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Abstract 1 

The World Health Organization (WHO) promotes physical exercise and a healthy lifestyle as 2 

means to improve youth development. However, relationships between physical lifestyle and 3 

brain development are not fully understood. Here, we asked whether a brain – physical latent 4 

mode of covariation underpins the relationship between physical activity, fitness, and 5 

physical health measures with multimodal neuroimaging markers.  In 50 12-year old school 6 

pupils (26 females), we acquired multimodal whole-brain MRI, characterizing brain 7 

structure, microstructure, function, myelin content, and blood perfusion. We also acquired 8 

physical variables measuring objective fitness levels, 7-days physical activity, body-mass 9 

index, heart rate, and blood pressure.  Using canonical correlation analysis we unravel a 10 

latent mode of brain – physical covariation, independent of demographics, school, or 11 

socioeconomic status. We show that MRI metrics with greater involvement in this mode also 12 

showed spatially extended patterns across the brain. Specifically, global patterns of greater 13 

grey matter perfusion, volume, cortical surface area, greater white matter extra-neurite 14 

density, and resting state networks activity, covaried positively with measures reflecting a 15 

physically active phenotype (high fit, low sedentary individuals).  Showing that a physically 16 

active lifestyle is linked with systems-level brain MRI metrics, these results suggest 17 

widespread associations relating to several biological processes. These results support the 18 

notion of close brain-body relationships and underline the importance of investigating 19 

modifiable lifestyle factors not only for physical health but also for brain health early in 20 

adolescence. 21 

 22 

Significance statement 23 
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An active lifestyle is key for healthy development. In this work, we answer the following 1 

question: How do brain neuroimaging markers relate with young adolescents’ level of 2 

physical activity, fitness, and physical health?  Combining advanced whole-brain multimodal 3 

MRI metrics with computational approaches, we show a robust relationship between 4 

physically active lifestyles and spatially extended, multimodal brain imaging derived 5 

phenotypes. Suggesting a wider effect on brain neuroimaging metrics than previously 6 

thought, this work underlies the importance of studying physical lifestyle, as well as other 7 

brain – body relationships in an effort to foster brain health at this crucial stage in 8 

development.  9 
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Introduction 1 

The World Health Organisation (WHO) encourages early positive lifestyle choices aimed to 2 

improve both physical and mental health  (World Health Organization 2010). Physical 3 

activity is a powerful and rapid means to improve fitness and physical health throughout the 4 

life-span (Cotman 2002; Charles H. Hillman, Erickson, and Kramer 2008) . During 5 

adolescence, however, levels of physical activity decline (Guthold et al. 2020). 6 

Public health guidelines recommend that school-aged children engage in 60 minutes of 7 

moderate-to-vigorous physical activity daily (Piercy and Troiano 2018), yet globally only 8 

around 22% of boys and 15% of girls achieve that (Guthold et al. 2020). In addition to its 9 

importance to physical health, there is growing evidence that a physically active lifestyle 10 

during childhood is associated with improved mental and cognitive health through adulthood 11 

(Promotion and US Department of Health & Human Services Office of Disease Prevention 12 

and Health Promotion 2000). While there is limited available evidence in adolescents, similar 13 

patterns have been reported (Lubans et al. 2016). 14 

A body of work has studied the relationship between single physical measures of activity, 15 

fitness, or body-mass, and separate MRI metrics of brain structure, microstructure, or 16 

function, showing focal neural correlates (for reviews see (Valkenborghs et al. 2019; 17 

Donnelly et al. 2016)). However, it is unlikely that a single physical measure fully captures 18 

active lifestyles, or that a single MRI metric fully quantifies the condition of the brain. 19 

Rather, lifestyles are better characterized by a range of physical measures and the state of the 20 

brain is better quantified by combinations of metrics. 21 

Multimodal MRI can probe different aspects of brain structure and function.  While each 22 

metric provides an indirect probe of the underlying biology, in combination they provide 23 

insights into a range of biological processes (Tardif et al. 2016). Further, these measures can 24 
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be acquired simultaneously across the whole brain. Many previous brain imaging studies of 1 

physical activity and fitness have focused on the hippocampus, where changes in non-2 

invasive imaging measures of tissue volume or perfusion have been argued to relate to 3 

processes of neurogenesis and angiogenesis triggered by exercise (van Praag et al. 1999; 4 

Pereira et al. 2007; Chaddock et al. 2011; Thomas et al. 2012). However, in addition to such 5 

focal changes, more global biological processes might also be triggered by exercise (Tardif et 6 

al. 2016). It remains unknown whether whole-brain patterns of multimodal brain metrics  are 7 

related to cardiorespiratory fitness, physical activity, and physical health.  8 

Physical activity influences physical health and contributes to physical fitness but both 9 

activity and fitness may be considered part of an underlying, latent factor. In order to 10 

characterize a phenotype of physical lifestyle, measuring whole-day physical activity levels 11 

during a normal school week is therefore at least as important as assessing gold-standard 12 

measures of cardiorespiratory fitness, such as VO2max measured on an incremental step-test 13 

on a cycle ergometer.  14 

In this study, in 50 12-year old pupils, we acquired multimodal whole-brain MRI metrics to 15 

measure resting state networks (RSNs), grey matter (GM) volume and perfusion, cortical 16 

surface (area and thickness), white-matter (WM) microstructure, and myelin content (R1 and 17 

R2*), resulting in  a total of 18 different metrics). These metrics are combined into 18 

multimodal whole-brain phenotypes whose variation across individuals can be interrogated. 19 

We also acquired a rich set of variables depicting physical lifestyle, measuring 20 

cardiorespiratory fitness (VO2max and workload), objective physical activity (7-days 21 

actigraphy, measuring total week time of brief bursts and long-lasting physical activity) and 22 

reported (questionnaire item), and physical health (resting heart rate, blood pressure, and 23 

body-mass index) (Fig. 1). We hypothesised that across pupils, inter-subject differences in 24 

brain phenotypes covaried with differences in physical lifestyle, independent of sex, 25 
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socioeconomic status, age, pubertal level, and school. A single holistic multivariate analysis 1 

allowed us to identify a latent mode of covariation between brain and physical phenotypes, 2 

representing a pattern of active physical lifestyle features that significantly covaries with 3 

spatially extended patterns of brain metrics.  4 

 5 

Materials and methods 6 

 7 

Participants 8 

Year 7 pupils from a subset of 10 UK schools participating in the Fit to Study project, were 9 

invited to take part in a brain imaging substudy (Wassenaar et al. 2019). After taking consent 10 

and assent in accordance with the University of Oxford ethical guidelines (CUREC reference 11 

number: R51313/RE001), 61 pupils were recruited to the brain imaging substudy. 12 

