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Abstract 

Quantitative and qualitative data derived from the analysis of genomes, genes, proteins or 

metabolites from tissue or cells are currently generated in huge volumes during biomedical 

research. Graphia is an open-source platform created for the graph-based analysis of such 

complex data, e.g. transcriptomics, proteomics, genomics data. The software imports data 

already defined as a network or a similarity matrix and is designed to rapidly visualise very large 

graphs in 2D or 3D space, providing a wide range of functionality for graph exploration. An 

extensive range of analysis algorithms, routines for graph transformation, and options for the 

visualisation of node and edge attributes are also available. Graphia’s core is extensible through 

the deployment of plugins, supporting rapid development of additional computational analyses 

and features necessary for a given analysis task or data source. A plugin for correlation network 

analysis is distributed with the core application, to support the generation of correlation graphs 

from any tabular matrix of continuous or discrete values. This provides a powerful analysis 

solution for the interpretation of high-dimensional data from many sources. Several use cases of 

Graphia are described, to showcase its wide range of applications. Graphia runs on all major 

desktop operating systems and is freely available to download from https://graphia.app/. 
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Introduction 

The study of interactions between entities is a cornerstone of modern analytics. In biology, efforts 

to map the ‘interactome’, all the interactions between the components of a biological system, have 

been underway for some time, generated by a number of complementary approaches1,2. 

Networks of biological data may also be used to chart diverse phenomena such as the spread of 

disease, the interactions between drugs and their targets, and the evolutionary relationships 

between species. Many data from other sectors are also inherently graph-based in structure. For 

example, interactions on social media platforms, customer-client relationships, communication 

and transport systems, computer networks and many other real-world systems, can all be 

considered as the edges and nodes of a graph. Matrices of numerical data that do not inherently 

possess a network structure can also be analysed using graph-based approaches. Wherever it is 

possible to calculate the distance between entities, a graph can be constructed using high 

confidence measures to define the edges between entities, represented by nodes. In biology, 

such an approach is already widely used to analyse high dimensional data, in particular to 

construct and analyse gene coexpression networks3,4, but the approach is applicable to any 

numerical or categorical data from any source. 

Given the explosion in the availability of data in recent years and the potential to visualise and 

analyse it using graph-based approaches, a variety of software tools to support these activities 

have been developed. In biology, Cytoscape5 is the most widely used software for performing 

graph analytics. It has a large user base and supports many ‘apps’ (plugins) created by the 

community for the performance of specific graph-based analysis tasks. Other network 

visualisation and analysis tools include BioLayout4,6 Gephi7, Graphviz8, Pajek9, yEd (yFiles, 

Tübingen, Germany), Social Network Visualiser10 and NodeXL11. There are also a range of web-

based software tools exclusively designed to visualise portions of data, often from a designated 
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database, such as String12, GeneMania13 and Neo4J Bloom14. Some of these tools are focused 

on supporting a particular community, whilst others possess functionality tailored towards specific 

tasks or data types and include a mix of open-source projects and commercial tools. Others 

provide open-source code repositories for graph visualisation and analysis algorithms,15 or share 

repositories of graph data16–18. For a more comprehensive review of network analysis tools and 

resources, see19. 

Despite the availability of a wide range of downloadable applications, web-resources and code 

libraries to support graph-based analyses, there is a pressing need for easy-to-use software that 

supports the rapid visualisation and analysis of relatively massive networks. To address this need, 

we developed Graphia - a general purpose graph analysis tool that supports the integration, 

visualisation, analysis, and interpretation of a wide variety of data types. Here we provide an 

overview of Graphia’s core functionality for the analysis of graphs and describe a number of case 

studies in which it is applied to solve problems associated with the analysis of data derived from 

the biological sciences.  

METHODS AND RESULTS 

Design Criteria  

The following features were considered core to the design of Graphia: 

• Data and operating system agnostic. Import data from any source saved in standard 

file formats. The software should run on all major desktop operating systems and modern 

hardware configurations. 
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• Fast and scalable. Support the rapid loading of data, fast computation of graph layout 

and analysis algorithms, high quality data visualisations. Deliver smooth and responsive 

graphical rendering of millions of data points (node/edges) on standard desktop hardware. 

• Dynamic rendering. Visualise in real time changes to the graph structure associated with 

alterations in input parameters or additional data. 

• 3D graph visualisation. Provide a navigable and immersive environment in which to 

explore and interpret large and complex graph topologies. 

• Correlation graphs as an essential function. Rapidly convert any numerical or 

categorical data table into a correlation graph, supporting pattern finding and data mining. 

• Attribute handling and visualisation. Visualise attributes (metadata) associated with 

nodes and edges using colour, size and text to distinguish between attribute values. 

• Advanced analysis capabilities. Support a wide range of analytical algorithms and 

approaches that empower a user to explore, query and interpret data. 

• Extensible. Provide extensible architecture through use of a plugin system to allow the 

core to be extended or adapted for specific application areas or data types.  

• User Interface. Provide a simple and intuitive user interface (UI) that is easy to navigate, 

featuring a graph display area supplemented with a table listing selected nodes and 

associated attributes and data values. The UI should provide easy access to menus 

providing functionality and display active transformations and visualisations. 

 

Code Architecture 

Graphia is written in C++17 and is built upon Qt version 5, the cross-platform widget toolkit. For 

graphics, the industry standard OpenGL is used. The minimum driver support required is version 

3.3 core profile, but more modern extensions will be used if they are available. Various open 

source libraries are employed, mostly for loading external data formats. These libraries and their 
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associated licenses are enumerated in the About dialog of the application, accessible from the 

Help menu. 

