eccentricity-size slopes. The difference across these signals was not as

pronounced as for V1 (F = 2.15, df = 3, p = 0.09), but pairwise comparisons of electrophysiology signals with

MRI results revealed that there was a significant interaction between signal type and eccentricity for MRI vs.

MUA (F = 5.66, df = 1, p < 0.02), but not for MRI vs. LFP-γ low (F = 0.17, df = 1, p = 0.68), or MRI vs. LFP-

γhigh (F = 0.03, df = 1, p = 0.85).

We already noted that there was a difference in eccentricity-size relationship between positive and negative

pRFs of lower frequency LFP-components. To investigate the consequences of this effect for the cross-signal

eccentricity-size comparison we also performed the LMM analysis for U-LIN model results with the LFP-θ,

LFP-α, and LFP-β pRFs separated into positive and negative pRF subgroups (lowering the electrode inclusion
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criterion to R2 > 25% to allow the relevant data to be included) (Supplemental Figure S14). While the fit

accuracy did not meet the inclusion threshold in the V4 electrodes, there  was a substantial number of V1

electrodes for both the positive and negative pRF subgroups (LFP-α: n+ = 354, n- = 89; LFP-β: n+ = 535, n- =

45). In the case of LFP-α, there was no significant eccentricity-size relationship in either the positive (t = 1.01,

p = 0.31), the negative (t = 1.00, p = 0.32), or the full set of U-LIN pRFs (t = -0.54, p = 0.59). For LFP-β, such

a significant relationship did exist for both positive (t = 3.60, p < 0.001) and negative (t = 3.89, p < 0.001)

pRFs separately, but not for the combined group (t = 1.03, p = 0.30). Furthermore, for the positive pRFs

subgroup, the slope was negligibly low (0.04, 95% CI 0.02-0.05) and significantly different from the slope in

the corresponding MRI data (F = 37.49, df = 1, p < 0.0001). The negative LFP-β pRFs had a more substantial

slope (0.27, 95% CI 0.13-0.41) and due to a rather large confidence interval, this slope did not significantly

differ from the MRI-based slope (F = 0.30, df = 1, p = 0.58). However, similar to the CSS results, the MUA-

based pRF slopes from the U-LIN model (with a much smaller 95% CI: 0.12-0.22) did also not significantly

differ from the MRI-based slopes (F = 0.83, df = 1, p = 0.36). In V4, again similar to the CSS results, MUA-

based eccentricity-size slopes did differ from MRI-based slopes (F = 9.98, df = 1, p < 0.01), which were

instead similar to the LFP-γ slopes (LFP-γlow: F = 1.49, df = 1, p = 0.22; LFP-γhigh: F = 2.02, df = 1, p = 0.16).  
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Figure 12. Eccentricity-size relationship for pRF based on different types of neural activity. (A) The pRF size as a function of pRF
eccentricity  for  V1  electrodes  where  the  CSS  model  had  a  fit  accuracy  of  R2 >  50%.  Panels  represent  the  different
electrophysiological  signals that were independently used to fit the pRF model.  Dots  are  individual  electrodes,  colored lines
represent the slope of the eccentricity-size relationship, and the dashed black line represents the same relationship for V1 voxels
with R2 > 5%. Only the signal types with > 25 electrodes meeting the R 2 threshold are shown. (B) Same as in (A), but now for the
V4 electrodes. (C) Comparison of the eccentricity-size slope across neural signals (left: V1, right: V4). The dashed line represents
the slope for MRI-based pRF with the 95% confidence interval depicted as the gray area. Colored rectangles indicate the 95%
confidence intervals for the different electrophysiological  signals,  with the horizontal black line indicating the slope estimate.
Note that the lower bound of the LFP-θ extends beyond what is displayed (there were only a few electrodes with good LFP-θ pRF
fits). Asterisks indicate a significant interaction between signal type and eccentricity from a linear mixed model comparing the
eccentricity  size  relationship  of  MRI-based  pRFs  with  each  electrophysiological  signal  (i.e.,  the  absence  of  such  interaction
indicates that there is no evidence for a difference in slope between the electrophysiological signal and the MRI-based pRFs). LFP-
θ: 4-8 Hz; LFP-α: 8-16 Hz; LFP-β: 16-30 Hz; LFP-γl: 30-60 Hz; LFP-γh: 60-120 Hz.
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Discussion

The population receptive field (pRF) mapping technique (Dumoulin and Wandell, 2008) has rapidly become a

popular  method  in  human  neuroimaging, allowing  a  relatively  fast  characterization  of  the  retinotopic

organization of the brain. Furthermore, since it describes the tuning properties of the underlying voxels, it can

also provide insight into more complex visual and cognitive functions (Binda et al., 2018; Ekman et al., 2020;

Harvey et al., 2020, 2015; He et al., 2019; Hughes et al., 2019; Mo et al., 2017; Poltoratski et al., 2019;

Poltoratski and Tong, 2020; Shao et al., 2013; Shen et al., 2020; Silson et al., 2018; Stoll et al., 2020; Thomas

et al., 2015; Welbourne et al., 2018; Zuiderbaan et al., 2017), dysfunctions (Ahmadi et al., 2020; Alvarez et

al., 2020; Best et al., 2019; Dumoulin and Knapen, 2018; Green et al., 2019; Schwarzkopf et al., 2014), brain

development (Dekker et al., 2019), cortical evolution (Zhu and Vanduffel, 2019), and information transfer

across  different  brain  areas  (Haak  et  al.,  2013).  Human  pRFs  from  neuroimaging  studies  qualitatively

resemble receptive fields recorded with invasive electrophysiological techniques in animal experiments, but

since these signals are derived from different species, often with different analytical or experimental methods,

it remains an important question what type of neuronal population characteristic is actually measured by the

fMRI BOLD-signal (Dumoulin and Wandell, 2008). In the few pRF studies that did have access to human

intracranial recordings (Harvey et al., 2013; Winawer et al., 2013), there tended to be a rather low number of

surface electrodes (EcoG, or intracranial EEG) that can only measure the local field potential, not spiking

activity. Nevertheless, pRFs could be derived from broadband LFP signals, and they exhibited similar spatial

summation characteristics as the BOLD signal pRFs (Winawer et al., 2013). A direct comparison of BOLD-

based pRFs and electrophysiologically  recorded receptive fields  has  been performed on a  small  scale  in

monkeys in the context of validating a new approach that allows estimation of average single-neuron receptive

fields within a voxel (Keliris et al., 2019). In this study, only the MUA activity from the electrophysiological

recording was used, since its explicit goal was to get estimates from the smallest possible neuronal population.

The current study investigated the neuronal basis of population receptive fields using fMRI and large-scale

electrophysiological recordings in awake behaving macaque monkeys. Within the same species, we fit four

different pRF models to seven different signal types (BOLD, MUA, and the power in five distinct frequency

bands of the local field potential) to gain unique insight into the neuronal basis of pRF measurements in

nneuroimaging (Wandell and Winawer, 2015).  The original and perhaps still most broadly used pRF model

was constrained to positive responses and assumed linear spatial summation (Dumoulin and Wandell, 2008).

