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Abstract 
Sustained attention has long been thought to benefit perception in a continuous fashion, but recent 

evidence suggests that it affects perception in a discrete, rhythmic way. Periodic fluctuations in 

behavioral performance over time, and modulations of behavioral performance by the phase of 

spontaneous oscillatory brain activity point to an attentional sampling rate in the theta or alpha 

frequency range. We investigated whether such discrete sampling by attention is reflected in 

periodic fluctuations in the decodability of visual stimulus orientation from 

magnetoencephalographic (MEG) brain signals.  

In this exploratory study, human subjects attended one of two grating stimuli while MEG was being 

recorded. We assessed the strength of the visual representation of the attended stimulus using a 

support vector machine (SVM) to decode the orientation of the grating (clockwise vs. 

counterclockwise) from the MEG signal. We tested whether decoder performance depended on the 

theta/alpha phase of local brain activity. While the phase of ongoing activity in visual cortex did not 

modulate decoding performance, theta/alpha phase of activity in the FEF and parietal cortex, 

contralateral to the attended stimulus did modulate decoding performance. These findings suggest 

that phasic modulations of visual stimulus representations in the brain are caused by frequency-

specific top-down activity in the fronto-parietal attention network. 
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1. Introduction 
The ability to efficiently respond to the environment according to current behavioral goals relies on 

the process of attention to prioritize information. The brain has a limited processing capacity and 

therefore, external stimuli and internal mental states compete for cognitive resources, for example 

by focusing on a specific location in space. According to our subjective experiences, this struggle 

happens continuously: you can be so focused on a traffic light in order to hit the gas the moment it 

turns green, that you are totally oblivious to an acquaintance who waves at you from the sidewalk. 

We seem to attend to stimuli in a continuous fashion, but recent evidence suggests that, instead, our 

attention waxes and wanes in discrete, periodic cycles.  

Early indications of discrete sampling come from psychophysical experiments, showing that there are 

limitations on the number of temporal events one can perceive per unit of time. It turns out that 

when visual flashes are presented to a subject at a constant rate, the subject can only account for a 

maximum of 10-12 items/second, even when the presentation rate is higher (White and Harter, 

1969). In another experiment, reaction time distributions were found to be multi-modal, with ~100 

ms in between the peaks, indicating a periodicity of about 10 Hz (Venables, 1960). Given that 

attention has a facilitating effect on perception (Hawkins et al., 1990), the rhythmicity in reaction 

times suggests that attention might be discrete and rhythmic. 

More recently, neuroscientific experiments have linked the rhythmic modulation of behavior to brain 

activity, in particular to rhythmic synchronization of cortical excitability in relation to visual attention. 

For example, Busch et al. (2009) found that the detection of a near-threshold stimulus was related to 

the phase of spontaneous rhythmic activity in the theta/alpha band (7-10 Hz) just before stimulus 

onset. In a similar experiment, Busch and VanRullen (2010) later found that this effect was only 

present when the subject actively attended the near-threshold stimulus. Thus, according to these 

studies the phase of the theta/alpha rhythm is inherently related to fluctuations in visual attention 

and, with that, behavior. Helfrich et al. (2018) pinpointed these top-down modulatory effects to the 

fronto-parietal attention network, specifically the frontal eye fields (FEF), the intraparietal sulcus 

(IPS), and inferior and superior parietal regions.  

The behavioral evidence that suggests that visual perception might inherently be discrete is thus 

supported by neural evidence that ascribes these effects to the phase of spontaneous activity. 

However, it remains unclear why visual attention is so strongly related to theta/alpha activity. 

According to theoretical accounts of visual processing and attention (Jensen et al., 2014; Klimesch, 

2012), these rhythms prioritize input by inhibiting neural processing. In short, neuronal firing is 

inhibited at oscillatory peaks, but once inhibition ramps down (i.e. in the downgoing flank and trough 

of the oscillation), visual representations will activate according to their excitability. We investigated 

whether a discrete sampling of attention affects the input gain of incoming stimuli, i.e. whether the 

strength of a stimulus’ representation in brain activity shows periodic fluctuations.  

Developments in the analysis of neuroimaging data have resulted in the ability to decode mental 

states from non-invasive measurements (Haynes and Rees, 2006). This has been particularly 

successful in the visual domain in both fMRI and M/EEG (van de Nieuwenhuijzen et al., 2013; Zafar et 

al., 2015). The high temporal resolution of M/EEG enables us to ask questions about the temporal 

evolution of visual presentations using multivariate pattern analysis (MVPA; Cichy et al., 2015; 

Pantazis et al., 2018; Ramkumar et al., 2013). In order to investigate whether the strength of visual 

representations in brain activity shows periodic fluctuations, in this exploratory study we decoded 

visual stimulus information from MEG activity as a function of instantaneous phase of the ongoing 

activity. Human subjects participated in a spatial attention task while MEG was being recorded. The 

visual stimuli consisted of oriented gratings, with two possible orientations. If the representations of 
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these stimuli are activated only in distinct time windows as a result of discrete attentional sampling, 

we expect the decoding performance to fluctuate accordingly, with a dependency on the theta/alpha 

phase. Because early visual cortex is most sensitive to oriented gratings (Hubel and Wiesel, 1962), 

this modulating signal was expected to be present there. Alternatively, the modulatory signal could 

come from  the fronto-parietal attention network, given its putative role in attention (Buschman and 

Kastner, 2015) and evidence that points to this network in the phasic modulation of behavior (Busch 

et al., 2009; Helfrich et al., 2018). 
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2. Methods 

2.1 Subjects 
10 healthy volunteers participated in this study, of which 3 male and 7 female. Their age range was 

19-27 (mean ± SD: 24 ± 2.3). All subjects had normal or corrected-to-normal vision, and all gave 

written informed consent according to the declaration of Helsinki. This study was approved by the 

local ethics committee (CMO region Arnhem/Nijmegen) and conformed to the Declaration of 

Helsinki. 

2.2 Experimental design 

2.2.1 Stimuli 
The experimental task was programmed in MATLAB (R2013a, Mathworks, RRID: SCR_001622) using 
Psychophysics Toolbox (Brainard and Vision, 1997), RRID: SCR_002881). All stimuli were presented 
against a black background (figure 1). A fixation cross (1.8 visual degrees (°)) was presented for a 
baseline period (800 ms), after which one of the horizontal arms widened to act as spatial cue (800 
ms). Then two sinusoidal gratings (3.2°) appeared on the lower part of the screen, one in either 
hemifield. The gratings were drifting upwards (1.33 cycle per degree, drift rate 1 Hz) and could be 
oriented clockwise (CW, 45°) or counter-clockwise (CCW, 135°). After a variable stimulus duration 
(0.5-1.5 s) one of the gratings rotated clockwise or counterclockwise with a variable rotation angle. 
The gratings then remained drifting for 100 ms, after which a question mark was presented to 
indicate the response window (max. 1200 ms). 
 