Graphia is architected so that loading, and data type-specific user interfaces are confined to 

plugins. These are independent modules to the core application and can be removed or added 

without affecting any base functionality. 

At the highest level the code is organised hierarchically into four separate directories: 

• app - the core application code 

• plugins - the existing bundled plugins 

• shared - code used by both the core and plugins (this includes interface headers) 

• thirdparty - any library code not authored locally 

These are further divided into subdirectories dealing with specific areas of functionality. Graphia 

has been developed using standard object-orientated best practices. Continuous integration is 

employed to prevent portability build regressions, using recent versions of the compilers GCC, 

clang and MSVC. In addition, static analysis tools such as clang-tidy and cppcheck are used to 

identify potential problems early. CMake is used as a build system, and is set up for Linux, 

Windows and MacOS compilation. 

 

Implementation 

 

Data Import. Graphia has been designed to import data encoded in a variety of standard and 

non-standard file formats. These include standard graph-based file formats such as BioPAX OWL 

ontology (.owl), JSON graph (.json), GraphML (.graphml) and Graph Modelling Language (.gml), 

MATLAB data file (.mat) formats, and non-standard but simple formats such as pairwise graph 
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formats (.txt, .layout), adjacency matrix (.csv, .tsv) and numerical data prepared for correlation 

analyses (.csv, .xls). Using these file formats, a wide variety of data may be imported into Graphia, 

not only in terms of defining the nodes and edges of a graph, but user-defined attributes or 

metadata.  

 

Fast and Scalable. Existing graph visualisation tools either fail to render very large graphs 

effectively, or the ability to interact with a graph once rendered is limited and slow. Therefore, all 

aspects of Graphia’s functionality have been engineered to run quickly. Graphia can render 

graphs millions of data points on relatively commonplace hardware, where interaction with them 

is fast and fluid. This has been achieved through the use of optimal coding practices and 

parallelisation of computationally intensive analysis routines, e.g. calculation of correlation 

matrices, graph layout, clustering. 

 

Dynamic Graph Layout and Rendering. Graph layout is an iterative process. Many programs 

only display the results of a layout algorithm after it has run a defined number of iterations. With 

Graphia, the layout is shown live, such that graphs ‘unfold’ in real time. However, the true power 

of dynamic graphs is realised when a transformation operation is performed or following the 

addition of new data. These changes are immediately reflected in the appearance of the graph. 

As graphs change dynamically, there is a need to identify the graph components and map how 

they interact when construction parameters are adjusted. The ability to quickly identify and move 

between components is a unique feature of Graphia. Components are rendered in a concentric 

pattern, arranged large-to-small. Smaller components may be filtered away using a transform 

(see below).  
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Figure 1. Different graph visualisation options. (A) 3D perspective view, smooth shading (the default), 
with visualisation of node categorical attribute (MCL cluster). (B) 3D perspective view, flat shading. (C) 3D 
orthographic view, flat shading (no perception of distance - all nodes same size, unless sized by attribute 
value). (D) 2D view, smooth shading. (E) 2D view, flat shading. (F) compressed 2D layout, flat shading, 
showing node overlap view. (G) Visualisation of Betweeness centrality values, (H) Eccentricity values, (I) 
PageRank values. G-I are continuous (numerical) attributes, so a colour spectrum and size gradient is 
used for node display (2D, smooth shading). Betweenness and eccentricity are calculated for both nodes 
and edges, therefore visual encoding is applied to both. 
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Most existing network analysis tools render graphs in 2D. The layout algorithm implemented in 

Graphia is innovative in that it applies current force-directed layout techniques, but in a dynamic 

setting. Graphia renders graphs in 3D or 2D, making use of modern graphics hardware to display 

extremely large graphs efficiently with options for node/edge shading, relative node sizing and 

spacing (Figure 1A-F). When graphs are relatively small or there is a need to share images by a 

conventional medium, i.e. a document, 2D graph visualisations have advantages. However, 2D 

visualisations are limiting when there is a need to display and interact with large graphs with 

complex topologies.  

Attribute-to-Visual Mapping. Attributes are data values associated with nodes/edges. These 

can be user-defined or calculated by Graphia. For example, a node representing a person may 

be associated with knowledge of their gender, occupation, socioeconomic class, ethnicity, etc. 

(categorical attributes), as well as their height, age, weight, years in employment (continuous 

value attributes). Colour can be used to represent categorical attributes, with nodes sharing the 

same attribute being assigned the same colour. In the case of continuous value attributes, colour 

and size can be used to represent the value according to a spectrum, e.g. from small white nodes 

to big red nodes to represent low and high values, respectively. Both types of attribute may also 

be calculated from the graph itself, e.g. the assignment of nodes to clusters or calculation of node 

degree, PageRank values, etc., respectively (Figure 1G-I). Visualising attribute values may help 

explain graph structure, for instance an area of a graph might be visibly associated with nodes of 

a given attribute. Attributes may also be used to analyse the statistical associations with graph 

topology, for example, graph clusters may be analysed for the enrichment of nodes with a given 

attribute. Attribute values may also be specific to only a single element, e.g. a unique node name.  

