
Optimising biomedical relationship extraction with
BioBERT

Oliver Giles1, Anneli Karlsson1, Spyroula Masiala1, Simon White1, Gianni Cesareni2Y

Livia Perfetto3Y, Joe Mullen1, Michael Hughes1, Lee Harland1, James Malone1

1 SciBite, Wellcome Genome Campus, Hinxton, United Kingdom
2 Department of Biology, University of Rome Tor Vergata, Rome, Italy
3 European Bioinformatics Institute, European Molecular Biology Laboratory,
Wellcome Genome Campus, Hinxton, United Kingdom

YThese authors contributed equally to this work.

Abstract

Text mining is widely used within the life sciences as an evidence stream for inferring
relationships between biological entities. In most cases, conventional string matching is
used to identify cooccurrences of given entities within sentences. This limits the utility
of text mining results, as they tend to contain significant noise due to weak inclusion
criteria. We show that, in the indicative case of protein-protein interactions (PPIs), the
majority of sentences containing cooccurrences (~75%) do not describe any causal
relationship. We further demonstrate the feasibility of fine tuning a strong
domain-specific language model, BioBERT, to analyse sentences containing
cooccurrences and accurately (F1 score: 88.95%) identify functional links between
proteins. These strong results come in spite of the deep complexity of the language
involved, which limits the accuracy even of expert curators. We establish guidelines for
best practices in data creation to this end, including an examination of inter-annotator
agreement, of semisupervision, and of rules based alternatives to manual curation, and
explore the potential for downstream use of the model to accelerate curation of
interactions in the SIGNOR database of causal protein interactions and the IntAct
database of experimental evidence for physical protein interactions.

Introduction 1

Recent years have seen the flourishing of deep learning based natural language 2

processing. Transformer architectures [1] have enabled models to better understand the 3

grammar and discourse of texts to the extent that they have become capable of 4

inventing convincing blogs, social media posts and even more longform content like 5

Wikipedia articles [2]. Alongside these architectural developments there has been a 6

growing recognition of the value of transfer learning. With transfer learning, models are 7

initially trained to perform automatable tasks on an enormous corpus of text. This task 8

may involve, for example, predicting words that have been omitted from sections of 9

text [3]. For such a task there is no need for curation since the training data can be 10

automatically generated, allowing for exponential upscaling. These models can then be 11

slightly modified, either in terms of their architecture or, more recently, simply in terms 12

of instruction [4], to perform new tasks. When undertaking these specific tasks, the vast 13

majority of the model remains as it was, and the general linguistic knowledge acquired 14
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through the initial training, including grammatical principles that it would be near 15

impossible to learn from the relatively miniscule datasets used in the fine tuning stage, 16

can be leveraged. As a result, it is now possible to achieve strong results with relatively 17

little curation, driving down the previously prohibitive cost of developing state of the art 18

models within specific domains. Furthermore, models with domain specific pretraining 19

have also been developed, such as BioBERT [5], whereby the initial training is followed 20

by further training on life science corpora such as MEDLINE and PubMedCentral, 21

resulting in further gains on life science specific tasks. BioBERT was released with three 22

fine-tuned variants of the base model for performing named entity recognition, question 23

answering and relationship extraction. Research has shown a moderate improvement in 24

the extraction of biomedical relationships using BioBERT as opposed to base BERT [6]. 25

The sheer volume of publications in the life sciences presents a significant challenge 26

to researchers attempting to monitor developments and compile the consolidated 27

resources upon which modern research is largely dependent. The potential to streamline 28

these operations by fine tuning state of the art deep learning models to extract causal 29

relationships from text therefore warrants research [7]. 30

Protein-protein interactions (PPIs) are critical to a great number of disciplines 31

including the established, like pharmacy, and the up and coming, like synthetic 32

biology [8]. They are often described using deeply complex and technical language and, 33

as the majority of sentences containing multiple proteins do not describe any 34

interaction, they are resistant to extraction with simple, traditional text mining 35

methods. The extraction of PPIs from text is therefore a pivotal problem to be solved, 36

and empowering researchers to more effectively collect these data may have significant 37

real world benefits in downstream applications. We therefore chose to focus on this 38

particular task, but the methods described are largely transferable to the extraction of 39

other relationships from text. As the state of the art in natural language processing has 40

progressed over the past years, these methods have been applied to PPI extraction from 41

text [9–11]. However, different use cases define interactions differently, which can be 42

seen by the number of papers [11–13] which achieve disparate results on the major 43

datasets of BioInfer [14] and AIMed [15]. For example, either causal or physical 44

interactions may be sought, or both. There may also be other criteria for extracted 45

sentences, such as requiring that they describe novel discoveries. As models continue to 46

become more capable of abstracting patterns from fewer samples of data, the feasibility 47

of creating highly specific models for niche concerns increases, and the onus of 48

generating data shifts away from consortia and towards individuals and organisations. 49