2.2.2 Experimental equipment 
Stimuli were presented by back-projection onto a semi translucent screen (width 48 cm) by an Eiki 

LC-XL100L projector with a refresh rate of 60 Hz and a resolution of 1024 x 768 pixels. Subjects were 

seated at a distance of ~76 cm from the projection screen in a magnetically shielded room. MEG was 

recorded throughout the experiment with a 275-channel axial gradiometer CTF MEG system at a 

sampling rate of 1200 Hz. In addition, subject's gaze direction and pupil size were continuously 

recorded using an SR Research Eyelink 1000 eye-tracking device (RRID: SCR_009602) at 1000 Hz and 

resampled to 1200 Hz. This resulted in three extra channels that were saved together with the MEG 

data: the horizontal and vertical gaze position and pupil diameter.  

Head position was monitored in real-time during the experiment by using head-positioning coils at 

the nasion and left and right ear canals of the subject (Stolk et al., 2013). Subjects were adjusted to 

the starting position of the first session at the start of a next session. Additionally, subjects 

readjusted to the original position when the head position deviated more than 5 mm from it. 

Behavioral responses during the MEG session were recorded using a fiber optic response pad (FORP). 

In addition to the MEG recording, anatomical T1 scans of the brain were acquired with one of the 

1.5/3 T Siemens MRI systems present at the facility (Siemens, Erlangen, Germany). In order for co-

registration of the MEG and MRI datasets, the scalp surface was mapped using a Polhemus 3D 

electromagnetic tracking device (Polhemus, Colchester, Vermont, USA). 

2.2.3 Procedure 
The experiment contained three 1-hour MEG sessions per subject. Each session consisted of a 
maximum of 10 blocks of 80 trials or until the end of the session, with a self-determined break in 
between the blocks. Subjects were instructed to keep their head as still as possible and, preferably, 
to blink at the end of every trial (see figure 1 for trial timeline). Subjects had to fixate at the fixation 
cross at all times and pay covert attention to the cued grating, instructed by the fat arm of the 
fixation cue. Both gratings could either have a clockwise or counterclockwise orientation and were 
presented for either 0.5 (10%), 1.0 (80%), or 1.5 (10%) seconds. Only the 1s trials were of interest, 
the other timings functioned to exclude the possibility that the subject would adapt their attention 
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only after a fixed period following the stimulus onset. Then one of the gratings (cued grating in 80% 
of 1-second trials) rotated either clockwise or counterclockwise. The amount of rotation was 
adjusted online throughout the experiment such that the performance level would be at 80% for all 
validly cued, 1-second trials, and was initiated at 1.5°. Subjects had to indicate the rotation direction 
with a button press of the index finger (CW: right index finger; CCW: left index finger). If the subject 
was too slow (i.e. slower than 1200 ms) the question mark in the response window turned red for 
100 ms, and a new trial was initiated. All trials were counterbalanced regarding grating orientation, 
cue validity, and stimulus presentation time, and trial order was randomly permuted per session. 
 

 
Figure 1. Trial timeline. Subjects had to look at the center of a fixation cross throughout the trial. 

After a baseline period, a spatial cue appeared, indicating the target hemifield for covert visuospatial 

attention. Then two oriented, drifting gratings were presented, after which the rotation direction of 

one of them had to be indicated with a button press. Semi-transparent arrows in the gratings 

indicate direction of movement of the drifting grating. 

2.3 Data analysis 
All analyses of MEG data were executed in MATLAB (2018b, Mathworks, RRID: SCR_001622) using 

the FieldTrip toolbox (Oostenveld et al., 2011) and custom-written code. Anatomical T1-scans were 

processed with FreeSurfer (RRID: SCR_001847) and HCP’s Connectome Workbench (RRID: 

SCR_008750), and MATLAB. 

2.3.1 MEG preprocessing 
MEG data were preprocessed for each session separately. First, excessively noisy channels and trials 

were removed from the data by visual inspection, including trials containing SQUID jumps and 

muscle artifacts. Similarly, eye-tracking data were inspected to remove trials containing eye blinks or 

saccades in the period [-1, 1] seconds relative to stimulus onset. The data were then demeaned and 

high pass filtered at 0.1 Hz using a finite impulse response windowed sinc (FIRWS; Widmann, 2006) 

filter. Additionally, line interference at 50 Hz was removed using a discrete Fourier transform (DFT) 

filter, as well as its harmonics at 100 and 150 Hz. Signals related to cardiac activity or eye movements 
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were manually identified and removed using independent component analysis (ICA) and visual 

inspection. This was done prior to the removal of trials containing residual eye movements and 

blinks. Finally, the data were down sampled to 200 Hz. For all further analyses only trials were used 

with a valid cue, a correct response, and of a duration of 1 second (stimulus onset to stimulus 

change). 

2.3.2 MRI preprocessing 
MRI data were co-registered to the CTF coordinate system using the head-positioning coils and the 

digitized scalp surface. Volume conduction models of the head were created using a segmentation of 

the anatomical image, with SPM8 (Penny et al., 2011). Freesurfer and Connectome Workbench were 

used to construct source models, with dipole positions positioned on a cortically constrained surface, 

containing 15,684 dipole locations. Subsequently, forward models were computed from individuals’ 

structural MR images using a single-shell volume conduction model. 

2.3.3 Time-frequency analysis 
Time-frequency resolved power was estimated for initial exploration of the data. This was done 

separately for low (2-30 Hz) and high (30-80 Hz) frequencies. First, the data were transformed to 

synthetic planar gradients (Bastiaansen and Knösche, 2000) and padded to 4 s. For low frequencies, a 

Hanning tapered sliding time window of 500 ms was slid over these data in steps of 100 ms, from -1.0 

to 1.0 s relative to stimulus onset, resulting in a frequency resolution of 2 Hz. For high frequencies, 

DPSS multi-tapers were used with a sliding time window equal to five cycles for each frequency and 

50 ms steps, 4 Hz frequency resolution and frequency specific smoothing (20 % of the frequency 

value). After spectral decomposition synthetic planar gradients were averaged to form a single 

spectrum per sensor. 