Participants attended a testing session at the University of Oxford during which brain 13 

imaging, cognitive, and behavioral data were collected.  14 

Only 50 pupils (median age: 12 years; 26 females (52%)) (Table 1), had high-quality, 15 

complete multimodal MRI data. All statistical analyses were carried out on this sample of 50 16 

pupils sampled from 10 schools (Table 2). 17 

 18 

Behavioral testing 19 

Cardiorespiratory fitness 20 

Objective measures of cardiorespiratory fitness were acquired through an incremental step-21 

test on a cycle ergometer (Lode Excalibur Sport, Groningen, The Netherlands). We then 22 

extracted values for maximal oxygen consumption per kilogram (VO2/kg max) (ml/min/kg), 23 

and work load maximum (Watts) as primary measures of interest.  24 

 25 
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Physical activity 1 

Objective physical activity was assessed over five weekdays and 2 weekend days using the 2 

Axivity AX3 wrist-worn accelerometer (Open Lab, Newcastle University, UK) (Ladha et al. 3 

2013). We therefore chose to define a valid wear day as 12 consecutive hours from 08.00 to 4 

20.00 to capture travel to and from school and after-school sports and activities. To account 5 

for later weekend waking times, we accepted any consecutive ten-hour period between 08.00 6 

and 20.00 on Saturdays and Sundays, and standardised total activity to 12 hours.  We then 7 

aimed to capture both brief bursts and long-lasting activity. We converted raw accelerometer 8 

data into activity ‘counts’ per 60-second epoch and also per 1-second epoch to characterize 9 

sustained bouts of activity and also shorter bursts of movement.  Axivity’s Open Movement 10 

GUI software calculated whether each 60-second epoch was spent in sedentary, light, 11 

moderate or vigorous activity by applying established adolescent cut-points (Phillips, Parfitt, 12 

and Rowlands 2013). The software identified non-wear time as periods of at least 30 13 

consecutive minutes of zero activity counts.  We used a bespoke programme, designed to 14 

handle large volumes of data, to apply the same cut-points to each 1-second epoch. 15 

Participants who had at least 3 valid weekdays and one valid weekend day were included in 16 

the analysis (Troiano et al. 2014). For both brief bursts and long-lasting physical activity, 17 

participants’ total minutes of sedentary, moderate and vigorous activity per day were 18 

calculated. 19 

 20 

Physical health 21 

Physical health was assessed on the day of testing at rest (prior cardiorespiratory testing) by 22 

measuring heart rate; systolic and diastolic blood pressure. When compared to publicly 23 

available age-matched normative values (Flynn JT et al. 2018), blood pressure (5th to 95th 24 

percentiles) was found within healthy values (normative values for 12 years old pupils: 25 
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systolic: 102-131 with average of 113; diastolic: 61-83 with average of 75;  study sample, 1 

systolic: median =  106, 5th-95th percentiles: 89-123; diastolic: median =  73, 5th-95th 2 

percentiles: 58-85). 3 

Negative behaviors not considered in the analysis 4 

As part of the study we also obtained ethics to ask pupils information about negative 5 

behaviors such as smoking, drinking alcohol, or drug use. However, none of the pupils 6 

reported having used any of these substances. 7 

 8 

MR Imaging 9 

MRI acquisition parameters 10 

All Magnetic Resonance Imaging (MRI)-scans were carried out during summer 2017 at the 11 

Oxford Centre for Functional MRI of the Brain (FMRIB) using a 3T Siemens Magnetom 12 

Prisma (Erlangen, Germany) scanner with a 32-channel head coil.  13 

The MRI protocol included: 14 

1. T1 weighted (T1w) three-dimensional rapid gradient echo sequence (3D MPRAGE): 15 

repetition time (TR) = 1900 ms; echo time (TE) = 3.97 ms; flip angle = 8°; field-of-16 

view (FOV) = 192 mm; voxel size: 1× 1 × 1 mm. Sequence duration: 5 min 31 sec.  17 

2. Resting-state functional MRI (rs-fMRI): multi-band echo-planar imaging (EPI) 18 

sequence; TR = 933ms; TE = 33.40 ms; FOV = 192 mm; 72 slices; voxel size: 2 x 2 x 19 

2 mm; multi-band acceleration factor = 6. Sequence duration: 10 min 10 sec. For each 20 

scan, 644 volumes were acquired.  Participants were asked to look at a fixation cross, 21 

blink normally, try not to fall asleep and not to think about anything in particular.  A 22 

field map was also acquired to correct for inhomogeneity distortions. Sequence 23 

duration: 1 min 34 sec. 24 
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3. Diffusion-weighted MRI (DW-MRI): multi-shell, multi-band EPI sequence; b-values 1 

= 0, 1250, 2500 s/mm2, with respectively 11, 60, 60 diffusion-weighted directions; 2 

TR = 2483 ms; TE = 78.20 ms; FOV = 214 mm; voxel size: 1.75 x 1.75 x 1.75 mm; 3 

multi-band acceleration factor = 4. Sequence duration: 5 min 40 sec. In addition, 4 b = 4 

0 s/mm2 images were acquired with reversed phase encoding, for the purpose of EPI 5 

distortion correction. Sequence duration: 32 sec. 6 

4. Quantitative FLASH-MRI (Weiskopf et al. 2013): two 3D multi-echo FLASH 7 

datasets, one predominantly proton-density weighted (PDw, flip angle = 6 deg), and 8 

one predominantly T1w (flip angle = 21 deg); FOV = 256 mm; voxel size: 1× 1 × 1 9 

mm; TR = 25 ms; first TE = 2.34 ms; eight equally space echoes, echo spacing = 2.3; 10 