It is therefore key to have clear guidelines for best practices in this data creation. 50

In this paper, we demonstrate the feasibility of using traditional text mining as a 51

starting point to narrow down a curation space to facilitate more rapid generation of 52

datasets, and also to narrow down the execution space once the model is trained. We 53

then assess whether there is a need for inter-annotator agreement in the curation of 54

data, and whether semisupervision can reduce curation time, and suggest best practices 55

based on the outcomes. We proceed to compare the efficacy of rules-based methods, 56

deep learning methods bootstrapped with data collected via rules-based methods, and 57

deep learning methods trained on curated data. Finally, we outline some initial testing 58

undertaken to assess the value added to current PPI database curation methods both 59

with and without further task-specific fine tuning. 60
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Materials and methods 61

Precuration 62

Curation is a time consuming and thereby costly process. Without appropriate data 63

preparation, an individual curator can read only a handful of papers per hour, which 64

may or may not contain examples of interest. In order to narrow down the curation 65

space for our tasks, we defined high level minimum criteria. It is rare that a text 66

describes an interaction between two different proteins without containing the explicit 67

mention of both proteins. We used named entity recognition (NER) software, TERMite, 68

to tag life science entities within papers drawn from MEDLINE. This enabled us to 69

extract only sentences containing relevant, high level patterns. In the case of PPIs, we 70

looked for two or more gene hits, aligned to HGNC [16], within a given sentence. In 71

auxiliary tests for semisupervision we also looked at sentences containing pairs of drug 72

and adverse event hits, aligned to ChEMBL [17] and MeDDRA [18] respectively, and 73

pairs of drug and gene hits. Filtering sentences in this way not only allows for more 74

rapid curation but also results in fewer sentences being required for training, as the 75

model only needs to comprehend the nuances of a niche subset of sentences. This same 76

step can be used at inference such that only sentences of interest are passed to the 77

model, resulting in significant savings of compute and time. 78

Data preparation 79

Manual curation and Inter-annotator agreement 80

To assess the impact of inter-annotator agreement, three curators independently curated 81

an initial set of 925 sentences, taken from MEDLINE, within which our NER system had 82

identified two or more genes/proteins. Experienced curators attempted to identify PPIs 83

according to criteria provided (see Table 1, or S1 Appendix for full detail). Our criteria 84

were aimed at developing a recall-oriented model which could potentially then be 85

further fine tuned to more specific use-case criteria as required. Concordance between 86

all three curators was observed in 451 of 925 sentences (48.8%), and concordance 87

between at least two of three curators was observed in 889 of 925 sentences (96.1%). A 88

subset of 170 sentences enjoyed agreement from two curators while the third curator 89

had indicated they were unsure as to the correct category. We curated these sentences 90

with a fourth curator and found agreement with the 2:1 majority in 155 cases (88.2%). 91

Table 1. Classes of protein-protein sentences.

Label Class Example

C Coincidental mention A and B were measured.
P Positive A binds to B.
N Negative A does not bind to B.
I Incorrect entity recognition Turn to PAGE1 to read about A.
? Don’t know/unclear

Each sentence was labelled with a single high level classification from the table above.
Further clarification about edge cases was provided when necessary, with an overarching
goal to identify the broadest sense of PPIs.