High frequency time-frequency spectra are plotted relative to the average power in the baseline. Low 

frequency time-frequency spectra are plotted as the Attentional Modulation Index (AMI), the relative 

increase in attend left versus attend right trials: 

𝐴𝑀𝐼 = 100% ∗  
𝑃𝑜𝑤𝑒𝑟𝑎𝑡𝑡𝑒𝑛𝑑 𝑙𝑒𝑓𝑡−𝑃𝑜𝑤𝑒𝑟𝑎𝑡𝑡𝑒𝑛𝑑 𝑟𝑖𝑔ℎ𝑡

𝑃𝑜𝑤𝑒𝑟𝑎𝑡𝑡𝑒𝑛𝑑 𝑙𝑒𝑓𝑡+𝑃𝑜𝑤𝑒𝑟𝑎𝑡𝑡𝑒𝑛𝑑 𝑟𝑖𝑔ℎ𝑡
  [1] 

2.3.4 Virtual channel of induced gamma band activity 
In order to bin data according to phase, a phase-providing signal is required. Since gamma power is 

closely related to active stimulus processing, the location in the brain with the maximum gamma 

power increase can be used as a central location for stimulus processing. In order to estimate this 

location for each subject individually, first the peak gamma frequency was estimated.  

A 600 ms window, padded to 1 s, was used to estimate the peak frequency; right before stimulus 

onset for the baseline estimate, and from 400-1000 ms after stimulus onset for the stimulus-induced 

estimate (excluding the ERF in the first 400 ms). Power was estimated using a fast Fourier transform 

(FFT) and a Hanning taper between 30 and 100 Hz, with a frequency resolution of 1 Hz. The relative 

power increase from baseline was manually inspected in order to select the peak frequency and 

bandwidth, based on the (posterior) channels with the largest increase.  

Another FFT (on the 1 s data) on the subject’s individual gamma peak frequency was used to inform a 

Dynamic Imaging of Coherent Sources (DICS) beamformer (Gross et al., 2001). The amount of 

smoothing was tailored to the individual’s bandwidth using DPSS tapers. Spatial filters were created 

for each of the dipole locations in a 3-dimensional grid, using the cross-spectral density (CSD) 

estimated from the baseline and stimulus data concatenated, and a regularization of 100% of the 

mean sensor level power. This was done separately for each channel, after which single trial power in 

source space was concatenated over sessions. Next, the two dipole locations were selected, one for 

each hemisphere, that showed the largest increase in gamma power relative to baseline (i.e. the 
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dipole location with the highest T-value resulting from a T-test). Spatial filters for the time domain 

were estimated with a Linearly Constrained Minimum Variance (LCMV) beamformer for these two 

locations. 

First, the time domain data were baseline corrected based on the 100 ms before stimulus onset. The 

data from 100 ms before to 1000 ms after stimulus onset were used to estimate the covariance, and 

spatial filters were created using a regularization of 100 % of sensor-level power.  

2.3.5 Brain-wide cortically constrained anatomical parcels 
Source modelling can be used to increase the signal to noise ratio of a particular signal of interest 

and improve spatial consistency over subjects. Without any dimensionality reduction, this can lead to 

an inefficiently large search space. Therefore, brain-wide time domain data were first modelled on 

cortically constrained meshes of dipole positions using an LCMV beamformer, and then grouped in 

374 parcels based on an anatomical atlas (Conte 69 atlas, Van Essen et al., 2012), as described in van 

Es & Schoffelen (2019). This was done separately for each session and concatenated afterwards. 

2.3.6 Phase estimation 
Phase time courses were estimated from either the virtual channel based on the location of 

maximum gamma power increase (see 2.3.4) or the anatomically defined cortical parcels. The 

epoched data were padded to 4 s and for each frequency-of-interest a Hanning tapered sliding time 

window was slid over the data with steps of 5 ms. The time window was equal to two cycles of the 

frequency-of-interest. The phase was estimated by taking the angle of the Fourier coefficients.  

2.3.7 Decoding of stimulus orientation 
All decoding analyses were done separately for the attend-left, and attend-right conditions. The goal 

of the decoding analysis was to decode the orientation of the attended grating (clockwise or counter 

clockwise) from the MEG or eye tracker data. First, the data were selected from 400 to 1000 ms after 

stimulus onset. The first 400 ms after stimulus onset were discarded in order not to be biased by 

superior decoding during the stimulus onset response. All time points of interest (i.e. belonging to a 

particular phase bin, see 2.3.8) were selected and concatenated, such that each time point 

functioned as an observation. In order to increase SNR and assuming that the representation of a 

particular orientation can be generalized over observations, groups of 5 randomly chosen 

observations (i.e. belonging to the same phase bin) without replacement were averaged together to 

create pseudo-trials (Guggenmos et al., 2018). The data were pre-whitened and reduced in 

dimensionality, by applying singular value decomposition (SVD) to the demeaned data, and 

multiplying the channel-level data with those vectors that explain at least 99 % of the variance in the 

data. The trials with different orientations (clockwise/counterclockwise) were then split up and 

equalized in terms of number of observations.  After this preprocessing, a support vector machine 

(SVM) with a linear kernel and 5-fold cross-validation was used to distinguish between the two 

stimulus orientations. Note that each observation (i.e. trial-time point) was only used for a single 

pseudo-trial and in only one fold. 

In order to assess whether we could decode stimulus orientation with above chance accuracy, this 

approach was applied to all data and repeated 100 times, where every repetition different subsets of 

observations were averaged. For an estimate of the null distribution of accuracies, condition labels 

were shuffled before applying the SVM classifier. 

In case of assessing whether we could decode orientation from the MEG data, all data were assigned 

to the same (phase) bin. In case of assessing phasic modulations in decoding performance, the 

approach above was repeated for each of 18 phase bins independently. Within a phase bin, the SVM 

was repeated 20 times, where every time different subsets of observations were averaged. The 

overall decoding performance was the average accuracy over folds and trial-averaging repetitions. A 
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null distribution was estimated by circularly shifting the phase time courses of every trial at random 

from anything between -2π and 2π before phase binning the data. This way, the phase binning of the 

raw data was randomized without breaking the temporal (autocorrelation) structure within a trial. 

This was repeated 100 times to create a null distribution. 