GRAPPA acceleration factor = 2 in both phase-encoded directions, with 40 reference 11 

lines in each direction. Duration for each FLASH sequence: 5 min 11 sec.  Two 12 

single-echo, low-resolution (4 mm isotropic) FLASH scans were acquired before each 13 

high-resolution scan; identical FOV; TR = 4 ms; TE = 2 ms; one was acquired 14 

receiving on the 32-channel receive head coil, the other receiving on the body coil.  15 

To correct for the effect of RF inhomogeneities, the local RF field was mapped using 16 

a 2D DAM method with a FLASH readout. 17 

5. Pseudo-continuous arterial spin labeling (pCASL) with background pre-saturation 18 

(Okell et al. 2013): six imaging blocks, each with different post-labeling delays: 0.25, 19 

0.5, 0.75, 1, 1.25 and 1.5 s. Arterial blood was magnetically tagged using a labeling 20 

duration of 1.4 s. Other imaging parameters were: single shot EPI; TR = 4100 ms; TE 21 

= 14 ms; FOV = 220 mm; voxel size: 3.4 × 3.4 × 4.5 mm. Sequence duration: 5 min 22 

34 sec. 23 

 24 

MRI preprocessing 25 
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MRI data was processed primarily using FSL software (Jenkinson et al. 2012) and FreeSurfer 1 

(Dale, Fischl, and Sereno 1999).  2 

Gradient distortion correction. Gradient distortion correction (GDC) was applied within 3 

image analysis pipelines using tools developed by FreeSurfer and HCP groups 4 

(https://github.com/Washington-University/Pipelines), using the Siemens scanner specific 5 

table of gradient nonlinearities. 6 

Structural. Brain extraction was performed in native space after GDC unwarping using FSL 7 

BET (Smith 2002). Tissue-type segmentation was estimated based on FSL FAST (Zhang, 8 

Brady, and Smith 2001), providing hard segmentation as well as partial-volume images for 9 

each tissue type. This tool was also used to provide a fully bias-field-corrected version of 10 

brain extracted structural brain images. Subcortical structures were modelled using FSL 11 

FIRST (Patenaude et al. 2011). 12 

Cortical surface reconstruction. Subject-specific cortical surface reconstruction and cortical 13 

parcellation were estimated based on the GDC, brain extracted T1 image, using the command 14 

recon-all from FreeSurfer (Dale, Fischl, and Sereno 1999). 15 

Registration. Rigid registrations between multimodal MRI native spaces were estimated 16 

through FSL FLIRT with boundary-based cost function (Jenkinson et al. 2002; Greve and 17 

Fischl 2009). Nonlinear warps to MNI152 standard-space T1 template were estimated 18 

through FSL FNIRT. This set of nonlinear warps is then carried over to all MRI modalities 19 

such as in the case of resting state functional MRI (rs-fMRI). 20 

EPI distortion correction. B0 fieldmap processing was estimated through FSL Topup 21 

(Andersson, Skare, and Ashburner 2003) based on AP-PA image pairs from DWI-MRI 22 

protocol. 23 

Functional. rs-fMRI data was preprocessed using a custom pipeline previously validated on 24 

developmental datasets (Baxter et al. 2019). rs-fMRI data was corrected for inter- and intra-25 
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volume subject head motion, EPI distortions (Andersson and Sotiropoulos 2015); highpass 1 

temporal filtering and GDC unwarping was also applied. Registration to structural was 2 

improved by an extra rigid registration step aided by a single-band EPI image.  Structured 3 

artefacts were removed by FSL ICA+FIX processing (Beckmann and Smith 2004; Salimi-4 

Khorshidi et al. 2014; Griffanti et al. 2014). The FSL FIX classifier was specifically trained 5 

for this data and provided the following scores in leave-one subject-out accuracy: true 6 

positive ratio (TPR) = 98.8%; true negative ratio (TNR) = 95.3%; weighted ratio ( 7 

(3*TPR+TNR)/4 ) = 97.9%. FSL MELODIC was then used to estimate 50 group-average 8 

independent components (ICs). We then calculated median absolute (ridge) partial correlation 9 

(with a regularization value of 0.1) and amplitude for each of the 25 ICs identified as RSNs. 10 

Diffusion. DWI-MRI data was first corrected for eddy currents, EPI distortions, inter- and 11 

intra-volume subject head motion, with outlier-slice replacement, using FSL Eddy 12 

(Andersson and Sotiropoulos 2015). GDP unwarping was then applied (Miller et al. 2016).  13 

Diffusion Tensor Imaging (DTI) fitting was carried out with FSL DTIFIT using a kurtosis 14 

model (Behrens et al. 2007). Neurite Orientation Dispersion and Density Imaging (NODDI) 15 

modelling was estimated using FSL cuDIMOT 16 

(https://users.fmrib.ox.ac.uk/~moisesf/cudimot/DesignModel.html) based on the Bingham-17 

NODDI model (Tariq et al. 2016).  In order to resolve crossing-fibres configurations, multi-18 

shell voxel-wise diffusion was modelled using FSL BedpostX (Jbabdi et al. 2012). 19 

Probabilistic tractography was then carried out with FSL ProbtrackX (Behrens et al. 2007) 20 

and 29 major WM bundles were reconstructed as implemented in FSL AutoPtx (de Groot et 21 

al. 2013) 31. 22 

Myelin and iron maps. Quantitative MRI data was processed to produce the quantitative 23 

maps of myelination (1/T1) and iron level (1/T2*), using the Voxel-Based Quantification 24 

(VBQ) toolbox (Callaghan et al. 2014) in Statistical Parametric Mapping (SPM) 25 
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(http://www.fil.ion.ucl.ac.uk/spm/). Although R1 (1/T1, longitudinal relaxation rate) and R2* 1 

(1/T2*, effective transverse relaxation rate) are not direct quantitative maps of myelination or 2 

iron (as other biological factors can also affect them), these quantitative maps have high 3 

degree of sensitivity to myelination and iron (Weiskopf et al. 2013; Lutti et al. 2014; 4 

Callaghan et al. 2014) . 5 

Perfusion. Perfusion images were processed using FSL BASIL (Chappell et al. 2009). Images 6 

were first corrected with fieldmap and GDC unwarping; then, in order to obtain maps of 7 

cerebral blood flow and arrival time in absolute units, a calibration step was implemented 8 

based on cerebrospinal fluid values. 9 

 10 

Image derived phenotypes (IDPs) 11 

Each MRI parameter was summarized in a series of IDPs: anatomy-specific average values 12 

that span three sets of regions of interest. For cortical and subcortical regions, we used the 13 