The high level of disagreement amongst curators (with at least one curator dissenting 92

in 51.2% of cases), illustrates the complexity of the problem even as approached by 93

human experts. We also observed that the number of sentences deemed to contain 94

coincidental mentions of genes significantly outnumbered the number of sentences 95
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deemed to describe interactions, illustrating the need for models to differentiate between 96

these classes in order to reliably automate the identification of PPIs within literature. 97

Although two curators could process more sentences than three in a given number of 98

person-hours, the resulting number of sentences with agreement between two annotators 99

per unit time was similar with either three curators or two curators. In our case, we 100

found inter-annotator agreement between at least two of three curators in 96.1% of 101

sentences, as opposed to a mean average of 64% between the possible pairings of two 102

curators. If three curators curate n sentences in t person-hours, we would expect two 103

curators to curate 1.5n sentences in t, and 0.64 · 1.5n ≈ 0.961n (or 0.96 ≈ 0.961). It 104

should be noted that agreement between two out of two curators represents a 105

concordance rate of 1, whereas agreement between two out of three curators represents 106

concordance of 0.67. We determined to proceed with three annotators to allow us to 107

assess the efficacy of models trained with varying degrees of concordance and to get the 108

strongest possible gold standard set. 109

Semisupervision 110

The class imbalance between coincidental and positive mentions lowers the cost 111

efficiency of curation. To improve the prevalence of positive sentences we utilised the 112

background knowledge from StringDB [19], a public database of mined PPIs, and 113

repeated the curation step after filtering the sentences such that only those which 114

contained two genes identified to have a strong likelihood of interacting, signified by a 115

StringDB combined score of ≥950, were retained. 116

Despite this additional data preparation step, we observed negligible differences in 117

the rate of identification of positive interactions. Moreover, after filtering for gene pairs 118

with high combined scores in StringDB, all three annotators agreed on interactions 119

within only 118 of 1085 sentences (10.9%) and two of three annotators agreed on 120

interactions in a further 136 sentences, bringing the combined total to 254 (23.4%). In 121

the randomly selected set of sentences, these figures were 15.2% and 26.1% respectively. 122

More broadly, we observed similar rates of agreement to the initial set of sentences with 123

all three annotators agreeing in 51.3% of cases (compared to 48.8% in the initial set) 124

and two out of three annotators agreeing in 94.9% of cases (compared to 96.1%). The 125

one clearly observable difference was a marked increase in the identification of sentences 126

containing coincidental mentions (increasing from 47.8%/25.3% to 58.7%/35.2% with 127

agreement between two and three curators respectively). 128

We repeated this with even stricter StringDB combined scores of ≥995, and once 129

again found no improvement in the rate of identification of positive interactions. This 130

may be a result of well established interactions being assumed knowledge and therefore 131

rarely being explicitly stated. We therefore continued using the initial randomly 132

selected set of sentences for data preparation. 133

To assess whether semisupervision might be more applicable in the case of a different 134

relationship, we attempted to apply a similar methodology to drug/adverse reaction 135

pairs. Adverse reactions are difficult to identify using traditional string matching 136

methods as they are lexically identical to non-adverse reaction indications. As such, a 137

sentence which appears to contain a drug and an adverse reaction may in fact describe 138

the opposite, with the drug being described as a treatment for the indication in 139

question. This indicates there is potential for the use of semisupervision in the 140

development of models to extract this relationship. 141

We used TERMite to identify indications mentioned on FDA drug labels within the 142

warnings section, and considered these indications to be adverse reactions caused by the 143

drug to which the label belonged. We proceeded to curate 100 sentences containing this 144

subset of drug/indication pairs and a further 100 sentences containing randomly 145

selected drug/indication pairs, as identified by our NER system in MEDLINE. In both 146
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the semisupervised and the randomly selected set, 23 sentences were deemed to likely 147

describe a drug causing an adverse event. It is very common for a drug to list the 148

indication it treats as a side effect (e.g. headaches being a side effect of aspirin), so we 149

postulated that one possible way to improve on this result would be to exclude any 150

indication mentioned on the drug label which is also known to be a condition treatable 151

with said drug. Repeating the above methodology but excluding approved treatments, 152

as listed in ChEMBL, resulted in a minor improvement of 28 likely positive sentences 153

being identified in the 100 curated. 154

We undertook one final round using ChEMBL to identify drug-gene pairs wherein 155

the gene was a known target of the drug. In this case we found that 58.1% of randomly 156

selected sentences containing a drug and a gene likely described a targeting relationship. 157

In the semisupervised set, this rose to 89.9%. In conclusion, semisupervision may 158

provide a valuable means to increase the ratio of sentences containing the desired 159

relationship to those containing coincidental mentions, but this value is case dependent. 160