A similar approach was used in a control analysis that tested whether above chance MEG decoding 

was still possible when taking differences in gaze into account. The data were preprocessed as 

described above and the channels from the eye tracker were subsequently used in a 10-fold cross-

validation. From the training data in each fold, the one trial in each class that was most informative in 

training the SVM was removed, after which another decoding took place. These steps were repeated 

until orientation decoding based on eye tracker data was at chance level (evaluated with a T-test 

over 10 folds versus scrambled class labels). When performance was at chance level, the same trials 

(i.e. those that were most discriminative in the eye tracker data) were removed from the MEG data. 

The MEG data were then used in a subsequent decoding, and the accuracy was tested against the 

randomized version with a T-test over 10 folds.  

2.3.8 Phasic modulation of decoding performance 
The dependency of decoding performance on the phase of a particular frequency was taken as a 

measure for the strength of periodic fluctuations of visual representations. For this, either the virtual 

channels based on maximum gamma power increase were used to provide the phase time course, or 

the individual anatomical parcels were used. Based on these phase time courses, each data point was 

assigned to any of 18 equidistant phase bins. The decoding approach described above was applied 

independently for each bin, resulting in 18 accuracy scores. To this, a cosine function of one cycle 

was fitted, with amplitude and phase as the two free parameters, estimating the strength of the 

phasic dependence and the optimal decoding phase. This procedure was repeated for every 

frequency of interest, each time using the phase time course of one particular frequency to bin the 

data. 

2.3.9 Phasic modulation of behavioral performance 
We assessed whether behavioral performance, as quantified by the reaction time, depended on the 

phase of a particular frequency at the moment of the stimulus change (to which the subjects had to 

respond) occurred. For all 18 phase bins, the reaction times of all trials with a phase within a quarter 

cycle distance to the center phase of that bin were averaged. Finally, a cosine function was fitted to 

the set of average reaction time as a function of phase bin, of which the amplitude indicated the 

strength of the phasic modulation. This was done for every frequency of interest, and using every 

anatomical parcel’s time course as a phase-providing signal. In order to create a null distribution of 

cosine fit amplitude scores, the same approach was repeated 100 times after shuffling the reaction 

time over trials. 

2.4 Statistical analysis  

2.4.1 Decoding of stimulus orientation 
The average decoding accuracy over 100 permutations for observed data (i.e. in which in every 

permutation different subsets of trials were averaged to increase SNR) was compared with the 

average decoding accuracy of 100 permutations including randomization of class labels. These were 

subjected to a dependent samples T-test at the group level, with an alpha of 0.05, corrected for the 

number of contrasts (attend left trials, attend right trials, decode attended stimulus, decode 

unattended stimulus). 
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2.4.2 Phasic modulation 
The amplitude of the cosine fit for observed data and for the 100 first-level random permutations 

(i.e. in which phase-binning was randomized) were subjected to second-level non-parametric 

permutation tests with clustering across frequencies at the group level (based on 1000 permutations; 

Maris and Oostenveld, 2007). In short, a null distribution of amplitudes was created for every 

frequency by averaging one sample from the first-level random permutation distribution over 

subjects. From this distribution a threshold is established based on the critical alpha level (0.05). The 

test statistic (i.e. cosine-fit amplitude) of neighboring frequencies that exceed the threshold are 

clustered and their statistic is summed. This is done both for the observed data and for all random 

permutations. A p-value is derived by comparing the largest summed statistic from the observed and 

random data, and counting the occasions in which the observed test statistic was larger than the 

random statistic. In case of testing phasic modulation on brain-parcels, statistics were constricted to 

a total of 36 parcels, spanning the left and right FEF and parietal cortex (figure 2). 

 

Figure 2. The regions of interest for the phasic modulation of decoding performance and reaction 

times included parcels in the left and right FEF and parietal cortex. 

3. Results 
10 human participants were cued to covertly attend to one of the two gratings presented in each 

hemifield, while fixating on a cross in the middle of the projection screen (Figure1). The subjects had 

to indicate the direction of change of the grating’s orientation with a button press. The number of 

completed 1-second trials was 1956 on average (SD =18.8). One session from one subject was 

excluded in its entirety because the behavioral performance was at chance level (i.e. 50 %). Invalidly 

cued trials and trials containing artifacts were excluded, and in all remaining trials (mean ± SD = 1420 

± 207) the behavioral performance was on average 87% (SD = 3.6 %). The behavioral performance in 

one session of another subject was inflated (~95 %) because of an incorrect setting in the 

experimental procedure. This session is still included and is not believed to have had a profound 

effect on the results. Excluding incorrect trials, 1235 (SD = 186) trials were considered for further 

analysis. 

3.1 Stimulus-induced power changes 
In order to assess whether the experimental manipulation led to expected changes in brain activity, 

we conducted a time-frequency analysis of power in channel space. In the low frequency range (1-30 

Hz), we expected differences in posterior alpha power (8-13 Hz) induced by the spatial attention cue. 

Since alpha power is a proxy for the amount of inhibition in a brain region, it is expected to increase 

in the hemisphere ipsilateral to the attended hemifield, and to decrease contralateral to the 
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attended hemifield. Figure 3 shows this as the attentional modulation index (AMI, i.e. the relative 

power difference between attend-left and attend-right trials), with B showing the topography of the 

alpha band, pre-stimulus onset AMI, and A and C showing the AMI over selected left/right posterior 

channels on the left and right panels, respectively. Indeed, during presentation of the spatial cue (i.e. 

before onset of the grating stimulus), there is a relative increase in ipsilateral alpha power with the 

respect to the cued hemifield and a decrease in contralateral alpha power.  

 

Figure 3: Stimulus induced changes. A, C) Spatial cue (presented at -0.8 ms) induced attentional 

modulation in posterior alpha power, as indicated by the attentional modulation index (AMI). The 

AMI over frequency and time was averaged over selected left and right posterior MEG sensors, 

respectively. B) The topography of the AMI in the alpha band, in the pre-stimulus onset window. D) 

The topography of the stimulus induced gamma response; E) the time-frequency response, averaged 

over selected occipital MEG channels. 
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Figure 4: Source of induced gamma activity. Stimulus induced gamma power increase originated 

from occipital areas, mostly in V1-V2, and close to the midline. Maximum power increase for all 

subjects are denoted by white circles. 

In the high frequency range (30-90 Hz), we observed an increase in band-limited gamma power, 

induced by the grating stimuli (Figure 3): a sharp rise in gamma power right after stimulus onset in 

occipital channels (up to 44 ± 45 %; mean ± SD, figure 3D), with a sustained power increase of 15 ± 14 

% (mean ± SD) after 200 ms in the 45-65 Hz band (figure 3E). Source modelling confirmed that the 

induced gamma power increase originated in posterior brain areas, and the maximum induced 

gamma power was in occipital cortex in all subjects (figure 4). 