Desikan-Killiany Atlas (84 parcels, cortical and subcortical) from the individual FreeSurfer 14 

parcellation (Fischl et al. 2002). This parcellation was then warped into each (relevant) 15 

modality in order not to interpolate MRI-map values. For the white matter, we used the 29 16 

white-matter bundles from the AutoPtx reconstruction; first averaged at group-level; 17 

optimally thresholded; and then warped back to native spaces. For functional activity, 25 18 

group-level RNSs were identified. 19 

A total of 859 IDPs were then fed into statistical analysis. 20 

 21 

Cognitive testing and reported mental health and general health measures 22 

All measures acquired during the testing are reported in detail in (Wassenaar et al. 2019).  23 

 24 

Cognitive skills 25 
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Here we considered a summary measure for 3 tasks of interest: the relational memory task 1 

(correct valid answers (%)) (Chaddock et al. 2010); task switching (switch cost (ms)) (C. H. 2 

Hillman et al. 2014) ; and object-location task (identification errors 8s-delay) (Pertzov et al. 3 

2012), (Table 3). 4 

 5 

Mental health 6 

Mental health was assessed with the Strengths and Difficulties Questionnaire (SDQ) 7 

(Goodman 1997). 8 

 9 

Questionnaire on general health 10 

From the Health behavior in school-age children (HSBC) questionnaire (World Health 11 

Organization. Regional Office for Europe 2016) we used the positive health items (self-rated 12 

health, life satisfaction, multiple health complaints) in order to measure reported general 13 

health.  14 

 15 

Experimental design and statistical analyses 16 

This is a cross-sectional study with a sample size of N = 50 subjects. Due to the limited 17 

sample size compared to the number of variables of interest, we strove to reduce input data 18 

and nuisance variables dimensions as much as possible.  All statistical analyses were carried 19 

out in MATLAB 2018. 20 

 21 

Confounds 22 

Prior to all statistical analyses, a series of relevant confounds was chosen: age; sex; pubertal 23 

developmental level (assessed through the Pubertal Development Rating Scale (Petersen et 24 

al. 1988), a self-report measure of physical development for youths under the age of 16); 25 
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socioeconomic status (assessed through the UK Index of Multiple Deprivation); and head 1 

size/scaling factor (computed through FSL SIENAX).   2 

On these nuisance variables we perform a dimensionality reduction through means of 3 

principal component analysis (PCA) (Nz = 2) accounting for 60% of total variance. These 4 

confounds were then regressed out of all IDPs and behavioral variables and the residuals 5 

normalised.  6 

 7 

Dimensionality reduction of IDPs and physical variables 8 

In order to avoid an overdetermined, rank deficient CCA solution, and to limit the chances of 9 

overfitting, a dimensionality reduction set was performed to both IDPs and physical 10 

variables. Using the same approach previously applied in (Smith et al. 2015), IDPs were 11 

reduced into 10 PCAs (Nx = 10; variance explained = 53%), whilst physical variables were 12 

reduced into 5 PCAs (Ny = 5; variance explained = 79%). 13 

 14 

Canonical correlation analysis 15 

We sought to characterize a mode of brain – physical covariation across pupils: a data-driven 16 

latent factor linking a linear combination of neuroimaging metrics (Table 4) with a linear 17 

combination of physical measures (Table 5). To this end we used canonical correlation 18 

analysis (CCA), an approach that has successfully been applied in recent studies and that, 19 

compared to pairwise association testing, has shown greater sensitivity for complex 20 

biological processes and greater explained variance (Miller et al. 2016; Smith et al. 2015). 21 

CCA is a symmetric, cross-decomposition method that characterizes covariation modes 22 

between a pair of two-dimensional datasets. This is achieved by finding two sets of free 23 

parameters (or canonical coefficients, i.e. one set of coefficient vectors per set of brain 24 

metrics and one set of coefficient vectors per set of physical metrics) that maximize the 25 
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correlation of the projections of the two datasets into the identified latent space (or canonical 1 

variates or subject scores). In other words, the variation in mode strength between subjects is 2 

maximally correlated. Here, this was computed using MATLAB ‘canoncorr’ function. 3 

 4 

Unbiased statistical inference through block-aware permutation testing 5 

Deconfounding, as required to ensure that the CCA is not driven by nuisance factors, induces 6 

a dependency among the rows of the data submitted to CCA.  While this dependency is weak 7 

and diminishes with increasing sample size, it represents a violation of the exchangeability 8 

assumption required by permutation, that can inflate permutation significance. To account for 9 

this deconfounding-induced dependency that violates exchangeability, we use a method that, 10 

without changing the canonical correlations, reduces the data from N observations to N-Nz 11 

observations that are exchangeable, and thus, can be subjected to a permutation test (Winkler 12 

et al. 2020; Theil 1965). We randomly chose 1,000 sets of Nz rows for removal, conducting 13 

1,000 permutations for each set. 14 

Permutations were performed among subjects within school, respecting dependencies given 15 

by the hierarchical structure of the data (Winkler et al. 2015). For each of the 1,000 16 

repetitions, a p-value was computed based on this null distribution for the first CCA mode. 17 

Across repetitions, a distribution of statistical significance values was built and the final 18 

statistical significance level was computed as its average value. The results of this analysis 19 

are shown in Fig. 2b. 20 

 21 

Unbiased estimation of effect size through leave-one school-out cross-validation 22 

In order to derive an unbiased estimate of the CCA correlation strength that took into account 23 

the hierarchical structure in the data, we implemented a leave-one school-out cross-validation 24 

(CV) approach. In all but one school, we performed all the above steps (except permutation 25 
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testing), learning all the coefficients of the linear transformations. On the left-out school, we 1 

then applied those transformations and predicted left-out pupils' scores in the CCA mode. We 2 

repeated this procedure for all folds (here schools).  CV performance was then quantified as 3 

the Pearson’s rho correlation coefficient and mean squared error (MSE) calculated between 4 

predicted brain and physical canonical covariates (or predicted canonical variates or CCA 5 

subject scores). The results of this analysis are shown in Fig. 2a. 6 

 7 

Characterization of brain and physical phenotypes 8 

We then aimed to characterize the CCA phenotypes: the set of brain measures and the set of 9 

physical measures symmetrically linked by the CCA covariance mode. To do this (formally, 10 

to characterize the CCA crossed loadings), we follow the procedure described in (Smith et al. 11 