Final curation 161

We continued with curation using randomly selected sentences containing two 162

genes/proteins, with no further filtration, ultimately collecting 1408 sentences deemed 163

by at least two curators to contain an interaction, of which 308 were randomly selected 164

and allocated to a test set. These sentences were combined with a correspondent 165

number of sentences deemed by at least two curators to contain coincidental mentions 166

to create our primary training and testing sets. 167

Approaches 168

Rules-based approaches 169

We attempted to use some simple rules-based approaches to provide baselines for deep 170

learning comparisons. The most reliable rule we could identify was to look for two 171

genes/proteins alongside a bioverb indicative of an interaction. We compiled a list of 41 172

such bioverbs (S2 Appendix). In an attempt to improve precision, we also used a second 173

method utilising the natural language processing library spaCy [20] to generate 174

dependency trees of our sentences in order to confirm that the genes identified were 175

grammatical children of the bioverb identified. If the bioverb did not appear to link the 176

two genes, these sentences were considered to be coincidental as opposed to positive. 177

Curators did observe a number of other potential rules such as excluding genes 178

separated by commas in lists, and excluding common pairs such as BRCA1/BRCA2 and 179

CD3+/CD4+. Each of these rules excludes both positive and coincidental examples 180

(albeit not in equal numbers). For the purposes of this experiment we decided to keep 181

the number of rules to a minimum to avoid any confounding effects. Nevertheless, a 182

more sophisticated ruleset may improve results if care is taken to balance precision and 183

recall. 184

Mixed approach 185

To define deep learning baselines, we first attempted to train a model using data 186

collected with the rules-based methods defined above. The risk inherent in using 187

rules-based approaches for data gathering is the introduction of bias, as one is 188

effectively training a model to recognise one’s simplified ruleset, as opposed to exposing 189

it to a truly representative sample of the more nuanced relationship you hope to identify. 190

To assess whether BioBERT was abstracting patterns from our rules-generated training 191

sets, we removed sentences containing a subset of five bioverbs from our training set and 192

used these as our test set. Training was then performed on sentences containing the 193
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remaining set of bioverbs, after replacing any gene hits identified by TERMite with a 194

normalised token. We observed F1 accuracy of 0.584 on unseen bioverbs using the basic 195

method, and F1 accuracy of 0.801 on unseen bioverbs using the spaCy method. This 196

indicates that, while both methods led to some degree of abstraction, this was much 197

more pronounced in the method using grammatical dependency parsing than the 198

method using simple term identification. This insight may be useful if curated data is 199

not available. 200

Deep learning approach 201

Using the same parameters as in the mixed approach, we trained BioBERT on our 202

manually curated sentences. 203

In-the-wild testing 204

Following encouraging results from a preliminary examination of the model’s output, 205

curators at SIGNOR [21] and IntAct [22] examined two sets of data extracted from the 206

CORD19 dataset [23]. A small, custom vocabulary of PPI measurement techniques was 207

used to filter the documents (S3 Appendix), and pairs already represented in the 208

SIGNOR database were excluded. One set was created by identifying sentences with 209

two proteins using TERMite. The second set used the model prediction as an additional 210

filter. Another round of curation was then undertaken to assess coverage of particular 211

genes of interest in which TERMite was used to identify proteins listed by 212

SIGNOR/IntAct as being high priority. 213

Results 214

From our results in Table 2, it is clear that the direct application of our simple, 215

rules-based methods had limited effect in further filtering sentences identified as 216

containing two proteins. However, despite a relatively low F1 accuracy of 0.465 from the 217

most basic ruleset, which simply looked for sentences with two genes/proteins and one 218

molecular bioverb, the precision of 0.666 provides a sufficient weighting of positive 219

sentences to allow BioBERT to abstract common patterns, resulting in significant 220

improvements when a model is trained on sentences identified by the ruleset (F1 221

accuracy 0.761, an increase of almost +0.3). Offsetting this, the relatively high number 222

of incorrect sentences identified by the ruleset limits the final accuracy of the model. 223