3.2 Stimulus orientation can be decoded from the MEG signal 
The accuracy of decoding stimulus information from the MEG signal is known to be largest in the 0 to 

250-400 ms interval; i.e. when the event-related fields are strongest (ERF; Cichy et al., 2015; Pantazis 

et al., 2018; Ramkumar et al., 2013). This high decodability is most likely due to the stimulus onset 

locked transients, and therefore could confound our analysis of a possible phase modulation of 

decoding accuracy. For this reason, all subsequent decoding analyses excluded data in the time 

window of the main ERF components, and we only used data from interval 400 - 1000 ms after the 

onset of the stimuli. In order to test if these data were usable to test our hypothesis, which would 

rely on subsets of these data, we first decoded the stimulus orientation from the full 600 ms interval. 

As in all decoding analyses, this was done separately for attend-left and attend-right trials. We could 

reliably decode the orientation of the attended stimulus from the MEG data (Figure 5) with an 

accuracy of 70 % (SD = 1.8 %) for attend-left trials, which is higher than expected by chance (T-test 

for observed versus shuffled condition labels, t(9) = 34.8, p = 6.6 * 10-11). The mean accuracy for 

attend-right trials was also 70% (SD = 1.8 %, t(9) = 34.4, p = 7.3 * 10-11). The orientation of 

unattended trials could reliably be decoded too (unattend-left: accuracy = 70 ± 2.7 %, t(9) = 23.7, p = 

2.0 * 10-9; unattend-right: accuracy = 69 ± 2.1 %, t(9) = 28.8, p = 3.6 * 10-10). 
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We ascribe these effects to the difference in cortical processing of gratings with different 

orientations. However, an alternative explanation could be subtle, yet systematic differences in eye 

position and/or eye movements between conditions. This is because eye movements affect the MEG 

signal, and above chance decoding could thus be a trivial result of eye movements (Thielen et al., 

2019). Indeed, we were able to decode stimulus orientation with above-chance accuracy from just 

the eye tracker data (figure 5), but the accuracy was much lower than for the MEG data. The average 

accuracy was 53 % for attend-left (SD = 1.8 %, t(9) = 6.0, p = 2.1 * 10-4) and 52 % for attend-right trials 

(SD = 1.3 %, t(9) = 5.6, p = 3.4 * 10-4). This indicates that there is a bias in gaze depending on the 

stimulus orientation. We conducted a control analysis in order to exclude the possibility that above 

chance decoding of MEG data was exclusively a result of either eye movement induced artifacts, or 

because the visual stimulus ended up in different parts of the retinotopic visual cortex as a 

consequence of differences in gaze. We trained an SVM to distinguish orientation based on only the 

eye tracker data and evaluated this at the single-subject level. Next, two pseudo-trials (i.e. average of 

5 trial-time points, see 2.3.7), one for each class, with the largest distance from the decision 

boundary, were removed. This was done separately for each fold. After this, the remaining data were 

repartitioned into training/test data. This procedure was repeated until the accuracy over ten folds 

did not surpass chance level 5 times in a row. On average, the percentage of pseudo-trials that had to 

be removed from the data in order for the accuracy to drop to chance level was 3.3 % (SD = 2.7 %). 

The same trials were then discarded from the MEG data, which were subsequently used in another 

decoding analysis. The average decoding accuracy from the MEG data remained at 70 % (SD = 2 %) 

for both attend-left and attend-right trials, and did not statistically differ from the accuracy level 

before the removal of pseudo-trials. Table 1 in the Supplemental Information lists the decoding 

performance at the single-subject level. These results show that even when discarding the trials that 

are most discriminating based on eye movements, it is still possible to decode stimulus orientation 

from MEG data with high accuracy. This indicates that successful decoding of stimulus orientation in 

our data does not rely on differences in gaze or eye movements.  

 

 

Figure 5. Stimulus information of the attended stimulus can reliably be decoded from MEG data (red) 

and, to a lesser extent, eye-tracking data (blue). Decoding was done separately for attend-left and 

attend-right trials. Violin plots display the probability density over subjects. The horizontal line 

denotes the group mean and the dots denote the individual subject accuracies. The semitransparent 

gray line shows the empirical chance level. 
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3.3 Visual representations are not periodically modulated by oscillatory activity in 

visual cortex 
Now that we established that it is possible to decode stimulus orientation information from the MEG 

signal, we can look into fluctuations in decoding accuracy. Specifically, we hypothesized that 

decoding accuracy depends on the theta/alpha phase of ongoing activity in relevant brain areas. 

Specifically, we expected that the phase of brain activity in the regions where the stimulus is actively 

processed would influence decoding performance. Since gamma synchronization is a proxy for 

stimulus processing, we used the location of the maximum increase in induced gamma power to 

provide the frequency-specific phase signal that might modulate decoding performance.  All data (i.e. 

from either attend-left or attend-right trials) was binned according to 18 phase bins, and the 

orientation of the attended stimulus was decoded from the MEG data separately for each phase bin. 

This was done independently for frequencies in the theta, alpha, and beta band (4-30 Hz), in steps of 

1 Hz. Resulting from this analysis were 18 accuracy scores, one for each phase bin. A cosine function 

was fit to these scores to estimate the strength of phasic modulation (figure 6A). This was tested 

against a permutation distribution in which the phases within a trial were shifted randomly, whilst 

keeping the autocorrelation structure intact (see 2.3.7). Contrary to our hypothesis, the phasic 

modulation in the observed data was not significantly larger than that of the permutation 

distribution. The largest effect in attend-left trials was present at 8 Hz, with an average modulation 

strength of 0.98 % (SD = 0.43 %, p = 0.68, uncorrected). There was also a peak at 11 Hz (mean ± SD = 

0.98 ± 0.52 %, p = 0.85, uncorrected, figure 6B). The largest effect in attend-right trials was 0.93 % 

(SD = 0.38 %, p = 0.85, uncorrected) at 9 Hz (figure 6C). Although the spectral shape of the 

modulation depth suggests an effect in the alpha band in both conditions, the observed peaks were 

not statistically significant.  
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Figure 6. Phasic modulation of decoding performance. A) Schematic of the phasic modulation depth, 

i.e. the amplitude of a cosine fitted to the decoding performance over phase bins. B and C) 

Modulation depth as a function of frequency for attend-left (B) and attend-right (C) trials. Observed 

data in red; random data in grayscale (mean and standard deviation over subjects). Individual effect 

sizes at the spectral peak are shown on the right of the spectrogram, with the group average in black. 