We labeled this model P-LIN (Positive-LINear) to contrast it with a version in which we removed the positive

response constraint to allow for negative pRFs (corresponding to stimulus-driven suppression or reductions of

activity) (U-LIN, Unconstrained-LINear). Such negative visual BOLD responses have been reported in human

visual cortex (Smith et al., 2004) and the broader default mode network (Szinte and Knapen, 2019). The other

two models that we tested were the Difference-of-Gaussians model (DoG) designed to capture the possible

center-surround structure of a pRF through the addition of a suppressive surround Gaussian (Zuiderbaan et al.,

2012), and the ‘compressive spatial summation’ model (CSS) that adds a static non-linearity to the P-LIN
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model to account for non-linear spatial summation (Kay et al., 2013). This non-linearity was experimentally

shown to consistently describe sub-additive spatial summation in humans, hence the ‘compressive spatial

summation’ attribution in its name. All models were fit in a cross-validated manner to avoid over-fitting and

allow comparison of fit accuracy across models with different numbers of parameters.

Cortical and subcortical retinotopic tuning of the BOLD signal

We found retinotopic information in a range of brain areas, both subcortical and cortical, spanning occipital,

temporal,  parietal,  and  frontal  regions.  Fit  accuracy  was  far  superior  in  occipital  and  temporal  cortex

compared to other areas. Lower accuracy in subcortical areas is likely due to the fact that the types of surface

coils commonly used in non-human primate imaging exhibit a substantial drop in signal-to-noise ratio deeper

in the brain. Nonetheless, known subcortical visual areas such as the lateral geniculate nucleus (LGN) and

pulvinar  could  be  clearly  delineated  from their  surrounding areas  based  on  their  higher  fit  accuracy.  In

humans, subcortical retinotopic maps have been demonstrated in LGN, pulvinar, superior colliculus (SC),

thalamic reticular nucleus (TRN), and substantia nigra (SN) (Cotton and Smith, 2007; DeSimone et al., 2015;

Schneider et al., 2004). In our monkey data, we did observe some voxels with above-thresholds fits extending

both laterally and medially beyond the pulvinar. While these voxels could, theoretically, represent retinotopic

information from the TRN and SC respectively, they were too few to constitute true retinotopic maps and it

was difficult to assign them to specific subcortical nuclei with certainty. In a  more targeted investigation of

subcortical  retinotopic  maps with fMRI in non-human primates,  additional  anatomical  imaging would be

necessary for detailed individual segmentation of the thalamus (DeSimone et al., 2015; Tani et al., 2011). It is

perhaps also possible to significantly increase the SNR in these areas by using implanted coils instead of the

more conventional external surface coils (Janssens et al., 2012). Both approaches are, however, beyond the

scope of the current study.

It is interesting to note that we also observed subcortical retinotopic maps in the head of the caudate nucleus

in the striatum. Neurons in the head of the caudate have long been known to play a role in processing visual

information in a reward-related context (Hikosaka et al., 1989a, 1989b; Kim and Hikosaka, 2013; Rolls et al.,

1983). The head of the caudate receives projections from the thalamus, temporal cortex, prefrontal cortex and

cingulate  cortex  (Griggs  et  al.,  2017)  and  plays  a  role  in  the  updating  of  stimulus-reward  associations

(Ghazizadeh et al., 2018; Vanduffel, 2018). Although the moving bar stimulus used to estimate pRFs had no

predictive value for reward delivery (the animals received juice reward for maintaining fixation), they were

presented in a reward-related context, which may have been enough for them to show up in our results. The

apparent ipsilateral visual tuning of the more posterior putamen is a bit more puzzling. Although neurons in

this area do sometimes respond to ipsilateral  visual  information,  they typically respond more strongly to

contralateral  stimuli  (Kunimatsu  et  al.,  2018). The  visual  tuning  of  the  unilateral,  right-sided,  nucleus

accumbens  (NAc)  to  visual  stimuli  in  the  lower  right  visual  field  (ipsilateral)  is  similarly  surprising.

Anecdotally, in a deep brain stimulation (DBS) study on addiction, where intracranial EEG activity from the
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NAc was recorded in response to symptom-provoking visual stimuli, the right NAc responded more strongly

than the left NAc (Valencia-Alfonso et al., 2012). Perhaps the right-sided NAc responds more strongly to

visual stimulation in general, but this still would not explain the specificity of its tuning to ipsilateral stimuli.

Another potential factor is the location of the reward through which fluid rewards were delivered. This tube

was located on the lower right side of the monkey’s head, which coincides with the location the NAc appeared

to be sensitive for.  However, since reward delivery was independent of the location of the pRF mapping

stimulus it remains unclear how this could lead to a unilateral tuned response of the NAc.

The  occipital,  temporal  and  parietal  cortical  areas  with  good  pRF  fits  were  generally  areas  for  which

retinotopic  organization has  previously  been  shown  in  monkey  imaging  studies  with  phase-encoded

retinotopic mapping (Arcaro et al., 2011; Janssens et al., 2014; Kolster et al., 2014, 2010, 2009; Patel et al.,

2010). While our moving checkerboard stimuli are not ideally suited to investigate visual tuning of frontal

areas that are more strongly driven by complex visual  stimuli  (Janssens et al.,  2014;  Saygin and Sereno,

2008), there was still a substantial number of voxels with above-threshold fit accuracies in several frontal

areas, including the insula, cingulate cortex, frontal eye fields (FEF, area 8), orbitofrontal cortex, ventromedial

prefrontal cortex, and dorsolateral prefrontal cortex. These are all  areas involved in visual processing and

visual attention.

We did not observe any robust retinotopic tuning in the cerebellum. A recent analysis of the extensive Human

Connectome Project (HCP) dataset of population receptive fields mapped with 7T fMRI (Benson et al., 2018)

revealed  comprehensive  visual  organization  of  the  cerebellum  (van  Es  et  al.,  2019).  While  this  study

reproduced these results with high-powered single-subject experiments at 7T, a combination of lower field

strength, coil  placement and animals being in the sphinx position likely reduced the SNR in the monkey

cerebellum to a level where we could not pick up on such an organization. With monkeys in a more optimal

position (e.g.,  sitting upright  in a vertical  scanner)  and coils  specifically designed or placed to target  the

cerebellum, it may however be possible to investigate the retinotopic organization of the cerebellum in non-

human primates as well.