We attempted to address this by using dependency parsing to increase our confidence 224

that the two proteins mentioned in a sentence were in fact linked by the molecular 225

bioverb we had identified. When directly applied, this second ruleset did result in 226

notably higher precision (0.759, compared to 0.666). Unfortunately, this came at a 227

significant cost to recall which fell from 0.357 in the original ruleset to 0.133, ultimately 228

resulting in a much reduced F1 accuracy of 0.227. Likewise, training BioBERT on 229

sentences identified by this second ruleset resulted in higher precision (+4.6%) and 230

lower recall (-10.4%) than the model trained on the original ruleset, and an overall lower 231

F1 accuracy of 0.734 (-2.7%). One point of interest is the dramatic rise in recall from 232

the pure rules classification (0.133) to the BioBERT model trained on the output of 233

those rules (0.708). This may indicate the strength of BioBERT in conceptual 234

abstraction, where a simpler model would simply look for similar keywords, resulting in 235

recall more similar to that of the original ruleset. It also correlates with our prior 236

finding that using dependency parsing to generate a training set results in better 237

performance on sentences with unseen key words. 238
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Table 2. Method results.

Method Precision Recall F1

Ruleset 1 0.666 0.357 0.465
Ruleset 2 0.759 0.133 0.227
Ruleset 1 + BioBERT 0.716 0.812 0.761
Ruleset 2 + BioBERT 0.762 0.708 0.734
Curated data + BioBERT 0.897 0.880 0.889

Results from the different methods. Rulesets were either used directly to classify
sentences, or used to generate training data for a BioBERT model.

Broad rules tend to result in a trade off between precision and recall, while highly 239

specific rules are challenging to identify and can easily result in overfitting. The promise 240

of deep learning lies in its capability to recognise nuance and patterns, which are often 241

not easily abstracted into explicit rules, through exposure to real world data. Relative 242

to both the rules-based approaches and the deep learning approaches bootstrapped on 243

data from those rules-based approaches, the deep learning model trained on curated 244

data was significantly stronger. Furthermore, after training BioBERT with fractional 245

subsets of our final curated data, we observed that these results could be achieved with 246

relatively few examples, with F1 accuracy exceeding 0.8 having only seen 100 examples 247

per class and exceeding 0.85 having seen just over 300. 248

In order to get an indication as to whether different tasks would require similar 249

amounts of training data, we repeated this with the Genetic Association Database 250

(GAD) [24] dataset for gene/disease associations. We observed similar accuracy curves 251

when plotting results from different tasks (Fig 1). 95% of the peak accuracy was 252

achieved after 250 sentences for the PPI model, and after 400 sentences in the 253

gene-disease association model. Rounding up, 500 sentences per class may be a useful 254

benchmark for cost efficiency for incrementally training BioBERT or similar language 255

models. The different tasks do achieve different levels of accuracy, which may be the 256

result of different levels of stringency during curation or different complexities in the 257

language describing the different relationships. 258

Fig 1. Task accuracy curves. Comparison of the relationship between model F1
accuracy and number of training samples per class in different relationship extraction
tasks.

During curation, it can be challenging to ascertain whether an interaction is being 259

described from reading a single sentence. Rather than forcing difficult sentences into an 260

existing category, we decided to collect these sentences separately. We hypothesised that 261

having a bin for sentences which did not clearly belong in either the coincidental bin or 262

the positive bin may enable us to train models with an emphasis on either precision or 263

recall, with each model suited to different use cases. To verify this, we replaced 20% of 264

positive sentences with sentences labelled as unclear/unknown by at least two curators. 265

Training a model on this new dataset and testing on the original test set resulted in 266

recall of 0.883 (+0.003) and precision of 0.866 (-0.031), with an F1 score of 0.875 267

(-0.014). Replacing 20% of coincidental sentences resulted in recall of 0.857 (-0.023) and 268

precision of 0.895 (-0.0025), with an F1 score of 0.876 (-0.013). Although the general 269

trend was as expected, the introduction of these difficult sentences resulted in slight 270

accuracy reductions across the board as compared to baseline, excepting a miniscule 271

increase in recall when the unclear/unknown sentences were introduced into the positive 272

set. 273
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Contributors to SIGNOR, a database of causal relationships between biological 274

entities, and to IntAct, a database that captures experimental evidence supporting 275

physical interactions, examined two sets of sentences. Both sets of sentences were taken 276

from documents containing mentions of PPI measurement technologies within the 277