The ‘Add Visualisation’ menu (Figure 2.2a) provides a highly flexible interface to generate and 

modify attribute-to-visual mappings. Enrichment analysis of attributes associated with a graph is 

available under the ‘Tools’ menu. 
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Graph Transformation and Analysis. A transform is defined as a process by which a graph’s 

structure or data is altered. Options for transforming a graph are available through the ‘Add 

Transform’ button (Figure 2.1a). Clicking this button opens a dialog in which a transform may be 

selected, and its parameters configured. Structural changes may be brought about through the 

application of algorithms that for instance remove ‘branches’ or ‘leaves’ from a graph, or contract 

edges based on an attribute value. Similarly, filters may be applied that remove edges below a 

certain weight or allow a user to remove nodes where their node degree is greater or lesser than 

a certain value. One further type transformation available is the ability to reduce a graph’s quantity 

of edges. In some graphs the ratio of edges to nodes can be very high and can obscure higher 

order topologies, as well as using additional resources to render them. Graphia incorporates the 

k-NN algorithm20, which culls all but the top k edges, according to the value of a user nominated 

attribute. %-NN is a variation of this that instead retains a defined percentage of the original edges.  

Finally, there is an algorithm that simply removes a homogenous random sample of edges, for 

the case where no edge attribute is available. Changes to graph structure brought about by the 

application of any of the above algorithms or filters are immediately visible through the dynamic 

layout feature.  

Graphia automatically generates node-level analyses of any graph, calculating the node degree, 

and multiplicity of individual nodes/edges. Where a graph has been generated from a numerical 

matrix, it will also automatically calculate the maximum, minimum mean and variance of the data 

series represented by a node. Topological analyses can be achieved through clustering and 

Graphia incorporates the MCL21 and Louvain22 clustering algorithms, where the granularity of 

clustering can be adjusted after their initial calculation. The MCL algorithm is optimal for highly 

structured graphs where the ratio of edges to nodes may be high, e.g. correlation graphs. The 

Louvain algorithm is favoured when working with sparse graphs where the ratio of edges to nodes 

may be low, e.g. after the application of an edge reduction algorithm such as k-NN. After the 

assignment of nodes into clusters, Graphia can then be used to perform an enrichment analysis 
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to test the hypothesis that clusters may be enriched with nodes possessing specific a given 

attribute. The option to perform enrichment analyses is found under the Tools menu. 

Plugins. To allow the functionality of the core application to be extended to perform a specific 

task or work with data from a specific resource, Graphia uses a plugin architecture. A plugin may 

include additional algorithms and network analyses methods or be designed to import/export data 

from a cloud-based resource or database or guide a user through a specific analysis routine. In 

the case of Graphia’s ‘correlation plugin’, this is specifically designed for the import of numerical 

matrices and their conversion into a correlation graph, where nodes represent data series and 

edges represent high confidence relationships between them, i.e. a undirected weighted 

correlation graph. The correlation plugin is automatically invoked when a .csv file is loaded and 

recognises attribute and data values as different data types. A user can transpose the matrix on 

import, so as to compare columns rather than rows, define the threshold for graph construction, 

scale or normalise data prior to calculation of the correlation matrix and add transforms prior to 

the visualisation of the resultant graph.  

User Interface and Data Exploration. The Graphia user interface consists of an area displaying 

the graph itself, and a table listing the name and attributes of selected nodes. The graph display 

also shows the active transforms and visualisations, providing context to the graph displayed 

(Figure 2A). When using the correlation plugin, the table display includes a plot of the numerical 

data series associated with the selected nodes, upon which the correlation matrix was calculated 

(Figure 2B). The table can be adjusted such that only certain attributes are displayed, and the 

data plot area provides many options to modify the view, for example plot as line graph or 

histogram, individual node values or averaged, and various options to scale data, etc.. The graph 

display area and table/data plots areas can be viewed together or decoupled into separate 

windows. This enables display on separate screens where available.  
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Figure 2. Graphia user interface displaying a correlation graph. (A) Graph display area, showing 
correlation graph with a cluster selected (unselected nodes faded). (A1) Display context menu options (right 
click). (B) Node (row) attribute display area. (B1) Table of selected nodes and their attributes. (B2) Data 
plot area showing average profile of selected nodes. (B3) Visualisation of column annotations. (B4) Data 
plot context menu options for changing plot (right click). (1a) Add Transform button, (1b) Active transforms, 
(2a) Add visualisation button, (2b) Active visualisations, (3) General toolbar, (4) Attribute parameter 
selection, (5) Display of graph metrics (number of nodes, edges, components), (6) Plot/table function 
toolbar. 

 

Export of Results. Following or during an analysis it is possible to generate screenshots of the 

graph as displayed, lists of nodes and associated attribute data, data plots or analysis. Once an 

analysis session is complete the resulting graph can be saved in the tool’s own format (.graphia) 

which captures all the data used in its construction, and its layout, transforms and visualisations. 