 

3.4 Activity in the fronto-parietal network periodically modulates visual 

representations 
The previous results hinted at an alpha frequency phasic modulation of decoding performance, but 

the variability over subjects was large and the effects were not statistically significant. A possible 

reason for this is that the phasic modulation was estimated, based on the signal phase in visual brain 

areas, whereas the real modulatory signal has a different origin. Some previous reports suggest that 

the modulatory effect of theta/alpha phase on behavior originates from areas in the fronto-parietal 

attention network, especially the frontal eye fields (FEF) and parietal cortex (Busch et al., 2009; 

Helfrich et al., 2018). To investigate this, we performed an additional set of analyses, now using as 

phase-defining signal source reconstructed activity from anatomically defined cortical parcels from 

FEF and parietal cortex, resulting in 36 brain parcels (figure 2) in 17 frequency bins (4-20 Hz). We 

explored whether the phase of the signals from these parcels and frequencies modulated decoding 

performance. Thus, the analysis strategy used before was now repeated, independently for each 

parcel and frequency, i.e. the phase time course was estimated on a single parcel and used for 
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subsequent binning in the decoding procedure. We found that phasic modulation was higher than 

expected by chance in both attend-left and attend-right trials. In attend-left trials, the right FEF most 

contributed to this difference at 20 Hz (mean ± SD = 1.0 ± 0.44 %, cluster-corrected p = 0.002, figure 

7C). Modulation by the right FEF at theta frequency (4 Hz, figure 7A), and by the right parietal cortex 

in the alpha band (8-11 Hz) were also present (figure 7B). In attend-right trials a cluster in the left FEF 

at 10-18 Hz mostly contributed to the significant difference (mean ± SD = 1.0 ± 0.49, p<0.001, figure 

7E). There were also consistent effects in the left parietal cortex in the theta band (4 Hz, figure 7D) 

and alpha band (8-12 Hz; figure 7F). The optimal phases for decoding differed between subjects, but 

were to a large part consistent over parcels and frequencies (see figure S2 and S3). Note that phase 

polarities are ambiguous: bimodal distributions with a 180 degree phase difference between 

adjacent parcels can occur due the polarity ambiguity in the principal component analysis (PCA) in 

the construction of parcel time courses (see Methods 2.3.5). The subjects with the largest 

modulation effects (figure 7) seem to have a more consistent optimal phase within neighboring 

parcels and frequencies (for example, compare the modulation strength of subjects S1 (“good” 

subject) and S4 (“bad” subject) in figure 7D and their phase distributions in figure S3A), which adds to 

the credibility of the modulation effect. 
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Figure 7. Phasic modulation of decoding performance in the fronto-parietal network. The phasic 

modulation in attend-left trials (A-C), and in attend-right trials (D-F) is shown for all parcels, but only 

the parcels in the ROIs were tested statistically (see figure 2) as described in 2.4.2. In A the anterior 

(A) to posterior (P) axis and left (L) and right (R) hemispheres are denoted. Spectrograms show the 

group-average modulation strength in the selected parcel in the green circle (red) and the average 

expected by chance (black). Shading reflects S.D. across subjects. Individual effect sizes at the 

spectral peak are shown on the right of the spectrogram, with the group-average in black.  

3.5 Left fronto-parietal areas might modulate reaction times 
Having established that the phase of ongoing theta/alpha activity in FEF and parietal cortex 

modulates the strength of cortical stimulus representation, we next investigated whether the phase 

of these signals modulates behavioral performance as well. This has been reported in other studies 

(Helfrich et al., 2018, 2018). Specifically, we tested whether the phase in these areas at the moment 

of the stimulus change (i.e. to which subjects had to respond) affected reaction times. A cluster-

based permutation test within the same ROIs as before revealed no phasic modulation of reaction 

times: for attend-left trials, p = 0.23 (corrected); for attend-right trials, p = 0.13 (corrected). However, 

some interesting trends were observed. In attend-left trials, the largest effect was present in left FEF 

parcels at the lower end of the alpha band (8 Hz), with a mean modulation strength over subjects of 

1.1 % (SD = 0.55 %, p = 0.53, uncorrected), with similar trends in right and left parietal cortex (see 

figure S1). In attend-right trials, the largest effect was also present in the left FEF at the higher end of 

the alpha band (13 Hz), with a mean modulation strength over subjects of 1.0 % (SD = 0.63 %, p = 

0.13, uncorrected).  

Our results show that stimulus information can be decoded with a higher accuracy at particular 

phases of the theta/alpha rhythm in the fronto-parietal network contralateral to the attended 

hemifield. This is consistent with the idea that visual perception is not continuous but to some extent 

discrete. The behavioral relevance of the phase in this network could not be confirmed statistically, 

but trends suggested that there might be a modulatory effect on reaction times. 
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Figure 8. Similar to figure 7, but now showing the phasic modulation of reaction times. The group 

average modulation strength peaks in frontal and parietal areas in the alpha range, with a dominance 

of the left hemisphere in both attend-left and attend-right trials, but was not significant. 

4. Discussion 
In this study, we investigated the presence of rhythmicity in visual representations during sustained 

spatial attention. Psychophysical and neural evidence suggest that (visual) perception is not 

continuous but discrete, as a consequence of discrete rhythmic attentional sampling. We reasoned 

that if this is the case, neural representations are also expected to fluctuate, i.e. the strength of a 

neural representation should depend on the phase of ongoing activity. This was tested by decoding 

stimulus orientation from human brain signals, as a function of phase of the ongoing activity. We 

found that oscillatory activity in visual cortex does not phasically modulate decoding accuracy. 

However, the frontal eye fields (FEF) and parietal cortex contralateral to the attended stimulus did 

phasically modulate decoding accuracy in the theta and alpha bands. The phasic modulation of visual 

representations is in line with discrete perceptual sampling during attention, though it is unclear at 

which step of visual processing it occurs. The behavioral relevance of the phase of ongoing activity in 

this network was not confirmed, but trends in the phasic modulation of reaction times were in line 

with such modulatory effect. 

The phasic modulation of decoding performance was mostly present in the theta and alpha bands. 