Negative pRFs

Both the U-LIN and DoG pRF models can capture negative pRF components but in very different ways. The

U-LIN is a single-Gaussian model that only differs from the original linear pRF model (P-LIN; Dumoulin and

Wandell, 2008) in that it does not constrain the ‘gain’ parameter to positive values. This means that for voxels

or electrodes where the U-LIN more accurately fits the neural dynamics than the P-LIN model, the tuning of

the  underlying  neural  substrate  is  negatively  related  to  the  location  of  a  visual  stimulus,  i.e.  the  signal

magnitude decreases in a spatially selective way. This does not necessarily mean that for the same voxel or

electrode, a positive relation cannot also be fit with reasonably good accuracy. In that case, however, it is

likely that the features of the resulting pRFs will  be very different.  Both scenarios were observed in the

monkey fMRI data,  but  in  very  different  parts  of  the  brain.  In  visual  cortex we  find  voxels  with  small
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positively tuned pRFs for peripheral stimulus locations that stretch beyond the eccentricities at which our

stimulus was presented and larger negatively tuned pRFs at foveal locations. This pattern is in line with the

previously demonstrated notion that  visual stimuli can simultaneously cause positive and negative BOLD

responses at different cortical locations (Smith et al., 2004). A study with simultaneous electrophysiological

recordings  and  fMRI  in  anesthetized  monkeys  showed  that  negative  BOLD  responses  are  related  to

suppression of neuronal broadband and spiking activity below baseline by stimulation outside the ‘positive

aggregate receptive field’ (Shmuel et al., 2006). The higher accuracy for negative pRFs likely results from the

fact that the centers of the peripheral positive pRFs are never stimulated by the mapping stimulus resulting in

relatively low positive fit accuracy. We did not find any subgroups of electrodes for which the MUA or high

frequency LFP components (LFP-γlow, LFP-γhigh) were better explained by negative pRFs (U-LIN) than by

positive pRFs (P-LIN). Such electrodes were however clearly present for the lower frequency bands of the

LFP (LFP-θ, LFP-α, LFP-β). The negative pRFs in the LFP are different from those based on the BOLD

signal, in that they were in fact a lot smaller than their positively constrained counterparts from the same

electrodes. This matches a neural mechanism in which low frequency LFP power and spiking activity are

negatively  correlated  and  low  frequency  oscillations  play  a  role  in  suppressing  stimulus-driven  spiking

(Haegens et al., 2011; Harvey et al., 2013). In a previous human iEEG study with only a few electrodes, this

was the only type of LFP-α dynamics in V1 (Harvey et al., 2013). The LFP-α power in the intraparietal sulcus

(IPS) on the other hand did not show any spatial tuning. Instead, it decreased in power relative to baseline

during  visual  stimulation.  This  led  the  authors  to  suggest  that  alpha  oscillations  may subserve  different

mechanisms in V1 and IPS. In our current study, we did not have any electrodes in IPS, but the number of

electrodes in V1 was one or two orders of magnitude larger than in previous human iEEG study. Not all low

frequency LFP signals were better fit with negative pRFs than positive ones. In fact, there were many more

electrodes for which positive pRFs could be fit more accurately than negative pRFs. However, there were

clear  qualitative  differences  between the  positive  and negative low-frequency LFP pRFs.  The  centers  of

negative pRFs were closer to the MUA-based pRFs on the same electrodes, and their sizes increased with

eccentricity, a relationship that was absent in positive pRFs. While negative responses thus seem to be in line

with  a  role  of  the  low  frequency  LFP  components  in  suppression  of  spiking,  the  overall  role  of  slow

oscillatory LFP signals in visual information processing in V1 appears to be more diverse and complex.

The DoG model also captures negative pRF components but instead of modeling a single Gaussian with a free

gain parameter, it explicitly models the pRF as a combination of two Gaussians. A central positive Gaussian

(the same as P-LIN pRFs) is combined with a negative ‘surround’ Gaussian that has the same center location

as the positive Gaussian and is constrained to be larger. The relative amplitudes of the positive and negative

Gaussians  can vary freely.  At one end of  the  spectrum,  where positive  amplitudes  are much larger than

negative amplitudes, the model’s pRFs are very similar to those of the P-LIN model. At the other end, where

negative amplitudes are much larger than positive ones DoG pRFs resemble U-LIN pRFs. In between these

two extremes, pRFs can capture a range of center-surround pRFs with both a central positive and surrounding

negative component.  As  a result,  the  DoG model  captures  the  same negative pRF phenomena described
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above,  but  it  additionally  reveals  which signals and brain areas  are  more accurately described in  center-

surround terms. In the MRI-based pRFs, advantages of the DoG model were primarily found in early visual

cortex, which is similar to previous results in humans (Zuiderbaan et al., 2012). In the electrophysiology data,

there was a large advantage of the DoG model over both P-LIN and U-LIN in the MUA-based pRF fits,

consistent  with  pronounced  center-surround  effects  in  spike-based  receptive  fields  (Allman  et  al.,  1985;

Cavanaugh et al., 2002; Hubel and Wiesel, 1968; Knierim and van Essen, 1992). A similar advantage was

present  in  all  LFP components  except  for  LFP-γlow.  It  is  not  immediately  clear  why the  center-surround

organization of pRFs would be so much weaker or even absent in LFP-γlow. The LFP signal in this frequency

band is thought to reflect combined local inhibitory and excitatory synaptic processes  (Buzsáki and Wang,

2012). Perhaps the excitatory and inhibitory synaptic processes either cancel out or manifest similarly in the

power  of the  LFP-γlow signal.  Detailed investigation of synaptic activity would be required to gain more

insight into this mechanism.

There were also voxels for which the BOLD dynamics could be fit well with a negative pRF (U-LIN or DoG),

but not at all with a positive pRF (P-LIN), suggesting exclusively tuned suppression of activity by the visual

stimulus. These voxels were not located in visual cortex. Instead, we found them in areas reminiscent of the

default  mode  network  (DMN)  (Mantini  et  al.,  2011).  A  recent  analysis  of  the  HCP  retinotopy  dataset

complemented with extensive single-subject analysis at 7T reported negative pRFs in the human default mode

network as well, specifically in the angular gyrus, medial parietal area, lateral temporal area, and the superior

medial frontal area (Szinte and Knapen, 2019). While our monkey imaging results likely lacks the power to

detect such patterns in the most frontal parts of the brain we did observe purely negative pRFs around the

lateral sulcus, in the medial occipital parietal cortex and at the superior border of the superior temporal sulcus

in the lateral occipital parietal cortex, all areas that have previously been implicated in the monkey’s DMN

(Mantini et al., 2011). Unfortunately, we did not have any electrodes located in these areas to investigate the

electrophysiological  nature of negative visual  tuning in the DMN, but  the similarity between human and

monkey findings suggests a general sensory-based organization of the DMN that might facilitate the DMN’s

role in coordinating cognitive functions (e.g., Arsenault et al., 2018).  

Spatial summation

The CSS pRF model was first introduced to account for non-linear spatial summation of driving visual stimuli

across a receptive field (Kay et al., 2013). Subadditive spatial summation (spatial compression) was found

throughout  the  human  visual  cortex  in  BOLD-based  pRFs,  with  more  anterior  areas  showing  stronger

compression than V1. In the monkey MRI data spatial compression was present in all areas with good CSS-

pRF fits, both subcortically and cortically, and similar in strength to compression in human V1 (Kay et al.,

2013; Winawer et al., 2013) suggesting that subadditive spatial summation is a universal characteristic of the

primate visual system. The strength of compression did not differ much across areas, but in early visual areas

it  tended to be slightly weaker in  V1 compared to V2, V3, and V4.  In human iEEG recordings,  spatial
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compression of similar strength of that in the BOLD signal was observed in the broadband iEEG signal, but

not  in  narrow-band  power  increases  related  to  synchronization  of  the  iEEG  signal  with  a  periodically

flickering visual stimulus (Winawer et al., 2013). The moving checkerboard in our pRF mapping bar caused

local luminance changes at a frequency well below the Theta-band making it unlikely that any component of

our LFP signal would become strongly locked to the stimulus. Furthermore, we observed spatial compression

in both the MUA-pRFs and in all frequency bands of the LFP. The strength of spatial compression in V1 was

highly comparable for BOLD, MUA and LFP, but within the LFP signals it tended to be stronger for lower-

frequency components. This could be due to the larger pRF that were typically fit to these low-frequency

signals and/or reflect the larger spatial reach of lower-frequency components of the LFP (Łęski et al., 2013).   