A graph may also be exported to several other formats (pairwise text file, GraphML, GML), 

although in these cases information may be lost in the process. 
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Case Study 1: Visualisation of phylogenetic trees. Hierarchical data structures are often 

represented by tree graphs and used in biology to represent relationships between species, 

strains, samples or genes. While trees are an intuitive way of visualising such relationships, when 

the number of branches on the tree becomes very large, the ability to display such graphs at a 

local or global level is challenging. Here we show two examples of taxonomic trees visualised by 

Graphia representing the different levels of phylogeny, from a central node representing the class 

of organisms, up through branches representing the order, family, genus, with species and 

subspecies being the leaves of the tree. The examples described are taxonomic trees for all 

mammals and insects (Figure 3), as defined by NCBI Taxonomy database23. The taxonomic tree 

of mammals consists of 9843 nodes and 9862 edges and is shown in 2D with nodes coloured by 

type, i.e. what level of the taxonomic tree they represent. A small section associated with apes is 

highlighted (Figure 3B). When the graph is loaded using the WebSearch plugin, selection of a 

single node automatically initiates a search for the name of the selected node. Shown in Figure 

3C is a taxonomic tree of all insect species, consisting of 275,328 nodes and 275,528 edges 

displayed in 3D. Graphia provides a unique environment to search, cluster and explore such data, 

the third dimension greatly assists in showing the structure of such large graphs.  
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Figure 3. Visualisation of taxonomic trees. (A) Taxonomic tree of all mammals downloaded from the 
NCBI’s Taxonomy database, with nodes coloured according to type, i.e. subspecies (blue), species (pink), 
genus (green), etc. The graph comprises of 9,843 nodes and 9,862 edges and is shown with a 2D layout. 
(B) Zoomed-in view of the area in square shown in A, with a single node selected (Western gorilla) firing 
up a Graphia’s web-search plugin that automatically searches the web for the node’s name. (C) Taxonomic 
tree of all insects from the NCBI’s Taxonomy database, nodes coloured by Louvain cluster. The graph 
consists of 275,328 nodes and 275,528 edges and in this respect represents a large graph where 
visualisation in 2D is challenging. 
 

Case Study 2: Analysis of single cell transcriptomics data. Single cell RNA sequencing 

(scRNA-Seq) generates gene expression profiles for thousands of individual cells in a single 

assay. The approach is an unbiased way of identifying cell types in a mixed population of cells, 

both known and uncharacterised, in addition to the genes that define them. This has seen a surge 

of interest in dimensionality reduction methods, in particular t-SNE24 and UMAP25, as users seek 
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to optimise the visualisation of results (Figure 4A,B). These methods are constrained by issues 

associated with representing the underlying data structure, i.e. relationships between cell 

groupings and when 10s of thousands of cells are analysed, a 2D plot space is limiting. 

An alternative approach is to treat single cell data as a graph, where nodes represent cells or 

genes, and edges the similarity between them. There are a number of measures that may be 

used to calculate the distance between cells or genes and here we discuss our currently favoured 

approach. The Tabula Muris dataset26 includes a scRNA-Seq data from 20 different mouse 

tissues. For the purpose of this study we selected only data from tissue immune cells, as 

annotated by the authors. Preprocessing and quality control was performed as per the Tabula 

Muris pipeline (https://github.com/czbiohub/tabula-muris), producing a normalized dataset of 

14,466 cells from 12 tissues. Principal component analysis (PCA) was conducted to reduce the 

gene profile of a cell to principal components (PC), with the 48 most significant PCs (adj. P-value 

<0.05) based on Jackstraw permutations27 being considered. This file (cells as rows, PCs as 

columns) was loaded into Graphia and a graph was generated based on the Pearson correlation 

between the PC profile of cells. An initial network was generated applying the k-NN algorithm (k 

= 15) and outlier cells were removed. Outliers were defined as cells with poor correlations and 

connectivity with other cells of the same cell type (r < 0.85 and node degree < 10). Applying these 

filters produced a network that better separated known cell-types. Subsequently, the filtered 

12,498 cell-to-cell network was clustered using the Louvain clustering algorithm22 with a 

granularity of 0.8, identifying 36 cell clusters (Figure 4C).  

Following the identification of cell clusters, it is generally of interest to identify gene markers and 

expression modules associated with different cell types. Due to the inherent noise in scRNA-Seq 

data, it is of limited use to construct gene networks based on the correlation between expression 

values of individual cells. Instead, one alternative is to construct gene correlation networks based  
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Figure 4. Analysis of cell and gene associations in scRNA-Seq data. The structure of scRNA-Seq data 
is commonly represented using approaches such as (A) t-SNE and (B) UMAP as shown here for immune 
cells derived from the Tabula Muris dataset. However, the distance between data points and groups of data 
points is difficult to interpret. (C) Graphia enables the construction of cell-to-cell networks built on a similarity 
parameter. Here, the 48 most significant PCA values for each cell were first calculated and this PCA profile 
used to construct a correlation network. The plot bottom left of C, shows the PCA profiles of cells in the two 
largest cell clusters. To better show graph structure, a k-NN (k = 10) was applied and outlier cells removed 
(r < 0.85 and node degree < 10, nodes coloured white). The graph comprises of 12,498 nodes (cells) and 
143k edges. Cell clusters have been annotated as the cell types defined by the authors. (D) Shows a gene 
correlation network generated from these data by first calculating the average expression of genes within 
cell clusters and then calculating a correlation matrix from these values. (E) Plots show the average 
expression profile (y-axis) of a selection of gene-clusters across the aggregated cell-clusters (x-axis). The 
label gives the cluster number, e.g. C1, the number of genes within the cluster (- 966) and the association 
of the genes with a given biology or cell type. 
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on an aggregated gene expression value across cells from each cluster, i.e. the similarity between 

clusters of cells not individual cells. Accordingly, a matrix of the average gene expression values 

across clusters defined above was loaded into Graphia. A network of strongly correlated genes (r 

> 0.85) was generated and gene coexpression modules identified using the Markov clustering 

algorithm21 with a granularity setting of 1.7 (Figure 4D). Graphia enables a dynamic and rapid 

exploration of these clusters, allowing a user to understand where a given cluster sits within the 

context of the entire graph, the identity of genes present within a given cluster and the profile of 

all or some of those genes across samples, in this case cell clusters (Figure 4E). 