2015). On the whole sample, CCA Brain loadings were calculated as the pairwise Pearson’s 12 

partial correlation between CCA Physical variate (or subject scores) and the original datasets 13 

of brain IDPs, while controlling for the full set of nuisance variables (CCA Brain loadings = 14 

partialcorrelation( brain IDPs, CCA Physical variate, nuisance variables). The results of this 15 

process are shown in Fig. 4, 5, 6. CCA Physical loadings were calculated with the following 16 

the same process (CCA Physical loadings = partialcorrelation( physical variables, CCA Brain 17 

variate, nuisance variables). The results of this process (only for structural IDPs) are shown 18 

in Fig. 3. CCA loadings are therefore bounded between 1 and -1. 19 

For functional measures, each IDP is represented by a whole-brain RSN. To aid 20 

interpretation, for each RSN, its CCA Brain loading was multiplied by the group RSN map. 21 

The results of this process are shown in Fig. 5a, b. Then, in order to derive a summary 22 

representation, we concatenated all RSNs maps in a 4D file and computed normalised mean 23 

across RSNs, separately for both functional connectivity and amplitude. The results of this 24 

process are shown in Fig. 5c, d. 25 
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We then aimed to characterize the average involvement for each type of MRI value. Across 1 

IDPs of a MRI metric, we computed the average across CCA Brain loadings. This provided a 2 

ranked list of MRI parameters representing the average relationship of each MRI metric with 3 

pupils’ physical scores. The results of this process are shown in Fig. 7. 4 

 5 

Joint-inferences with univariate measures of cognitive skills, mental health, and general 6 

health 7 

The relationships between the identified CCA mode and the multiple variables measuring the 8 

domains of cognitive skills, mental health, and general health, were carried out (separately 9 

for each domain) with a general linear model with non-parametric combination (NPC) 10 

implemented in FSL PALM (Winkler et al. 2016). NPC works by combining test statistics or 11 

p-values of separate (even if not independent) analyses into a single, joint statistic, the 12 

significance of which is assessed through synchronized permutations for each of the separate 13 

tests. Here we asked whether the CCA mode was associated with any sub-measure within a 14 

domain, and the NPC was tested via Tippett statistic with 1,000 block-aware permutations, 15 

while adjusting for nuisance variables in reduced space. 16 

 17 

Results 18 

 19 

Brain – physical mode of covariation across pupils 20 

Using CCA, we tested the hypothesis that across pupils, inter-subject differences in 21 

multimodal whole-brain IDPs covaried significantly with differences in physical lifestyle 22 

variables, independent of nuisance variables. We found one significant mode of brain – 23 

physical covariation across pupils, linking differences in brain IDPs with individual 24 
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differences in physical lifestyle (Fig. 2a; CCA: rho = 0.34, MSE = 1.38, using leave-one 1 

school-out CV;  Fig. 2b; p-value = 0.0130, significance assessed on 1,000 repetitions, each 2 

with 1,000 block-aware permutations; results remained the same if adjusted for the full set of 3 

nuisance variables).  This mode represents a pattern of brain IDPs that covaries with a pattern 4 

of physical variables. We next interrogated this physical phenotype and brain phenotype 5 

separately, to determine the patterns that underlie this mode.   6 

 7 

Physical phenotype of covariation 8 

For each physical variable we calculated the loadings of the physical phenotype relating to 9 

the CCA mode (or ‘CCA Physical loadings’) representing the relationship between each 10 

physical variable and the CCA brain variate (or subjects’ brain scores) (Fig. 3).  We found 11 

that pupils who scored higher in the brain – physical mode of covariation were those with 12 

higher cardiovascular fitness; those with lower body-mass index; those who spent more time 13 

doing long-lasting (both moderate and vigorous) physical activity during a normal school 14 

week and spent less time being sedentary. 15 

 16 

Brain phenotypes of covariation 17 

In order to interpret brain phenotypes of physical covariation, we calculated the canonical 18 

loadings for each IDP of brain structure, microstructure, and function. These loadings (or 19 

‘CCA Brain loadings’) represent the relationship between each brain IDP and the CCA 20 

Physical variate (or subjects’ physical scores) (to explore the spatial patterns of all structural 21 

and functional IDPs, see respectively Fig. 4 and Fig. 5a, b; for violin plot of CCA Brain 22 

loadings for all IDPs, see Fig. 6).   23 
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We observed that some MRI metrics presented a global and homogeneous involvement in the 1 

mode of covariation across ROIs. In order to quantify this tendency, for each MRI metric, we 2 

computed the average CCA Brain loadings across all ROIs (Fig. 7). We found that the 3 

strongest CCA Brain loadings were found for GM perfusion (and arrival time) as well as 4 

cortical surface area, GM volume and a number of WM diffusion metrics. MRI metrics with 5 

the greatest average CCA Brain loadings tended to be characterized by spatially extended and 6 

homogeneous involvement across the whole-brain. Together, these results show that pupils 7 

with greater physical scores were those who also showed global patterns of higher blood 8 

perfusion (and lower arrival time, i.e., faster perfusion) in the GM, greater GM volume, 9 

greater cortical surface area, greater neurite dispersion anisotropy across WM tracts, as well 10 

as greater extra-neurite fraction (equivalent to lower intra-neurite fraction), and lower neurite 11 

orientation dispersion.  12 

We also observed that although the average CCA Brain loadings for RSNs functional 13 

connectivity and BOLD amplitude was close to zero, there was great variance across RSNs 14 

(Fig. 5). Because RSNs are not binary masks but are instead characterized by spatial 15 

distributions, in order to summarise their pattern of involvement in the mode of covariation, 16 

for each voxel we computed the normalised mean CCA Brain loadings across RSNs (Fig. 5c, 17 

d). The resulting maps for functional connectivity (Fig. 5c) and amplitude (Fig. 5d) showed 18 

both similarities and differences in their patterns of involvement in the mode of covariation. 19 