The neuronal nature of BOLD-based pRFs

What type of neuronal signal is captured by the BOLD-based pRFs? We compared pRF-map structure across

signal types in terms of their eccentricity-size relationship, a prominent feature of retinotopic maps (Amano et

al., 2009; Dumoulin and Wandell, 2008; Felleman and Van Essen, 1987; Gattass et al., 2005; Kay et al., 2013;

Larsson and Heeger, 2006; Van Essen et al., 1984; Victor et al., 1994). We observed a positive correlation

between  pRF  eccentricity  and  pRF  size  in  the  BOLD  signal  of  all  cortical  and  subcortical  areas  with

significant retinotopic information. The slope of this relationship was generally larger for areas higher in the

visual cortical hierarchy. Subcortically, the slope for pRFs in the pulvinar was much larger than for those in

the LGN. In fact, the slope in the LGN was similar to that of early visual areas, while that of the pulvinar

resembled parietal areas such as LIP, and frontal areas such as area 8 (including FEF). This is consistent with

both  the  cortical  connectivity  pattern  of  the  pulvinar  and  its  role  in  the  regulation  of  visual  attention

(Fiebelkorn et al., 2019; Fiebelkorn and Kastner, 2019; Halassa and Kastner, 2017; Saalmann et al., 2012).

Positive eccentricity-size correlations were present in the MUA and LFP-γ signals of both V1 and V4, with

steeper slopes in V4 for all these signals. In V1, this relationship also existed for negative LFP-β pRFs. We

compared the eccentricity-size relationship in the different electrophysiology signals with the eccentricity-size

relationship in MRI data for V1 and V4 to reveal which neuronal signal was most similar to what is measured

with BOLD-fMRI. This cross-signal analysis  shows that  this  depends on the brain area  of interest, or more

specifically, on the heterogeneity of the neuronal population occupying the volume of a voxel. In V1, where

retinotopic  maps  are  large  in  terms of  cortical  surface area  and neurons  captured by a  single  voxel  are

presumably  rather  homogeneous  in  terms  of  their  spatial  tuning,  the  BOLD-based  pRF  map  structure

resembled the MUA-based maps most. In V4, that has a smaller surface area than V1, the BOLD-based pRF-

map structure was instead more similar to the electrophysiological pRF-map structure based on the gamma

power of the LFP. A voxel in V4 will sample a neuronal population with much more heterogeneous spatial

tuning profile than an equally sized voxel in V1. As a result, the BOLD signal tuning will thus likely resemble

neuronal signals derived from larger population of neurons (i.e., the LFP). This may be a constraint of both

the voxel size and the  relatively poorly understood neurovascular coupling mechanism that links neuronal
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activity to BOLD activity. While advances in imaging sequences, coil design, and field strength may increase

the feasibility of neuroimaging at higher spatiotemporal resolutions, the real limit on the size of the neuronal

population signal that can be measured with fMRI may very well be  partially determined by the biophysical

transfer from neuronal to BOLD signals (Goense et al., 2016).  

Choice of pRF modeling approach

In the current study, we extensively compared pRF estimates for a range of neural signals across several pRF

models. Upon its introduction, the original pRF modeling method (Dumoulin and Wandell, 2008) offered

significant advantages over the phase-encoded retinotopic mapping methods that were common at the time

(Sereno et al., 1995; Wandell et al., 2007). In the years since this seminal publication, several improvements

or extensions to the original model  and method have been proposed and tested. The DoG and CSS models

included in the current study are already more flexible in terms of pRF profile, but they still employ a priori

constraints on the pRF shape. Methods to estimate pRFs without such constraints also exist (Carvalho et al.,

2020; Lee et al., 2013) and they  can be particularly robust in their estimation of peripheral pRFs near the

border of the visual stimulus (Lee et al., 2013). An ambition to estimate pRFs from neuroimaging data and

that reflect neural populations that are as small as possible has inspired computationally intensive approaches

to estimate pRFs for neuronal subpopulations within a voxel though ‘micro-probing’ (Carvalho et al., 2020) or

to estimate the average receptive field size of single neurons within a voxel (Keliris et al., 2019). These novel

methods, as well as the pRF models included in the current study, each offer specific advantages over the

original pRF modeling approach that may or may not be important in addressing  particular experimental

questions.

Conclusions

In an extensive comparative study, we used fMRI in awake non-human primates to investigate BOLD-based

population receptive fields throughout the primate brain and reveal their neuronal  origins with large-scale

neurophysiological recordings in visual cortex. Different pRF models captured different aspects of spatial

tuning in the BOLD signal and relates them  to different components of the underlying neurophysiological

signals.  Sub-additive spatial  summation,  was a general  feature throughout brain areas and across BOLD,

MUA and LFP signals. PRF models with negative components demonstrated tuned visual suppression in areas

of the monkey default mode network and center-surround organization of pRFs in early visual areas. The

structure of pRF-maps from neuroimaging, as captured by their eccentricity-size relationship, reflected the

MUA in V1, but was more similar to the gamma power of the local field potential in V4. We conclude that

population receptive fields in neuroimaging accurately represent the spatial tuning of the underlying neuronal

populations, but that the spatial scope of these populations crucially depends on the brain area that is being

probed. 
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Materials and Methods

Subject details

Four male macaques (Macaca mulatta; 7-12 kg, 5-8 years old) participated in this study. Animal care and

experimental procedures were in accordance with the NIH Guide for Care and Use of Laboratory Animals

(National  Institutes of Health,  Bethesda,  Maryland),  the European legislation (Directive 2010/63/EU) and

approved by the institutional animal care and use committee of the Royal Netherlands Academy of Arts and

Sciences and the Central  Authority for Scientific Procedures on Animals (CCD) in the Netherlands.  The

animals were socially housed in an enriched specialized primate facility with natural  daylight,  controlled

temperature and humidity, and fed with standard primate chow, supplemented with raisins, fresh fruits, and

vegetables. Their access to fluid was controlled, according to a carefully designed regime for fluid uptake.

During weekdays the animals received diluted fruit  juice in the experimental set-up. We ensured that the

animals drank sufficient fluid in the set-up and supplemented with extra fluid after experimental sessions if

they did not drink enough. On the weekends, animals received at least 700 ml of water in the home-cage. The

animals  were  regularly  checked  by  veterinary  staff  and  animal  caretakers  and  their  weight  and  general

appearance were recorded in an electronic logbook on a daily basis during fluid-control periods.