Case Study 3: Exploration of bacterial pangenome structure. Whole genome 

sequencing is now routine in many fields. One common use is in the characterisation of microbial 

species and public databases which already hold tens of thousands of genome sequences for the 

best studied organisms. Graph-based methods and tools that support the visualisation and 

analysis of such data are well established. For instance, Bandage is a software package now 

widely used to visualise de novo assembly graphs of bacterial genomes28. PPanGGOLiN29 and 

Panaroo30 are graph-based pangenome clustering tools for the analysis of genomic diversity 

within a bacterial species (i.e. its pangenome), which can then be used to statistically classify 

genes according to their occurrence in the genomes. 

Comparative analyses of bacterial sequences have revealed a high degree of genetic diversity 

between isolates of the same organism, leading to the concept of “core” genes present in all 

isolates and “accessory” genes present only in some isolates. The distribution and organisation 

of accessory genes has a significant impact on an organism’s ability to adapt to different hosts 

and niches, virulence and drugs. Figure 5 shows a graph generated from a previously published 

dataset of whole genome sequencing data of 778 Staphylococcus aureus isolates31. Genomes 

were annotated using Prokka (v1.13)32 and their pangenome defined using the analysis pipeline 

PIRATE (v1.0.3, default settings used, 95% sequence similarity threshold)33. In this visualisation,  
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Figure 5. Visualisation of the pangenome of Staphylococcus aureus. (A) The full pangenome of 778 
isolates. Nodes represent individual orthologous genes as identified by PIRATE. Node size is determined 
by the number of genomes in which a gene has been identified. Edges denote where two genes are 
syntenic, and their thickness is determined by the number of times this syntenic connection is observed 
across isolates. Syntenic stretches of core genes have been collapsed for clarity using the “Contract Edges” 
transform, and low confidence nodes and edges (n < 3) have been removed. Coloured by Weighted Louvain 
Clustering (granularity = 1.0). (B) Highly variable region (boxed area in A) with a high density of “phage-
like” genes. Nodes and edges are sized and coloured by frequency. (C) Genes highlighted are all found in 
single S. aureus isolate, RF122. (D) the agrABCD locus coloured by gene-association clustering. 
Frequently, an alternative allele is not identified as being the same gene, but their position is strongly 
indicative of shared function. (E) the same locus coloured by gene identity. 
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nodes represent individual genes/gene variants and edges the syntenic relationships between 

them. When the visualisation is enhanced through making node/edge size and colour proportional 

to the number of genomes in which a gene is present or two genes are syntenic across the 

dataset, core regions of the genome become easy to identify (Figure 5A). These can also be 

collapsed to single nodes to simplify the graph. Similarly, areas of high variability within the 

pangenome are obvious (Figure 5B). Graphia can be used to identify specific nodes, for example 

the path of a single genome (RF122) can be shown in the context of the wider pangenome (Figure 

5C) or used to explore smaller local variations, e.g. the quorum sensing locus agrABCD, which 

shows four variants when defined at this similarity threshold (Figure 5D,E). In principle, displaying 

variation between sequences as a network is applicable to any such data. This has relevance to 

“pan-reference” genomes for more complex species such as humans, as well as for showing other 

variation, such as clustering repeat regions34 or alternative isoforms of transcripts35. 

Case Study 4: Analysis of Human Genome Variation. Genome variation also occurs at 

the level of individual DNA base pairs, so called single nucleotide variants (SNVs). Genotypes 

can be scored in an individual in terms of their allele dosage, i.e. both being the same as the 

reference nucleotide (0), heterozygous (1) or homozygous for the variant (2). Calculation of the 

correlation across a range of these positions in a population of individuals creates a relationship 

matrix.  

Figure 6 shows various views of data from the 1000 genomes project36. Here 23,675 SNVs from 

chromosome 22 were used to generate graphs of the relationships between individuals in this 

cohort and the SNVs themselves. These data represent the genomes of 2,504 individuals, who 

were selected 26 distinct ethnic populations from five continents. The average correlation 

between the SNV profile of individuals is low and the graph shown in Figure 6A is constructed 

using a threshold of r = 0.238, a value at which most of the genomes in the cohort form one  
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Figure 6. Analysis of Single Nucleotide Genome Variant Data. (A) The graph shown was constructed 
from data from the 1000 genomes project based on the correlation (r threshold = 0.238) between the allele 
dosages at 23,675 SNVs from chromosome 22. Nodes represent the 2,504 individuals included in the study 
and edges the three most significant correlations with their neighbours (k-NN was applied where k = 3). In 
most cases, individuals’ group with others from the same continent although there are instances where this 
does not appear to be the case. Visualisation of edge weights (Ai) also highlights cases where individuals 
would appear to be closely related. (B) Colouring of nodes by the attribute ‘population’ provides a higher 
resolution to the graph and populations showing a high degree homogeneity have been labelled. (C) 
Transposing the data upon import demonstrates SNVs whose pattern across the genome covaries. 
Clustering of these data shows many to represent haplotype blocks and inspection of their profile across 
genomes, demonstrates some SNV clusters to be associated with a given ethnic grouping, e.g. cluster 3 
(Africans) and cluster 14 (East Asia), whilst others little obvious association with ethnicity, e.g. cluster 6. 
Plots show the average score of SNV’s within a cluster (y-axis, 0,1,2), across the 2,504 individuals ordered 
by continent and then population (x-axis). 
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connected component. To reduce the edge count (from 400.4k to 5996) and open-up the local 

structure the k-NN algorithm was applied such that only the top three relationships between 

individuals were maintained. The topology of the graph is clearly strongly influenced by the 

ethnicity of individuals with discrete clusters being observed for all the five continental populations 

and in some cases individuals from certain countries or ethnicities showing a local grouping within 

this overall structure. Also visible from the graph are a number of very strongly related individuals 