CORD19 dataset. Named entity recognition software was used to identify sentences 278

containing two genes/proteins. These sentences were used, as is, to create a control set, 279

and a second set was created by feeding sentences to the trained model and only 280

retaining those predicted to contain an interaction. The sentences were curated by 281

individuals from SIGNOR and IntAct according to the criteria in S4 Appendix. These 282

criteria were applied to both causal interactions and physical interactions. We took the 283

highest of these two scores to be the score of the sentence. 31/40 (77.5%) of sentences in 284

the set within which the model had identified a PPI were deemed to describe an 285

interaction at some level, as opposed to 9/40 (22.5%) in the sentences without any 286

model filtering. Although 77.5% falls short of the model’s accuracy on the curated test 287

set, it should be noted that the test set was created using the majority opinion of three 288

independent curators, and the 77.5% concordance between the model predictions and 289

the SIGNOR/IntAct curators exceeds the average 64% concordance observed between 290

pairs of curators. Some illustrative errors are collated in Table 3. The criteria for 291

SIGNOR/IntAct also differ from the initial curation criteria, erring towards being 292

rather stricter. Illustrative examples of these differences can be found in Table 4 The 293

extraction of sentences was deemed more efficient than searching and reading entire 294

papers, and using the model as an additional filter resulted in a much higher rate of 295

useful sentences. 296

Table 3. Illustrative incorrect model predictions.

Example
Model

prediction
SIGNOR/IntAct

score
Comment

We also demonstrate that the antiaging
effect of Sip2 acetylation is independent of
nutrient availability and TORC1 activity.

Positive 0

Sentences denying an interaction were
extremely rare in the initial training data.
All three curators agreed on only one

negative example.
This comprises TRF1 and TRF2 which

directly bind the duplex structure and POT1
which interacts with the single-stranded

overhang tail.

Positive 0
Binding and interacting, but with a

non-protein molecule.

We constructed and delivered the
shRNA-resistant myc-tagged DDX1

expression plasmids into the DBT cells,
within which the endogenous DDX1 had
already been knocked down by using
shDdx1-1 ( Figure 6A, lanes 4-6) .

Positive 0

An edge case - DDX1 is tagged with myc,
but via recombinant DNA technology as

opposed to any interaction between
independent proteins.

Christopher Stroh (Muenster, Germany)
presented an intriguing strategy for

enhancing apoptosis sensitivity of tumor cells
by transfection of the NF-kB inhibitor IkBa

fused with the viral protein VP22...

Positive 0
Another edge case - fusion proteins do not

interact as independent entities.

MICAL1 colocalizes with Rab8a. Positive 0
Colocalisations are not considered positive

according to either curation protocol.
Many of the models mistakes are understandable and may be addressed with targeted improvements to the training data.

It was deemed that the potential existed for the model to improve curation time at 297

SIGNOR/IntAct, so a further test was carried out using a specific set of proteins of 298
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Table 4. Differences in curation criteria.

Example
Model

prediction
SIGNOR/IntAct

score
Comment

(e) Compound 4E2RCat, which is described
in literature to be an inhibitor of the

eIF4E/eIF4G interaction.
Positive 0

Despite the drug being the subject and the
interaction clearly being established
elsewhere in the literature, a protein
interaction is mentioned in passing.

Activation of NK cells in vitro with IL-2
induced equivalent amounts of GzmB in

either genotype (data not shown).
Positive 0

Vague assertion that IL-2 induces GcmB
expression.

The coexpression of pIF-LukTer with a
plasmid expressing MDA5 (pEF-BOS MDA5)

stimulated luciferase activity but this
activation was not significantly modified in
EPZ treated-cells ( Figure S1 ), suggesting
that MDA5 does not play a pivotal role in
the Dot1L-mediated regulation of the IFN

pathway.

Positive 0

In this case a causal interaction between one
or more of the overexpressed proteins and
luciferase is implied, but there is no link

between two specific proteins.