In Fig. 5.c, RSN functional connectivity shows greater positive involvement bilaterally in the 20 

parietal cortices, supplementary motor cortex, putamen, and right primary motor cortex; 21 

while it shows greater negative involvement broadly in the occipital cortices. The peak of 22 

positive involvement was localised in the right parietal cortex, while the negative in the 23 

occipital cortex. In Fig. 5d, RSN BOLD amplitude shows greater positive involvement in the 24 

anterior cingulate gyrus (dACC), superior frontal gyrus, parietal cortices, right inferior frontal 25 
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gyrus; while it shows greater negative involvement broadly in the occipital cortices, and left 1 

primary somatosensory cortex. The peak of positive involvement was localised in the dACC, 2 

while the negative in the occipital cortex. These maps show a common pattern of greater 3 

positive involvement bilaterally in the parietal cortices, and a common pattern of negative 4 

involvement in the occipital cortices. 5 

 6 

Relationship with measures of cognition, mental health, and general health 7 

We then tested the hypothesis that the identified CCA mode of brain – physical covariation 8 

(averaging between brain and physical CCA subjects scores), was significantly associated 9 

with measures of 1) cognitive skills, 2) mental health, and 3) general reported health. Testing 10 

a NPC joint-inference for each domain, we found no statistically significant association (NPC 11 

Tippett p-value respectively for cognitive skills: p-value = 0.3280; mental health: p-value = 12 

0.7940; general health: p-value = 0.1280). 13 

Of interest for future studies, we report that one of the three HBSC questionnaire items in 14 

general reported health (self-rated health) was positively associated with the mode of brain – 15 

physical covariation if not corrected for multiple comparisons across the three items tested 16 

(Adjusted R2 = 0.16, p-value = 0.0430). 17 

Importantly, when not using block-aware permutations and thus not taking into account the 18 

hierarchical structure represented by schools, the association between the mode of brain – 19 

physical covariation and the domain of general health was found to be significant. This 20 

highlights the importance of considering schools' effect (or any other hierarchical structure) 21 

when testing associations across a population.  It also emphasizes how robust the results from 22 

the brain – physical covariation are to nuisance of no interest and to hierarchical structure in 23 

the data. 24 
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 1 

Discussion 2 

In this work we show that, in 12-year-old pupils, physical activity, fitness, and physical 3 

health are linked with global patterns of brain structure, microstructure, and function. In this 4 

relationship, whole-brain, homogeneous patterns of multimodal brain phenotypes are linked 5 

with a specific, latent pattern of physical measures that capture a physically active lifestyle 6 

(high fit, high active, low sedentary individuals). This finding hints at the involvement of 7 

multiple underlying biological processes and suggests that physical health and aerobic 8 

exercise might have a wider effect on brain processes than previously thought. 9 

We applied a holistic approach to provide novel insight into the importance of different 10 

aspects of a physically active lifestyle in relation to brain structure and function. While high 11 

cardiovascular fitness and physical activity are positively linked with the identified brain 12 

phenotypes, sedentary activity and body-mass index are negatively related. Furthermore, we 13 

showed that long-lasting physical activity, either moderate or vigorous, is more important to 14 

this relationship than brief bursts of activity, suggesting that regular moderate-to-vigorous 15 

physical activity might be a better driver to promote brain changes. Taken together, these 16 

findings situate pupils along a latent axis according to their  physical phenotype: pupils with 17 

high cardiorespiratory fitness and performance and with high weekly levels of physical 18 

activity, g, contrast with pupils spending most time in sedentary or low-energy behaviors.  19 

The novelty of this work is the finding of multimodal global brain phenotypes linked with a 20 

physically active lifestyle. Although prior work has studied the relationship between single 21 

measures of brain structure or function and, separately, physical activity or fitness 22 

(Valkenborghs et al. 2019), our approach allowed us to identify latent patterns of multimodal 23 

brain IDPs characterized by the involvement of multiple brain regions in the covariation with 24 
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physical scores. Specifically, greater physical scores were linked with spatially extended 1 

patterns of greater blood perfusion and faster arrival time in the GM, greater GM volume and 2 

larger cortical surface area, and in the WM with lower intra-neurite density and kurtosis. This 3 

result shows that high fitness and physical activity are associated with more global patterns 4 

of brain structure than previously thought. Further work is needed to better understand 5 

multimodal, spatially extended phenotypes of brain structure (Groves et al. 2012; Douaud et 6 

al. 2014). Indeed it remains unknown how spatially extended brain patterns relate to 7 

individual differences in cognition, their level of heritability, as well as to what extent they 8 

are susceptible to plasticity. Although it is not possible to infer the presence of a specific 9 

biological process or cellular component solely on the basis of MRI measures (Zatorre, 10 

Fields, and Johansen-Berg 2012), these results suggest that high fitness and regular physical 11 

activity might have a more widespread impact on brain structure than previously thought. 12 

Previous literature has explicitly focused on studying the effects of aerobic exercise on the 13 

hippocampus (Cotman 2002; Falkai and Schmitt 2009; Chaddock-Heyman et al. 2016; 14 

Thomas et al. 2016). Cardiorespiratory fitness is indeed known to promote hippocampal 15 

neurogenesis and angiogenesis that, in turn, determines macro-scale changes that are also 16 

visible via non-invasive neuroimaging (van Praag et al. 1999). Here, we extend the current 17 

knowledge beyond a uniquely hippocampal pattern, highlighting the global nature of greater 18 

volume and faster perfusion across the whole brain GM. In other words, variation in 19 

hippocampal structure alone does not underlie the brain – physical relationship characterized 20 

here. Rather we observed homogeneous loadings across GM areas. The strongest 21 

contributions to our brain phenotype came from perfusion measures. These robust 22 

associations found with perfusion metrics are in line with a body of literature showing 23 

positive effects of physically active lifestyle on vascular health (Vaynman, Ying, and Gomez-24 

Pinilla 2004; Promotion and US Department of Health & Human Services Office of Disease 25 
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Prevention and Health Promotion 2000), as well as animal studies linking physical exercise 1 

to angiogenesis (Kleim et al. 1996; Rhyu et al. 2010). 2 

Further key insights derive from spatially extended patterns of WM covariation. Although the 3 

myelin sensitive metrics (Quantitative-MRI R1 and R2*) in the current study made little 4 

contribution to the mode of variation, higher scores on the physical phenotype were 5 

associated with lower intra-neurite density and kurtosis, and to a lesser extent with lower 6 

neurite orientation dispersion and with greater dispersion anisotropy. It is relevant that the 7 