Surgical procedures

Two animals (M1 & M2) participated in the MRI experiments and were implanted with an MRI-compatible

plastic (PEEK) head-post, fixed to the skull with ceramic bone screws and acrylic (Farivar and Vanduffel,

2014; Vanduffel et al., 2001). Anesthetics, analgesics and monitoring procedures were similar to previous

surgical procedures in our laboratory and are described in detail elsewhere  (Klink et al., 2017; Poort et al.,

2012; Supèr and Roelfsema, 2005). Two other animals (M3 & M4) participated in the electrophysiology

experiments. They were implanted with a custom 3D-printed titanium head-post that was designed in-house

based on a CT-scan of the skull, aligned to a T1-weighted anatomical MRI-scan of the brain (Chen et al.,

2017). Head-posts were attached to the skull with titanium bone-screws and the skin was closed around the

implant without the use of any acrylic. In a second surgery, each animal was additionally implanted with a

total  of  1,024 electrodes  spread  over  16  Utah  electrode  arrays  (Blackrock Microsystems)  in  their  visual

cortices (14 arrays in V1, 2 arrays in V4; Figure 1B). Each array contained an 8-by-8 grid of 64 iridium oxide

electrodes with a length of 1.5 mm spaced at a distance of 400 μm from each other. Pre-implantation electrode

impedances ranged from 6 to 12 kΩ. A custom designed 1,024-channel pedestal was attached to the skull with

titanium bone screws and the skin was closed around it. More details on the surgical procedures are published

elsewhere (Chen et al., 2017).
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Visual stimuli and procedures

Population receptive fields were measured using conventional moving bar stimuli that traversed the screen in

eight different directions  (Dumoulin and Wandell, 2008) (Fig. 1). In the MRI experiments, the bar sweep

spanned a diameter of 16° in 20 steps (Dumoulin and Wandell, 2008). The moving bars were 2° wide and

contained a checkerboard pattern (100% contrast, 0.5° checkers) that moved parallel to the bar’s orientation.

Each bar position was on the screen for 2.5 s (1 TR) making one full bar sweep last 50 s. Bar sweep series (all

directions  presented  once)  were  preceded  and  followed  by  37.5  s  (15  TRs)  of  mean  luminance.  Each

horizontal or vertical bar sweep was followed by a mean luminance period of 25 s. The order of the bar sweep

directions was 270°, 315°, 180°, 225°, 90°, 135°, 0°, 45° on most runs, but for one animal we inverted the

directions to 90°, 135°, 0°, 45°, 270°, 315°, 180°, 225° on some runs to compensate for the animal’s tendency

to fall asleep near the end of runs. Included data came from 8 scanning sessions for monkey M1 (34 runs, 268

included bar sweeps) and 10 sessions for monkey M2 (66 runs, 406 bar sweeps). During stimulus presentation

the animals received fluid rewards (Crist Instruments, Hagerstown, MD) for maintaining fixation within 1.5°

of a 0.15° red fixation dot,  surrounded by a 0.75° aperture of mean luminance background color.  In the

electrophysiology experiments,  the  stimulus  and  task  were  very  similar,  but  bar  sweeps  now spanned  a

diameter of 28° due to the animal being closer to the monitor. Bars now traveled along this path in 30 steps of

500 ms, and the mean luminance intervals were reduced to 2.5 s due to the much faster neuronal response

(compared to  the  BOLD signal).  In  the  MRI  experiment,  animals  were  head-fixed,  sitting  in  the  sphinx

position (Farivar and Vanduffel, 2014; Vanduffel et al., 2001), and viewing a 32” screen (1920×1080 pixels,

100 Hz) (Cambridge Research Systems) at the far end of the bore, 130 cm away. Eye-position and pupil

diameter were tracked with an MRI-compatible infrared eye-tracking system at 120 Hz (ISCAN ETL-200).

Hand positions were also monitored using fiber optic amplifiers (Omron E3X-NH) and several sets of optic

fibers. In the electrophysiology experiments, animals were head-fixed in a conventional vertical primate chair

and viewed a 21” CRT monitor (1024×768, 85 Hz) at a distance of 64 cm while their eye-position and pupil

diameters were tracked at 230 Hz using an infrared eye-tracker (TREC ET-49B, Thomas Recording GmbH).

MRI acquisition

MR-imaging was performed in a standard Philips Ingenia 3.0 T horizontal bore full-body scanner (Spinoza

Center for Neuroimaging,  Amsterdam, the Netherlands).  We used a  custom-built  8-channel  phased array

receive coil system (KU Leuven) and the scanner’s full-body transmit coil. Functional images were obtained

using a gradient-echo T2* echo-planar sequence (44 horizontal slices, in-plane 72 × 68 matrix, TR = 2500 ms,

TE = 20 ms, flip angle = 77.2°, 1.25×1.25×1.25 mm isotropic voxels, SENSE-factor of 2 in the AP direction,

and phase-encoding in the AP direction). 
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fMRI preprocessing

All fMRI data was preprocessed with a custom-written Nipype pipeline that we have made available online

(https://github.com/visionandcognition/NHP-BIDS). In short, MRI scans were exported from the scanner as

DICOM images and converted to NIFTI files with the dcm2niix tool (Li et al., 2016). The volumes were then

re-oriented to correct for the animal being in the sphinx position and resampled to 1 mm3 isotropic voxels. The

resulting images were then re-aligned using a non-rigid slice-by-slice registration algorithm based on AFNI

tools (Cox, 1996) followed by FSL-based motion correction procedure MCFLIRT (Jenkinson et al., 2002).

Functional volumes were linearly aligned to the individual high-resolution anatomical volumes, which were in

turn non-linearly registered to the NMT standard space (Seidlitz et al., 2017). Preprocessed data was further

processed  with  a  combination  of  custom  written  Matlab  (Mathworks,  Natick,  MA)  and  shell  scripts

(https://github.com/visionandcognition/NHP-PRF).  BOLD time-courses for each voxel  were normalized to

percentage signal change and averaged across runs (or parts of runs) for which fixation was maintained at

80% of the time or more. We separately averaged odd and even runs to allow for a cross-validation approach

in the evaluation of the pRF model fits.  Anatomical regions of interest (ROI’s) were defined based on a

probabilistic atlas (Reveley et al., 2016; Seidlitz et al., 2017) and the individual retinotopic maps.

Post-fit comparisons across pRF-models, HRFs, and ROI’s were performed in Matlab based on the volumetric

results. For visualization of the fMRI data, volumetric results were also projected to the individual cortical

surfaces. To create these surfaces, we averaged multiple anatomical scans (T1-weighted, 3D-FFE, TE = 6 ms,

TR = 13 ms, TI = 900 ms, flip angle = 8°, 100 horizontal slices, in-plane 224 × 224 matrix, 0.6×0.6×0.6 mm

isotropic voxels,  and phase-encoding in the AP direction) and processed the result  with customized tools

based on Freesurfer (Fischl, 2012) and Pycortex (Gao et al., 2015) that were adjusted to handle our NHP data.

These tools and their documentation can be found at https://github.com/VisionandCognition/NHP-Freesurfer

and https://github.com/VisionandCognition/NHP-pycortex respectively.