Differences in criteria for curation between our initial recall-oriented effort and the more specific aims of SIGNOR/IntAct.

interest. TERMite was used to identify sentences containing two proteins, at least one of 299

which was listed by SIGNOR/IntAct as being of interest. These sentences were ordered 300

according to the proteins present such that all sentences supporting an interaction 301

between a pair of proteins could be considered collectively. 144 of 210 (68.6%) sentences 302

were deemed to contain an interaction. The accuracy was likely impacted by the 303

ordering, with certain pairs posing particular difficulty for the model. One example of 304

this was the pair IL17 and IL17R, often captured together as ’IL17/IL17R’ after the 305

same fashion as complexes that the model has been trained to consider positive (for 306

example, ’SWI/SNF complex’ or ’Mre11/Rad50 complex’). Certain other trends were 307

apparent in the negative sentences, such as the capturing of colocalisations, and of 308

interactions between proteins and non-protein molecules, such as RNAs. Further work 309

might involve targeted curation to address these observable trends. Gains may also be 310

made in other ways. For example, databases like SIGNOR and IntAct aim to capture 311

evidence of an interaction. In this case, sentences which simply assert an interaction 312

takes place based on prior work have less value. A second model to classify the novelty 313

of an assertion might help to further filter sentences to meet their criteria. 314

We endeavoured to explore the efficacy of further fine tuning our trained model, 315

using the higher scoring sentences from the above curation as positives and the lower 316

scoring sentences as negatives, in an attempt to increase the number of sentences output 317

by the model that would be immediately curatable for inclusion in SIGNOR/IntAct. 318

The model developed above was fine tuned on a further 47 sentences per class where 319

sentences scored 3/4 in the previous rounds of curation were considered positive, and 320

sentences scored 0/1/2 were considered negative. Sentences were then extracted from 321

the CORD19 dataset using the protocol described above. 84.31% of 102 sentences 322

curated were deemed to contain some level of interaction according to the criteria of 323

SIGNOR/IntAct, an increase of 8.7%. A significant number of the remaining mistakes 324

were interpretable, such as interactions between one protein and one gene (see Table 5). 325

The number of sentences scoring either 3 or 4 increased from 29.27% to 34.31% 326

(+5.04%). Examples can be seen in Table 6. These results were positive, especially 327

considering the low number of training samples available. One caveat to note is that 328

this more stringent model was notably less likely to make positive predictions, so recall 329
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was likely reduced. The importance of recall depends largely on the ambition of the 330

curators. For example, a database with low coverage and an aim to increase this 331

indiscriminately and quickly will benefit from a model with a focus on precision. 332

Inversely, a database with significant coverage or with an aim to target specific entities 333

will benefit from recall to ensure those few positives not already represented within the 334

database are not missed. This once again illustrates the importance of models being 335

amenable to fine tuning, as even within one database models with different emphases 336

may be required at different stages of its life cycle. 337

Table 5. Illustrative incorrect model predictions.

Example
Model

prediction
SIGNOR/IntAct

score
Comment

In addition, no HDAC6-derived
phosphopeptide was detected in our analysis
suggesting that GRK2 does not exert its

proviral role through HDAC6.

Positive 0
Negative examples still pose a problem for
the model, as they remain poorly represented

in the training data.

ChIP experiments confirmed that there was
a strong association of STAT3 with the

GFAP promoter, suggesting the existence of
mechanism that facilitates access of the
STAT3 complex to the GFAP promoter.

Positive 0 Interaction between protein and gene.

To evaluate whether TRIM25 could
counteract the reduction of the antiviral
response mediated by Dot1L inhibition,

TRIM25 overexpression experiments were
carried out.

Positive 0 Hypothesis positing a causal interaction.

Depletion of STT3A, but not STT3B, causes
a modest induction of the unfolded protein

response (UPR) pathway.
Positive 0

Pathway induction implies an interaction
may exist but none is explicitly described.

(50) found that WNT5a can increase
fibroblast proliferation through a

”noncanonical” or
b-catenin/TCF-independent signaling

mechanism, indicating that both canonical
and noncanonical WNTs may contribute to

tumorigenesis.

Positive 0
Effectively another negative example, asserts

an unspecified signalling mechanism
independent of protein mentioned.

Many of the models mistakes are understandable and may be addressed with targeted improvements to the training data.

Fig 2. SIGNOR/IntAct sentence scoring. Comparison of the distribution of
curation scores with either no model as a filter, the original model as a filter, or the
model tuned to the curation criteria of SIGNOR/IntAct as a filter. In each case,
sentences contained two genes/proteins and were extracted from documents taken from
the CORD19 dataset which contained one or more mentions of a PPI measurement
technology.