These effects were band-limited and in no occasion did the effect extend to the entire investigated 

frequency range. This suggests that the above chance modulation effects were not a consequence of 

a bias in the permutation test or of other confounding effects. Effects in these frequency bands are 

also in line with the perceptual sampling literature. Busch et al. (2009) showed that the phase of the 

frontal theta/alpha rhythm (6-12 Hz) predicts whether a threshold stimulus is perceived or not. 
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Similarly, Fiebelkorn et al. (2018) and Helfrich et al. (2018) showed that perceptual outcome depends 

on the theta phase in the fronto-parietal network (including FEF and parietal areas), and that this is 

accompanied by increases in cortical excitability during ‘good’ theta phases. It is not yet clear 

whether phasic modulation in the theta and alpha band reflect the same or different neural 

processes, but evidence from phasic modulation of behavioral performance suggests the presence of 

either rhythm might be task-dependent and rely on the number of objects that have to be monitored 

(Fiebelkorn et al., 2013; Holcombe and Chen, 2013; Landau and Fries, 2012). This would mean that 

the theta and alpha band effects are not necessarily related to different processes per se, but rather 

to temporal limits of attentional selection. The spatial locations of the theta/alpha effects slightly 

differed between attend-left and attend-right trials. In attend-left trials, a theta modulation effect 

was present in the FEF and an alpha modulation effect in parietal cortex. In attend-right trials, the 

theta modulation effect was strongest in parietal cortex and the alpha modulation effect in parietal 

cortex and FEF. A previous report on the neural correlates of rhythmicity in behavioral performance 

also showed variability in the topographical origins of the phasic modulation (Helfrich et al., 2018). 

Possibly, the entire fronto-parietal network is involved in the rhythmic nature of sustained attention, 

but different parts of the network have different effects. Fiebelkorn et al. (2018) suggest the FEF 

might specifically be involved in (the attenuation of) exploration of space, while the parietal cortex 

modulates processing at the attended location. In line with this, Gaillard et al. (2020) used a cued 

target-detection task in macaques and showed that the attentional spotlight explores space 

rhythmically, by decoding the location of the attentional spotlight from the prefrontal cortex (PFC).  

Future research should thus disentangle the different contributions of the frontal and parietal cortex 

in rhythmic sampling. For example, one could conceive of an experiment in which the setup of the 

Gaillard et al. are combined with the approach in the current study. If it is possible to decode 

stimulus information and the position of the attentional spotlight on the same trial, we would expect 

both to be modulated by theta/alpha phase, but they would rely on different origins (e.g. parietal 

versus prefrontal cortex) or have different optimal phases. 

We did not observe a phase dependent modulatory effect when using visual cortical activity as the 

phase delivering signal, which is at odds with the previous literature. Landau et al. (2015) found that 

that the sampling of two behaviorally relevant stationary grating stimuli occurred at 4 Hz each and 

that this modulation was present at cortical locations with maximal visually induced gamma-band 

activity. The current study used a very similar experimental paradigm (albeit with drifting instead of 

stationary gratings, and a different attentional manipulation), and it is likely that the distributed 

activity in early visual areas played a major part in successfully decoding stimulus orientation. 

Primary visual cortex is most sensitive to local contrast differences like oriented lines (Hubel and 

Wiesel, 1962), and empirical and modelling work from Cichy et al. (2015) confirmed it is likely that 

orientation information is decoded from this region with MEG (Stokes et al., 2015). The discrepancy 

in the locus of the phasic modulatory signal requires further investigation. Especially the question 

whether perceptual sampling in visual areas is always under control of the fronto-parietal attention 

network, or whether it can be controlled locally. Some evidence for the former comes from Popov et 

al. (2017), who found that processing in visual cortex (as measured by gamma power) was a function 

of the attentional modulation of posterior alpha power, while the latter was Granger caused by the 

FEF. Activity in the FEF itself was not modulated by attention. Consequently, in the current study as 

well, visual processing might be modulated by the FEF without clear changes in spectral power in 

that region (figure 2). There are a number of potential reasons why the relationship between 

theta/alpha phase and decoding accuracy was not observed from a source in visual cortex. It could 

be that the induced visual cortical activity reflects multiple generators of oscillatory activity with 

heterogeneous phase relationships (Maris et al., 2016), thus prohibiting the estimated phase values 
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to actually reflect the physiologically relevant phase. This possible explanation is supported by the 

presence of multiple generators of posterior alpha with different sensitivity to different visual 

locations (Popov et al., 2019). Another option is that visual representations might not be modulated 

in early visual cortex, but in downstream visual areas. This is in line with evidence from fMRI studies: 

Sprague and Serences (2013) showed that attention increases the amplitude of stimulus 

representations especially in higher visual areas. Moreover, orientation-selective representations are 

not only present in visual areas, but also in parietal and frontal areas including the FEF, and these 

areas are all modulated by attention (Ester et al., 2016).  

We did not find any significant modulatory effects of neural oscillatory phase on behavior, in contrast 

earlier findings. Studies relating behavioral performance to the phase of ongoing activity typically use 

binary performance measures, e.g. hits versus misses (Busch et al., 2009; Busch and VanRullen, 2010; 

Fiebelkorn et al., 2018; Helfrich et al., 2018). Perhaps modulatory effects in these performance 

measures can be detected with higher sensitivity than a continuous variable like reaction time. Note 

that the strongest (non-significant) effects in behavioral performance were present in the FEF and 

parietal cortex, in the alpha band, which is in line with the origins of the modulation effects in 

decoding performance. It is therefore plausible that the phasic modulation of visual representations 

and behavioral performance are a consequence of the same attentional process, but this should be 

confirmed empirically. 

Multivariate pattern analysis (MVPA) has been used before to investigate how neural 

representations might be related to the alpha rhythm (Foster et al., 2017b, 2017a, 2016; Samaha et 

al., 2016; van Moorselaar et al., 2018). In those studies, neural representations of the locus of spatial 

attention were decoded from the topographical distribution of spectral power. The location could be 

decoded specifically from alpha band power, both during attention selection and working memory 

(WM) maintenance, even when spatial position was irrelevant to the WM task. This shows that there 

is a link between the spatial distribution of alpha band activity and the representation of space, and 

one might ask whether and how this is related to the modulation of neural representations by alpha 

phase in the current study. We also used a covert spatial attention task, and the attentional 

modulation index (AMI) showed a lateralization in posterior alpha power as a function of direction of 

spatial attention (figure 3), which confirms a link between alpha activity and the locus of spatial 

attention. However, the stimulus feature (i.e. orientation from the attended stimulus) we decoded 

from the MEG data was independent from its spatial location (i.e. only the orientation of the 

attended stimuli were compared when the attended stimulus was in the same hemifield). In fact, all 

attend-left and all attend-right trials were analyzed separately in order to ensure that decoding of 

stimulus orientation was not confounded by spatial attention. Furthermore, the topographical 

distribution of alpha activity did not play any part in the decoding analysis, since the phase binning 

was based on a single and the same alpha source for both orientations. Therefore, it is unlikely that 

the representation of space in a signature pattern of alpha band activity contributed to, or 

confounded, the phasic modulation of neural representations.  