Electrophysiology acquisition

Raw neuronal activity was acquired from 1,024 channels simultaneously at a 30 kHz sample rate. The 1,024-

channel  pedestal  connected to  eight  128-channel  CerePlex M head-stages  through an electronic  interface

board. Each head-stage processed signals from two 64-channel electrode arrays with a 0.3-7,500 Hz analog

filter at unity gain (i.e., no amplification). After analog-to-digital conversion, the signal from each head-stage

was sent  to a 128-channel Digital Hub (Blackrock Microsystems) where it  was converted into an optical

output signal and sent to a 128-channel Neural Signal Processor (NSP, Blackrock Microsystems) for storage

and further processing. The eight NSP’s were controlled with eight simultaneously running instances of the

Blackrock Central Software Suite (Blackrock Microsystems) distributed over two computers (four instances

each).
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Electrophysiology data preprocessing

The  raw  neuronal  signal  that  was  acquired  using  eight  simultaneously  running  software  instances  was

temporally aligned using common TTL pulses sent by the stimulus computer. The data were then separated in

1)  envelope  multi-unit  activity  (MUA),  and  2)  broadband  local  field  potential  (LFP).  Envelope  MUA

represents the spiking activity of a local population of neurons around the electrode (Supèr and Roelfsema,

2005). To extract it, we amplified the raw neuronal signal, band-pass filtered it between 500 Hz and 9 kHz,

full-wave rectified it, and applied a low-pass filter of 200 Hz. The resulting time-series were down-sampled to

1 kHz. We subtracted the baseline MUA activity in a 1,000 ms prestimulus time-window. Baseline-corrected

MUA responses were then averaged, first across runs and then within a 50-500 ms time window for each

stimulus position. The broadband LFP signal was generated by low-pass filtering the raw signal at 150 Hz and

down-sampling it  to 500 Hz.  The LFP signal was further processed with a multi-taper method using the

Chronux toolbox (Bokil et al., 2010). Power spectra were calculated in a 500 ms moving window (step-size 50

ms), using a time bandwidth product of 5 and 9 tapers. LFP power over time was then averaged within five

distinct frequency bands: 4-8 Hz (Theta), 8-16 Hz (Alpha), 16-30 Hz (Beta), 30-60 Hz (low Gamma), and 60-

120 Hz (high Gamma). Baseline power in a 1,000 ms prestimulus period was subtracted and the resulting

signal on each channel was then averaged across runs, within a 50-500 ms time window during each stimulus

position.

Population receptive fields models and fitting procedure

We fit four different pRF-models to all the data (voxels and electrode channels) using a customized version of

the analyzePRF toolbox (Kay et al.,  2013) for Matlab. In the fitting procedure, the stimuli were spatially

down-sampled  to  a  resolution  of  10  pixels  per  degree  visual  angle  and converted  to  ‘effective  stimuli’,

consisting of binary representations that encode stimulus position. Responses predictions were then calculated

as the product of the effective stimulus and the pRF shape (Eq. 1). The four pRF-models differed in their

description of the pRF shape. Linear models (Eq. 1-3) describe a single isotropic 2D Gaussian-shaped pRF

and assume linear spatial summation across the visual field (Dumoulin and Wandell, 2008). We implemented

two linear model versions. For the first  model,  responses were constrained to be positively related to the

visual  stimuli  (P-LIN).  A second version  lacked this  constraint  and  also  allowed negative  responses,  or

stimulus-driven activity reductions (U-LIN). Negative visual responses have been reported in the power of

lower frequency components of the LFP and its coherence with spiking activity (Harvey et al., 2013; Klink et

al., 2012; van Kerkoerle et al., 2014). Negative BOLD responses have also been demonstrated in some brain

areas (Shmuel et al., 2006). The Non-linear Spatial Summation model (Kay et al., 2013) expands the linear

model with a power-law exponent that is applied after spatial summation and captures non-linear summation

of signals across the visual field. It has previously been shown that the value of this exponent is generally

smaller than one in human visual cortex, indicating sub-additive spatial summation  or compressive spatial

summation (Kay  et  al.,  2013).  This  model  is  therefore  generally  referred  to  as  the  compressive  spatial
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summation (CSS) model. Because the pRF size and static non-linearity interact in the non-linear model, the

pRF size is defined as the standard deviation of the predicted Gaussian response profile to a point stimulus

(Eq. 3). The mathematical descriptions of the linear and non-linear pRF-models are described in Equations 1-

3,  where  Resppred  indicates the  predicted response,  g is  a  gain factor  to scale the response,  S(x,y)  is  the

effective stimulus, G(x,y) the Gaussian pRF profile, and n the exponent that determines the static spatial non-

linearity. For the P-LIN model, the gain g was constrained to positive values, while for the U-LIN model, gain

values could be negative as well. Negative gain factors imply stimulus-induced reductions of activity. In both

linear models, the exponent n was fixed to be one. In the definition of the Gaussian, (x0,y0) defines the center

and σ the standard deviation of the pRF. 

Linear and Non-linear spatial summation pRF models

[1] Resppred=g ⋅ [∑x , y S (x , y )G (x , y ) ]
n
, P-LIN ,U-LIN: n=1
P-LIN ,CSS: g>0  

[2] G ( x , y )=e

−( x−x 0)
2
+ ( y− y0 )

2

2σ2

[3] pRFsize=
σ

√n

The difference-of-Gaussians model uses a standard linear Gaussian pRF-model (G1 in Eq. 4) to describe the

excitatory center of a pRF but it subtracts a second Gaussian profile (G2) to explicitly model an inhibitory

surround component (Zuiderbaan et al., 2012). This second Gaussian is by definition broader than the one

describing the center. The relative sizes (σ1,σ2) and amplitudes (a) of the center and surround Gaussians are

additional parameters in the model (Eq. 4-6). 

Difference-of-Gaussians pRF model

[4] Resppred=g ⋅ [∑x , y S (x , y ) (G1 ( x , y )−a⋅G2 ( x , y ) ) ]
n

[5]
G1 (x , y )=e

− (x− x0)
2
+( y −y 0 )

2

2 (σ 1 )
2

,G2 ( x , y )=e

−( x− x0 )
2
+ ( y− y0)

2

2 ( σ 2)
2

; σ2>σ 1

[6] pRFcenter-size=σ 1 , pRF surr-size=σ2

The models generate temporal response predictions based on the series of stimulus presentations and their

estimate of the response properties of neuronal populations (pRF profile). This prediction assumes a near-
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instantaneous  link  between the  stimulus  and the  response  dynamics.  This  assumption  holds  true  for  the

electrophysiological signals where the stimulus changes position every 500 ms, which is much slower than the

typical delay of a neuronal response. The BOLD-response, however, is much slower than the speed with

which the stimulus traverses the screen in the fMRI experiments (2,500 ms per position). For this reason we

convolved the predicted response with a hemodynamic response function (HRF) to approximate the BOLD-

dynamics.  This  convolution  was  done  at  a  temporal  resolution  of  1.25  seconds  per  sample  (twice  the

acquisition rate of TR = 2.5s) to facilitate model performance. We used both a canonical human HRF and a

standard  monkey HRF that  we  derived  from separate  scanning sessions  in  our  laboratory  (Supplemental

Figure S5). In short, we presented the animals with brief (0.1 s) full contrast and fullscreen checkerboard

stimuli. We then used FMRIB’s Linear Optimal Basis Sets (FLOBS) (Woolrich et al., 2004) toolkit from the

FSL software package to estimate the relative contributions of a set of basis functions for those voxels in the

primary visual cortex that were significantly activated by the stimulus. We then calculated a single weighted

average HRF function based on these basis functions and used this average HRF as the standard monkey

HRF. Compared to the canonical human HRF this monkey HRF was narrower, with a slightly faster time-to-

peak and a  clearly faster peak-to-fall time. A comparison of model accuracy for the two HRFs revealed a

small  overall  advantage  for  the  monkey  HRF,  that  was  especially  evident  in  the  earlier  visual  areas

(Supplemental Figure S5). Because size and location estimates were highly similar for the two HRFs across

all models, we only report results from model-fits based on the monkey HRF. 