(Figure 6Ai) and a number of instances where an individual does not co-occur with their annotated 

population, e.g. there are a number of South Americans in with the Africans, and vice versa 

(Figure 6B). Transposing the matrix to analyse the similarity between the profile of SNVs across 

the 2,504 individuals, at the threshold used here (r = 0.75), 11,600 SNVs formed 2,467 separate 

graph components of more than one node (Figure 6C). After clustering the graph using the 

Louvain algorithm, many of the clusters contain nearby SNVs; likely haplotype blocks, some of 

which were clearly associated with a given a population. Graph analysis represents an improved 

approach compared to e.g. PCA plots, visualising genetic associations between individuals and 

genetic variants. 

 

DISCUSSION 

Data-driven research is now a foundation of modern biomedical and agricultural sciences, due to 

continued growth in the size and complexity of biological datasets. Network analysis provides a 

flexible toolbox combining visualisation with the algorithmic analysis of data structure, for testing 

a broad range of hypotheses and hypothesis-free data explorations. However, when datasets 

become very large existing network tools struggle both to render the number of graph elements 

(nodes/edges) and to arrange them in a navigable format for human interaction. Graphia is 

designed for the visualisation and analysis of large graphs. Originally, our interest in graph-based 

analysis was driven by our desire to analyse large correlation networks of transcriptomics data. 
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The results of weighted gene coexpression analysis (WGCNA)3 are generally visualised as a tree 

diagram or heat-map. The precursor of Graphia, BioLayout Express3D 4,6, was developed 

specifically to generate and display transcriptomic data and pathway modelling4,37,38. BioLayout 

has been used in the analysis of many large transcriptomic datasets from multiple species39–43. It 

has also been applied to datasets that were not envisaged at the time, for example the relationship 

between symptoms of altitude sickness44, the honey bee microbiome45, comparing morphometric 

measurements of dog brains46 and even naming patterns in historical birth records47. The addition 

of new functionality to BioLayout was however constrained by inherent limitations in the code 

structure and programming language (Java).  

Graphia is an entirely new platform developed using a modern UI framework (Qt) and 

programming language (C++). The correlation plugin reproduces and improves upon the 

functionality of Biolayout for the analysis of any high dimensional numerical matrix. Data 

visualisation is core to the functionality of Graphia as an analysis platform. Good visualisations 

make it easier for a user to recognise patterns, trends, and outlier groups within data. The next 

step in an analysis is determined by insights gained from the interaction with the visualisation, 

whether that be the discovery of errors in the input data, data effects due to technical reasons, or 

from new and interesting discoveries. Graphia is designed to make best use of the latest 

accelerated graphics hardware, to make graph visualisations scalable, but still responsive in real 

time. By default, graphs are rendered in 3D, where the visualisation and navigation of complex 

graph topologies is much enhanced; the additional dimension providing the ability to distinguish 

the distance between what might appear in 2D to be closely connected nodes. Another core 

aspect to the visualisation of data is the concept of graphs being ‘dynamic’, changing in real-time, 

as nodes/edges are added or removed. To achieve this, the layout algorithm runs continuously, 

unless manually paused. Dynamic transitions may become challenging when graph structure 

alters dramatically following a transformation, such as when a hub-node is deleted from a tree 
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graph or one graph component fragments into many. If such a transformation is executed quickly, 

a user’s ‘mental map’ can be lost48. For this reason, Graphia includes the option to slow down the 

transition between one state and the next, and in addition orientates components ‘in flight’ prior 

to their reconnection. Indeed, the way in which Graphia handles graph components dynamically 

is quite unique, from their concentric layout, to the fact that even singletons can be rendered.  

The development of Graphia has been driven by the analytical challenges associated with data 

derived from the biological sciences, but it is designed as a general-purpose platform for the 

analysis of network data from any source. If the input data is a table of numerical values 

(continuous or categorical), a distance matrix can be used to build a graph, or if data already 

exists in a graph format, Graphia provides a means to explore it. Graphia currently loads data 

from files, but in theory it could be loaded from a web resource or local database. It is interesting 

to note the widespread adoption of graph databases. Not only do graph databases speed up and 

simplify querying of data stores, storage as a graph makes it easier to visualise and analyse it. 

Whilst there are a growing number of web-based tools that support the querying and visualisation 

of graph databases, none possess the power of Graphia in rendering large portions of the data 

they store.  

Here we offer a high-level view of the functionality of Graphia and some examples of its many 

uses within the biomedical sciences. We provide installers to allow it to run on all common desktop 

operating systems and the access to the source code, to allow users to develop new functionality 

to enhance its functionality for their needs.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.279349doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279349
http://creativecommons.org/licenses/by/4.0/


Contributions 

TCF, TA and SH designed Graphia, TA and SH wrote the code. AP, JH-L, TR, BS, DAH and JP 

developed the use cases shown here. All authors contributed to the testing of the software and 

writing of the paper. User support was developed primarily by TCF, TA and SH. 