Conclusion 338

Various factors affect the quality and cost efficiency of training data for relationship 339

extraction from text in the life sciences. Our key findings are summarised below. 340
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Table 6. Illustrative high grade SIGNOR/IntAct sentences.

Example
Model

prediction
SIGNOR/IntAct

score
Comment

By yeast 2-hybrid screening, PRRSV Nsp1
has also been found to interact with the

protein inhibitor of activated STAT1 (PIAS1)
(unpublished data).

Positive 4
Novel finding with explicit mention of

technique used

That NPM1 promotes PEDV growth is due
to N protein inhibition of caspase-3-mediated

cleavage of NPM1, which prevents
proteolytic cleavage of NPM1 and enhances

host cell survival.

Positive 4 Detailed mechanism

The Nipah virus V protein inactivates
STAT1 by forming a complex with STAT2,
and its expression into cells results in STAT1

being relocalised to the cytoplasm.

Positive 4 Detailed mechanism

In the first phase of the assay a known
amount of FVIII is inactivated by activated

protein C (APC) in the presence of a
Protein-S (PS) containing plasma sample,

phospholipids and calcium ions.

Positive 3 Detailed result

These results suggest a critical role for Sin3A
in regulating GFAP expression during

astrocytic differentiation.
Positive 3

Novel finding with implication of further
curatable information in the full text

• Named entity recognition provides a useful starting point for curation, as well as 341

for identifying sentences to pass to the trained model at inference. It also allows 342

for the automatic replacement of specific entities with generic tokens, preventing 343

the model from simply remembering protein pairs, which again applies to both 344

training and inference. 345

• Inter-annotator agreement is essential for high quality data. Life science text is 346

deeply complex and individuals regularly disagree when asked to classify content. 347

In the case of PPIs, a voting mechanism with three independent curators dissolved 348

most of these conflicts. 349

• Semisupervision may be a valuable preprocessing step where significant class 350

imbalances are present in the data available for curation. Some entity 351

relationships seem to be more amenable to this approach than others. 352

• Rules-based approaches offer interpretable results, but require careful manual 353

tuning to balance bias and variance. While rules may be indefinitely tuned, in 354

practice it is challenging to achieve comparable efficacy to deep learning results. 355

• Deep learning methods appear to be capable of some degree of abstraction when 356

bootstrapped with data collected from rules-based methods. This seems to be 357

particularly true where the rules in question account for grammatical dependency 358

as opposed to pure named entity recognition. 359

• BioBERT is capable of achieving strong results with relatively few training 360

samples. 500 sentences per class seems to be a reasonable target for an initial 361

round of curation, at which point the accuracy curve should be assessed. 362
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• Capturing examples that are unclear in a separate class may allow for training 363

two models with emphasis either on recall or precision. 364

• If a model is intended for use in multiple different settings, it is possible to fine 365

tune a recall-oriented model to more specific criteria with relatively few training 366

samples. 367

The SIGNOR/IntAct curation validated the use of relationship extraction models to 368

streamline the identification of protein pairs for curation. However, it also illustrated 369

the importance of further fine tuning to target specific subcategories within the scope of 370

all sentences containing PPIs, and provided ideas for future work. In particular we feel 371

that the feasibility of developing a model for detecting novel findings warrants 372

investigation. This could then be used in combination with the PPI model, or any other 373

relationship extraction model, to filter results such that only sentences describing the 374

initial identification of a relationship were targeted. These would be more likely to be 375

accompanied by the evidence and quantitative metrics required for comprehensive 376

database curation. Moderate gains were made by further fine tuning of the model using 377

a small training set curated according to the different criteria of SIGNOR/IntAct, 378

illustrating the potential for a model with broad criteria to be fine tuned to more 379

specific use cases. 380

Supporting information 381

S1 Appendix. PPI curation guidelines. The full set of high level guidelines 382

provided to curators. 383

S2 Appendix. Biomolecular interaction terms. The full set of terms used in 384

the rules-based methods to identify candidate sentences containing two genes/proteins 385

and one or more molecular bioverbs. 386

S3 Appendix. PPI technology terms. The full set of terms used to filter 387

documents for the initial SIGNOR/IntAct curation on CORD19 data. 388

S4 Appendix. SIGNOR classifications. The definitions for SIGNOR’s sentence 389

level classification effort. 390
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