Model-fitting  was  performed  on  a  cluster-computer  (LISA,  SURFsara)  using  nonlinear  optimization

(MATLAB Optimization Toolbox).  The accuracy of the different  model-fits  was quantified as the cross-

validated  percentage  of  variance  (R2)  in  the  measured  BOLD-response  (Eq.  8:  DATA)  and  the  model

prediction (Eq, 8:  MODEL). To this end, we divided the data into two non-overlapping sets (odd and even

runs) and tested the prediction of a model that was fit one data-set against the time-series of the other data-set

and vice-versa. This yielded two R2 values per voxel or electrode, that were subsequently averaged. The cross-

validated determination of model accuracy allows a comparison of model performance across models with

different  numbers  of  parameters  and  prevents  over-fitting.  Fit-results  are  available  as  voxel-based  maps

warped  to  the  NMT  template  space  on  Neurovault.org  (Gorgolewski  et  al.,  2015)  at

https://identifiers.org/neurovault.collection:8082. 

Model accuracy

[7] R
2
=100× [1−∑ (MODEL−DATA )

2

∑ DATA2 ]
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Comparison of pRF (& RF) estimates

After fitting the pRF models to all voxels and electrode channels we compared the pRF estimates both within

and  across  recording  modalities.  For  these  comparisons,  unless  otherwise  noted,  we  pooled  voxels  and

recording  channels  across  subjects  and  used  non-parametric  statistical  tests  (Wilcoxon  Signed  Rank,

Wilcoxon  Rank  Sum,  or  Kruskal-Wallis)  with  post-hoc Tukey’s  HSD  tests  to  correct  for  multiple

comparisons. For the fMRI data we compared model accuracy between models and hemodynamic response

functions. Using the best overall pRF model and HRF, we then constructed retinotopic maps for a large range

of ROI’s and investigated the relationship between pRF eccentricity and size for a subset of ROI’s with good

model  fits  (R2 >  5%).  For  the  electrophysiological  data,  we  again  compared  model  accuracy  and  pRF

estimates across MUA and LFP components to unravel to which extent retinotopic information is available in

the different neuronal signals. We also compared the pRF estimates of each electrode channel to a receptive

field characterization based on more conventional techniques that are typically used in our laboratory (and

many others). To this end, we recorded the MUA responses to thin, translating bar stimuli. The averaged

MUA traces were fitted with a Gaussian curve that determined the onset and offset of the visual response

(95% of the peak of the Gaussian). Horizontal and vertical receptive field boundaries were then derived from

the onset and offset times for stimuli moving in opposite directions. Receptive field centers were defined as

the midpoint between the horizontal and vertical borders, while receptive field size was calculated as the

square root of the rectangular receptive field surface, divided by two to be more similar to the sizes obtained

through pRF model fits.

In  order  to  compare  pRF  properties  based  on  fMRI  BOLD  signals  with  those  estimated  from

electrophysiologically recorded neuronal signals,  we combined data from individual animals to create one

pool of  BOLD-based voxel pRFs and six pools of electrophysiology-based electrode pRFs (MUA, and the

different frequency bands of the LFP) for V1 and V4 data. For each visual area, we then compared the pRFs

across modalities on the basis of the relationship between receptive field eccentricity and receptive field size

with a set of Linear Mixed Models (LMM’s). Each signal type was first tested on the presence of a significant

correlation between eccentricity and size. The signal types that exhibited such a correlation were subsequently

tested together in a single LMM to determine whether the eccentricity-size relationship depended on signal

type  (interaction  SIGNAL  ×  ECC).  Finally,  we  tested  each  electrophysiology  signal  with  significant

eccentricity-size correlation against the MRI results to determine if this relationship was different for the two

selected signal types. For this analysis, we selected voxels from V1 and V4 with a pRF location that fell

within the eccentricity range of the electrode arrays and only included voxels and electrodes for which a fit

accuracy above a predetermined threshold (fMRI threshold: R2 > 5%, electrophysiology threshold: R2 > 50%).

Data and code availability

All data, experiment code, and analysis code used for this study have been made freely available.
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Supplemental Table 1: ROI abbreviations

ROI abbreviation ROI full name (BA = Brodmann Area)

V1 Primary visual cortex

V2 Visual area V2

V3 Visual area V3

V3A Visual area V3A

V4 Visual area V4

MT Middle Temporal visual area

MST Medial Superior Temporal cortex

TEO Inferior temporal cortical area TEO

TAa Temporal area TAa

Tpt Auditory association cortex (Temporoparietal)

TPO Temporo-parietal-occipital junction

FST Fundus of the superior temporal visual areas

A1 Primary auditory cortex

ML Middle lateral, belt region of the auditory cortex

AL Anterior lateral, belt region of the auditory cortex

PULV Pulvinar

LGN Lateral geniculate nucleus

STR Striatum

LIP Lateral intraparietal cortex

VIP Ventral intraparietal cortex

5 BA 5 (parietal area PE)

7 BA 7, includes BA 7a (Opt/PG) and BA 7b (PFG/PF)

SI Primary somatosensory cortex (BA 1, 2, and 3)

SII Secondary somatosensory cortex

F2 Area F2, dorsal caudal premotor cortex

F4 Area F4, ventral caudal premotor cortex

F5 Area F5, ventral rostral premotor cortex

F7 Area F7, dorsal rostral premotor cortex

8 BA 8 (includes the Frontal Eye Fields)

CINp Poster cingulate cortex (BA 23)

CINa Anterior cingulate cortex (BA 24c, and BA 32)

OFC Orbitofrontal cortex (BA 12)

INS Insular cortex (includes BA 13)

DLPFC Dorsolateral prefrontal cortex (BA 10, and BA 46)

VMPFC Ventromedial prefrontal cortex (BA 14)

Occipital lobe Temporal lobe Subcortical Parietal lobe Frontal lobe
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Supplemental  Figure  S1.  Proportion  of  voxels  with  R2 >  5% per  ROI. For  both  animals  (M1,  M2)  an  all  four  pRF  models.