Acknowledgements 

Graphia was originally designed and built by Kajeka Ltd., a University of Edinburgh spin-out 

company (2015-2020). We would like to acknowledge all those who supported this venture, in 

particular grant funding from Scottish Enterprise (SMART/14/034 / 14/9168). During the period of 

Graphia’s development TCF and JP were supported by the Roslin Institute’s Strategic Grant from 

the UK’s Biotechnology and Biological Sciences Research Council (BBSRC) 

[BBS/E/D/10002071]. 

Conflicts of Interest 

Kajeka Ltd was founded by TCF, and TA and SH were employees of the company, DAH was an 

investor/director. Following the closure of the company the source code of Graphia was made 

open source.  

References 

1. Luck, K., Sheynkman, G. M., Zhang, I. & Vidal, M. Proteome-Scale Human Interactomics. 

Trends in Biochemical Sciences. 42, 342–354 (2017). 

2. Vidal, M., Cusick, M. E. & Barabási, A. L. Interactome networks and human disease. Cell 

144, 986–998 (2011). 

3. Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.279349doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279349
http://creativecommons.org/licenses/by/4.0/


analysis. BMC Bioinformatics 9, 559 (2008). 

4. Freeman, T. C. et al. Construction, visualisation, and clustering of transcription networks 

from microarray expression data. PLoS Comput. Biol. 3, 2032–2042 (2007). 

5. Shannon, P. et al. Cytoscape: A software Environment for integrated models of 

biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003). 

6. Theocharidis, A., van Dongen, S., Enright, A. J. & Freeman, T. C. Network visualization and 

analysis of gene expression data using BioLayout Express(3D). Nat. Protoc. 4, 1535–50 

(2009). 

7. Bastian, M., Heymann, S. & Jacomy, M. Gephi : An Open Source Software for Exploring 

and Manipulating Networks. Int. AAAI Conf. Weblogs Soc. Media 361–362 (2009). 

8. Ellson, J. et al. Graphviz and dynagraph – static and dynamic graph drawing tools. GRAPH 

Draw. Softw. 127-148 (2003). 

9. Batagelj, V. & Mrvar, A. Pajek - Analysis and visualization of large networks. in Lecture 

Notes in Computer Science. 2265, 477–478 (Springer, Berlin, Heidelberg, 2002). 

10. Social Network Visualiser. https://socnetv.org/. 

11. Smith, M. et al. NodeXL: a free and open network overview, discovery and exploration add-

in for Excel 2007/2010/2013/2016. in Social Media Research Foundation (2010). 

12. von Mering, C. et al. STRING: Known and predicted protein-protein associations, integrated 

and transferred across organisms. Nucleic Acids Res. 33, D433–D437 (2005). 

13. Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C. & Morris, Q. GeneMANIA: A real-time 

multiple association network integration algorithm for predicting gene function. Genome 

Biol. 9, S4 (2008). 

14. Neo4J Bloom. https://neo4j.com/bloom/. 

15. Chimani, M. et al. The Open Graph Drawing Framework (OGDF). in Handbook of Graph 

Drawing and Visualization (CRC Press, 2014). 

16. Pratt, D. et al. NDEx, the Network Data Exchange. Cell Syst. 1, 302–305 (2015). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.279349doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279349
http://creativecommons.org/licenses/by/4.0/


17. Rossi, R. A. & Ahmed, N. K. The Network Data Repository with Interactive Graph Analytics 

and Visualization. Proceedings of the Twenty-Ninth AAAI Conference on Artificial 

Intelligence. 4292-4293, (2015) http://snap.stanford.edu/data/index.html. 

18. Leskovec, J. & Sosič, R. SNAP: A general-purpose network analysis and graph-mining 

library. ACM Trans. Intell. Syst. Technol. 8, Article 1 (2016). 

19. Miryala, S. K., Anbarasu, A. & Ramaiah, S. Discerning molecular interactions: A 

comprehensive review on biomolecular interaction databases and network analysis tools. 

Gene 642, 84–94 (2018). 

20. Altman, N. S. An introduction to kernel and nearest-neighbor nonparametric regression. 

Am. Stat. 46, 175–185 (1992). 

21. Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale 

detection of protein families. Nucleic Acids Research vol. 30 1575–1584 (2002). 

22. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities 

in large networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008). 

23. Wheeler, D. L. et al. Database resources of the National Center for Biotechnology 

Information. Nucleic Acids Res. 28, 10–4 (2000). 

24. Van Der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. Journal of Machine 

Learning Research 9, 2579-2605 (2008). 

25. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. 

Biotechnol. 37, 38–47 (2019). 

26. Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. 

Nature 562, 367–372 (2018). 

27. Chung, N. C. Statistical significance of cluster membership for unsupervised evaluation of 

cell identities. Bioinformatics 36, 3107–3114 (2020). 

28. Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: Interactive visualization of de 

novo genome assemblies. Bioinformatics 31, 3350–3352 (2015). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.279349doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279349
http://creativecommons.org/licenses/by/4.0/


29. Gautreau, G. et al. PPanGGOLiN: Depicting microbial diversity via a partitioned 

pangenome graph. PLoS Comput. Biol. 16, e1007732 (2020). 

30. Tonkin-Hill, G. et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. 

Genome Biol. 21, 180 (2020). 

31. Richardson, E. J. et al. Gene exchange drives the ecological success of a multi-host 

bacterial pathogen. Nat. Ecol. Evol. 2, 1468–1478 (2018). 

32. Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 

(2014). 