Recently, a number of studies have demonstrated confounding effects of eye movements on 

decoding performance from M/EEG data (Mostert et al., 2018; Quax et al., 2019; Thielen et al., 

2019). Because eye movements affect the MEG signals, a systematic difference in gaze position 

between conditions could result in above-chance decoding performance independent of differences 

in the true underlying neural representation. We found that it is possible to decode stimulus 

orientation reliably from the eye tracker data only, which reinforces this concern. In order to make 

sure that the MEG decoding was not a trivial result of eye movements or gaze position, we 

investigated whether orientation could still be decoded from the MEG data after removal of the trials 
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that could distinguish orientation based on gaze. Removal of these trials resulted in chance level 

accuracy based on eye-tracker data, but did not affect the accuracy based on MEG data, which 

remained highly above chance level. Another concern could be a contamination of the decoding 

performance by evoked activity. Temporal MEG decoding performance is highest at the peak of 

evoked activity Cichy et al., 2015; Pantazis et al., 2018; Ramkumar et al., 2013). At the same time, 

these peaks trivially have a consistent phase over trials, which could lead to a trivial phasic 

modulation in decoding performance. We ensured that evoked activity did not affect estimates of 

phasic modulation effects in decoding by only using data for the decoding analysis after offset of the 

evoked activity, which was not phase-locked (data not shown).  

Overall, this exploratory study shows that visual representations are modulated by the phase of 

ongoing activity. In particular, it indicates that the representation of visual input is not constant over 

time, but depends on the phase of the theta/alpha rhythm in the fronto-parietal attention network. 

Further research should investigate the potentially differential roles of the frontal and parietal parts 

of this network on the one hand, and frequencies in the theta and alpha band on the other hand.  
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6. Supplemental information 
 

 

Table 1. Single subject data from the control analysis on decoding on eye-tracker data. The most 

discriminative trials were removed from the eye-tracker data until accuracy was at chance level. The 

same trials were removed from the MEG data and performance with and without removal were 

compared. The columns in the ‘eye-tracker decoding’-field indicate average accuracy over 10 folds, 

before and after removal of the selected trials, and the p-value from a T-test of the accuracy relative 

to the accuracy resulting from shuffled class-labels. The columns in the ‘MEG decoding’-field indicate 

the accuracy before and after removal of the selected pseudo-trials, and the p-value is the result 

from a T-test, comparing the accuracy before and after removal of the selected pseudo-trials over 

folds (i.e. a p-value of >0.05 indicates no difference in MEG decoding accuracy despite removing the 

pseudo-trials that were furthest away from the decision boundary in the eye-tracking decoding). The 

last column from in both parts indicate the percentage of pseudo-trials that were removed from the 

data. Cells are empty in case performance based on eye-tracking data was already at chance level. 

acc: accuracy; pval: p-value. 

 ATTEND-LEFT TRIALS ATTEND-RIGHT TRIALS 

 eye-tracker decoding MEG decoding % 
removed 
pseudo-
trials 

eye-tracker decoding MEG decoding % 
removed 
pseudo-

trials 

SUBJ pre post acc (%) 

pval 

pre post acc (%) 

pval   acc 
(%) 

pval 
acc 
(%) 

pval pre post 
acc 
(%) 

pval 
acc 
(%) 

pval pre post 

1 54.5 0.00040 50.3 0.84 70.4 70.1 0.70 6.0 51.8 0.038 50.6 0.32 71.5 71.5 0.98 1.5 

2 56.0 0.0053 51.5 0.16 70.9 71.0 0.89 8.3 50.8 0.087 - - 71.2 71.5 - 0.0 

3 52.6 0.0018 51.4 0.40 69.4 69.4 0.98 2.3 51.6 0.038 50.7 0.53 67.8 68.2 0.61 0.73 

4 55.1 0.0037 49.8 0.40 72.9 72.9 0.93 6.3 50.1 0.78 - - 71.5 71.5 - 0.0 

5 52.8 0.0048 50.8 0.68 68.2 68.0 0.56 3.0 52.1 0.016 50.5 0.12 69.9 70.1 0.78 1.3 

6 51.8 0.023 51.3 0.12 71.2 71.2 0.93 0.92 55.1 0.0014 50.6 0.85 72.8 73.3 0.34 5.9 

7 50.2 0.61 - - 65.9 66.1 - 0.0 53.1 0.00020 49.9 0.89 66.2 66.0 0.76 5.7 

8 54.1 0.0038 49.9 0.79 69.1 68.9 0.49 5.0 52.1 0.048 51.2 0.42 69.0 68.7 0.64 2.3 

9 53.3 0.0029 50.2 0.39 72.0 71.9 0.89 4.1 52.2 0.014 51.4 0.17 70.4 70.5 0.85 2.0 

10 55.6 0.0017 50.6 0.29 70.1 69.9 0.81 8.3 51.7 0.0071 51.0 0.91 69.9 69.8 0.82 1.4 
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Figure S1. Phasic modulation of behavior in attend-left trials. Similar to figure 8, it displays a peak in 

modulation strength in the alpha band in left and right parietal cortex . 
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Figure S2. Optimal phase for decoding in attend-left trials. Histograms of optimal phases over parcels 

and frequencies that contain the strongest phasic modulation effect. Each subplot corresponds to 

the subplot in figure 7A-C in the same order and subject’s colors are matched with the right most 

panel in those subplots. Note that phase polarities are ambiguous (see main text): bimodal 

distributions with a 180 degree difference suggest similar optimal phases of frequencies and parcels.  
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Figure S3. Optimal phase for decoding in attend-right trials. Histograms of optimal phases over 

parcels and frequencies that contain the strongest phasic modulation effect. Each subplot 

corresponds to the subplot in figure 7D-F in the same order, and subject’s colors are matched with 

the right most panel those subplots. Note that phase polarities are ambiguous (see main text): 

bimodal distributions with a 180 degree difference suggest similar optimal phases of frequencies and 

parcels.  
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