Supplement to Figure 2B that reports absolute numbers of voxels per area.
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Supplemental Figure S2. Voxels in the right nucleus accumbens (Nac) have ipsilateral pRFs. The right NAc in the ventral striatum

(green outline) is retinotopically tuned in both monkeys (only M2 shown). Although R2 values are lower than in the cortex or

thalamus, they stand out from the surrounding regions. Polar angle maps of the fitted pRFs indicate that the right NAc is tuned to

visual information in the right (ipsilateral) visual field.
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Supplemental Figure S3. Fit accuracy advantage of CSS and DoG models across brain areas. Both the CSS (top panel) and DoG

(middle panel) models had a higher fit accuracy (cross-validated R2) than the conventional P-LIN model across all brain regions

with retinotopic information. Difference between the CSS and DoG was minimal (bottom panel).
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Supplemental Figure S4. (A) Normalized amplitude of the suppressive surround Gaussian in the DoG model fits (R 2 > 5%). Values

larger than one (blue tints) indicate that the suppressive surround has a larger amplitude than the positively responding center

Gaussian. The right hemisphere of M1 is shown as an example. Voxels with a strong suppressive component were found in the

medial occipital and parietal cortices, and around the lateral sulcus. (B) Similar example display as in (A), but here the gain value

of the of U-LIN fits is shown for voxels with R2 > 5%. Green tints represent positive gain values, purple tints indicate negative gain

values (i.e.,  negative or  suppressive  BOLD responses).  Negative gain values are seen in  the same voxels  that  have a strong

suppressive surround in the DoG model suggesting that these voxels are best characterized by a suppressive or negative response

to visual stimuli.
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Supplemental Figure S5. Voxels with a good fit for both DoG and P-LIN models, were found in both animals (M1 and M2). Voxels

for  which the DoG model  outperformed the P-LIN model  were found throughout  visual  cortex  (top  panels),  but  not clearly

clustered in cortical space nor specific for either foveal or peripheral eccentricities (bottom panels).
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Supplemental Figure S6.  Comparison of hemodynamic response functions (HRFs). (A)  All pRF models were fit on the BOLD

response with two distinct HRFs: a monkey-specific HRF (see Material and Methods for details on how this was estimated) and a

canonical  HRF provided by  the analyzePRF  toolbox.  The monkey HRF (black  line)  had a faster  decay  and  more pronounced

negative component than the canonical HRF (gray line).  (B) The choice of HRF had a relatively small effect on the fit accuracy

(R2)of all four models. The color map in this binned scatter-plot (1 × 1 % bins) indicates the number of voxels. (C) Mean difference

in R2 value between the HRFs for all models and ROI’s. There is a small advantage of the monkey HRF in early visual areas for all

models. For  the DoG model  the canonical  HRF fit slightly  better in later cortical  areas.  The inset text  indicates the mean R2

difference (HRFmonkey - HRFcanonical) over all voxels ± the standard deviation.
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Supplemental  Figure S7. Eccentricity-size relationship  for  all  ROI’s.  Linear fits  (intercept  and slope)  on the eccentricity-size

relationship per brain area. Shaded areas indicate the 95% confidence interval of the fit, the  n-value indicates the number of

voxels (R2 > 5%) the fit was based on. Areas with linear fits plotted in red have a significant slope. For the few areas where the

slope was not significant (gray plots), there was still a clear trend towards a positive correlation.
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Supplemental Figure S8. Heatmaps of visual field coverage of the Utah arrays. pRFs with a fit accuracy of R2 > 50% based on the

MUA and the CSS model were reconstructed in 2-D, normalized to their peak value, and summed across electrodes. This results in

heatmap representations of the visual field coverage for V1 and V4 arrays in both animals. Hotter colors represent the presence

of more (proportions of) pRFs in that spatial location of the visual field. See Figure 7 for individual pRF locations.
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Supplemental Figure S9. Arrays with deviating pRF sizes. (A) Schematic representation of the location of the craniotomy made

during surgery (dashed line) and the implanted electrode arrays (left panel, red: V1, blue: V4) depicted on the NMT template

brain. The color map in the right panel indicates the thickness of the cortical gray matter of the NMT template brain. (B) For both

monkeys, the estimated pRF sizes for the V1 electrode arrays in the posterior medial corner of the craniotomy (red and orange

circles; thick lines in the right panel of A) indicate arrays with Rfs that were surprisingly small for their eccentricity, compared to

the size-eccentricity correlation in all other arrays (gray circles). Given the length of the array electrodes (1.5 mm), the  typical

thickness of the striate cortex, and these small  pRF sizes, it is  likely that the deviating pRFs do not reflect the tuning of V1

neurons, but instead that of the underlying geniculostriate white matter. The pRFs in panel B were estimated by the CSS model

with R2 > 70%.
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Supplemental Figure S10. Comparison of pRF sizes from CSS-model fits on MUA with RF-sizes derived from conventional MUA-

based RF-mapping.  Dots are individual electrodes (left: V1, right: V4). The red line is the unity line. The plots are zoomed to a

restricted size -range.
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Supplemental  Figure  S11.  Comparison  of  LFP-based  fit-results  from the  four  pRF  models  for  V4  electrodes.  Scatter-plots

comparing the fit accuracy across pRF models and LFP frequency bands. Each dot represents an electrode.
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Supplemental Figure S12. Comparison of pRF  fit accuracies for MUA and LFP signals from the same electrodes.  (A)  Binned

scatter plots comparing the R2 values of pRF fits from the P-LIN model based on different electrophysiological signals. The gray line

indicates similar fit accuracy for the two signals. Colors indicate the number of electrodes in a 4  × 4 % two-dimensional bin

(logarithmic scale).  Asterisks indicate which of the two signals has significantly higher R2 values (Kruskal-Wallis, with post-hoc

Tukey’s HSD multiple comparisons of mean rank, **p < 0.001).(B) Same as in (A) but for the U-LIN model. Figure 10 shows similar

results for the CSS and DoG models.

61

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2020. ; https://doi.org/10.1101/2020.09.05.284133doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.05.284133
http://creativecommons.org/licenses/by-nc/4.0/


Supplemental Figure S13. Distance between U-LIN pRF center estimates from different electrophysiological signals recorded on

the same electrodes. (A)  Median distance (left) and half IQR (right) between electrophysiological signals. Electrodes were only

included when their pRF fit accuracy R2 > 25% (MUA, LFP) or the SNR > 3 (MUA-RF). Gray squares indicate channels.
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Supplemental Figure S14. Eccentricity-size relationship for LFP-α and LFP-β split by positive and negative gains from U-LIN fits .

(A) Eccentricity-size relationship based on U-LIN estimates from LFP-α for all electrodes with R2 > 25%. (B) Same as (A) but for LFP-

β. (C)  Comparison of eccentricity-size slope values from the U-LIN model for all electrophysiology signals with the MRI U-LIN fits

(dashed line with 95% CI) in V1 (left) and V4 (right) respectively. Black horizontal lines indicate the estimated slope, colored boxes

denote the 95% CI. Asterisks indicate a significant interaction between signal type and eccentricity from a linear mixed model

comparing the eccentricity size relationship of MRI-based pRFs with each electrophysiological signal (i.e., the absence of such

interaction indicates that there is no evidence for a difference in slope between the electrophysiological signal and the MRI-based

pRFs).(D)  Same as in (A), but only electrodes with negative gain values are included.  (E) Same as (B), but only electrodes with

negative gain values are  included.  (F) Same as  (C),  but  only  electrodes with negative gain values are  included for  the low-

frequency components of the LFP. (G) Same as in (A), but only electrodes with positive gain values are included. (H) Same as (B),

but only electrodes with positive gain values are included.  (I) Same as (C),  but only electrodes with positive gain values are

included for the low-frequency components of the LFP. LFP-θ: 4-8 Hz; LFP-α: 8-16 Hz; LFP-β: 16-30 Hz; LFP-γl: 30-60 Hz; LFP-γh: 60-

120 Hz.
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