33. Bayliss SC, Thorpe HA, Coyle NM, Sheppard SK & Feil EJ. PIRATE: A fast and scalable 

pangenomics toolbox for clustering diverged orthologues in bacteria. Gigascience 8, giz119 

(2019). 

34. Novák, P., Neumann, P. & Macas, J. Graph-based clustering and characterization of 

repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11, (2010). 

35. Nazarie, F. W. et al. Visualization and analysis of RNA-Seq assembly graphs. Nucleic Acids 

Res. 47, 7262–7275 (2019). 

36. Auton, A. et al. A global reference for human genetic variation. Nature 526 68–74 (2015). 

37. Theocharidis, A., van Dongen, S., Enright, A. J. & Freeman, T. C. Network visualization and 

analysis of gene expression data using BioLayout Express(3D). Nat. Protoc. 4, 1535–1550 

(2009). 

38. O’Hara, L. et al. Modelling the Structure and Dynamics of Biological Pathways. PLoS Biol. 

14, e1002530 (2016). 

39. Freeman, T. C. et al. A gene expression atlas of the domestic pig. BMC Biol. 10, 90 (2012). 

40. Xue, J. et al. Transcriptome-Based Network Analysis Reveals a Spectrum Model of Human 

Macrophage Activation. Immunity 40, 274–288 (2014). 

41. Patir, A. et al. The transcriptional signature associated with human motile cilia. Sci. Rep. 10, 

10814 (2020). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.279349doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279349
http://creativecommons.org/licenses/by/4.0/


42. Clark, E. L. et al. A high resolution atlas of gene expression in the domestic sheep (Ovis 

aries). PLoS Genet. 13, e1006997 (2017). 

43. Nirmal, A. J. et al. Immune cell gene signatures for profiling the microenvironment of solid 

tumors. Cancer Immunol. Res. 6, 1388–1400 (2018). 

44. Hall, D. P. et al. Network analysis reveals distinct clinical syndromes underlying acute 

mountain sickness. PLoS One 9, e81229 (2014). 

45. Regan, T. et al. Characterisation of the British honey bee metagenome. Nat. Commun. 9,  

4995 (2018). 

46. Rzechorzek, N. M. et al. Network analysis of canine brain morphometry links tumour risk to 

oestrogen deficiency and accelerated brain ageing. Sci. Rep. 9, 12506 (2019). 

47. Bush, S. J., Powell-Smith, A. & Freeman, T. C. Network analysis of the social and 

demographic influences on name choice within the UK (1838-2016). PLoS One 13, 

e0205759 (2018). 

48. Archambault, D., Purchase, H. & Pinaud, B. Animation, small multiples, and the effect of 

mental map preservation in dynamic graphs. IEEE Trans. Vis. Comput. Graph. 17, 539–552 

(2011). 

 
 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.279349doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279349
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Introduction
	METHODS AND RESULTS
	Design Criteria
	The following features were considered core to the design of Graphia:
	 Data and operating system agnostic. Import data from any source saved in standard file formats. The software should run on all major desktop operating systems and modern hardware configurations.
	 Fast and scalable. Support the rapid loading of data, fast computation of graph layout and analysis algorithms, high quality data visualisations. Deliver smooth and responsive graphical rendering of millions of data points (node/edges) on standard d...
	Graphia is written in C++17 and is built upon Qt version 5, the cross-platform widget toolkit. For graphics, the industry standard OpenGL is used. The minimum driver support required is version 3.3 core profile, but more modern extensions will be used...
	Graphia is architected so that loading, and data type-specific user interfaces are confined to plugins. These are independent modules to the core application and can be removed or added without affecting any base functionality.
	At the highest level the code is organised hierarchically into four separate directories:
	 app - the core application code
	 plugins - the existing bundled plugins
	 shared - code used by both the core and plugins (this includes interface headers)
	 thirdparty - any library code not authored locally
	These are further divided into subdirectories dealing with specific areas of functionality. Graphia has been developed using standard object-orientated best practices. Continuous integration is employed to prevent portability build regressions, using ...
	Attribute-to-Visual Mapping. Attributes are data values associated with nodes/edges. These can be user-defined or calculated by Graphia. For example, a node representing a person may be associated with knowledge of their gender, occupation, socioecono...
	The ‘Add Visualisation’ menu (Figure 2.2a) provides a highly flexible interface to generate and modify attribute-to-visual mappings. Enrichment analysis of attributes associated with a graph is available under the ‘Tools’ menu.
	Graph Transformation and Analysis. A transform is defined as a process by which a graph’s structure or data is altered. Options for transforming a graph are available through the ‘Add Transform’ button (Figure 2.1a). Clicking this button opens a dialo...
	Case Study 1: Visualisation of phylogenetic trees. Hierarchical data structures are often represented by tree graphs and used in biology to represent relationships between species, strains, samples or genes. While trees are an intuitive way of visuali...
	Case Study 2: Analysis of single cell transcriptomics data. Single cell RNA sequencing (scRNA-Seq) generates gene expression profiles for thousands of individual cells in a single assay. The approach is an unbiased way of identifying cell types in a m...
	Case Study 3: Exploration of bacterial pangenome structure. Whole genome sequencing is now routine in many fields. One common use is in the characterisation of microbial species and public databases which already hold tens of thousands of genome seque...
	Case Study 4: Analysis of Human Genome Variation. Genome variation also occurs at the level of individual DNA base pairs, so called single nucleotide variants (SNVs). Genotypes can be scored in an individual in terms of their allele dosage, i.e. both ...
	Contributions
	Acknowledgements
	Conflicts of Interest
	References