DW-MRI protocol employed in this study would be sensitive to diffusion properties within 8 

large glial cells, such as astrocytes and oligodendrocytes. Our gradient strength provides 9 

sensitivity to length-scales of roughly 4-6 μm, with the body-size of astrocyte and 10 

oligodendrocytes being respectively in the order 20 μm (Oberheim et al. 2009) and of 14 μm 11 

(Bakiri et al. 2011), much larger than the average myelinated axon diameter (<1 μm) 12 

(Liewald et al. 2014). Indeed astrocytes and oligodendrocytes are the most abundant cells in 13 

WM (based on cell counts), accounting for more than half the volume of a MRI voxel 14 

(Walhovd, Johansen-Berg, and Káradóttir 2014).  It is thus possible that an increase in size or 15 

number of macro-glia cells would have a significant effect on the DW-MRI signal, thus 16 

contributing to the positive association here observed between physical lifestyle scores and 17 

WM extra-neurite fraction (by construction 1 minus intra-neurite density (NODDI f-intra), 18 

and specifically, the hindered space outside the neurites prescribed through anisotropic 19 

diffusion).  Crucially, there exists key histological evidence from animal studies in support of 20 

an increase in astrocyte proliferation and in glial fibrillary acidic protein (GFAP) levels (Li et 21 

al. 2005; Uda et al. 2006) and in oligodendrocytes number (Luo et al. 2019) in several areas 22 

of the rat brain. Together with this previous literature, the findings here reported may suggest 23 

a positive relationship between physically active lifestyle and macro-glia cell density across 24 

multiple WM tracts, perhaps reflecting a role in providing enhanced metabolic support for 25 
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neurons. This hypothesis should be tested using imaging alongside more direct measures 1 

from ex vivo studies, or using alternative techniques with greater specificity, such as 2 

detecting MRS-visible metabolites with greater sensitivity to astrocytes (Brand, Richter-3 

Landsberg, and Leibfritz 1993).  4 

We also report two patterns of RSNs involvement in the mode of brain – physical 5 

covariation. We found that a physically active lifestyle was linked with greater connectivity 6 

in the parietal cortices and with lower connectivity in the occipital cortices, showing 7 

respectively increased and decreased BOLD coupling with all RSNs in more active 8 

participants. The same phenotype of a physically active lifestyle was also positively related 9 

with greater amplitude in local BOLD fluctuations in the dACC and in the parietal cortices, 10 

and with lower amplitude in the occipital cortices.  Studying both RSNs amplitude (BOLD 11 

variance) and functional connectivity (BOLD covariance) can be important in order to 12 

understand possible sources of change and the related neural processes (Duff et al. 2018; 13 

Garrett et al. 2010).  While greater activity both in functional connectivity and in BOLD 14 

amplitude may suggest greater co-activation between the parietal cortices and multiple RSNs 15 

across the whole-brain, greater BOLD amplitude with no increase in functional connectivity - 16 

as observed in the dACC - may suggest greater local activity that results in a decoupling of 17 

the dACC from the rest of brain activity.  Greater dACC activity during a cognitive control 18 

task was previously  associated with higher fitness levels in preadolescent children, with 19 

greater dACC activity in the high fit group positively related to accuracy in task performance 20 

(Voss et al. 2011). In this study however, we found no significant association between pupil’s 21 

scores in the mode of brain – physical covariation and differences in cognitive skills or 22 

mental health, thus not allowing us to infer on the cognitive or mental health relevance of this 23 

brain pattern. 24 
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Overall, our findings lend support to the growing body of evidence demonstrating a close 1 

relationship between the body and the brain. Although the relatively small sample size given 2 

the number of variables of interest and the possible cluster effect of schools may represent a 3 

limitation of this study, here we employed thorough statistical procedures (i.e. block-aware 4 

permutation testing and leave-one cluster-out cross-validation) to explicitly deal with this 5 

factor, thus producing robust and unbiased statistics. Also, the results here reported are 6 

correlational and therefore caution is required in interpreting directionality.  Nevertheless our 7 

findings suggest that a complex physical phenotype that is influenced by physiology, and 8 

lifestyle choices, might have widespread effects on biological processes influencing brain 9 

phenotypes. Future studies may test whether improving physical health and fitness through 10 

means of activity interventions, promotes diffuse neuroplasticity. 11 

In conclusion, this work provides novel insight into the comprehensive relationship between 12 

physically active lifestyle and brain structure and physiology in early adolescence. These 13 

findings have broad implications for future research, suggesting novel avenues to study the 14 

effect of modifiable lifestyle factors as part of wider brain-body relationships. Understanding 15 

how physical pathways may foster healthy human brain development can help us to develop 16 

better intervention studies aimed at informing public health and education policies. 17 
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Figure legends 1 

 2 

 3 

Figure 1 Summary of statistical analysis. In order to test the individual covariation between 4 

brain IDPs and physical measures of fitness, physical activity and physical health, we aimed 5 

to identify one single mode of covariation using canonical correlation analysis (CCA), while 6 

taking into account the hierarchical structure represented by schools. 7 

 8 

 9 

Figure 2 Mode of brain – physical covariation across pupils. The results from canonical 10 

correlation analysis (CCA) highlight one significant mode of brain – physical covariation 11 

across pupils. a) Showing scatter plot of cross-validated canonical variates between brain IDP 12 

scores and physical scores, each dot represents a pupil (cross-validated CCA: rho = 0.34).  13 

Statistical significance of CCA was assessed 1,000 times, each time comparing the real value 14 

against 1,000 block-aware permutations taking into account school structure. b) Showing 15 

distribution of statistical significance values. The final significance value was assessed as the 16 

average of this distribution (p-value = 0.0130). Red dashed line represents cut-off of 17 

statistical significance of alpha = 0.05. 18 

 19 
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 1 

Figure 3 Physical phenotype linked to the brain – physical mode of covariation. Bar plot 2 

representing the coefficient structure of physical phenotype (formally CCA Physical 3 

loadings). Each coefficient represents the relationship between each physical metric and 4 

subjects’ brain IDP scores (or CCA Brain variate). Bar plot and variable ranking are matched 5 

and color-coded in red/blue in accordance to a positive/negative relationship with the mode 6 

of covariation (the magnitude of involvement is further represented through transparency).  7 

 8 
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 1 

Figure 4 Structural IDPs and their relationship with the identified phenotype of 2 

physically active lifestyle. Showing for each MRI metric and for each structural ROI, thus 3 

for all structural IDPs, the relationship with the identified phenotype of active lifestyle. Hot 4 

colors represent a positive relationship with the physical phenotype; cold colors represent a 5 

negative relationship. Structural maps are ranked from top to bottom (left column to right) in 6 

accordance to average CCA W Brain. 7 

 8 
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 1 

Figure 5 Functional IDPs and their relationship with the identified phenotype of 2 

physically active lifestyle. Showing for each resting state brain network (RSN), and for both 3 

metrics functional connectivity a) and amplitude b), the relationship with the identified 4 

phenotype of active lifestyle. Hot colors represent a positive relationship with the physical 5 

phenotype; cold colors represent a negative relationship. To aid interpretation, for each RSN, 6 

its CCA Brain loading was multiplied by the group RSN map. RSN are here ranked from top-7 

to-bottom in accordance to their CCA Brain loadings.  We then concatenated all RSNs maps 8 

in a 4D file and computed the mean and standard deviation across RSNs, separately for both 9 

functional connectivity and amplitude. c) Normalised mean of CCA Brain loadings for RSNs 10 

functional connectivity. d) Normalised mean of CCA Brain loadings for RSNs amplitude. 11 
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For c) and d), the top row shows the same brain coordinates, whilst the bottom row shows the 1 

respective peak of greater CCA Brain loadings. Dashed circle in c) and d) represents the peak 2 

value. 3 

 4 

 5 

Figure 6 Relationship with physical lifestyle phenotype for all brain IDPs. Showing the 6 

CCA Brain loadings for all 859 brain IDPs divided into each MRI metric. Each dot represents 7 

one single IDP.  8 

 9 

 10 

Figure 7 Brain phenotype linked to the brain – physical mode of covariation. Bar plot 11 

representing the average CCA Brain loadings. Each coefficient represents the relationship 12 

between each MRI metric (average across ROIs) and pupils’ physical lifestyle scores. Bar 13 
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plot and variable ranking are matched and color-coded in red/blue in accordance to a 1 

positive/negative relationship with the mode of covariation (the magnitude of involvement is 2 

further represented through transparency). 3 

  4 

Table legends 5 

 6 

Table 1 Demographics and socioeconomic status. 7 

  Mean 
Standard 

deviation 

Demographics   

Age (years) 12 0.27 

Sex (female)     26   (52%) / 

Pubertal development level 2.22 0.59 

Index of Multiple Deprivation 

(Decile) 
7.82 1.96 

 8 

Table 2 Sampling frequency by school. 9 

School 
Number of 

pupils 
% 

A 1 2 

B 2 4 

C 10 20 

D 6 12 

E 8 16 

F 1 2 

G 1 2 

H 1 2 

I 13 26 

L 7 14 

 10 

Table 3 Descriptives of cognitive skills, reported mental health, and reported general 11 

health. 12 
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  Mean 
Standard 

deviation 

Cognition   

Associative task (correct valid 

answers (%)) 
71 11 

Task switching (switch cost (ms)) 548 333 

Object location task 

(Identification errors 8s-delay) 
11 4 

Mental health (SDQ 

questionnaire) 
    

Prosocial  Scale 8 1.4 

Hyperactivity Scale 4 2.5 

Conduct Scale 2 1.5 

Peer Scale 2 1.9 

Emotional Scale 3 2.3 

General Health (HSBC questionnaire)   

Life satisfaction 8 1.6 

Self-Rated Health 4 0.9 

Multiple health complaints 13 4.8 

 1 

Table 4 List of MRI modalities and MRI metrics used to define IDPs of brain function 2 

and structure. 5 MRI sequences were used to quantify 18 different MRI metrics. Specific 3 

sets of ROIs were then used for each MRI metric in order to extract whole-brain MM IDPs 4 

quantifying brain structure, microstructure, function, myelin content, and blood perfusion. 5 

Brain tissue MRI modality Parameter 

Grey matter 

(cortex & 

sub-cortex) 

Structural Volume (VBM-like) 

Quantitative R1 

Quantitative R2* 

Arterial Spin Labelling Perfusion 

Arterial Spin Labelling Arrival time 

Cortex 
Structural Surface area 

Structural Surface thickness 

BOLD 

activity 

rs-fMRI Functional connectivity 

rs-fMRI Amplitude 
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White matter 

Diffusion DTI - FA 

Diffusion DTI - MD 

Diffusion DTI - Kurtosis 

Quantitative R1 

Quantitative R2* 

Diffusion NODDI f-iso 

Diffusion NODDI f-intra 

Diffusion NODDI DA 

Diffusion NODDI ODI 

 1 

Table 5 Descriptives of physical variables. 13 measures of physical activity, fitness, and 2 

physical health were considered in testing the relationship with brain IDPs. Here we report 3 

mean and standard deviation (prior of correcting for demographics and socioeconomic 4 

status). 5 

  6 

  
Mean 

Standard 

deviation 

VO2max - VO2/kg max (ml/min/kg) 37.2 8.5 

VO2max - Work load max (Watts) 137.8 25.9 

Vigorous PA (bursts) (min per week) 41.0 34.2 

Moderate PA (bursts) (min per week) 247.0 106.0 

Sedentary activities (bursts) (min per week) 4075.0 993.0 

Vigorous PA (long-lasting) (min per week) 10.0 14.0 

Moderate PA (long-lasting) (min per week) 320.0 167.0 

Sedentary activities (long-lasting) (min per week) 3502.0 369.0 

Days active during past week 4.9 1.8 

Body mass index 19.5 4.1 

Resting heart rate (bpm) 75.0 12.0 

Blood Pressure - Systolic (mm Hg) 106.0 10.0 

Blood Pressure - Diastolic (mm Hg) 73.0 7.0 

 7 
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